
Implementing Bayesian Inference

with Neural Networks

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM
(Dr.rer.nat.)

im Fachgebiet

Informatik

vorgelegt

von M.Sc. Sacha Sokoloski
geboren am 27.12.1982 in Toronto, Canada

Die Annahme der Dissertation wurde empfohlen von:

1. Professor Dr. Nihat Ay (MPI MIS Leipzig)

2. Professor Dr. Manfred Opper (Technische Universität Berlin)

Die Verleihung des akademischen Grades erfolgt mit Bestehen der Verteidigung am
20.05.2019 mit dem Gesamtprädikat magna cum laude.

Abstract

Embodied agents, be they animals or robots, acquire information about the world
through their senses. Embodied agents, however, do not simply lose this information
once it passes by, but rather they process it and store it for future use. The most
general theory of how an agent can combine stored knowledge with new observations
is Bayesian inference. In this dissertation I present a theory of how embodied agents
can learn to implement Bayesian inference with neural networks.

By neural network I mean both artificial and biological neural networks, and in my
dissertation I address both kinds. On one hand, I develop theory for implementing
Bayesian inference in deep generative models, and I show how to train multilayer
perceptrons to compute approximate predictions for Bayesian filtering. On the other
hand, I show that several models in computational neuroscience are special cases of
the general theory that I develop in this dissertation, and I use this theory to model
and explain a range of phenomena which are found in the neuroscience literature.
The key contributions of this dissertation can be summarized as follows:

• I develop a class of graphical model called nth-order harmoniums. An nth-order
harmonium is an n-tuple of random variables, where the conditional distribution
of each variable given all the others is always an element of the same exponential
family. I show that harmoniums have a recursive structure which allows them
to be analyzed at coarser and finer levels of detail.

• I define a class of harmoniums called rectified harmoniums, which are con-
strained to have priors which are conjugate to their posteriors. As a consequence
of this, rectified harmoniums afford efficient sampling and learning.

• I develop deep harmoniums, which are harmoniums which can be represented
by hierarchical, undirected graphs. I develop the theory of rectification for
deep harmoniums, and develop a novel algorithm for training deep generative
models.

• I show how to implement a variety of optimal and near-optimal Bayes filters
by combining the solution to Bayes’ rule provided by rectified harmoniums,
with predictions computed by a recurrent neural network. I then show how to
train a neural network to implement Bayesian filtering when the transition and
emission distributions are unknown.

• I show how some well-established models of neural activity are special cases of
the theory I present in this dissertation, and how these models can be general-
ized with the theory of rectification.

• I show how the theory that I present can model several neural phenomena
including proprioception and gain-field modulation of tuning curves.

iii

• I introduce a library for the programming language Haskell, within which I have
implemented all the simulations presented in this dissertation. This library
uses concepts from Riemannian geometry to provide a rigorous and efficient
environment for implementing complex numerical simulations.

I also use the results presented in this dissertation to argue for the fundamental
role of neural computation in embodied cognition. I argue, in other words, that before
we will be able to build truly intelligent robots, we will need to truly understand
biological brains.

iv

Acknowledgements

I would like to thank Nihat Ay for seeing something in me and inviting me to pursue
my doctorate at the Max Planck Institute for Mathematics in the Sciences. I would
like to thank some of the members, past and present, of his lab, including Guido
Montúfar, Keyan Ghazi-Zahedi, and Johannes Rauh, who patiently answered my
questions, and supported me along the way.

I would like to thank director Jürgen Jost, and many of the members, past
and present, of his lab, including Wiktor M lynarski, Eckehard Olbrich, and Nils
Bertschinger, for their insightful discussions, and for providing the stimulating intel-
lectual atmosphere that I experienced at the MIS. Finally, I would like to thank the
entire staff of the MIS, in particular Antje Vandenberg and Heike Rackwitz, for their
constant help, and for making German bureaucracy seem manageable.

I would like to thank Joseph Makin for his incredibly thorough reviews of my
first paper, which lead eventually to my first publication. I would also like to thank
Ruben Coen-Cagli, for providing me with support and a place to work after I moved
to New York city, as I entered the final phase of my doctoral studies.

I would like to thank my family, for being there when I needed them. I would like
to thank my wife Anna Erzberger, for supporting me in every way imaginable, and
certainly more than I can list. I would also like to thank her parents and family, for
their warmth, hospitality, and support. Finally I would like to thank my son Nikolai
Armin Sokoloski, for adding a sense of purpose to my work. Thank you, Niko, for
being so cooperative during my extended paternity leave. I would not have been so
productive were it not for your permission.

v

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Definitions ix

List of Theorems xi

List of Figures xiii

Notation xv

1 Introduction 1
1.1 Inference in Deep Learning . 1
1.2 Inference in Computational Neuroscience 3
1.3 Dissertation Outline . 4
1.4 Related Work . 6

2 Mathematical Background 9
2.1 Measure Theory . 9
2.2 Statistical Models . 11
2.3 Exponential Families . 14
2.4 Graphical Models . 20
2.5 Stochastic Chains . 23
2.6 Bayesian Inference . 26

3 Families of Harmoniums 31
3.1 Second-Order Harmoniums . 31

3.1.1 Second-Order Conditional Specification 32
3.1.2 Properties of Harmoniums . 35

3.2 Higher-Order Harmoniums . 38
3.2.1 Higher-Order Conditional Specification 39
3.2.2 Harmonium Factorization . 40
3.2.3 Deep Harmoniums . 43

4 Harmonium Rectification 45
4.1 Second-Order Harmonium Rectification 45

4.1.1 Rectified Second-Order Harmoniums 46

vii

4.1.2 Exact Rectification . 48
4.1.3 Approximate Rectification . 52

4.2 Deep Harmonium Rectification . 55
4.2.1 Rectified Deep Harmoniums 55
4.2.2 Fitting and Rectifying Deep Harmoniums 59

5 Bayesian Inference with Artificial Neural Networks 65
5.1 Implementing Static Inference . 65

5.1.1 Implementing Bayes’ Rule . 65
5.1.2 Encoding Beliefs . 68

5.2 Implementing Bayesian Filtering . 70
5.2.1 Implementing Bayesian Prediction 70
5.2.2 Exponential Family Multilayer Perceptrons 73
5.2.3 Modelling a Bayes Filter . 76
5.2.4 Training a Model Bayes Filter 79

6 Bayesian Inference with Biological Neural Networks 83
6.1 Linear-Nonlinear Neurons . 83
6.2 Linear Probabilistic Population Codes 84
6.3 LPPCs and Harmoniums . 88
6.4 Homogeneous LPPCs . 90

7 Simulations 95
7.1 Geometric Optimization Libraries . 95

7.1.1 Type Systems and Haskell . 96
7.1.2 Manifolds . 99
7.1.3 Differential Geometry . 100
7.1.4 Exponential Families . 103

7.2 Restricted Boltzmann Machines . 104
7.3 Biological Neural Circuits . 106

7.3.1 Training and Validation Procedure 106
7.3.2 Colour Sequence Learning . 108
7.3.3 Self-Localization . 109
7.3.4 Proprioception . 111
7.3.5 Analysis of Results . 112

8 Conclusion 115
8.1 Brains, a Priori . 115
8.2 Outlook . 117

A List of Exponential Families 119

Bibliography 123

viii

List of Definitions

2.1 Definition (Absolute Continuity) . 10
2.2 Definition (Minimal Sufficient Statistic) 16
2.3 Definition (Bayesian Network) . 21
2.4 Definition (Markov Random Field) 21
2.5 Definition (Stationary Stochastic Process) 23
2.6 Definition (Equilibrium Distribution) 24
2.7 Definition (Harris Recurrence) . 25
2.8 Definition (Aperiodic Markov Chain) 25
2.9 Definition (Ergodic Markov Chain) 25
2.10 Definition (Conjugate Prior) . 27

3.1 Definition (Second-Order Harmonium) 32
3.2 Definition (Higher-Order Harmoniums) 39
3.3 Definition (Interaction) . 41
3.4 Definition (Deep Harmonium) . 43

4.1 Definition (Rectified Harmonium) . 46
4.2 Definition (Rectified Likelihood) . 48
4.3 Definition (Rectified Deep Harmonium) 55

5.1 Definition (Implementing Bayes’ Rule 1) 66
5.2 Definition (Encoding) . 68
5.3 Definition (Implementing Bayes’ Rule 2) 68
5.4 Definition (Implementing Bayesian Prediction 1) 70
5.5 Definition (Implementing a Bayes Filter 1) 71
5.6 Definition (Neural Bayes Filter) . 78

6.1 Definition (Homogeneous LPPC) . 90

ix

List of Theorems

2.1 Theorem (Radon-Nikodym Theorem) 10

2.2 Proposition (Gibbs’ Inequality) . 11

2.3 Theorem . 14

2.4 Proposition . 16

2.5 Corollary . 16

2.6 Proposition . 17

2.7 Theorem . 17

2.8 Theorem . 19

2.9 Theorem (The Hammersley-Clifford Theorem) 22

2.10 Theorem . 25

2.11 Theorem (The Ergodic Theorem) . 25

3.1 Theorem (Second-Order Conditional Specification) 33

3.2 Proposition . 33

3.3 Proposition . 36

3.4 Proposition . 36

3.5 Proposition . 37

3.6 Theorem (Higher-Order Conditional Specification) 39

3.7 Theorem (The Harmonium Factorization Theorem) 40

3.8 Lemma . 42

3.9 Theorem . 42

4.1 Theorem (The Rectification Theorem) 47

4.2 Corollary . 47

4.3 Corollary . 48

4.4 Corollary . 48

4.5 Proposition . 49

4.6 Theorem . 51

4.7 Theorem . 52

4.8 Theorem . 56

4.9 Lemma . 56

4.10 Theorem (The Deep Rectification Theorem) 57

4.11 Corollary . 59

4.12 Theorem . 60

5.1 Proposition . 66

5.2 Proposition . 69

5.3 Proposition . 71

xi

6.1 Proposition . 89
6.2 Proposition . 90
6.3 Proposition . 91

xii

List of Figures

1.1 Deep Generative Models . 2
1.2 Neural Circuits of Proprioception . 3

2.1 Isolines of the Relative Entropy . 18
2.2 Natural Gradient Descent . 19
2.3 A Directed Graphical Model . 21
2.4 An Undirected Graphical Model . 22
2.5 Markov Chains . 24
2.6 Hidden Markov Models . 26
2.7 Multisensory Bayesian Inference . 28
2.8 Extended Kalman Filter . 29

3.1 Second-Order Harmoniums as Two-Variable Graphs 32
3.2 Second-Order Harmoniums as Bipartite Graphs 34
3.3 Third-Order Harmoniums as Tripartite Graphs 39
3.4 Factorization of a Complex Harmonium 41
3.5 Deep Harmoniums as Hierarchical Graphs 44

4.1 Rectification . 46
4.2 Mixture Models as Rectified Harmoniums 50
4.3 Rectified Deep Harmoniums . 58
4.4 Comparison of Contrastive Divergence Algorithms 63

5.1 Affine Belief Encoding . 69
5.2 An Exponential Family Multilayer Perceptron 74
5.3 Training on EFMLP on Toy Data . 75
5.4 Graph of an EFMLP Bayes Filter . 77
5.5 Graph of a Neural Bayes Filter . 78

6.1 Bernoulli, Binomial, and Poisson Distributions 85
6.2 Convergence Properties of Collections of Tuning Curves 87
6.3 Bayesian Inference with LPPCs . 88
6.4 Rectification in Homogeneous LPPCs 92

7.1 Coordinate Transforms in Goal . 101
7.2 Fitting and Rectifying RBMs . 105
7.3 Neural Hidden Markov Model . 110
7.4 Neural Kalman Filtering . 111
7.5 Optimizing Proprioception of the Human Arm 113

xiii

Notation

Calculus

a, b, f, g . . . Scalars, scalar valued functions
a,b, f ,g . . . Vectors and vector-valued functions
ai, bi, fi, gi . . . ith element of a vector
A,B . . . Matrices
A> Matrix transpose
ai,bi . . . ith row of a matrix
ai,j, bi,j . . . (i, j)th element of a matrix
ab Scalar-multiplication of b by a
a · b Dot-product of the vectors a and b
a⊗ b Outer-product of the vectors a and b
∇af Geometric gradient of f with respect to a
∂af Partial derivatives of f with respect to a
∂af Jacobian of f with respect to a
∂aaf Hessian of f with respect to a
Ω Sample space
F σ-algebra
(Ω,F) Measurable space
µ, ν Measures∫

Ω
fµ The integral of f over Ω with respect to µ

Probability Theory

Ω Sample space
P Probability measure
Q(θ) Probabilistic model (depends on parameters)
Λ Space of probability measures
X, Y, Z . . . Random variables
ΩX State space of X
FX σ-algebra over ΩX

X ∈ ΩX Declaration of the state space of X
PX Probability distribution of X
PX|Y Conditional probability distribution of X given Y
pX Probability density of X
pX|Y Conditional probability density of X given Y
H(P) Entropy of P
H(P,Q) Cross-Entropy of P and Q
D(P ‖ Q) The relative entropy of P with respect to Q

xv

EP [f(X)] Integral of f over ΩX with respect to PX
EP [f(X) | Y = y] Integral of f with respect to PX|Y=x

EP [EP [f(X) | Y = Z]] Integral of f with respect to
∫

ΩZ
PX|Y=zPZ(dz)

EP [EQ[f(X) | Y]] Integral of f with respect to
∫

ΩZ
QX|Y=yPY (dy)

CP (X, Y) Covariance of X and Y with respect to P

Exponential Families

M Exponential family (manifold)
s Sufficient Statistic
ψ Log-partition function
φ Negative Entropy
Θ Natural parameter space
θ Natural parameters
H Mean parameter space
η Mean parameters
τ Forward mapping (Natural to Mean Coordinates)
τ∗ Backward mapping (Mean to Natural Coordinates)
MX Exponential family over measurable space (ΩX ,FX)
sX , ψX ,θX . . . Sufficient statistic, etc. of MX

MX · MZ Product family of all PX · PZ in MX and MZ

QX Exponential family model in MX

PX|Z ∈MX Short-hand for PX|Z=z ∈MX ,∀z ∈ ΩZ

Harmoniums and Neural Networks

X Latent Variables
Z Observable Variables
Y Intermediate Variables
HXZ A second-order harmonium family
MX ⊗MZ An operator for constructing HXZ

H(Xi)ni=1
An nth-order harmonium family

DXY Z A deep harmonium family
sXZ , ψXZ ,θXZ . . . Sufficient statistic, etc. of HXZ

θX ,θZ Biases of PXZ ∈ HXZ

ΘXZ Interaction parameters of PXZ ∈ HXZ

ρX , ρ0 Rectification parameters of PXZ ∈ HXZ

θ∗X Parameters of PX ∈MX for rectified PXZ ∈ HXZ

Q∗X Rectifier of QXZ

θX|Z Exponential Family Multilayer Perceptron (EFMLP)
χ Parameters of an EFMLP
X Parameter space of an EFMLP

xvi

Chapter 1

Introduction

Statistical inference is the process of transforming observations of an unknown quan-
tity into an estimate of that quantity, and Bayesian inference is the most general
form of statistical inference which is consistent with the laws of probability theory
(Jaynes, 2003; Talbott, 2015). In the context of embodied cognition, Bayesian infer-
ence describes how to an agent should update its beliefs about the world based on
observations, and provides a formal theory of perception (Knill and Richards, 1996;
Kersten et al., 2004; Yuille and Kersten, 2006).

An embodied agent can implement Bayesian inference by learning a generative
model of latent and observable variables; the prior beliefs of the agent are given by the
marginal distribution of the generative model over the latent (unknown) variables,
and the posterior beliefs of the agent are given by the model distribution of the latent
variables given the observations. Yet the fact that a generative model can support
Bayesian inference does not address how embodied agents can implement Bayesian
inference in the brain, or learn the underlying generative model which defines it.

The subject of this dissertation is how embodied agents learn to implement
Bayesian inference with neural networks. By “neural network” I mean both the
artificial neural networks of deep learning, and the biological neural circuits studied
in computational neuroscience. And whether we call it inferring the category of some
unlabelled data, or inferring the stimulus of some population of neurons, inferring
latent state is fundamental to both fields.

1.1 Inference in Deep Learning

Contemporary research into artificial neural networks falls under the banner of deep
learning, yet modern deep learning sprung from the ashes of what used to be known
as connectionism (Hinton, 1989). The field of connectionism is where both multilayer
perceptrons (Rumelhart et al., 1986) and restricted Boltzmann machines (Ackley
et al., 1985) were first developed and applied, before initial excitement in artificial
neural networks was replaced by disappointment, and the field went into something
of a dark age. The catalyst for the modern wave of research into artificial neural
networks is arguably the work presented in Hinton et al. (2006), wherein the authors
showed how to train a generative model known as a deep belief network.

As presented in Hinton et al. (2006), a deep belief network is trained in two steps.
The first step is to train the bilayers of the network one after the other – a procedure
known as “pre-training” – and the second step is to apply the wake-sleep algorithm

1

1.1. Inference in Deep Learning

Figure 1.1: Graphical depictions of two forms of deep neural network capable of inference over the
latent variables given observations. The above image was originally published in Salakhutdinov
(2015). The observable variables in these models are indicated by v, and the latent variables by
h(i), and the matrices W(i) are the parameters of the model.

(Hinton et al., 1995) to train the network as a whole. Another generative model
from the deep learning literature is the deep Boltzmann machine (Salakhutdinov and
Hinton, 2009, 2012), which is represented by a fully undirected graph, in contrast to
the hybrid graphical structure of the deep belief network (see figure 1.1).

Instead of applying the wake-sleep algorithm, a pre-trained network can instead
be turned into a multilayer perceptron and trained with backpropagation (Rumelhart
et al., 1986) to achieve state-of-the-art results on discriminative modelling problems.
The resulting model, however, is no longer a generative model, and it cannot sup-
port Bayesian inference of the latent variables given observations. In spite of this,
discriminative modelling currently dominates deep learning research, whereas deep
generative models and inference of latent variables have diminished in relative impor-
tance. Nevertheless, some of the founding figures of deep learning expect generative
modelling to return to prominence in the future (LeCun et al., 2015).

In the aforementioned generative models, inference is optimized by optimizing
the parameters of the generative model – in so far as the generative model better
explains the observations, the posterior over the latent variables given an observation
should be more accurate as well. This focus on model learning in the deep learning
community has resulted in algorithms which can successfully train highly complex
models. The limitation of these models, however, is that they only support inferring
the latent state given single observations – even in the case of temporal models,
the corresponding sequence of observations must have a particular structure. In
contrast, the models of computational neuroscience try to account for how animals
can implement Bayesian inference in a more adaptive manner.

2

Chapter 1. Introduction

Figure 1.2: Proprioception is an example dynamic perception, and by extension Bayesian filtering.
Proprioceptors provide observations of the state of the body to the brain. The cerebellum and
motor cortex compute predictions of the bodies state based on previous beliefs. The observations
and predictions are then combined with Bayes’ rule to compute the posterior. The above image was
copied from the slides available online at https://msu.edu/course/kin/810/slds3.htm/.

1.2 Inference in Computational Neuroscience

The Bayesian brain hypothesis is that the brain represents beliefs about the world
with probability distributions, and updates these beliefs with Bayesian inference
(Knill and Pouget, 2004; Doya, 2007). Bayesian approaches to modelling the brain are
becoming increasingly popular at all levels of neuroscience, from neurons (Coen-Cagli
et al., 2015) and neural populations (Funamizu et al., 2016) to behaviour (Ernst and
Banks, 2002; Fischer and Peña, 2011). Similarly, neural circuit models of how ani-
mals implement Bayesian inference are a major part of computational neuroscience.
These models can implement Bayes’ rule given observations from multiple sensory
modalities (Ma et al., 2006), and can implement Bayesian filtering (see figure 1.2)
for sequences of observations of dynamic stimuli (Beck et al., 2011; Susemihl et al.,
2014; Sokoloski, 2017).

A prior is conjugate to a posterior if the prior and posterior have the same para-
metric form, and the theoretical neural circuits of computational neuroscience often
rely on conjugate priors for implementing Bayesian inference. If we think of Bayesian
inference as the evaluation of a function which takes a prior as input and returns a
posterior as output, then conjugate priors allow us to recursively apply this function
to implement inference given multiple observations. Moreover, if we are given a set
of such functions which implement different kinds of inference yet have inputs and
outputs with identical forms – for example functions which implement inference for
different sensory modalities, or which compute predictions for Bayesian filtering –

3

https://msu.edu/course/kin/810/slds3.htm/

1.3. Dissertation Outline

then we can compose these functions to form complex circuits for Bayesian inference.
In contrast with deep learning, learning the parameters of these neural circuits,

and thereby learning to infer the latent state, has not received much attention in
computational neuroscience. Nevertheless, the methods for learning and inference
from these fields are naturally complimentary, and map readily onto an intuitive
picture of the brain. On one hand, beliefs are encoded in the activity of neurons, and
inference occurs on short timescales as a result of neural firing dynamics (Ma et al.,
2006; Beck et al., 2011). On the other hand, parameters of the generative model are
realized by neural connectivity, and learning is implemented with synaptic plasticity
(Friston, 2003, 2010).

1.3 Dissertation Outline

The approach I take in this dissertation is to combine the tools of deep learning
for training complex graphical models, with the circuits from computational neuro-
science for implementing complex inference. I then analyze, generalize, and expand
these theories toward developing a general theory of Bayesian inference with neural
networks. I validate this theory with a large number of simulations. Moreover, I ap-
ply this theory to model biological neural circuits, and I find that I am able to explain
several phenomena widely observed in the computational neural science literature.

Harmonium Families

In chapter 3 I develop harmoniums and harmonium families. Harmoniums are col-
lections of random variables defined intrinsically by the fact that the conditional
distribution of each random variable given all the others is always an element of the
same exponential family. This approach to intrinsically defining a class of graphical
model began with the work of Besag (1974), and the proof strategy developed in
Besag (1974) has recently been extended in the work of Yang et al. (2013, 2015);
Tansey et al. (2015) to include nth-order harmoniums.

In my dissertation I adopt the strategy of Arnold and Press (1989) to provide a
more general derivation of the theory of nth-order harmoniums. This strategy empha-
sizes the recursive structure of harmoniums, in the sense that a harmonium composed
of many random variables can be analyzed at finer and coarser levels of detail. In
particular, I show that an n-th order harmonium family can be expressed as a second-
order harmonium family of harmonium families, and this result is fundamental to my
development of the theory of rectification.

Harmonium Rectification

In chapter 4 I develop the theory of rectification. To the best of my knowledge,
the theory of rectification has no precedent in the deep learning literature, and only
simple forms of it have been studied in the computational neuroscience literature.
The concept of rectified harmoniums is inspired by a common feature of many neural
population models from computational neuroscience, in which the sum of the tuning
curves of the population is independent of the stimulus. This assumption ensures that
there exists conjugate priors, which allows the posterior given a population response
to be trivially calculated (Ma et al., 2006).

4

Chapter 1. Introduction

I generalize this property in two ways. Firstly, I generalize it from tuning curves
which are independent of the stimulus, to tuning curves which depend on the stimulus
through an exponential family sufficient statistic. Secondly, I generalize it from pop-
ulation code models to the general exponential family structure of the harmonium.
I refer to harmoniums which satisfy this generalized constraint as rectified, and I
show that rectified harmoniums support conjugate priors and can be trivially sam-
pled. These properties suggest that rectified harmoniums are especially well-suited
to supporting the dual tasks of inference and learning.

After deriving the general features of rectified harmoniums, I provide examples
of classes of rectified harmoniums. I also extended this analysis to deep harmoni-
ums, and find that when a deep harmonium is rectified at every level of its hierarchy,
it inherits the computational advantages of rectification. Finally, I calculate deriva-
tives and develop algorithms for rectified harmoniums and rectified deep harmoniums
which allow them to be fit to data, while ensuring that they remain approximately
rectified.

Bayesian Inference with Artificial Neural Networks

In chapter 5 I begin to develop the concept of implementation, by which a function
implements some aspect of Bayesian inference. I then demonstrate how to encode
the parameters of an exponential family distribution in an alternative space. This
result provides a simple way of modelling how a population of neurons can encode
the parameters of a probability distribution, and allows me to unify a number of ap-
proaches on Bayesian inference and filtering in biological (Ma et al., 2006; Beck et al.,
2011) and artificial neural networks (Sutskever et al., 2009; Boulanger-Lewandowski
et al., 2012).

I then show how to express multilayer perceptrons using the language of exponen-
tial families, and use them to construct two forms of recurrent neural network which
implement Bayesian filtering. These filters are essentially extensions of the work of
Sutskever et al. (2009) and Boulanger-Lewandowski et al. (2012), respectively. How-
ever, in those models, only single-layer neural networks were used, and so they lack
the requisite complexity to support the established theory of universal approxima-
tion in multilayer perceptrons (Hornik, 1993), and are thus limited in their ability
to implement Bayesian filtering. Moreover, the model of Boulanger-Lewandowski
et al. (2012) fails to satisfy the requisite conditions for ensuring that Bayes’ rule is
optimally implemented by the network, and therefore tends to lose some of the in-
formation provided by the observations over time. I show that the neural networks
which I propose avoid these problems.

Bayesian Inference with Biological Neural Networks

In chapter 6 I connect harmoniums and rectification with models from the compu-
tational neuroscience literature. I begin by reviewing linear-nonlinear neurons and
linear probabilistic population codes (LPPCs). I then show how these models can be
described as forms of harmonium, and find that LPPCs with Poisson neurons have
several unique properties. In particular, I show that LPPCs with tuning curves that
densely cover the stimulus space can always be rectified by modulating the gain of
the tuning curves.

5

1.4. Related Work

Simulations

In chapter 7 I introduce my library for the programming language Haskell, which I
refer to as the Geometric Optimization Libraries (Goal). In my opinion (which is
shared by many in the Haskell community) Haskell has the potential to provide an
excellent and type-safe interface to numerical algorithms, but the right abstractions
for describing these algorithms must first be found. Goal is my attempt to develop a
type-safe framework for implementing numerical optimization algorithms by drawing
inspiration from differential geometry. Nearly all of the figures which I present in this
dissertation are generated in Goal, and so this dissertation serves as a demonstration
of the effectiveness of my libraries.

I then present simulations to validate some of the algorithms which I develop
in previous chapters. I begin with a simple simulation of training and rectifying
restricted Boltzmann machines (RBMs) on the MNIST dataset, and find that my
rectification-based algorithm results in an RBM which is both approximately rectified
and a good model of the data. I then move on to modelling a number of neural circuits
in the brain with neural Bayes filters. Each of these models is successful from the
standpoint of optimization, but my model of proprioception proves especially effective
as a model of the phenomenon itself.

In particular, my neural Bayes filter model of proprioception is trained to opti-
mize its beliefs about the two-dimensional stimulus of joint angle and velocity. After
training, the hidden layer of the EFMLP of the Bayes filter learns distinct tuning
curves over the two variables. These tuning curves have the structure of gain-fields
(Salinas and Thier, 2000), in the sense that they interact multiplicatively. Empir-
ical work has indeed found that gain-fields exist in proprioceptive neurons in the
cerebellum (Herzfeld et al., 2015), suggesting that my approach to modelling em-
bodied perception in the brain captures some of the fundamental structure of neural
computation.

Conclusion

The theoretical and empirical work of my dissertation demonstrates that embodied
agents can implement Bayesian inference with neural networks. In chapter 8 I use
these results to argue that embodied agents should implement Bayesian inference
with neural networks. That is, I argue that if we lay out the necessary conditions
for something to be an embodied agent, and build the most general theory we can of
how such a system can efficiently solve the problems of embodied cognition, then we
end up deriving something, a priori, which looks rather like a brain. I conclude my
dissertation with a discussion of several of the ways I hope to extend my work in the
future.

1.4 Related Work

In this section I highlight some of the literature which is related to my dissertation.
This literature is a mixture of methods which compete with my own and theories
which address important topics that I do not address in this dissertation. The re-
viewed material can be broken down into work on embodied cognition, work on
machine learning, and work on computational neuroscience.

6

Chapter 1. Introduction

My focus in this dissertation is on embodied perception, however there are at least
two other fundamental aspects of embodied cognition that I do not consider, namely
action and morphology. Action, as formalized by control theory and reinforcement
learning, closes the loop of the cognitive agent with the world. It is a vast topic, and
there is no use in me trying to review it here; recent work, however, on casting optimal
control as an inference problem is worth highlighting (Toussaint, 2009; Toussaint
and Goerick, 2010; Friston et al., 2010; Rawlik et al., 2012). In particular, work
on the framework known as linearly solvable MDPs or KL-control (Todorov, 2010;
Theodorou and Todorov, 2012) allows control problems to be solved as graphical
model inference problems (Kappen et al., 2012), and can be applied to solving control
problems over latent variables (Matsubara et al., 2014). The effectiveness of the
control-as-inference approach suggests that the work in this dissertation could be
directly applied to solving control problems.

The importance of morphology to embodied cognition is exemplified by the pas-
sive dynamic walker, which exhibits natural walking down an incline without any
actuators (McGeer, 1990). In general, morphological computation is the theory of
how the form of the body of the embodied agent can help solve the problems of em-
bodied cognition (Pfeifer and Gómez, 2009). Optimizing morphological computation
involves matching the agent and its morphological and computational resources to
the tasks that it must solve, and in recent years has become an active area of research
(Zahedi and Ay, 2013; Montúfar et al., 2015). I believe that in the combination of
these approaches of control as inference, morphological computation, and the ap-
proach to embodied perception that I develop in this dissertation, lies the beginning
of a general theory of embodied cognition.

In deep learning there is a significant body of work on learning the parameters
of neural networks with Bayesian methods (Neal, 2012; Ghahramani, 2015). These
methods are applied to improve the learning of the parameters of the neural network,
rather than inferring latent states. As such, in spite of involving Bayesian inference
and neural networks, this work has no direct relationship with the work I present in
this dissertation. At the same time, there is no reason these methods for improving
learning cannot be applied to the deep models that I consider.

Although I presented the claim that generative models have take a secondary role
in the deep learning community, there is still a large amount of work being done on
this topic. A great deal of work has recently been done on understanding the repre-
sentational power of different classes of generative models (Le Roux and Bengio, 2008;
Montúfar and Ay, 2011; Montúfar and Rauh, 2016). Of particular relevance to this
dissertation is the theory presented in Montúfar and Morton (2015a) on “Kronecker
Product Models”, which overlap with the harmonium families I develop in chapter
3. Furthermore, as an alternative to the established graphical model approaches,
generative adversarial networks (Goodfellow et al., 2014; Radford et al., 2015) are
a promising new approach to generative models which avoid some of the pitfalls of
graphical models.

The methods I develop in section 5.2 for approximate Bayesian filtering are re-
lated to previous work on approximate filtering with restricted Boltzmann machines
(Sutskever et al., 2009; Boulanger-Lewandowski et al., 2012). The work I present is
nearly a special case of these models, yet both are deficient (in my estimation) because
they fail to distinguish the predictions and posteriors of Bayesian filtering. On one
hand, the RTRBM presented in Sutskever et al. (2009) has a fairly strict recurrent

7

1.4. Related Work

structure, which is too limited to approximate general prediction functions. On the
other hand, the RNN-RBM model presented in Boulanger-Lewandowski et al. (2012)
generalizes the RTRBM, but then loses the ability to exactly implement Bayes’ rule.
In the case of my model, I present conditions under which the predictions and pos-
teriors of a Bayes filter can be exactly implemented, allowing me to describe optimal
filters from the computational neuroscience literature (Beck and Pouget, 2007; Beck
et al., 2011) as special cases of my general model.

Another interesting model for Bayesian filtering from the computational neuro-
science literature is the recurrent exponential family harmonium (rEFH) presented
in Makin et al. (2015). It has a markedly different structure from the aforementioned
models, and ultimately learns an undirected dynamic model, rather then the directed,
hidden Markov model-based approaches. This affords the rEFH interesting proper-
ties (see Makin et al., 2015, 2016), such as the ability to generate samples from the
latent space backwards through time. On the other hand, this limits the complexity
of the recurrent connectivity, and thereby also limits its generality in modelling Bayes
filters.

In section 6.3 I show how to embed prior distributions in an LPPC by modulating
the gain of the tuning curves. Similarly, both of the models developed by Ganguli
and Simoncelli (2014) and Wei and Stocker (2015) can embed prior distributions in
a neural population, and in their models they also consider how to modulate the
location and scale of the tuning curves. These models, however, are restricted to
1-dimensional stimuli. In my approach, I can embed prior distributions over more or
less arbitrary stimuli into the neural population.

Bayesian filtering techniques are typically applied to discrete-time problems, but
especially in the context of neuroscience, continuous-time filtering is an important
area of study. The brain can be understood to a reasonable degree as a massively
parallel collection of doubly stochastic Poisson processes, and filtering on doubly
stochastic Poisson processes was formally solved in (Snyder, 1972). Beck et al. (2011)
provide an optimal solution to this problem for linear dynamical systems, and more
recent advances have focused on how to approximate the (typically intractable) solu-
tions of more general systems (Susemihl et al., 2013; Harel et al., 2015; Cseke et al.,
2016). Although I do not consider continuous-time systems in this dissertation, in fu-
ture work I hope to address how to train a point process model to learn to implement
Bayesian filtering.

8

Chapter 2

Mathematical Background

In this chapter I present the necessary mathematics for understanding this disserta-
tion. There is no new material in this chapter, and readers familiar with some or all
of these topics may skip them without concern that they will miss details from my
central argument. Nevertheless, I have done my best to make these reviews concise
and enjoyable for even the experienced reader, and in any case, this chapter also
serves as an introduction to the notation that I use throughout the dissertation.

The primary references for this chapter are Thrun et al. (2005); Athreya and
Lahiri (2006); Amari and Nagaoka (2007); Wainwright and Jordan (2008); Kollar
and Friedman (2009). In particular, section 2.1 is drawn from material in Athreya
and Lahiri (2006); section 2.2 is drawn from material in Amari and Nagaoka (2007);
section 2.3 is drawn from material in Amari and Nagaoka (2007); Wainwright and
Jordan (2008); section 2.4 is drawn from material in Wainwright and Jordan (2008);
Kollar and Friedman (2009); section 2.5 is drawn from material in Thrun et al. (2005);
Meyn and Tweedie (2009); and section 2.6 is drawn from material in Thrun et al.
(2005); Särkkä (2013).

2.1 Measure Theory

In this section I provide a quick sketch of basic measure theory. I do not provide a
detailed account of all the properties of the various objects I introduce, which I may
nevertheless use without remark over the course of this dissertation. For a thorough
introduction to measure and probability theory, see Athreya and Lahiri (2006).

Let Ω be a set. A σ-algebra F on Ω is a set of subsets of Ω which includes the
empty set ∅, is closed under complement, and is closed under countable unions. If F
is a σ-algebra on Ω, then the pair (Ω,F) is known as a measurable space. If (Ω,F)
and (Ωf ,Ff), are measurable spaces, then f : (Ω,F) → (Ωf ,Ff) is a measurable
function if for every B ∈ Ff , the preimage f−1(B) ∈ F .

Given a measurable space (Ω,F), a measure µ on F is a non-negative function
µ : F → R+ which is 0 at ∅, and which is additive over disjoint unions of elements of
F , such that if the sets A ∈ F and B ∈ F are disjoint, then µ(A∪B) = µ(A)+µ(B).
Taken together, the triple (Ω,F , µ) is known as a measure space. Given the measure
space (Ω,F , µ) and measurable space (Ωf ,Ff), and given the measurable function
f : (Ω,F) → (Ωf ,Ff), we denote the Lebesgue integral of f with respect to µ over
the set A ∈ F by

∫
A
fdµ, and we define the push-forward measure µf : Ff → R+ as

the function µf (B) 7→ µ(f−1(B)).

9

2.1. Measure Theory

Where (Ω,F , µ) and (Ω,F , ν) are measure spaces, the Radon-Nikodym derivative
of µ with respect to ν is the function dµ

dν
: Ω → R+ defined as the solution of the

equation

µ(A) =

∫
A

dµ

dν
dν,∀A ∈ F . (2.1)

The Radon-Nikodym derivative allows us to understand a measure in terms of a
function of elements of Ω rather than F . In order to establish the existence of the
derivative, we make use of the property known as absolute continuity.

Definition 2.1 (Absolute Continuity). A measure µ is absolutely continuous with
respect to ν, which we denote µ� ν, if and only if

ν(A) = 0⇒ µ(A) = 0,∀A ∈ F .

Theorem 2.1 (Radon-Nikodym Theorem). Given measures µ and ν, The Radon-
Nikodym derivative dµ

dν
exists if and only if µ� ν.

Proof. Theorem 4.1.1, Athreya and Lahiri (2006).

Given a measure space (Ω,F , P), the measure P is a probability measure if
P (Ω) = 1. In this case, (Ω,F , P) is known as a probability space, Ω is known as a
sample space, and elements of F are known as events. For a given probability mea-
sure P , there is often a standard measure µ by which we form the Radon-Nikodym
derivative dP

dµ
. In this case we refer to µ as the base measure and dP

dµ
as the density

of P , and we denote this density by p.
A measurable function X : (Ω,F) → (ΩX ,FX) on a probability space is known

as a random variable, and the codomain of the random variable ΩX is known as the
state space of that random variable. Given the random variable X, we refer to the
push-forward measure PX as the probability distribution of X, and the density pX
as the probability density of X. Finally, given a measurable function f : ΩX → Ωf ,
we refer to the integral

∫
Ω
fdPX as the expected value of f(X), and denote it by

EP [f(X)].
Conditional dependence and statistical independence are relationships between

random variables which are specific to probability theory. I define two random vari-
ables X and Y on (Ω,F , P) as independent if PXY = PX ·PY . The general definition
of conditional distributions is fairly involved, however when the distributions of the
random variables in question are absolutely continuous with respect to some base
measure, we may express it in a straightforward manner. This is sufficient for the
purposes of this dissertation, and I therefore define the conditional density of X given
Y as pX|Y = pXY

pY
.

When working with random variables and conditional distributions at a high
level, it is helpful to use notational conventions in order to avoid excessive refer-
ence to the realizations ω ∈ Ω. In this vein, the notation X ∈ ΩX is shorthand for
X(ω) ∈ ΩX , ∀ω ∈ Ω. Similarly, although conditional distributions are not probability
distributions until evaluated at particular conditions, where M is a set of probabil-
ity distributions on the measurable space (ΩX ,FX), I write PX|Y ∈ M to indicate
that PX|Y=Y (ω) ∈ M, ∀ω ∈ Ω. Finally, when considering iterated expectations in-
volving multiple probability measures, I write EP [EQ[f(X, Y) | Y]] as short hand for
expressions of the form

∫
ΩY

∫
ΩX

f(x,y)qX|Y (x | y)µ(dx)PY (dy).

10

Chapter 2. Mathematical Background

2.2 Statistical Models

Suppose that (Ω,F , P) is a probability space, and let us define Λ as the set of all
probability measures on (Ω,F). Given a d-dimensional set of parameters Θ ⊂ Rd,
a statistical model is a function Q : Θ → Λ (McCullagh, 2002). In statistics, “to
train a model” or “to fit a model” or “to learn a model” is to find the parameters
θ ∈ Θ for which Q(θ) is most similar to P . In this dissertation I use the letter
Q exclusively to denote statistical models, and for the sake of notational implicitly,
I typically suppress the dependence of Q on θ. That is, I use Q ∈ Λ to denote a
probability measure at some implicit set of parameters θ ∈ Θ, and where necessary,
I write Q(A;θ) to denote the measure Q(θ) of the event A ∈ F .

In order to train a model, we require a measure of similarity. The relative entropy
is the function

D : Λ× Λ→ R+

(P ‖ Q) 7→
∫

Ω

log
dP

dQ
dP.

The relative entropy tells us how many nats of information are lost when Q is used to
approximate P , and is in many ways the most fundamental measure of the similarity
between two probability distributions (Kullback and Leibler, 1951; Shore and John-
son, 1980; Amari and Nagaoka, 2007). Regardless of the form of the distributions
in question, it has the properties that we would like to associate with a similarity
measure.

Proposition 2.2 (Gibbs’ Inequality). The relative entropy is non-negative, and is 0
if and only if its arguments are almost surely equal.

Proof. Note that the second derivative of the function f(x) 7→ x log x is 1/x, and
therefore that f is convex on R+. Since Radon-Nikodym derivatives are non-negative,
we may apply Jensen’s inequality (Athreya and Lahiri, 2006) to show that∫

Ω

log
dP

dQ
dP =

∫
Ω

log
dP

dQ
· dP
dQ

dQ

=

∫
Ω

f ◦ dP
dQ

dQ

≥ f(

∫
Ω

dP

dQ
dQ)

= f(1) = 0.

For the case of equality, note that P
a.s.
= Q implies that the solution of equation

2.1 for P and Q is dP
dQ

= 1, which implies that
∫

Ω
log dP

dQ
dP = 0. Conversely, since

Jensen’s inequality also implies that
∫
A

log dP
dQ
dP ≥ 0 for any A ∈ F , the linearity of

integrals implies that if
∫

Ω
log dP

dQ
dP = 0 then log dP

dQ

a.s.
= 0, which implies that dP

dQ

a.s.
= 1,

which implies that P
a.s.
= Q.

We often require an absolute as opposed to relative measure of uncertainty. Given
some reference measure µ where P � µ, we define the entropy as

H : Λ→ R

P 7→ −
∫

Ω

log
dP

dµ
dP. (2.2)

11

2.2. Statistical Models

The Shannon entropy is the entropy of a distribution over a discrete set. The Shannon
entropy also has the property that it is non-negative, and forms the basis of many of
our intuitions about information theory. In particular, the Shannon entropy can be
viewed as the average optimal code length for some distribution of digital messages.

Given a reference measure µ where Q� µ, we define the cross-entropy as

H : Λ× Λ→ R

(P,Q) 7→ −
∫

Ω

log
dQ

dµ
dP. (2.3)

In the discrete case, the cross entropy measures the average code length when the
non-optimal distribution Q is used to encode messages distributed according to P .

The relative entropy, entropy, and cross-entropy are all intimately related. If
P � µ, Q� µ, and µ� Q, we may rewrite the relative entropy as

D(P ‖ Q) =

∫
Ω

log
dP

dQ
dP

=

∫
Ω

log(
dP

dµ
· dµ
dQ

)dP

=

∫
Ω

log
dP

dµ
dP −

∫
Ω

log
dQ

dµ
dP

= H(P,Q)−H(P). (2.4)

Since the entropy in this equation does not depend on Q, when P is fixed, minimizing
the cross-entropy with respect to Q is equivalent to minimizing the relative entropy
with respect to Q.

Let us now consider the random variable X : (Ω,F) → (ΩX ,FX), and suppose
that QX is a statistical model on (ΩX ,FX) parameterized by Θ ⊂ Rd. Since P is
independent of the parameters Θ, we may minimize the relative entropy D(PX ‖ QX)
– and thereby train QX – by gradient descent of the cross-entropy∇θH(PX , QX) with
respect to the parameters θ ∈ Θ. Where µ is the base measure of PX and QX , the
gradient may be expressed as

∇θD(PX ‖ QX) = −
∫

Ω

∇θ log qXdPX = −EP [∇θ log qX(X)]. (2.5)

Computing this gradient directly is often infeasible, and in any case, we often only
have samples from PX , rather than knowledge of the exact distribution itself. Given
a set of n independent random variables (Xi)

n
i=1, where PXi

a.s.
= PX , let us therefore

consider the empirical measure

P n
X : FX → [0, 1]

A 7→ 1

n

n∑
i=1

δXi(A)

where δXi is the Dirac measure at Xi. If we take the empirical measure to be our
target distribution, then

∇θD(P n
X ‖ QX) = − 1

n

n∑
i=1

∇θ log qX(Xi).

12

Chapter 2. Mathematical Background

Since the law of large numbers implies that

lim
n→∞

− 1

n

n∑
i=1

∇θ log qX(Xi) = −EP [∇θ log qX(X)],

we may approximate the true relative entropy gradient arbitrary well with samples
from PX . Minimizing the entropy of PX relative to QX in this way is equivalent to
maximum likelihood estimation.

Especially in the dynamic, embodied setting, we often wish to minimize the rel-
ative entropy with respect to one sample at a time rather than a complete set of
samples. However, performing a complete minimization with respect to a single ob-
servation would ignore the prior history of learning, and so we instead take a small
step down the gradient after every sample. That is, we assume an initial set of param-
eters θ0, and then at every time k + 1 we update our parameters with the equation

θk+1 = θk − εk∇θ log qX(Xk+1), (2.6)

where εk is referred to as the step size or learning rate. This algorithm is known as
stochastic gradient descent.

Stochastic gradient descent can be trivially motivated by considering the step
sizes εk = ε0/n, where ε0 is an arbitrary constant. This implies that

θn = θ0 −
ε0
n

n∑
i=1

∇θ log qX(Xi) ≈ θ0 − ε0EP [∇θ log qX(X)],

which is simply a single step down the empirical gradient with step size ε0. Of course,
we usually do not wish to bind our step size to the number of samples, and what
decades of analysis and experiment have shown is that if εk is chosen well, convergence
can proceed much more quickly (Bottou, 2010).

Another class of algorithms for improving the rate of convergence of stochastic
gradient descent are momentum algorithms. Imagine the parameters of a model
being optimized as a point rolling down a surface due to gravity. In this context, the
intuition behind momentum algorithms is to better model the effects of gravity by
approximating second-order equations of motion. The classic momentum algorithm
involves computing the momentum term

βk+1 = vkβk − εk∇θ log qX(Xk+1), (2.7)

where 0 ≤ vk < 1 determines the length of the “memory” of momentum. Given the
momenta, the stochastic gradient descent procedure in equation 2.6 is replaced with

θk+1 = θk + βk+1.

There are many methods for choosing vk, and many more complicated forms of
momentum-based algorithms. The Adam algorithm (Kingma and Ba, 2014), in par-
ticular, is the one which I make extensive use of in this dissertation.

Gradient descent algorithms are intuitively motivated as following the direction
of steepest descent of the error in parameter space, but computing the direction
of steepest descent formally requires knowing the geometry of what the parameter
space describes. If the model QX is a differentiable, bijective function between Θ

13

2.3. Exponential Families

and M = QX(Θ), then M is a kind of differentiable manifold known as a statistical
manifold. The metric tensor for statistical manifolds is the Fisher information metric
(Amari and Nagaoka, 2007). At a given point θ, the metric tensor in Θ-coordinates
is the matrix Gθ ∈ T ∗θM⊗ T ∗θM given by

gθ,i,j = EQ[∂θi∂θj log qX(X)],

where T ∗θM is the cotangent space at qX(θ) ∈M.
Accounting for the metric tensor, we may then write our stochastic gradient de-

scent procedure as

θk+1 = θk − εk∇θ log qX(Xk+1) = θk − εkG−1
θ ∂θ log qX(Xk+1),

where ∂θ is the partial derivative operator. Unfortunately, computing the Fisher
information metric is often very difficult. Moreover, since metric tensors are always
positive semi-definite, the local minima of the gradient descent are not changed by
the metric. As such, the metric is often ignored when computing the gradient, in
the sense that we assume G = I, where I is the identity matrix. In the literature,
the true gradient is often referred to as the natural gradient, and the approximate
gradient is referred to as the vanilla gradient.

When the parameter space Θ ⊂ Rd is bounded, an additional issue arises when
simulating stochastic gradient descent. Taking discrete, approximate steps along the
gradient in equation 2.6 or 2.7 runs the risk of inadvertently driving the simulated
parameters out of the bounds of the parameter space. There is no straightforward
solution to this problem, and therefore statistical manifolds with parameter spaces
equal to a d-dimensional Euclidean space are very useful in practice1.

2.3 Exponential Families

Suppose that (Ω,F , P) is a probability space, (ΩX ,FX) is a measurable space, and
X : (Ω,F)→ (ΩX ,FX) is a random variable. Let us refer to the measurable function
s : (ΩX ,FX)→ (Rd,B) as the sufficient statistic, where B is the Borel σ-algebra, and
let us define the random variables (Xi)

n
i=1 by PXi

a.s.
= PX . Suppose we wish to define

a statistical model QX such that

EQ[s(X)] =
n∑
i=1

s(Xi), (2.8)

and such that the entropy H(QX) is maximized. These constraints ensure that QX

is unbiased with respect to the true expectations of the sufficient statistic EP [s(X)],
and that we otherwise build as few assumptions into our model as possible. Solving
this variational problem results in an exponential family of distributions.

Theorem 2.3. Given the base measure µ, the statistical model QX which maximizes
the entropy (2.2) while satisfying constraint 2.8 has the form

qX(x;θ) ∝ eθ·s(x). (2.9)

1See Bernigau (2015) for a review of and approach to this problem.

14

Chapter 2. Mathematical Background

Proof. We begin by defining the Lagrangian

L(qX) = −
∫
X

log qX · qXdµ+ θ · (
∫
X

s · qXdµ−
n∑
i=1

s(Xi)) + λ(

∫
X
qXdµ− 1),

where θ and λ are the Lagrange multipliers. This Lagrangian incorporates constraint
2.8, the constraint on probability densities

∫
ΩX

qXdµ = 1, and the optimization goal of

maximizing the entropy (2.2). By taking the functional derivative of L with respect
to qX , we may drop the constants in the Lagrangian, pull all terms into a single
integral, and thereby express the derivative as

δL(qX)

δqX
=

δ

δqX

∫
X
− log qX · qX + θ · s · qX + λqXdµ

=
δ

δqX

∫
X
L(x, qX(x))µ(dx),

where
L(x, qX(x)) 7→ −qX(x) log qX(x) + qX(x)θ · s(x) + λqX(x).

Since the functional L does not depend on derivative of qX , the Euler-Lagrange
equation implies that

δL(qX)

δqX
=

∂L

∂qX
.

In turn,
∂L(x, qX(x))

∂qX(x)
= − log qX(x)− 1 + θ · s(x) + λ.

By setting the derivative to 0 and solving for qX(x), we find that

0 = − log qX(x)− 1 + θ · s(x) + λ

⇐⇒ log qX(x) = −1 + θ · s(x) + λ

⇐⇒ qX(x) = e−1+θ·s(x)+λ

=⇒ qX(x) ∝ eθ·s(x).

Note that to ensure that qX is a indeed a probability density, qX must also satisfy
the inequality constraint qX(x) ≥ 0, ∀x ∈ ΩX . Luckily, this is satisfied in general, so
we can avoid introducing the constraint in our calculations.

With the form of the maximum entropy density in hand, we may satisfy the
constraint on probability distributions

∫
ΩX

dQX = 1 by writing the probability dis-
tribution parameterized by θ as

QX(A) =

∫
A

qXdµ =

∫
A

eθ·s(x)−ψ(θ)µ(dx),∀A ∈ ΩX

where we define the normalization term as

ψ : Rd → R ∪ {∞}

θ 7→ log

∫
ΩX

eθ·s(x)µ(dx).

15

2.3. Exponential Families

Statistical models with densities of the form of equation 2.9 are known as expo-
nential family models, and the d-dimensional vector of Lagrange multipliers θ are
known as the natural parameters of the distribution. The normalizer ψ is known
as the log-partition function, and the natural parameter space Θ ⊆ Rd is equal to
the set of all θ such that the log-partition function is finite. Finally, the set of all
distributions M = QX(Θ) is known as a d-dimensional exponential family on the
measurable space (ΩX ,FX), and the elements ofM are known as exponential family
distributions.

In order to show how to satisfy constraint 2.8 as a function of the natural param-
eters, we develop the relationship between exponential families and convex analysis.

Proposition 2.4. Suppose that (Ω,F , P) is a probability space, that (ΩX ,FX) is a
measurable space, and that X : (Ω,F)→ (ΩX ,FX) is a random variable. In addition,
suppose that M is an exponential family on (ΩX ,FX) defined by the base measure µ
and sufficient statistic s, and that PX ∈M with parameters θ. Then:

1. The derivative of the log-partition function ∂θψ(θ) = EP [s(X)] is equal to the
expected value of the sufficient statistic.

2. The Hessian of the log-partition function is the covariance matrix of the suffi-
cient statistic, such that ∂θiθjψ(θ) = EP [si(X) · sj(X)].

3. The log-partition function ψ is convex.

Proof. Proposition 3.1, Wainwright and Jordan (2008).

Because ψ is a convex function, the theory of convex analysis allows us to deduce
many interesting properties of exponential families (Boyd and Vandenberghe, 2004;
Wainwright and Jordan, 2008). To begin, the convex conjugate φ of ψ is defined as

φ : Rd → R ∪ {∞}
η 7→ max

θ∈Rd
{θ · η− ψ(θ)}. (2.10)

One way to evaluate the maximum in this definition is to compute the derivatives
∂θ(θ · η− ψ(θ)) and set the result to 0, and then solve η = ∂θψ(θ). Unfortunately,
there may be many solutions to this equation, because ∂θψ in general is not invertible.
We many amend this, however, with a more careful choice of sufficient statistic.

Definition 2.2 (Minimal Sufficient Statistic). The d-dimensional sufficient statistic
s : ΩX → Rd is minimal if there exists no constant α0 and non-zero vector α such
that, for any x ∈ ΩX ,

s(x) · α = α0.

Note that this definition precludes a component of a minimal sufficient statistic
from being a constant function.

Corollary 2.5. Suppose that M is an exponential family with sufficient statistic s
and base measure µ. If s is minimal, then ψ is strictly convex.

Proof. Proposition 3.1b, Wainwright and Jordan (2008).

16

Chapter 2. Mathematical Background

Proposition 2.6. Let M be an exponential family with minimal sufficient statistic
s. Then the derivatives of the log-partition function ∂θψ are invertible and equal to
the derivatives of the convex conjugate φ, such that (∂θψ)−1 = ∂ηφ.

Proof. Since ψ is strictly convex, maxθ∈Rd{θ · η− ψ(θ)} has the unique solution

η = ∂θψ(θ)

⇐⇒ θ = (∂θψ)−1(η).

By substituting this solution into the definition of the convex conjugate (2.10) we
may conclude that

∂ηφ(η) = ∂η((∂θψ)−1(η) · η− ψ((∂θψ)−1(η)))

= (∂θψ)−1(η) + η · ∂η(∂θψ)−1(η)− η · ∂η(∂θψ)−1(η)

= (∂θψ)−1(η).

For simplicity, whenM is an exponential family with a minimal sufficient statistic,
we denote the derivatives of ψ and φ by τ(θ) = ∂θψ(θ) and τ∗(η) = ∂ηφ(η), and
refer to them as the forward mapping and backward mapping, respectively.

In general, we refer to the image of the forward mapping H = τ(Θ) as the mean
parameter space and we denote the elements of H by η2. When the sufficient statistic
is minimal, the isomorphism between Θ and H defined by the derivatives is bijective,
such that H provides an alternative parameterization of QX (figure 2.1). Therefore,
if M is an exponential family with a minimal sufficient statistic, we may ensure
that the distribution QX ∈ M with parameters θ satisfies equation 2.8 by setting
η =

∑n
i=1 s(Xi), and setting θ = τ∗(η).

The convex conjugate itself is more than an abstract construction, and affords an
intuitive interpretation.

Theorem 2.7. Suppose that M is an exponential family, and that PX ∈ M with
mean parameters η ∈ H, and natural parameters θ ∈ Θ. Then:

1. φ(η) is equal to the negative entropy of PX .

2. ψ is the convex conjugate of φ, such that

ψ(θ) = max
η∈H
{θ · η− φ(η)}.

3. The maximizer of θ · η− φ(η) is given by η = ∂θ(ψ(θ)).

Proof. Theorem 3.4, Wainwright and Jordan (2008).

Having characterized the relationship between entropy and exponential families,
let us return to the other information theoretic quantities developed in the previous
section, namely the cross-entropy and relative entropy. WhereX is a random variable,

2This definition avoids boundary issues which can arise in alternative definitions of H. In general
we assume that both Θ and H are open sets. For a thorough analysis of these issues, see Wainwright
and Jordan (2008).

17

2.3. Exponential Families

η
₁

-4

-2

0

2

4

-4 -2 0 2 4
η₂

θ
₁

-4

-2

0

2

4

-4 -2 0 2 4
θ₂

η
₁

0

1

0 1
η₂

θ
₁

-4

-2

0

2

4

-4 -2 0 2 4
θ₂

η
₁

0

1

2

3

4

0 1 2 3 4
η₂

θ
₁

-2

-1

0

1

2

-2 -1 0 1 2
θ₂

Figure 2.1: In this figure I present three pairs of plots of the isolines of the relative entropy between
two elements of the same exponential family, in both mixture (blue) and natural coordinates (red).
In each case the central diagonal line indicates a relative entropy of 0. Left : Here we consider the
family of normal distributions with known variance σ2 = 1. In this case the two coordinate systems
are identical, and the relative entropy is simply the squared distance between the two parameters
of the two distributions. The maximum relative entropy of the isolines is 28.9. Middle: Here we
consider the family of Bernoulli distributions. The maximum relative entropy shown is 3.55 in
mean coordinates, and 3.56 in natural coordinates. Right : Here we consider the family of Poisson
distributions. The maximum relative entropy shown is 10.31 in mean coordinates, and 21.19 in
natural coordinates.

PX is its distribution, and QX is an exponential family model, the cross-entropy
H(PX , QX) is given by

H(PX , QX) = −EP [log qX(X)] = −θ · EP [s(X)] + ψ(θ). (2.11)

The partial derivatives of the cross-entropy with respect to the natural parameters is
then

∂θH(PX , QX) = EQ[s(X)]− EP [s(X)]. (2.12)

Since the backward mapping allows us to compute the unique natural parameters
for a given expected value of the sufficient statistic, we may directly compute the
optimal parameters θ of the statistical modelQX by computing θ = τ∗(η), where η =
EP [s(X)]. Moreover, when PX = P n

X is the empirical distribution, this computation is
equivalent to computing the maximum likelihood estimator. As such, in the context of
exponential families, the principle of maximum entropy is equivalent to the principle
of maximum likelihood.

If we denote the natural parameters of QX by θQ, and assume that PX is an
element of the same exponential family as QX with mean parameters ηP , then the
relative entropy has a particularly simple expression. Because the relative entropy
is equal to the cross-entropy minus the entropy, we may combine equation 2.11 and

18

Chapter 2. Mathematical Background

σ
²

1

2

3

4

5

0 1 2 3 4
μ

Figure 2.2: In this figure I present three instances of gradient descent of the relative entropy D(PX ‖
QX), where the target distribution PX is a normal distribution with mean µ = 2 and variance σ2 = 3,
and QX is the distribution we optimize. I depict the isolines of the relative-entropy as a function
of mean and variance of QX (black lines), where the central point is equal to 0 and the highest
valued isoline has a relative entropy of 2.39 (most transparent line). I depict the descent of the
natural parameters (red line), the descent of the mean parameters (blue line), and the coordinate
independent natural gradient descent (purple line). Observe how the natural gradient descent is
perpendicular to the isolines of the cross-entropy.

theorem 2.7 to conclude that

D(PX ‖ QX) = φ(ηP) + ψ(θQ)− ηP · θQ.

When P is equal to Q, D(PX ‖ QX) is 0, and we can recover the definitions of ψ and
φ as they are developed in convex analysis.

Given an exponential familyM with a minimal sufficient statistic, we know how to
derive a pair of coordinate systems Θ and H for identifying elements of the exponential
family, and how to compute coordinate transformations with the derivatives of ψ and
φ. In fact, ψ and φ may be also be used to describe the metric tensor ofM in each of
their respective coordinate systems, allowing us to perform gradient descent in either
system (figure 2.2).

Theorem 2.8. Suppose that M is an exponential family on the measurable space
(ΩX ,FX) defined by the base measure µ and minimal sufficient statistic s, and that
PX ∈M with natural parameters θ, and mean parameters η. Then:

1. The Fisher information metric in natural coordinates is the Hessian of the log-
partition function, such that Gθ = ∂θθψ(θ).

2. The Fisher information metric in mean coordinates is the Hessian of the nega-
tive entropy, such that Gη = ∂ηηφ(η).

3. Gθ = G−1
τ(θ).

19

2.4. Graphical Models

Proof. On one hand, the Fisher information metric in natural coordinates is given by

gθ,i,j =EP [∂θiθj log pX(X)]

EP [∂θiθj(θ · s(X)− ψ(θ))]

EP [∂θiθjψ(θ)] = ∂θiθjψ(θ).

Note that according to proposition 2.4, the Fisher information metric in natural
coordinates is equal to the covariance matrix of the sufficient statistic.

Because τ∗ is the inverse of τ, the inverse function theorem implies that the
Hessian ∂ηηφ(η) is the inverse of the Hessian ∂ττ(τ(η)). Therefore, by the tensor
transformation laws, and because Hessians are always symmetric, we may conclude
that

Gη = ∂ηηφ(η) ·Gτ(η) · ∂ηηφ(η)

= ∂ηηφ(η) · (∂ηηφ(η))−1 · ∂ηηφ(η)

= ∂ηηφ(η) = G−1
τ(η).

Optimizing exponential family models can ultimately be reduced to evaluating
functions of the forward and backward mappings of the corresponding exponential
family. For many exponential families, however, there are no closed-form expressions
for these mappings. Nevertheless, both mappings can be approximated if we can
generate samples from distributions in the exponential family in question.

On one hand, suppose that the natural parameters of the model QX are θ, and
that we wish to compute the mean parameters η = τ(θ). Since η = EQ[s(X)],
if we can generate samples (Xi)

n
i=1 from QX , then we may apply the law of large

numbers to compute the approximate mean parameters η ≈
∑n

i=1 s(Xi). On the
other hand, suppose we know the mean parameters η = EP [s(X)], and that we wish
to compute the natural parameters θ = τ∗(η). Since θ are the natural parameters
which minimize the cross-entropy in equation 2.11, we may find τ∗(η) by choosing
some initial natural parameters θ0, and then generating the sequence of natural
parameters θk by combining the stochastic gradient descent procedure described by
equation 2.6 with the expression for cross-entropy gradient in equation 2.12. In order
to approximate the expectations EQ[s(X)] in the cross-entropy gradient, we may
again generate samples from the distribution QX(θk) at every step of the gradient
descent.

2.4 Graphical Models

So far we have concerned ourselves primarily with single random variables and their
distributions. In practice of course, we may wish to consider many different random
variables and the statistical dependencies between them. In general, we refer to a
statistical model of the joint distribution of multiple random variables as a genera-
tive model. Given a collection of random variables (Xi)

n
i=1 on the probability space

(Ω,F , P), a graphical model is a generative model Q(Xi)ni=1
of the random variables,

combined with a graphical representation of the statistical dependencies amongst the
random variables described by the generative model.

20

Chapter 2. Mathematical Background

Figure 2.3: A directed graphical model over four ran-
dom variables. The graph implies that the generative
model may be factorized asQX1X2X3X4 = QX1 ·QX2|X1

·
QX3|X1

·QX4|X2,X3
. Sampling from directed graphical

models is typically straightforward. Inference, however,
is typically more complicated, and directed graphical
models cannot represent cyclic dependencies amongst
the random variables.

A graph is a pair (V,E) of sets, where V is a set of vertices, and E is a set of edges.
Formally, we define a vertex as an index, the directed edge from vertex i to vertex
j as (i, j), and the undirected edge between i and j as {i, j}. In a graphical model,
vertices represent random variables, directed edges represent conditional dependen-
cies, and undirected edges represent joint dependencies. When modelling conditional
dependencies, we generally assume that the directed edges form no cycles, such that
there is no set of edges {(i0, i1), (i1, i2) . . . , (ik−1, ik)} ⊂ E such that i0 = ik.

A Bayesian network is a joint probability distribution which can be represented
by a directed, acyclic graph. The semantics of Bayesian networks are straightforward.

Definition 2.3 (Bayesian Network). Let (V,E) be a directed, acyclic graph where
V = {1, . . . , n}, E = {(j, i) : i ∈ V, j ∈ Ai}, and where (Ai)

n
i=1 is a collection of

subsets of V . Then the collection of random variables (Xi)
n
i=1 is a Bayesian network

represented by (V,E) if and only if

P(Xi)ni=1
=

n∏
i=1

PXi|(Xj)j∈Ai . (2.13)

A generative model Q(Xi)ni=1
is then a directed graphical model if Q(Xi)ni=1

(θ) is a
Bayesian network represented by the directed, acyclic graph (V,E), for any parame-
ters θ ∈ Θ (see figure 2.3).

A Markov random field is a joint distribution which can be represented by an
undirected graph. The semantics of undirected graphical models are somewhat more
complicated than in the directed case.

Definition 2.4 (Markov Random Field). Let (V,E) be an undirected graph, and
for every i ∈ V , let Bi = {j : {i, j} ∈ E}. Then the collection of random variables
(Xi)

n
i=1 is a Markov random field represented by (V,E) if and only if, for any i ∈ V ,

and j ∈ V/({i} ∪Bi),

PXiXj |(Xk)k∈Bi
= PXj |(Xk)k∈Bi

· PXj |(Xk)k∈Bi
.

An undirected graphical model is then a generative model Q(Xi)ni=1
if Q(Xi)ni=1

(θ) is
a Markov random field represented by the undirected graph (V,E), for any parameters
θ ∈ Θ (see figure 2.4).

Intuitively, a joint distribution P(Xi)ni=1
is a Markov random field if a given random

variable Xi is independent of the rest of the random variables in the collection given
its immediate neighbours in the graph. In contrast with the definition of a Bayesian
network, however, this property is local in definition, and knowing the graph of
a Markov random field does not immediately tell us how we might factorize the
complete joint distribution.

21

2.4. Graphical Models

Figure 2.4: An undirected graphical model over four ran-
dom variables. This graph implies that PX1X4|X2,X3

=
PX1|X2,X3

· PX4|X2,X3
, and that PX2X3|X1,X4

= PX2|X1,X4
·

PX3|X1,X4
This graph represents cyclic dependencies

amongst the random variables which cannot be represented
by a directed acyclic graph. Generating samples from this
graphical model, however, may be very challenging.

To describe factorization in Markov random fields we must first compute the
cliques of a graph. A clique is a subset of fully interconnected vertices C ⊆ V such
that ∀i, j ∈ C, {(i, j), (j, i)} ∈ E. Moreover, a clique is maximal if there not exists
no clique C ′ such that C ⊂ C ′. The Hammersley-Clifford theorem provides a way of
factoring Markov random fields by relating the joint distribution with the maximal
cliques of the graph which represents it.

Theorem 2.9 (The Hammersley-Clifford Theorem). Let X1, . . . Xn be a collection of
random variables, let (V,E) be an undirected graph, and let C = (Ci)

k
i=1 be the set of

all maximal cliques of (V,E). Then (V,E) represents the joint distribution P(Xi)ni=1

with a strictly positive density p(Xi)ni=1
if and only if there exists a set of functions

(fi)
k
i=1 such that

p(Xi)ni=1
((xi)

n
i=1) ∝

k∏
i=1

efi(xCi),

where xC is the subsequence of (xi)
n
i=1 with indices in C.

Proof. Kollar and Friedman (2009).

Note that since exponential family densities are always positive, we may always
apply the Hammersley-Clifford theorem to identify the dependency structure in ex-
ponential family joint distributions. Moreover, when the exponential families have
minimal sufficient statistics, identifying the factors in theorem 2.9 reduces to identi-
fying appropriate sets of terms in the dot product s(x) · θ (see Altun et al., 2004).

In statistical applications of graphical models, we do not typically observe all the
random variables in the collection, but rather only a certain subset of them. Let
us therefore separate the random variables of a graphical model into latent variables
X = (Xi)

nX
i=1 with state space (ΩX ,FX) and observable variables Z = (Zi)

nZ
i=1 with

state space (ΩZ ,FZ). Let us then assume that generative model QXZ over the ob-
servable and latent variables is an exponential family with sufficient statistic s and
base measure µ. Let us also assume that the base measure µ = µZ ×µX is a product
measure which evaluates pairs of subsets of ΩZ and ΩX . Given all this, we may max-
imize the likelihood of the parameters of QXZ given samples from the true observable
density PZ , by maximizing the likelihood with respect to the marginal density

qZ(z) =

∫
ΩX

es(x,z)·θ−ψ(θ)µX(dx) = eψX|Z(θ,z)−ψ(θ), (2.14)

where we refer to

ψX|Z : Θ× ΩZ → R

(θ, z) 7→ log

∫
ΩX

es(x,z)·θµX(dx). (2.15)

22

Chapter 2. Mathematical Background

as the conditional log-partition function.
Although we defined the conditional log-partition function in order to express a

marginal distribution of QXZ , we can interpret it more readily by considering the
conditional density

qX|Z(x | z) =
qXZ(x, z)

qZ(z)
=

es(x,z)·θ−ψ(θ)

eψX|Z(θ,z)−ψ(θ)
= es(x,z)·θ−ψX|Z(θ,z). (2.16)

Indeed, at a particular observation z, the conditional distribution QX|Z is an element
of the exponential family with base measure µX and sufficient statistic s(z, ·), with
log-partition function ψX|Z(θ, z). By simply integrating over the observable rather
than latent variables, we may similarly express QZ|X in terms of the conditional
log-partition function ψZ|X(θ,x).

In order to optimize the parameters of QXZ , we minimize the relative entropy of
the marginal distribution QZ with respect to the target distribution PZ . We therefore
consider the cross-entropy

H(PZ , QZ) =

∫
ΩZ

−ψX|Z(θ, z) + ψ(θ)P (dz) (2.17)

= ψ(θ)− EP [ψX|Z(θ, Z)],

which yields the derivatives of the relative entropy gradient

∂θD(PZ ‖ QZ) = η− EP [∂θψX|Z(θ, Z)].

Because ∂θψX|Z at z is the log-partition function of an exponential family, proposition
2.4 implies that ∂θψX|Z(θ, z) = EQ[s(z, X) | Z = z]. We may thus express the relative
entropy gradient as

∂θD(PZ ‖ QZ) = EQ[s(Z,X)]− EP [EQ[s(Z,X) | Z]]. (2.18)

Even though our problem is now more sophisticated, its form remains the same as in
the simple exponential family case: we wish to match the sufficient statistics of our
model to the statistics of what we observe.

2.5 Stochastic Chains

Given the probability space (Ω,F , P), a discrete-time stochastic process, or a stochas-
tic chain, is a sequence of random variables (Xk)k∈N on (Ω,F , P), where each Xk has
the same state space (ΩX ,FX). In this dissertation I only consider chains which are
invariant to shifts in time, a property which is known as stationarity.

Definition 2.5 (Stationary Stochastic Process). A stochastic chain (Xk)k∈N on the
probability space (Ω,F , P) is stationary if for any K ⊂ N, and l ∈ N,

P(Xk)k∈K = P(Xk+l)k∈K .

A Markov chain is a stochastic chain which satisfies the (temporal) Markov prop-
erty3

PXk+1|(Xi)ki=0
= PXk+1|Xk . (2.19)

3The term “Markov chain” is often reserved for processes with discrete state spaces, however in
this dissertation I do not make this distinction.

23

2.5. Stochastic Chains

Figure 2.5: A Markov chain is a form of dynamical system where each state depends only on the
previous state. When discretized in time, stochastic dynamical systems can often be modelled as
Markov chains.

The conditional distributions PXk+1|Xk of the Markov chain for all k > 0 are known as
transition distributions, and the distribution PX0 is known as the initial distribution.
Since the Markov chains I consider are stationary, I generally assume the existence
of the auxiliary random variables X ′ = Xk+1 and X = Xk for an arbitrary k, such
that I may denote any transition distribution by PX′|X = PXk+1|Xk ; I refer to this
conditional distribution as the transition distribution.

Note that equation 2.19 is simply a form of equation 2.13 for describing directed
graphical models. The Markov property of Markov chains therefore affords a simple
directed graph representation, as depicted in figure 2.5.

Given the initial distribution and transition distribution, the marginal distribution
of the Markov chain at any time is given recursively by

PXk+1
(A) =

∫
ΩX

PX′|X(A | xk)PXk(dxk), (2.20)

for any A ∈ FX . Of particular interest in the study of Markov chains is the existence,
uniqueness, and stability of the limiting distribution limk→∞ PXk ; this is the province
of ergodic theory. Intuitively, ergodic theory tells us how to compute spatial averages
from temporal averages. In the context of Markov chains on general state spaces,
there are a number of ways of formalizing ergodicity depending on the exact nature
of the problem being addressed. For the purposes of this dissertation, we may distill
ergodic theory down to a few key definitions and theorems.

To begin, the limiting distribution limk→∞ PXk is necessarily a fixed point of
equation 2.20, and is referred to as an equilibrium distribution.

Definition 2.6 (Equilibrium Distribution). A probability distribution ΠX is an equi-
librium distribution of the transition distribution PX′|X if it satisfies

ΠX(A) =

∫
ΩX

PX′|X(A | x)ΠXk(dx),

for any A ∈ FX .

The equilibrium distribution is the basis for the notion of “spatial averages” men-
tioned above. “Temporal averages”, on the other hand, are averages over the realiza-
tion of a Markov chain.

Now, we can only compute the spatial average based on a temporal average if
the Markov chain is guaranteed to repeatedly visit every part of the state space in
question. One way of formalizing this is with the notion of Harris recurrence, which in
turn is formalized with the random variables known as first entrance times. Given the
Markov chain (Xk)k∈N on the probability space (Ω,F , P) with state space (ΩX ,FX),
the first entrance time of a set A ∈ FX is the random variable

TA(ω) 7→ min{k : k ≥ 1, Xk(ω) ∈ A},

where TA(ω) =∞ if the Markov chain realized by ω never enters A.

24

Chapter 2. Mathematical Background

Definition 2.7 (Harris Recurrence). Given a measure µ on FX , the Markov chain
(Xk)k∈N is Harris recurrent with base measure µ if for any x ∈ ΩX and A ∈ FX ,

µ(A) > 0 =⇒ P (TA <∞ | X0 = x) = 1.

Intuitively, a Markov chain is Harris recurrent if it returns an infinite number
of times to any set in the support of µ with probability 1. Strictly speaking, the
base measure in the definition of Harris recurrence need not be the same as the base
measure used to define its transition density, however it is generally safe to assume
as much.

Even when a Markov chain is Harris recurrent, we cannot rule out that it is
periodic. A periodic Markov chain is one for which the limiting distribution of the
Markov chain cycles through a collection of distributions. Ergodic theory can also
be applied to periodic Markov chains, however I do not make use of periodic Markov
chains in this dissertation. The general definition of aperiodicity is rather technical,
and so I provide a simpler definition which is sufficient for my purposes.

Definition 2.8 (Aperiodic Markov Chain). The Harris recurrent Markov chain (Xk)k∈N
with base measure µ is aperiodic if for any A ∈ FX such that µ(A) > 0, pX′|X(x′ |
x) > 0 for any x ∈ ΩX and x′ ∈ A.

We refer to a Markov chain as ergodic if it converges to a unique equilibrium
distribution regardless of its initial distribution. Convergence of distributions can be
defined in a number of ways, but the approach taken in Meyn and Tweedie (2009)
makes use of the total variation norm

‖ µ ‖TV 7→ max
A∈F

µ(A)−min
A∈F

µ(A),

where µ is any measure on the σ-algebra F .

Definition 2.9 (Ergodic Markov Chain). The Markov chain (Xk)k∈N is ergodic if it
has a unique equilibrium distribution ΠX , and

lim
k→∞

‖ PXk − ΠX ‖TV = 0,

for any initial distribution PX0 .

Based on these definitions, we may finally establish the necessary ergodic theory.

Theorem 2.10. Suppose that there exists an equilibrium distribution for the aperi-
odic, Harris recurrent Markov chain (Xk)k∈N. Then (Xk)k∈N is ergodic.

Proof. Theorem 13.3.3 in Meyn and Tweedie (2009).

As suggested by the name, we can compute spatial averages of ergodic Markov
chains by computing temporal averages.

Theorem 2.11 (The Ergodic Theorem). Suppose that the Markov chain (Xk)k∈N is
aperiodic and Harris recurrent with equilibrium distribution Π. Then for any function
f : ΩX → R which satisfies

∫
ΩX
|f |dΠ <∞,

lim
k→∞

k∑
i=0

f(Xk)

k
=

∫
ΩX

fdΠ.

25

2.6. Bayesian Inference

Figure 2.6: Hidden Markov models are used to model dynamical systems which cannot be directly
observed.

Proof. This is a consequence of theorems 13.0.1 and 17.3.2 in Meyn and Tweedie
(2009).

This is all the ergodic theory that I require in this dissertation, however there is
one other form of stochastic chain that I consider which is no less essential to this
dissertation than the Markov chain. A hidden Markov chain is a sequence of pairs of
random variables (Xk, Zk)k∈N, where Xk is the latent random variable at time k, and
Zk is the observable random variable at time k. The dynamic latent state (Xk)k∈N
of a hidden Markov chain is a Markov chain, and any latent variable Xk is also
independent of Zk given Xk−1. Each observable random variable Zk is conditionally
independent of all the other random variables in the model given the simultaneous
response Xk, and the distributions PZk|Xk are known as the emission distributions.
When all the emission distributions are equal, I speak of the emission distribution
PZ|X given the auxiliary random variables X = Xk and Z = Zk.

I do not introduce any new theorems for hidden Markov chains. However, as
we will see, hidden Markov chains are fundamental to dynamic Bayesian inference.
Hidden Markov chains are more widely known as hidden Markov models, however
in this dissertation I reserve the term hidden Markov model for generative models
Q(Xk,Zk)k∈N which model hidden Markov chains. I depict the graphical representation
of a hidden Markov model in figure 2.6.

2.6 Bayesian Inference

Consider the joint distribution PXZ of the latent random variable X and the observ-
able random variable Z on the probability space (Ω,F , P). In its most general form,
the Bayesian approach to statistics reduces statistical inference on the observation z
to the evaluation of the conditional distribution PX|Z=z. What makes the theory of
Bayesian inference more than trivial is that we may often express this conditional dis-
tribution in a more articulated form, especially when we make use of the dependency
structure of the distribution in question.

Recall that the marginal density over X is pX(x) =
∫

ΩZ
pXZ(x, z)µZ(dz) and that

the conditional density of X given Z is pX|Z = pXZ/pZ , and similarly for pZ and
pZ|X . Based on these definitions we may derive Bayes’ rule

pX|Z(x | z) =
pXZ(x, z)pX(x)

pX(x)pZ(z)
=
pZ|X(z | x)pX(x)

pZ(z)
.

In Bayesian inference, the various distributions involved in Bayes’ rule have distinct
interpretations. In particular, PX is the prior, which represents our current beliefs

26

Chapter 2. Mathematical Background

about the latent variable; PZ|X is the likelihood, which describes how to generate an
observation given the latent state; finally, PX|Z is the posterior, which represents our
new beliefs about the latent variables after being given a particular observation.

For a given observation z, pZ(z) is constant. Since pX|Z=z is a probability density
and must therefore integrate to 1, knowing the posterior density up to a constant
factor is sufficient for determining the posterior. Bayes’ rule is therefore often written

pX|Z(x | z) ∝ pZ|X(z | x)pX(x), (2.21)

which emphasizes that given an observation, knowing the prior and the likelihood is
sufficient for determining the posterior.

Let us now consider the sequence of observable variables (Zi)
n
i=1 which are con-

ditionally independent given the latent variable, such that the conditional density
p(Zi)ni=1|X =

∏n
i=1 pZi|X . We can intuitively think of this likelihood as a “multisen-

sory” likelihood in the sense that each random variable Zi represents a different
sensory modality which responds to some unknown variable. By applying Bayes’ rule
to a sequence of observations z1, . . . , zn, we may express the posterior given these
observations as

pX|(Zi)ni=1
(x | z1, . . . , zn) =

p(Zi)ni=1|X(z1, . . . , zn | x)pX(x)

p(Zi)ni=1
(z1, . . . , zn)

=

∏n
i=1 pZi|X(zi | x)pX(x)

pZn|(Zi)n−1
i=1

(zn | z1, . . . , zn−1)p(Zi)
n−1
i=1

(z1, . . . , zn−1)

=
pZn|X(zn | x)pX|(Zi)n−1

i=1
(x | z1, . . . , zn−1)

pZn|(Zi)n−1
i=1

(zn | z1, . . . , zn−1)
. (2.22)

Since pZk|(Zi)ni=1
does not depend on x, we may again absorb this factor into a constant

of proportionality and write

pX|(Zi)ni=1
(x | z1, . . . , zn) ∝ pZn|X(zn | x)pX|(Zi)n−1

i=1
(x | z1, . . . , zn−1). (2.23)

Observe how this relation is a single application of Bayes’ rule (2.21) given the re-
sponse zn, where the prior is the posterior PX|(Zi)n−1

i=1
given the observations z1, . . . , zn−1.

We may therefore calculate the posterior for an entire sequence of observations by
recursively applying Bayes’ rule to calculate a sequence of posteriors until we reach
the prior density pX .

Although equation 2.23 reduces to a recursive application of Bayes’ rule, evalu-
ating this posterior is often intractable, as each application of Bayes’ rule tends to
increase the complexity of the beliefs of the agent. A powerful technique for amelio-
rating this problem is to make use of conjugate priors.

Definition 2.10 (Conjugate Prior). Let X be a latent random variable and Z an
observable random variable on (Ω,F , P), and let M be a manifold of probability
distributions. Then the prior PX is conjugate to the posterior PX|Z if PX ∈ M and
PX|Z ∈M.

Conjugate priors ensure that in recursive applications of Bayes’ rule, the com-
plexity of the posterior does not increase beyond the dimension of M. I depict an
example of Bayesian inference with conjugate priors in figure 2.7.

27

2.6. Bayesian Inference

P
ro

b
a
b

ili
ty

 D
e
n
si

ty

0

0.2

0.4

0.6

0.8

-4 -2 0 2 4
x

Figure 2.7: In these two figures I depict an application of multisensory Bayesian inference on 1-
dimensional random variables. The prior and posteriors in this application are normal distributions.
Left : A graphical representation of the multisensory inference problem; we aim to use the three
observations to infer the latent variable X. In this model, the prior density pX is approximately
flat over the region of interest, and the likelihoods pZi|X=x are normal distributions with mean x
and variance 1. Right : The beliefs of the agent as it integrates the sequence observations z0 = 1.10,
z1 = 1.84, z2 = −1.25 of the true stimulus x = 0.5 (black line). The prior is approximately uniform
over the state space (blue), and the sequence of posteriors (purple, magenta, red) are the result of
recursively applying Bayes’ rule to the sequence of observations.

This recursive approach to Bayesian inference can also be extended to dynamic
latent variables. Bayesian filtering is the Bayesian approach to computing posterior
beliefs about the latent state of a hidden Markov chain (Xk, Zk)k∈N, and can be
thought of as an extension of recursive relation 2.23 to the case where the underlying
stimulus is dynamic. A Bayes filter is the algorithm for computing these posteriors,
and is defined by two equations. The first is derived by following the derivation
presented in equations 2.22, which results in

pXk|(Zi)ki=0
(xk | z0, . . . , zk) ∝ pZk|Xk(zk | xk)pXk|(Zi)k−1

i=0
(xk | z0, . . . , zk−1). (2.24)

When normalized, this relation is known as the update equation. It reduces the
computation of the posterior beliefs at time k to applying Bayes’ rule to the likelihood
of zk and the prior PXk|(Zi)k−1

i=0
at z0, . . . , zk−1.

In contrast to relation 2.23, this prior is not simply the posterior at the previous
time, but rather the prior beliefs about the stimulus at time k given only the sequence
of responses up to time k−1. Based on the graphical structure of the hidden Markov
chain, we may express this distribution by

pXk|(Zi)k−1
i=0

(xk | z0, . . . , zk−1)

=

∫
ΩX

pXk−1Xk|(Zi)k−1
i=0

(xk−1,xk | z0, . . . , zk−1)µX(dxk−1)

=

∫
ΩX

pXk|Xk−1(Zi)
k−1
i=0

(xk | xk−1, z0, . . . , zk−1)

pXk−1|(Zi)k−1
i=0

(xk−1 | z0, . . . , zk−1)µX(dxk−1)

=

∫
ΩX

pX′|X(xk | xk−1)pXk−1|(Zi)k−1
i=0

(xk−1 | z0, . . . , zk−1)µX(dxk−1). (2.25)

28

Chapter 2. Mathematical Background

P
o
si
ti
o
n

-3

-2

-1

0

1

2

3

0 1 2 3 4 5
Time

V
e
lo
ci
ty

-5

-2.5

0

2.5

5

7.5

0 1 2 3 4 5
Time

Figure 2.8: An extended Kalman filter applied to estimating the state of a stochastic pendulum. I
depict the true position and velocity of the pendulum over time (black lines), the noisy observations
of this state (black dots), and the mean of the approximate beliefs computed by the extended
Kalman filter (red lines).

Because these prior beliefs transform available information into information about
the future, these prior beliefs are known as predictions, and this equation is known
as the prediction equation.

The posterior beliefs at time k are a function of the emission distribution and the
predictions at time k, and the predictions at time k are a function of the transition
distribution and the posterior beliefs at time k−1. Therefore, we may recursively com-
pute the posterior beliefs at any time k given the sequence of observations z0, . . . , zk
by using the update equation to calculate the posterior beliefs as a function of the
predictions, and by using the prediction equation to compute the predictions as a
function of the previous posterior beliefs. This recursion ultimately completes at the
prior PX0 in the same manner as relation 2.23. This two-step, recursive algorithm is
known as a Bayes filter.

Unsurprisingly, evaluating a Bayes filter brings additional computational chal-
lenges, namely, evaluating the prediction equation (2.25). Conjugate priors can still
help us manage the complexity of the posterior, provided that the prediction dis-
tribution is conjugate to the posterior. This in no why implies, however, that the
prediction equation may be tractably computed. Thankfully, in some cases we may
indeed solve the prediction equation in closed-form, and there exists many approaches
to finding approximate solutions.

29

2.6. Bayesian Inference

In particular, when ΩX is a finite set, the update and prediction equations can
be evaluated brute-force. On the other hand, the Kalman filter is the form of Bayes
filter for the case where the transition and emission distributions are given by linear
transformations of the latent state with additive Gaussian noise, and in this case the
update and prediction equations also afford a closed-form solution. These are the two
most well-known solutions to Bayesian filtering, and in both cases, the predictions
are conjugate to the posterior, and the complexity of the posterior remains constant
over time.

When the transition and emission distributions of a hidden Markov chain are given
by nonlinear transformations and additive Gaussian noise, the extended Kalman fil-
ter may be applied to compute approximate beliefs about the latent state. Intuitively,
an extended Kalman filter relies on a local linearization of the transition and emission
distributions, and propagates previous beliefs through these approximations. The re-
sulting predictions and posterior beliefs are normally distributed, and the complexity
of the beliefs remains constant over time. I present an example of extended Kalman
filtering in figure 2.8. I will treat all of these approaches to filtering in more detail in
later chapters.

30

Chapter 3

Families of Harmoniums

Bayesian inference begins with a joint distribution over latent and observable vari-
ables. The class of joint distributions which form the basis of my work are the joint
distributions of particular tuples of random variables, which I refer to as harmoni-
ums4. A harmonium is defined by the fact that the conditional distribution of each
random variable in the harmonium is always an element of the same exponential
family.

In the following sections I repeat a particular strategy for defining different kinds
of harmoniums. That is, I begin by defining a kind of harmonium as a collection of
random variables with a particular set of properties. I then construct a corresponding
exponential family – a harmonium family – which contains exactly all the distribu-
tions of the harmoniums of a particular kind. I then continue by deriving several
properties of these various kinds of harmonium.

Beginning with this chapter, and throughout the rest of this dissertation, I make
use of a set of conventions and assumptions in order to simplify the presentation of
the material herein. Firstly, I assume the existence of a probability space (Ω,F , P).
Random variables, e.g. X, are written without stating the probability space or state
space, where the state space is inferred from context, and when necessary, denoted
ΩX .

Given a random variable X, exponential families are written with a subscript as
MX , which indicates that the exponential family MX is a manifold of distributions
over ΩX . Similarly, the sufficient statistic and base measure of an exponential family
are subscripted with the same random variable as the family itself, e.g. MX is
defined by the sufficient statistic sX and base measure µX , and I assume that they
are implicitly declared when the exponential family MX is declared. Finally, the
exponential family model QX parameterized by the natural parameter space ΘX of
MX is the model for which MX = QX(ΘX).

3.1 Second-Order Harmoniums

In this section I define and develop second-order harmoniums. A second-order har-
monium is a pair of random variables, where the conditional distribution of each
random variable given the other is always an element of the same exponential family.
Based on the work of Arnold and Press (1989), I show that the set of all second-order

4See Smolensky (1986) for the origin of the name.

31

3.1. Second-Order Harmoniums

Figure 3.1: A harmonium is a pair of of random variables
(X,Z) where the conditional distributions PX|Z and PZ|X
are always elements of the exponential families MX and
MZ , respectively. The undirected graph which represents a
harmonium is simply a pair of connected random variables.

harmoniums defined by given pairs of exponential families is itself an exponential
family with a particular structure. I then derive a number of basic properties of
second-order harmoniums.

3.1.1 Second-Order Conditional Specification

In section 2.4 we considered joint distributions PXZ over latent variables X and
observable variables Z such that PXZ is an element of some exponential family defined
by the sufficient statistic s and base measure µ = µX × µZ . We found that the
conditional distribution PX|Z=z at a particular observation z is an element of the
exponential family defined by the sufficient statistic s(z, ·) and base measure µX , and
similarly for PZ|X . Although this fact is theoretically interesting, it is only of limited
practical value. On one hand, the resulting exponential families may be intractable.
On the other, the exponential family itself depends on z, which makes it difficult to
define general purpose inference and sampling algorithms which depend on the family
of these conditional distributions. In order to avoid these problems, I consider pairs
of random variables with conditional distributions which are constrained to always
be elements of single exponential families (figure 3.1).

Definition 3.1 (Second-Order Harmonium). The pair of random variables (X,Z)
is a second-order harmonium defined by the exponential families MX and MZ if
PX|Z ∈MX and PZ|X ∈MZ .

This restriction on the conditional distribution of a harmonium imposes a great
deal of structure on its joint distribution. In particular, we may show that the set
of all second-order harmonium distributions defined by a given pair of exponential
families is itself an exponential family.

The second-order harmonium family HXZ defined by the exponential families
MX and MZ is the dXZ = dX + dZ + dXdZ dimensional exponential family with
base measure µXZ = µX × µZ and sufficient statistic sXZ : ΩX × ΩZ → RdXZ with
component functions sXZ,i given by

sXZ,i(x, z) =sX,i(x),

sXZ,dX+j(x, z) =sZ,j(z),

sXZ,dZ+jdX+i(x, z) =sX,i(x) · sZ,j(z),

for i ∈ [1, . . . , dX] and j ∈ [1, . . . , dZ]5.

5Note that discrete-space exponential families with this form are also studied under the name
“Kronecker product models”. For a thorough analysis of the representational power of harmoni-
ums/Kronecker product models see Montúfar and Morton (2015a).

32

Chapter 3. Families of Harmoniums

Given a distribution PXZ ∈ HXZ with parameters θXZ , the dot product of the
sufficient statistic sXZ may be alternatively expressed as

sXZ(x, z) · θXZ = θX · sX(x) + θZ · sZ(z) + sX(x) ·ΘXZ · sZ(z), (3.1)

where θXZ = (θX ,θZ ,ΘXZ) and the matrix ΘXZ is expressed as a vector in row-
major form. Expressing the parameters PXZ in terms of the parameters θX , θZ ,
and ΘXZ is often more convenient and intuitive then expressing it in the vector form
θXZ . In general, we refer to the natural parameters θX and θZ as biases, the matrix
ΘXZ as the interaction matrix, and we refer to elements of the interaction matrix
θXZ,i,j as interactions.

Theorem 3.1 (Second-Order Conditional Specification). Let HXZ be the second-
order harmonium family defined by the exponential families MX and MZ with min-
imal sufficient statistics. Then the pair of random variables (X,Z) is a second-order
harmonium defined by MX and MZ if and only if PXZ ∈ HXZ.

Proof. According to theorem 3, Arnold et al. (2001), the density pXZ of a second-
order harmonium defined by exponential families with minimal sufficient statistics
may be expressed as

log pXZ(x, z) =

dX+1∑
i=1

dZ+1∑
j=1

s̄X,i(x)s̄Z,j(z) · θ̄XZ,i,j,

where θ̄XZ,i,j are parameters, where s̄X,i+1(x) = sX,i(x) and s̄Z,j+1(z) = sZ,j(z) for
i, j < 1 , and where sX,1(x) = sZ,1(z) = 1.

Therefore if PXZ is a harmonium defined by exponential families with minimal
sufficient statistics, then

pXZ(x, z) = e
∑dX+1
i=1

∑dZ+1
j=1 s̄X,i(x)s̄Z,j(z)θ̄XZ,i,j ∝ esXZ(x,z)·θXZ

for some parameters θXZ , which implies PXZ ∈ HXZ .

Conversely, if PXZ ∈ HXZ , then as we later show in equations 3.5 and 3.6, the
conditional distributions satisfy PX|Z ∈ MX and PZ|X ∈ MZ , which implies that
PXZ is the distribution of a harmonium.

Graphical models are often composed of a very large number of random variables,
and so it may appear as though the previous statements are limited in scope. However,
since we define the distributions of our random variables as arbitrary exponential
families, we may greatly increase the number of nodes in our graphical model by
applying the following proposition.

Proposition 3.2. Let (Xi)
n
i=1 be a set of mutually independent random variables,

and let X = (Xi)
n
i=1. Let (MXi)

n
i=1 be a sequence of exponential families with base

measures µX1 , . . . , µXn and sufficient statistics sX1 , . . . , sXn, and let MX be the ex-
ponential family with base measure µX = µX1 × · · · × µXn and sufficient statistic
sX(x) = (sX1(x1), . . . , sXn(xn)). Then PX ∈MX if and only if PXi ∈MXi for every
i.

33

3.1. Second-Order Harmoniums

Figure 3.2: Since the distribution of a collection
of independent, exponential family random vari-
ables is itself an exponential family distribution,
second-order harmoniums are often represented by
bipartite graphs.

Proof. Suppose that PXi ∈MXi with parameters θXi ∈ ΘXi for all i. Because (Xi)
n
i=1

are mutually independent, the density of the joint vector X is the product density
pX =

∏n
i=1 pXi . Therefore

pX(x) =
n∏
i=1

pXi(xi) ∝ e
∑n
i=1 sXi (xi)·θXi = es(x)·θ,

which implies that PX ∈MX with parameters θ = (θX1 , . . . ,θXn).

Now suppose that PX ∈MX with parameters θ = (θX1 , . . . ,θXn). Then for any
i,

pXi(xi) =

∫
{ΩXj }j 6=i

pX(x1, . . . ,xn)µ(dx1, . . . dxi−1, dxi+1, . . . ,xn)

∝
∫
{ΩXj }j 6=i

esX(x)·θµ(dx1, . . . dxi−1, dxi+1, . . . ,xn)

= esXi (xi)·θXi

∫
{ΩXj }j 6=i

e
∑
j 6=i sXj (xj)·θµ(dx1, . . . dxi−1, dxi+1, . . . ,xn)

∝ esXi (xi)·θXi ,

which implies that PXi ∈MXi with parameters θXi .

This proposition effectively states that products of independent exponential fam-
ily distributions are themselves exponential family distributions. As first presented
by Welling et al. (2005), the exponential family harmonium is a graphical model
which can be represented by a bipartite graph. By combining proposition 3.2 with
theorem 3.1, we may recover the exponential family harmonium as the most general
model whose conditional distributions are given by products of exponential family
distributions.

It is also interesting to note that theorem 3.1 and proposition 3.2 essentially
define two forms of product manifold, and it will sometimes be helpful to formalize
these products as operators. On one hand, a harmonium family is the result of a
tensor product of the sufficient statistic of the constituent exponential families, and
I will sometimes denote the harmonium family HXZ defined by MX and MZ by
HXZ =MX ⊗MZ . On the other hand, the exponential family MX with sufficient
statistic sX = (sX1 , sX2) and base measure µX = µX1 × µX2 is the set of all product
distributions PX1 · PX2 where PX1 ∈ MX1 and PX2 ∈ MX2 . I will refer to these
exponential families as product exponential families, and sometimes denote them by
MX =MX1 · MX2 .

34

Chapter 3. Families of Harmoniums

3.1.2 Properties of Harmoniums

Let us consider the second-order harmonium familyHXZ defined byMX andMZ . In
order to apply the theory of exponential family graphical models developed in section
2.4 to harmonium families, we must derive the conditional log-partition function of
harmonium families (2.15), and thereby express the marginal (2.14) and conditional
(2.16) distributions of harmoniums.

Based on equation 3.1, we may express the conditional log-partition function ψX|Z
at θXZ ∈ ΘXZ and z ∈ ΩZ as

ψX|Z(θXZ , z) = log

∫
ΩX

eθX ·sX(x)+θZ ·sZ(z)+sX(x)·ΘXZ ·sZ(z)µX(dx)

= θZ · sZ(z) + log

∫
Z

e(θZ+sX(x)·ΘXZ)·sZ(z)µX(dx)

= θZ · sZ(z) + ψX(θX + ΘXZ · sZ(z)). (3.2)

By inserting this equation into the definition of the marginal density of an exponential
family graphical model (2.14), we may conclude that the marginal density of the
observable variables of the harmonium is given by

log pZ(z) = θZ · sZ(z) + ψX(θX + ΘXZ · sZ(z))− ψXZ(θXZ). (3.3)

Conversely, the marginal density of the latent variables is given by

log pX(x) = θX · sX(x) + ψZ(θZ + sX(x) ·ΘXZ)− ψXZ(θXZ). (3.4)

In the language of Bayesian inference, PX is the prior distribution of the harmonium
(X,Z).

By inserting equation 3.2 into equation 2.16, the density of the latent variables
given the observable variables of the harmonium is given by

logpX|Z(x | z)

= sXZ(x, z) · θXZ − ψX|Z(θXZ , z)

= θX · sX(x) + θZ · sZ(z) + sX(x) ·ΘXZ · sZ(z)

− θZ · sZ(z)− ψX(θX + ΘXZ · sZ(z))

= sX(x) · (θX + ΘXZ · sZ(z))− ψX(θX + ΘXZ · sZ(z)), (3.5)

which is the exponential family distribution PX|Z=z ∈ MX with parameters θX +
ΘXZ · sZ(z). Again, in Bayesian language this is the posterior of the harmonium.
Conversely, the likelihood of the harmonium is the conditional distribution PZ|X given
by

log pZ|X(z | x) = sZ(z) · (θZ + sX(x) ·ΘXZ)− ψZ(θX + sX(x) ·ΘXZ). (3.6)

Observe how the likelihood and posterior distributions of a any harmonium always
have a log-linear form. That the posterior of a harmonium can be tractably computed
is an important advantage of harmoniums in the context of Bayesian inference.

Since we will often work with product exponential families, it helps to consider
their corresponding log-partition functions. Where (MXi)

n
i=1 is a sequence of expo-

nential families with base measures µX1 , . . . , µXn and sufficient statistics sX1 , . . . , sXn ,

35

3.1. Second-Order Harmoniums

and whereMX is the exponential family with base measure µX1 ×· · ·×µXn and suf-
ficient statistic defined by sX(x) = (sX1(x1), . . . , sXn(xn)), the log-partition function
ψX may be expressed as

ψX(θX) = log

∫
X

esX(x)·θXµ(dx)

=
n∑
i=1

log

∫
Xi

esXi (xi)·θXiµXi(dxi)

=
n∑
i=1

ψXi(θXi). (3.7)

In later sections we make use of the fact that a harmonium family is an exponential
family. In particular, when a second-order harmonium family is defined by a pair of
exponential families with minimal sufficient statistics, then the sufficient statistic of
the second-order harmonium family is itself minimal.

Proposition 3.3. Let HXZ be a second-order harmonium family defined by the expo-
nential families MX and MZ with minimal sufficient statistics. Then the sufficient
statistic of HXZ is minimal.

Proof. By way of contradiction, suppose that MX and MZ have minimal suffi-
cient statistics, but that HXZ does not. Then for some α0 and non-zero αXZ =
(αX ,αZ ,AXZ),

α0 = αX · sX(x) + αZ · sZ(z) + sX(x) ·AXZ · sZ(z)

⇐⇒ αX · sX(x) + αZ · sZ(z)− α0 = −sX(x) ·AXZ · sZ(z).

Note that the right hand side is a bilinear function of sX(x) and sZ(z), which implies
that the left hand side is a bilinear function of sX(x) and sZ(z). Therefore

αX · (sX(x) + sX(x)) + αZ · sZ(z)− α0

= αX · sX(x) + αX · sX(x) + 2αZ · sZ(z)− 2α0

⇐⇒ αZ · sZ(z) = α0.

Because sZ is minimal, this implies that αZ = 0, and therefore that α0 = 0. Similarly,
because sX is minimal, we may conclude that αX = 0, and therefore that sX(x) ·
AXZ · sZ(z) = 0.

Finally, because sX(x) is minimal, sX(x) · (AXZ · sZ(z)) = 0 if and only if AXZ ·
sZ(z) = 0. Because sZ(z) is minimal, this equation is true if and only AXZ = 0.
This implies that αXZ = (αX ,αZ ,AXZ) = 0, which contradicts our assumption.

Within the context of harmonium families, it is also important to be able to es-
tablish the conditions under which the random variables in question are independent.
In the case of harmonium families with minimal sufficient statistics, this is simply
the case when all the interaction parameters are zero.

Proposition 3.4. Let HXZ be a second-order harmonium family defined by the ex-
ponential families MX and MZ with minimal sufficient statistics, and suppose that
(X,Z) is a harmonium with distribution PXZ ∈ HXZ and parameters (θX ,θZ ,ΘXZ).
Then X and Z are independent if and only if ΘXZ = 0.

36

Chapter 3. Families of Harmoniums

Proof. First note that ⇐ is trivial, and so we only need to prove ⇒. Based on
equations 3.1, 3.4, and 3.3, X and Z are independent if and only if

pXZ(x, z) = pX(x)pZ(z)

⇐⇒ eθX ·sX(x)+θZ ·sZ(z)+sX(x)·ΘXZ ·sZ(z)

∝ eθX ·sX(x)+θZ ·sZ(z)+ψZ(θZ+sX(x)·ΘXZ)+ψX(θX+ΘXZ ·sZ(z))

⇐⇒ sX(x) ·ΘXZ · sZ(z)

= ψZ(θZ + sX(x) ·ΘXZ) + ψX(θX + ΘXZ · sZ(z)) + c.

The left hand side of this equation is a bilinear form in sX(x) and sZ(z), whereas the
right hand side is not unless it is equal to zero. BecauseMX andMZ have minimal
sufficient statistics, proposition 3.3 therefore implies that ΘXZ = 0.

In order to minimize the relative entropy (2.17) of some target distribution with
respect to the marginal distribution of the harmonium model QZ we follow the gra-
dient in equation 2.18. The derivatives of this relative entropy with respect to the
parameters (θX ,θZ ,ΘXZ), are given by

∂θXD(PZ ‖ QZ) = EQ[sX(X)]− EP [EQ[sX(X) | Z]],

∂θZD(PZ ‖ QZ) = EQ[sZ(Z)]− EP [sZ(Z)],

∂ΘXZ
D(PZ ‖ QZ) =

EQ[sX(X)⊗sZ(Z)]− EP [EQ[sX(X)⊗ sZ(Z) | Z]], (3.8)

where sZ(Z)⊗ sY (Y) is the outer product matrix defined by

(sZ(Z)⊗ sY (Y))i,j = sX,i(X)sZ,j(Z).

The expectations which define these derivatives can rarely be evaluated exactly, how-
ever we can approximate them with Markov chain Monte Carlo (MCMC). MCMC
methods generate samples from a complicated target distribution by generating sam-
ples from a more tractable Markov chain, the equilibrium distribution of which is
equal to the target distribution. Gibbs sampling is a form of MCMC where the tran-
sition distribution of the Markov chain is given by the conditional distributions of
the target distribution (Geman and Geman, 1984; Casella and George, 1992).

Consider the harmonium (X,Z) with distribution PXZ ∈ HXZ . We define the
Gibbs sampler for (X,Z) as the Markov chain (Xk, Zk)k∈N with transition distribution

pX′Z′|X,Z(x′, z′ | x, z) = pX|Z(x′ | z′)pZ|X(z′ | x).

Based on the well-developed theory of Gibbs sampling, it is easy to apply the ergodic
theory of section 2.5 to this Markov chain, and thereby estimate the expectations in
equations 3.8.

Proposition 3.5. The Gibbs sampler (Xk, Zk)k∈N for the harmonium (X,Z) is ape-
riodic and Harris recurrent, with equilibrium distribution ΠXZ = PXZ.

Proof. The aperiodicity of the sampler follows directly from definition 2.8. Harris
recurrence follows from theorem 9.4 of Robert and Casella (2004) as a result of the
positivity condition.

37

3.2. Higher-Order Harmoniums

As defined in Robert and Casella (2004), the harmonium (X,Z) satisfies the
positivity condition if pX(x) > 0 ∧ pZ(z) > 0 =⇒ pXZ(x, z) > 0. This is trivially
true for harmoniums since pX , pZ , and pXZ are all strictly positive on their domains
ΩX ,ΩZ , and ΩX × ΩZ .

Note that because a Gibbs sampler is defined by the conditional distributions
PX|Z and PZ|X , and the unique equilibrium distribution of the sampler is PXZ , this
implies that PX|Z and PZ|X are sufficient for uniquely determining the corresponding
joint distribution PXZ .

Although Gibbs sampling can estimate the expectations in equation 3.8, it can
take a long time for the Gibbs sampler to converge. This can be problematic when
training a model, which often requires evaluating millions of steps of stochastic gra-
dient descent. Contrastive divergence minimization is an MCMC approach to fitting
second-order harmoniums to data based on an alternative objective (Hinton, 2002).
The n-step contrastive divergence is

Dn(PZ ‖ QZ) = D(PZ ‖ QZ)−D(PZn ‖ QZ),

where (Xn, Zn) is the nth step of the Gibbs sampler with transition density

pX′Z′|X,Z(x′, z′ | x, z) = qX|Z(x′ | z′)qZ|X(z′ | x),

and initial distribution PX0Z0 with density pX0Z0 = qX|Z · pZ . It can be shown that
this objective can be approximately minimized by following the derivatives

∂θXDn(PZ ‖ QZ) = EP [sX(Xn)]− EP [EQ[sX(X) | Z]],

∂θZDn(PZ ‖ QZ) = EP [sZ(Zn)]− EP [sZ(Z)],

∂ΘXZ
Dn(PZ ‖ QZ) =

EP [sX(Xn)⊗sZ(Zn)]− EP [EQ[sX(X)⊗ sZ(Z) | Z]],

which can be estimated with only a n steps of the Gibbs sampler. Contrastive di-
vergence minimization has the attractive feature that the contrastive divergence ob-
jective converges to the relative entropy objective in the limit as n goes to infinity.
In practice, contrastive divergence has been highly effective for training harmonium
models even for n = 1.

3.2 Higher-Order Harmoniums

In this section I introduce nth-order harmoniums, which are distributions over n ran-
dom variables, where the conditional distribution of each random variable given all
the others is always an element of the same exponential family. I show that the set of
all nth-order harmoniums of a particular kind is an exponential family with a partic-
ular tensor structure. I then show that an nth-order harmonium can be interpreted
as a second-order harmonium of harmoniums of order i and j, where n = i + j, in
a manner which preserves the graphical model structure of the harmonium family in
question. This allows us to reduce much of the theory of nth-order harmoniums to
the second-order case. Finally, I introduce deep harmoniums, which are a form of
harmonium family which can be represented by a hierarchical graph.

38

Chapter 3. Families of Harmoniums

Figure 3.3: A general third-order harmonium can be represented by a tripartite graph.

3.2.1 Higher-Order Conditional Specification

Let us now move beyond the two random variable case, and consider a tuple of n
random variables, where the conditional distribution of each random variable given
all the others is always a member of the same exponential family.

Definition 3.2 (Higher-Order Harmoniums). The n-tuple of random variables (Xi)
n
i=1

is an nth-order harmonium defined by the exponential families (MXi)
n
i=1, if for every

i, 1 ≤ i ≤ n, the conditional distribution satisfies PXi|(Xj)j 6=i ∈MXi .

As in section 3.1.1, I define an exponential family which is the set of all nth-order
harmoniums. In this section, however, I define the corresponding exponential family
recursively. In particular, the nth-order harmonium family H(Xi)ni=1

defined by the
exponential families (MXi)

n
i=1 is the second-order harmonium family defined by the

exponential families H(Xi)
n−1
i=1

andMXn , where HX1 =MX1 . Based on this definition,
we may generalize theorem 3.1 to the case of higher-order harmoniums.

Theorem 3.6 (Higher-Order Conditional Specification). Let H(Xi)ni=1
be the nth-

order harmonium family defined by the sequence of exponential families (MXi)
n
i=1

with minimal sufficient statistics. Then (Xi)
n
i=1 is an nth-order harmonium defined

by (MXi)
n
i=1 if and only if P(Xi)ni=1

∈ H(Xi)ni=1
.

Proof. To show ⇒, suppose that (Xi)
n
i=1 is an nth-order harmonium defined by the

exponential families (MXi)
n
i=1. Then by theorem 3.1, the conditional distribution

PX1X2|(Xi)i6=1,2
∈ HX1X2 , and by proposition 3.3, the sufficient statistic of the harmo-

nium family HX1X2 is minimal. Since PX3|(Xi)i 6=3
∈MX3 and harmonium families are

exponential families, again by theorem 3.1, P(X1X2)X3|(Xi)i6=1,2,3
∈ H(X1X2)X3 , and the

sufficient statistic of H(X1X2)X3 is minimal. By repeated application of theorem 3.1
we find that that P(Xi)

n−1
i=1 Xn

∈ H(Xi)
n−1
i=1 Xn

, which is to say that P(Xi)ni=1
∈ H(Xi)ni=1

.
To show ⇐, suppose that H(Xi)ni=1

is the nth-order harmonium family defined
by the sequence of exponential families (MXi)

n
i=1. Then for any P(Xi)ni=1

∈ H(Xi)ni=1
,

PXn|(Xi)n−1
i=1
∈MXn , and P(Xi)

n−1
i=1 |Xn

∈ H(Xi)
n−1
i=1

. Because P(Xi)
n−1
i=1 |Xn

is in the (n−1)th-
order harmonium family H(Xi)

n−1
i=1

, this implies that PXn−1|(Xi)n−2
i=1 Xn

∈ HXn−1 , and
P(Xi)

n−2
i=1 |Xn−1Xn

∈ H(Xi)
n−2
i=1

. By recursion to the second-order case, PXi|(Xj)j 6=i ∈ MXi

for any i, and therefore any element of H(Xi)ni=1
is the distribution of an nth-order

harmonium defined by the exponential families (MXi)
n
i=1.

In figure 3.3 I depict the graph of a third-order harmonium defined by three
product exponential families.

39

3.2. Higher-Order Harmoniums

3.2.2 Harmonium Factorization

We have defined nth-order harmonium families as second-order harmonium families
over a lower-order harmonium family and an exponential family. Because harmonium
families are exponential families, this suggests that we may partition an nth-order
harmonium into a harmonium of harmoniums. Indeed, with the next theorem I
show that any nth-order harmonium can ultimately be understood as a second-order
harmonium of harmoniums of orders i and j, where n = i + j, and that this factor-
ization procedure preserves the graphical model structure of the harmonium family
in question.

Establishing this result requires the notion of a partition of a set I, which I define
as a pair of sets J,K ⊂ I, which satisfy J ∩K = ∅ and J ∪K = I. To simplify the
notation in this subsection, I will denote indexed subsequences of random variables
by XI = (Xi)i∈I . Moreover, to describe the restriction of a harmonium family to the
undirected graph G = (I, E) with vertices I = {1, . . . , n}, I use the notation

HG
(Xi)ni=1

= {P(Xi)ni=1
∈ H(Xi)ni=1

| (Xi)
n
i=1is represented by G},

to indicate the subset of the harmonium family H(Xi)ni=1
which contains all Markov

random fields represented by G.

Theorem 3.7 (The Harmonium Factorization Theorem). Let (Xi)
n
i=1 be a sequence

of random variables, let (MXi)
n
i=1 be a sequence of exponential families with minimal

sufficient statistics, and let J,K ⊂ I be any partition of the indices I = {1, . . . , n}.
Moreover, let G = (I, E) be an undirected graph, and let F and H be the subgraphs
of G with vertices J and K. Then

1. PXI ∈ HXI if and only if PXJXK ∈ HXJ ⊗HXK .

2. If PXI ∈ HG
XI

, then PXJXK ∈ HF
XJ
⊗HH

XK
.

Proof. 1. First, to prove ⇒, suppose that (Xi)
n
i=1 is an nth-order harmonium, and

let J and K be an arbitrary partition of the indices I. Because XI is an nth-order
harmonium, theorem 3.6 implies that PXJ |XK is in the harmonium familyHXJ defined
by the exponential families (MXj)j∈J , and similarly that PXK |XJ is in the harmonium
family HXK . Since harmonium families are also exponential families, the conditional
distributions of XJ given XK and XK given XJ are always in the exponential families
HXJ and HXK , which is to say that (XJ , XK) is a second-order harmonium defined
by HXJ and HXK .

To prove ⇐, suppose that (XJ , XK) is a second-order harmonium defined by the
exponential families HXJ and HXK . For any j ∈ J , the conditional distribution
PXj |(Xl)l 6=j is a conditional distribution of the conditional distribution PXJ |XK , and
similarly PXk|(Xl)k 6=l is a conditional distribution of PXK |XJ for k ∈ K. Moreover, since
PXJ |XK ∈ HXJ and PXK |XJ ∈ HXK , PXJ |XK and PXK |XJ are higher-order harmonium
distributions, and therefore the conditional distributions PXj |(Xk)k 6=j and PXk|(Xj)j 6=k
are always elements of MXj and MXk for any j ∈ J or k ∈ K. Thus for any
1 ≤ i ≤ n, PXi|(Xl)l6=i ∈MXi , which is to say that (Xi)

n
i=1 is an nth-order harmonium

defined by the exponential families (MXi)
n
i=1, and therefore in HXI .

2. If PXI ∈ HG
XI

, then XI is a Markov random field represented by G, and 1.
implies that PXJ |XK ∈ HXJ and PXK |XJ ∈ HXK . Let us assume that l and m are in
J . If Xl is conditionally independent of Xm given (Xj)j 6=l,m, then every path in G

40

Chapter 3. Families of Harmoniums

Figure 3.4: Suppose that the random variables W1, X1, X2, X3, Y1, Y2, Z1, and Z2 depicted in this
graph form an 8th-order harmonium. Then according to the harmonium factorization theorem (3.7)
and equation 3.6, X1, X2, X3, Y1, Y2, and W1 conditioned on Z1 and Z2 is a 6th-order harmonium.
Since there are no edges across the lettered groups of unconditioned nodes, this 6th-order harmonium
is in turn the product of three independent harmoniums, (X1, X2, X3), (Y1, Y2), and W1, of order
3, 2, and 1, respectively.

between vertex l and m passes through at least one additional vertex j 6= l,m. Since
a subgraph cannot have a path length between two vertices which is shorter than the
path length between the vertices in the total graph, Xl and Xm remain conditionally
independent according to the representation F , and therefore PXJ |XK ∈ HF

XJ
. Mutatis

mutandis, this same argument implies that PXK |XJ ∈ HH
XK

.

Note that in the second part of this theorem, PXJXK ∈ HF
XJ
⊗ HH

XK
does not

imply PXI ∈ HG
XI

, because the graphical representation of HF
XJ
⊗HH

XK
may contain

more edges than HG
XI

.
The first part of this theorem effectively states that the operator ⊗ is associative,

such that

MX ⊗MY ⊗MZ = (MX ⊗MY)⊗MZ =MX ⊗ (MY ⊗MZ).

For example, the third-order harmonium (X, Y, Z) defined by the exponential fam-
ilies MX , MY , and MZ can be factorized into either the second-order harmonium
((X, Y), Z) defined by MX ⊗MY and MX , or into the second-order harmonium
(X, (Y, Z)) defined by MX and MY ⊗MZ .

Now, marginalization and conditionalization are arguably the two most funda-
mental operations in probability theory, and both involve partitioning collections of
random variables into two groups. Because any partition of the random variables of
an nth-order harmonium results in a second-order harmonium of harmoniums, we
may use the properties derived for second-order harmoniums in section 3.1.2 to ex-
press any marginal or conditional distribution of an nth-order harmonium. I depict
an example of conditionalization in a complex harmonium in figure 3.4.

The harmonium factorization theorem establishes properties about the abstract
distributions of harmoniums and their factorizations, but practically we need to relate
these properties to the natural parameters of the harmoniums and their families. In
order to describe this, we require a general notion of an interaction.

41

3.2. Higher-Order Harmoniums

Definition 3.3 (Interaction). Let (Xi)
n
i=1 be an nth-order harmonium defined by

(Xi)
n
i=1, with distribution P(Xi)ni=1

∈ H(Xi)ni=1
and natural parameters θ(Xi)ni=1

. Then
the ith natural parameter θ(Xi)ni=1,i

is an interaction between Xj and Xk if the ith
summand in the dot product θ(Xi)ni=1

· s(Xi)ni=1
contains both sXj and sXk . A natural

parameter that is not an interaction is a bias.

Given this definition, we may conclude that any interaction between two non-
adjacent random variables in a harmonium Markov random field is 0.

Lemma 3.8. Let H(Xi)ni=1
be an nth-order harmonium family with a minimal suffi-

cient statistic, and suppose that (Xi)
n
i=1 is an nth-order harmonium with distribution

P(Xi)i∈n ∈ H(Xi)ni=1
and parameters θ(Xi)ni=1

. Then Xi and Xj are conditionally inde-
pendent given the remaining random variables (Xk)k 6=i,k if and only if any interaction
between Xi and Xj is 0.

Proof. Note that ⇐ follows directly from the Hammersley-Clifford theorem, and so
we only need to prove ⇒.

Suppose that PXiXj |(Xk)k 6=i,j = PXi|(Xk)k 6=i,j ·PXj |(Xk)k 6=i,j , and consider the factoriza-
tion ((Xi, Xj), (Xk)k 6=i,j). By theorem 3.7, the conditional distribution PXiXj |(Xk)k 6=i,j

at (xk)k 6=i,j is an element of the second-order harmonium family HXiXj with natural
parameters

θ∗XiXj = θXiXj + Θ((Xi,Xj),(Xk)k 6=i,j) · s(Xk)k 6=i,j((xk)k 6=i,j).

According to equation 3.1, we may express θ∗XiXk as (θ∗Xi ,θ
∗
Xj
,Θ∗XiXj). Note that by

construction, Θ∗XiXj contains all the interaction parameters between Xi and Xj. Be-
cause Xi and Xj are conditionally independent, proposition 3.4 implies that ΘXiXk =
0, which proves the lemma.

This lemma is essentially a version of the Hammersley-Clifford theorem specific
to the exponential family structure of harmoniums. Although this lemma tells us
about the graphical structure of a single harmonium, it does not tell us the relation-
ship between a graphical model and a harmonium family. In order to describe this
relationship, I use θG(Xi)ni=1

and sG(Xi)ni=1
to denote the natural parameters and suffi-

cient statistic which contain all the interactions and corresponding statistics between
random variables which are elements of a shared maximal clique. Formally, where
C is the set of maximal cliques of G, I define the subindices J such that j ∈ J if
and only if θ(Xi)ni=1,j

is a bias, or for any C ∈ C and any k, l ∈ C, θ(Xi)ni=1,j
is an

interaction between Xk and Xl. Given J , I then define θG(Xi)ni=1
= (θ(Xi)ni=1,j

)j∈J and

sG(Xi)ni=1
= (s(Xi)ni=1,j

)j∈J .

Theorem 3.9. Suppose that M(Xi)ni=1
is the nth-order harmonium defined by the

exponential families (MXi)
n
i=1 with minimal sufficient statistics, and let G = (I, E)

be an undirected graph. Then the subset HG
(Xi)ni=1

of H(Xi)ni=1
is the exponential family

with base measure µ(Xi)ni=1
and minimal sufficient statistic sG(Xi)ni=1

.

Proof. P(Xi)ni=1
is in the exponential family with base measure µ(Xi)ni=1

and sufficient
statistic sG(Xi)ni=1

if and only if

p(Xi)ni=1
(x1, . . . ,xn) ∝ e

sG
(Xi)

n
i=1

(x1,...,xn)·θG
(Xi)

n
i=1 = e

s(Xi)ni=1
(x1,...,xn)·θ(Xi)

n
i=1 ,

42

Chapter 3. Families of Harmoniums

which is true if an only if P(Xi)ni=1
∈ H(Xi)ni=1

, where θ(Xi)ni=1
is 0 at every interaction

not included in θG(Xi)ni=1
. By lemma 3.8 and the definition of a Markov random field,

this is true if and only if P(Xi)ni=1
∈ HG

(Xi)ni=1
.

Moreover, because s(Xi)ni=1
is minimal, any subsequence of s(Xi)ni=1

is minimal, and
therefore so is sG(Xi)ni=1

.

3.2.3 Deep Harmoniums

Hierarchical graphical models model dependencies between large numbers of ran-
dom variables, while keeping the maximum clique size of the corresponding graphical
representation low. A deep harmonium, in particular, is a graphical model over a
collection of random variables with only second-order interactions.

Definition 3.4 (Deep Harmonium). The sequence of random variables (Xi)
n
i=1 is a

deep harmonium if (Xi)
n
i=1 is a nth-order harmonium, and for any 0 < i < j < k ≤ n,

Xi and Xk are conditionally independent given Xj.

I depict the graph of a deep harmonium with three variables in figure 3.5. The
family of deep harmoniums is a direct result of theorem 3.9, but for notational sim-
plicity I will denote the deep harmonium family defined by the exponential families
(MXi)

n
i=1 by D(Xi)ni=1

. In the case of the three-layer deep harmonium family DXY Z
defined by MX , MY , and MZ , the sufficient statistic sXY Z of DXY Z is given by

sXY Z,i(x,y, z) =sX,i(x),

sXY Z,dX+j(x,y, z) =sY,j(y),

sXY Z,dX+dY +k(x,y, z) =sZ,k(z),

sXY Z,jdX+i+dY +dZ (x,y, z) =sX,i(x) · sY,j(y),

sXY Z,dXdY +dX+kdY +j+dZ (x,y, z) =sY,j(y) · sZ,k(z),

for i ∈ [1, . . . , dX], j ∈ [1, . . . , dY], and k ∈ [1, . . . , dZ]. In this case, we may in-
tuitively express the dot product of sXY Z with the natural parameters θXY Z =
(θX ,θY ,θZ ,ΘXY ,ΘY Z) ∈ ΘXY Z as

sXY Z(x,y, z) · θXY Z = θX · sX(x) + θY · sY (y) + θZ · sZ(z)

+ sX(x) ·ΘXY · sY (y) + sY (y) ·ΘY Z · sZ(z).

When developing examples of deep harmoniums, I will typically consider three-layer
families.

Suppose we wish to train the deep harmonium generative model QXY Z on random
observations drawn from a target distribution PZ . This entails minimizing the entropy
of PZ relative to the marginal QZ of the deep harmonium model. This is equivalent
to minimizing the entropy of PZ relative to the marginal QZ of the harmonium
factorization ((X, Y), Z), the derivatives of which are given by equations 3.8. By
expanding these equations and applying theorem 3.9 we may express the relative
entropy derivatives of a deep harmonium model as

∂θXD(PZ ‖ QZ) = EQ[sX(X)]− EP [EQ[sX(X) | Z]],

∂θYD(PZ ‖ QZ) = EQ[sY (Y)]− EP [EQ[sY (Y) | Z]],

∂θZD(PZ ‖ QZ) = EQ[sZ(Z)]− EP [sZ(Z)],

∂ΘXY
D(PZ ‖ QZ) = EQ[sX(X)⊗ sY (Y)]− EP [EQ[sX(X)⊗ sY (Y) | Z]],

∂ΘY Z
D(PZ ‖ QZ) = EQ[sY (Y)⊗ sZ(Z)]− EP [EQ[sY (Y)⊗ sZ(Z) | Z]].

43

3.2. Higher-Order Harmoniums

Figure 3.5: A deep harmonium family is a higher-order harmonium family which can be represented
by a graph with a clique size of at most 2.

Approximating the expectations in these derivatives can also be done with Gibbs
sampling, as discussed in section 3.1.2. Gibbs sampling, however, is even more costly
in deep harmoniums then in second-order harmoniums. Moreover, contrastive diver-
gence minimization cannot be applied to completely avoid these complexity issues,
because the posterior can no longer be sampled directly. In section 4.2.2 I present
a novel algorithm for relative entropy minimization in deep harmoniums which ad-
dresses some of these problems.

44

Chapter 4

Harmonium Rectification

In this chapter I introduce and develop the concept of harmonium rectification. A
rectified harmonium is one for which the prior of the harmonium is conjugate to the
posterior. Beyond efficient Bayesian inference, a rectified harmonium can also be
exactly sampled without simulating long Gibbs chains. Building on this theory, I de-
velop a few classes of harmonium family which contain exactly rectified harmoniums.
Since most harmoniums are not rectified, I then develop algorithms for approximately
rectifying harmoniums while fitting them to data.

I then consider rectification in the context of deep harmoniums. As I show, the
harmonium factorization theorem allows us to understand rectification in deep harmo-
niums in terms of the rectification of the individual bilayers of the deep harmonium.
This allows rectified deep harmoniums to inherit many of the advantages of rectified
second-order harmoniums.

In this section I make a certain abuse of notation. Namely, where M(Xi)ni=1
,

H(Xi)ni=1
, and D(Xi)ni=1

are a product family, a harmonium family, and a deep harmo-
nium family respectively, I will use θ(Xi)ni=1

, s(Xi)ni=1
, ψ(Xi)ni=1

to indicate any of their
natural parameters, sufficient statistics, log-partition functions, etcetera. Context
will separate these different cases, and I will declare them explicitly when necessary.

4.1 Second-Order Harmonium Rectification

In general, the marginal distributions of a harmonium are more complicated – that
is, depend on more parameters – than the elements of the component exponential
families used to define the harmonium. This complexity is often cited as a reason why
harmoniums can model complex distributions over observations. However, the fact
that the marginal distribution of the observable variables ought be complex is not in
and of itself an argument for why the marginal distribution of the latent variables
ought to be complex. In fact, when the marginal distribution of the latent variables
is in the same exponential family as the distribution of the latent variables given
the observable variables, both sampling and Bayesian inference become much more
tractable.

In this section I consider conditions under which the latent distribution of a har-
monium is in the same exponential family as the distribution of the latent variables
given the observables, and I refer to this form of harmonium as a rectified harmo-
nium. I then present cases in which the harmoniums of a particular class are always
rectified. Since most harmoniums cannot be exactly rectified, I then develop a gradi-

45

4.1. Second-Order Harmonium Rectification

Figure 4.1: A visualization of rectification. Both the conditional distributions PX|Z=z for any
z ∈ ΩZ , and the marginal distribution PX (represented by graphical model of the harmonium with
dashed lines around the variables which have been marginalized out) are in the exponential family
MX .

ent descent approach to fitting a harmonium to data in parallel with training it to be
approximately rectified. This allows us to learn harmonium models which are good
models of the data, and which enjoy the many advantages of rectification. Although
I develop the theory with regards to harmoniums of only two random variables,
the harmonium factorization theorem (3.7) can be used to generalize this theory to
higher-order harmoniums.

4.1.1 Rectified Second-Order Harmoniums

According to definition 3.1, the conditional distributions of a harmonium (X,Z)
defined by MX and MZ satisfy PX|Z ∈ MX and PZ|X ∈ MZ , respectively. In
general, however, the marginal distributions PX and PZ of a given harmonium are
not elements of exponential families. In this section, I analyze harmoniums for which
PX ∈MX .

Definition 4.1 (Rectified Harmonium). The harmonium (X,Z) defined by the ex-
ponential families MX and MZ is a rectified harmonium if PX ∈MX

6.

I present an intuitive depiction of this definition in figure 4.1. Rectified harmoni-
ums have a number of useful properties. Firstly, by definition, the prior of a rectified
harmonium is conjugate to its posterior. Secondly, rectified harmoniums are also

6The word “rectified” also arises in deep learning when discussing “rectified linear units” (Nair
and Hinton, 2010), which are a popular transfer function used for constructing multilayer percep-
trons. The name clash is unfortunate, but I think rectification is the best name for what I describe
in definition 4.1. In any case, rectification in my sense refers to whole distributions, whereas a
“rectified linear unit” is a single neuron, and so in practice these names should not overlap.

46

Chapter 4. Harmonium Rectification

often trivial to sample from. Assuming that we may tractably sample from distribu-
tions in the families MX and MZ , we may generate samples from PXZ ∈ HXZ by
simply drawing a sample from PX and then a sample from PZ|X .

The following theorem provides necessary and sufficient conditions for a harmo-
nium to be rectified in terms of the natural parameters of the harmonium. It also
provides the reason why I refer to harmoniums which satisfy definition 4.1 as rectified.
That is, rectifying a harmonium constrains the (typically nonlinear) log-partition
function of the likelihood of a harmonium (3.6) to be affine in the sufficient statistic
of the latent variables.

Theorem 4.1 (The Rectification Theorem). Suppose that HXZ is a harmonium fam-
ily defined by the exponential familiesMX andMZ, and suppose that the harmonium
(X,Z) with distribution PXZ ∈ HXZ has parameters (θX ,θZ ,ΘXZ). Then (X,Z) is
rectified if and only if there exists parameters ρX and a constant ρ0 such that

ψZ(θZ + sX(x) ·ΘXZ) = sX(x) · ρX + ρ0, (4.1)

for any x ∈ ΩX .

Proof. On one hand, recall that the prior distribution PX of a harmonium is given
by equation 3.4, and that if the harmonium in question is rectified, then PX ∈ MX

with some natural parameters θ∗X . Then

pX(x) ∝ eθX ·sX(x)+ψZ(θZ+sX(x)·ΘXZ) ∝ eθ
∗
X ·sX(x)

=⇒ θX · sX(x) + ψZ(θZ + sX(x) ·ΘXZ) = θ∗X · sX(x) + ρ0

=⇒ ψZ(θZ + sX(x) ·ΘXZ) = sX(x) · ρX + ρ0.

for some ρ0, and where ρX = θ∗X − θX .
On the other hand, if we first assume that equation 4.1 holds, then PX is given

by
pX(x) ∝ eθX ·sX(x)+ψZ(θZ+sX(x)·ΘXZ) ∝ e(θX+ρX)·sX(x),

which implies that PX ∈MX with parameters θX + ρX .

Assuming that they exist, I refer to the parameters ρX and ρ0 of a rectified
harmonium as the rectification parameters of the harmonium, and I refer to equation
4.1 as the rectification equation. The following corollary is contained in the proof of
the previous theorem, however it is helpful to state on its own.

Corollary 4.2. Suppose that HXZ is a harmonium family defined by the exponential
families MX and MZ, and suppose that the harmonium (X,Z) with distribution
PXZ ∈ HXZ and parameters (θX ,θZ ,ΘXZ) is rectified with rectification parameters
ρX and ρ0. Then the parameters θ∗X of PX ∈MX are given by

θ∗X = θX + ρX .

Proof. This follows from the second part of the proof of theorem 4.1.

Notice that equation 4.1 does not depend on the parameters θX of the harmonium.
Because of this, one may rather think of the likelihood PZ|X as being rectified, such
that given any prior PX ∈ MX , the harmonium (X,Z) with density pZ|X · pX is
rectified.

47

4.1. Second-Order Harmonium Rectification

Definition 4.2 (Rectified Likelihood). The likelihood PZ|X with the form of equation
3.6 and parameters θZ and ΘXZ is rectified if the parameters satisfy equation 4.1 for
some rectification parameters ρX and ρ0.

This formulation of rectification is especially useful in the context of Bayesian
inference, where ensuring that the likelihood is rectified is enough to ensure the
existence of conjugate priors. When given a rectified likelihood and a conjugate
prior, the following corollary will help us not to forget the exact form of the resulting
harmonium.

Corollary 4.3. Let MX and MZ be exponential families, and suppose that PZ|X ∈
MZ is rectified with parameters ρX and ρ0, and that PX ∈ MX with parame-
ters θ∗X . Then the distribution PXZ ∈ HXZ with density pZ|X · pX has parameters
(θX ,θZ ,ΘXZ), where θX = θ∗X − ρX .

An alternative to theorem 4.1 for describing rectification for harmoniums involves
the log-partition function of PXZ .

Corollary 4.4. Suppose that HXZ is a harmonium family defined by the exponen-
tial families MX and MZ. Then the harmonium PXZ ∈ HXZ with parameters
(θX ,θZ ,ΘXZ) is rectified, with latent distribution PX ∈ MX and parameters θ∗X ,
if and only if the log-partition function of PXZ satisfies

ψXZ(θX ,θZ ,ΘXZ) = ψX(θ∗X) + ρ0.

Proof. According to theorem 4.1 and corollary 4.2,

pX(x) = eθ
∗
X ·sX(x)−ψX(θ∗X)

= eθX ·sX(x)+ρX ·sX(x)+ρ0−ψXZ(θXZ)

⇐⇒ ψXZ(θ) = (θX + ρX − θ∗X) · sX(x) + ψX(θ∗X) + ρ0

= ψX(θ∗X) + ρ0.

Theorem 4.1 and corollary 4.4 provide different perspectives on the constraints
placed on a harmonium when it is rectified. Whereas theorem 4.1 states that the
log-partition function of the likelihood is restricted to be an affine function, corollary
4.4 states that the log-partition function of the joint distribution of a harmonium
must be no more complex than the log-partition function of the exponential family
of the latent variables.

4.1.2 Exact Rectification

Although approximate rectification is all we can aim for when working with most
harmonium families, there are at least two cases where the exact rectification pa-
rameters of a harmonium are given by closed-form expressions, namely, when the
harmonium family in question involves either normal or categorical families (see ap-
pendix A). Of course, these are exactly the cases where Bayes’ rule can typically be
solved analytically; nevertheless, showing how these solutions can be expressed as
instances of rectification provides both an introduction to understanding rectifica-
tion in practice, and a new perspective on these known solutions. This also serves

48

Chapter 4. Harmonium Rectification

to emphasize the importance of approximate rectification, which allows approximate
Bayesian inference to be implemented for cases which do not otherwise not yield to
analytic solutions.

Let us refer to the exponential families MX and MZ which define the harmo-
nium family HXZ as the latent and observable families, respectively. The first case I
consider is where the latent exponential family of the harmonium in question is the
categorical family (see appendix A). Because the categorical distribution contains
all probability distributions over a given finite set, it follows immediately that any
harmonium is rectified if its latent family is the categorical family. Nevertheless, this
example illustrates how to calculate the rectification parameters, which have many
practical applications even in this trivial case.

Proposition 4.5. Let HXZ be the harmonium family defined by MX and MZ, and
suppose that MX is the categorical family where ΩX = {xi}ni=1. Moreover, sup-
pose that (X,Z) is a harmonium with distribution PXZ ∈ HXZ and parameters
(θX ,θZ ,ΘXZ) Then (X,Z) is rectified with rectification parameters

ρX,i = ψZ(θZ + θXZ,i)− ψZ(θZ),

ρ0 = ψZ(θZ),

where θXZ,i is the ith row of ΘXZ.

Proof. First note that if ΩX = {xi}ni=1, then MX is n − 1 dimensional, and the
sufficient statistic of MX is given by sX,j(xi) = 1 if i = j, and 0 otherwise, for every
1 ≤ j < n (appendix A). In order for PXZ to be rectified, equation 4.1 must be
satisfied for every element of ΩX . For any xi ∈ ΩX where i < n,

ψZ(θZ + sX(xi) ·ΘXZ) = sX(xi) · ρX + ρ0

⇐⇒ ψZ(θZ + ΘXZ,i) = ρX,i + ρ0

⇐⇒ ρX,i = ψZ(θZ + ΘXZ,i)− ρ0.

For xn ∈ ΩX ,

ψZ(θZ + sX(xn) ·ΘXZ) = sX(xn) · ρX + ρ0

⇐⇒ ρ0 = ψZ(θZ).

Because the prior of a harmonium (X,Z) with a categorical latent family is always
an element of the categorical family, we may express the marginal density over Z as

pZ(z) =

dX∑
i=1

pX(xi) · pZ|X(z | xi) =

dX∑
i=1

ηX,i · pZ|X(z | xi),

where we define ηX,dX = 1 −
∑dZ−1

i=1 ηX,i. This is simply the general definition of
a mixture model with mixture weights ηX,i and mixture components pZ|X(z | xi)
(Murphy, 2012). Harmonium models defined by categorical latent families therefore
provide a general interface to mixture modelling, and can be trained with the gradient

49

4.1. Second-Order Harmonium Rectification

y

-2

-1

0

1

2

-4 -2 0 2 4
x

-L
o
g
-L
ik
e
lih
o
o
d

-0.4

-0.3

-0.2

-0.1

0

0 5 10 15 20
Epoch

Figure 4.2: A simulation of fitting the harmonium model of the harmonium family HXZ , where
MX is is the categorical family with three states ΩX = {0, 1, 2}, and MZ is the bivariate normal
family with known, diagonal covariance matrix, where the variance of the first and second variables
is 1 and 0.5, respectively. Top: The true distribution is defined by three mixture components with
weights 0.25, 0.25, and 0.5, and means (1.5, 0.5), (−1.5, 0.5), and (0,−0.5), depicted by the large
red, green, and blue circles, respectively. The small dots represent the data used for training. The
black circles represent the means of the learned mixture components, which have weights 0.27, 0.31,
and 0.43, and means (1.66, 0.71), (-1.51, 0.57), and (0.15, -0.58), respectively. Bottom: The average
negative-log likelihood of the model on 1,000 test samples drawn from the true mixture model, over
the course of 20 training epochs on the samples depicted in the top plot.

descent procedures developed throughout this dissertation7. In figure 4.2 I present
an example of training a mixture of normal distributions based on theorem 4.5 by
following the gradient given by the derivatives in equations 3.8.

The second case I consider is where the observable familyMZ of the harmonium
family HXZ in question is a multivariate normal family with known covariance, and
the sufficient statistic of the latent family MX is given by the all first- and second-
order statistics of the latent variables. By this I mean that the sufficient statistic of
MX satisfies

θX · sX(x) = θ · x + x ·Θ · x, (4.2)

for arbitrary parameters θX , where θX = (θ,Θ), and where Θ is expressed in row-
major form. For the following theorem, I also use N(µ,Σ) to denote the multivariate

7See Montúfar and Morton (2015b) for an analysis of restricted Boltzmann machines as mixtures
of mixture models.

50

Chapter 4. Harmonium Rectification

normal distribution with mean µ and covariance matrix Σ.

Theorem 4.6. Let HXZ be a harmonium family defined by the exponential families
MX and MZ, where MZ is the multivariate normal family with fixed covariance
Σ, and the sufficient statistic of MX satisfies equation 4.2. Suppose that (X,Z)
is a harmonium with distribution PXZ ∈ HXZ and a likelihood given by PZ|X=x =
N(m + M · x,Σ). Then PXZ is rectified, with rectification parameters

ρ0 =
1

2
m ·Σ−1 ·m− 1

2
log |Σ−1|,

ρZ,µ = m ·Σ−1 ·M,

PZ,Σ =
1

2
M> ·Σ−1 ·M, (4.3)

where ρX = (ρZ,µ,PZ,Σ).

Proof. The natural parameters of a multivariate normal distribution with mean µ
and covariance Σ are given by

θµ = −2µ ·ΘΣ, ΘΣ = −1

2
Σ−1. (4.4)

The log-partition function of MZ (appendix A) expressed as a function of these
parameters is

ψZ(θµ,ΘΣ) = −1

4
θµ ·Θ−1

Σ · θµ −
1

2
log | − 2ΘΣ|. (4.5)

We may therefore express ψZ(θZ+sX(x)·ΘXZ) for this model in mean and covariance
parameters of a multivariate normal by substituting µ = m + M ·x into equation 4.4
and then result into equation 4.5. In this vein, the first term of equation 4.5 may be
expressed as

−1

4
θµ·Θ−1

Σ · θµ

=− ((m + M · x) ·ΘΣ) ·Θ−1
Σ · ((m + M · x) ·ΘΣ)

=− (m + M · x) · ((m + M · x) ·ΘΣ)

=
1

2
(m + M · x) ·Σ−1 · (m + M · x)

=
1

2
m ·Σ−1 ·m + m ·Σ−1 ·M · x +

1

2
x ·M> ·Σ−1 ·M · x, (4.6)

which is a second-order polynomial. The second term in equation 4.5 may be ex-
pressed as

−1

2
log | − 2ΘΣ| = −

1

2
log |Σ−1|. (4.7)

By combining equations 4.3, 4.5, 4.6, and 4.7, we may solve the rectification equation
(4.1) by

ψZ(θZ + sX(x) ·ΘXZ) = ρZ,µ · x + x ·PZ,Σ · x + ρ0 = ρX · sX(x) + ρ0,

where ρ0, ρZ,µ, and PZ,Σ are as defined in the theorem statement.

51

4.1. Second-Order Harmonium Rectification

The form of likelihood function PZ|X in this theorem is the one applied in the
context of Kalman filtering, and models observations of the latent state which are cor-
rupted by additive Gaussian noise. The example of multisensory Bayesian inference
which I depicted in figure 2.7 is also a simple instance of this scheme. Nevertheless,
this theorem may also be applied to latent families MX which are not multivariate
normal families, as long as the sufficient statistic satisfies equation 4.2. One example
of such families is the family of Boltzmann machines or Ising models, which model
the second-order statistics between binary random variables.

4.1.3 Approximate Rectification

Since the rectification equation (4.1) can not in most cases be exactly satisfied, let
us now endeavour to train a harmonium to approximately do so. Suppose that QXZ

is the generative model defined by the harmonium family HXZ , such that QXZ ∈
HXZ for any parameters (θX ,θZ ,ΘXZ) ∈ ΘXZ . The purpose of rectification is to
drive the marginal distribution QX of the generative model to be an element of the
exponential familyMX , and so we define the objective of rectification as minimizing
the rectification error

D(Q∗X ‖ QX),

where Q∗X ∈MX with parameters θ∗X ∈ ΘX ; I refer to the model Q∗X as the rectifier
of the harmonium model QXZ . Note how, in contrast to minimizing the relative
entropy with respect to some target distribution PZ , this divergence depends not
only on the parameters (θX ,θZ ,ΘXZ) of QXZ , but also the parameters θ∗X of the
rectifier Q∗X .

Since Q∗X does not depend on the parameters of QXZ , computing the derivatives
of the rectification error with respect to θX , θZ , and ΘXZ results in derivatives
analogous to derivatives 3.8. In particular,

∂θXD(Q∗X ‖ QX) = EQ[sX(X)]− EQ∗ [sX(X)],

∂θZD(Q∗X ‖ QX) = EQ[sZ(Z)]− EQ∗ [EQ[sZ(Z) | X]],

∂ΘXZ
D(Q∗X ‖ QX) =

EQ[sX(X)⊗sZ(Z)]− EQ∗ [EQ[sX(X)⊗ sZ(Z) | X]]. (4.8)

Since rectification, as described by equation 4.1, does not depend on the parameters
θX of the harmonium, one may also choose not to minimize the rectification error
with respect to θX , and rather rely solely on θ∗X to minimize the error with respect
to the latent biases.

When computing the derivatives of D(Q∗X ‖ QX) with respect to θ∗X , we can no
longer ignore the entropy of Q∗X . Nevertheless, as long as the sufficient statistic of
MX is minimal, we may express the derivatives as a particular kind of covariance.
Where we define the covariance function as

CP (X, Y) 7→ EP [X ⊗ Y]− EP [X]⊗ EP [Y],

we may prove the following theorem.

Theorem 4.7. Let HXZ be the second-order harmonium family defined by MX and
MZ, and suppose that the sufficient statistic sX is minimal. Moreover, suppose that

52

Chapter 4. Harmonium Rectification

QXZ ∈ HXZ with parameters (θX ,θZ ,ΘXZ), and that Q∗X ∈ MX with parameters
θ∗X . Then

∂θ∗XD(Q∗X ‖ QX) =

CQ∗(sX(X) · (θ∗X − θX)− ψZ(θZ + sX(X) ·ΘXZ), sX(X)). (4.9)

Moreover, if θZ and ΘXZ satisfy equation 4.1 where ρX = θ∗X−θX , then ∂θ∗XD(Q∗X ‖
QX) = 0.

Proof. To begin, we expand the relative entropy into the difference of the cross-
entropy and entropy, such that

∂θ∗XD(Q∗X ‖ QX) = ∂θ∗XEQ∗ [log qX(X)]− ∂θ∗XEQ∗ [log q∗X(X)]. (4.10)

Now, EQ∗ [log q∗X(X)] is simply the negative entropy of Q∗X . According to theorem
2.7, EQ∗ [log q∗X(X)] = φX(η∗X), where η∗X are the mean parameters of Q∗X . According
to proposition 2.4, η∗X = ∂θ∗XψX(θ∗X) = τX(θ∗X). Moreover, according to proposition
2.6, since sX is minimal, ∂η∗X (φ(τX(θ∗X))) = τ∗X(τX(θ∗X))) = θ∗X . Therefore

∂θ∗XEQ∗ [log q∗X(X)] = ∂θ∗X (φX(τX(θ∗X)))

= τ∗X(τX(θ∗X)) · ∂θ∗X (∂θ∗XψX(θ∗X))

= ∂θ∗Xθ∗X
ψX(θ∗X) · θ∗X . (4.11)

In order to evaluate the derivative ∂θ∗XEQ∗ [log qX(X)], let us define the function
θZ|X(x) 7→ θZ +sX(x) ·ΘXZ , and recall that θXZ = (θX ,θZ ,ΘXZ). By substituting
the definition of the harmonium prior from equation 3.4 into ∂θ∗XEQ∗ [log qX(X)] we
may write

∂θ∗XEQ∗ [log qX(X)]

= ∂θ∗XEQ∗ [θX · sX(X) + ψZ(θZ|X(X))− ψXZ(θXZ)]

= ∂θ∗X (θX · EQ∗ [sX(X)] + EQ∗ [ψZ(θZ|X(X))]− ψXZ(θXZ))

= ∂θ∗Xθ∗X
ψX(θ∗X) · θX + ∂θ∗XEQ∗ [ψZ(θZ|X(X))], (4.12)

where ∂θ∗XEQ∗ [sX(X)] = ∂θ∗Xθ∗X
ψX(θ∗X).

If we then consider the derivatives ∂θ∗XEQ∗ [ψZ(θZ|X(X))], we find that

∂θ∗XEQ∗ [ψZ(θZ|X(X))]

= ∂θ∗X

∫
ΩX

q∗X(x)ψZ(θZ|X(X))µX(dx)

= ∂θ∗X

∫
ΩX

esX(x)·θ∗X−ψX(θ∗X)ψZ(θZ|X(X))µX(dx)

=

∫
ΩX

(sX(x)− EQ∗ [s(X)])esX(x)·θ∗X−ψX(θ∗X)ψZ(θZ|X(X))µX(dx)

= EQ∗ [ψZ(θZ|X(X))sX(X)]− EQ∗ [ψZ(θZ|X(X))]EQ∗ [sX(X)]. (4.13)

Finally, by combining equations 4.10, 4.11, 4.12, and 4.13, and expanding the function
θZ|X , we arrive at the derivative

∂θ∗XD(Q∗X ‖ QX) = ∂θ∗Xθ∗X
ψX(θ∗X) · (θ∗X − θX)

+ EQ∗ [ψZ(θZ + sX(X) ·ΘXZ)]EQ∗ [sX(X)]

− EQ∗ [ψZ(θZ + sX(X) ·ΘXZ)sX(X)]. (4.14)

53

4.1. Second-Order Harmonium Rectification

Notice how the difference of expectations in the derivative of the rectification
error is the covariance of the random variables ψZ(θZ + sX(X) ·ΘXZ) and sX(X).
Moreover, according to proposition 2.4, the Hessian of the log-partition function is
simply the covariance of the sufficient statistic sX under the distribution Q∗X ∈MX .
We may therefore rewrite equation 4.14 more compactly as

∂θ∗XD(Q∗X ‖ QX)

=CQ∗(sX(X), sX(X)) · (θ∗X − θX)

−CQ∗(ψZ(θZ + sX(X) ·ΘXZ), sX(X))

=CQ∗(sX(X) · (θ∗X − θX)− ψZ(θZ + sX(X) ·ΘXZ), sX(X)).

Moreover, if the parameters of the models satisfy equation 4.1, where ρX = θ∗X−θX ,
then

sX(X) · (θ∗X − θX)− ψZ(θZ + sX(X) ·ΘXZ) = ρ0,

which implies that the covariance in equation 4.9 is 0.

In order to model a rectified harmonium with QXZ , we must minimize the rectifi-
cation error while at the same time training QXZ to model some target distribution
over the observable variables. Consider the target distribution PZ , the harmonium
model QXZ , and the rectifier Q∗X . In order to both approximate PZ with QZ as well
as rectify QXZ , we evaluate

arg min
θX ,θZ ,ΘXZ ,θ

∗
X

{
αZD(PZ ‖ QZ) + αXD(Q∗X ‖ QX)

}
,

for some positive constants αZ and αX . In order to minimize this combined error, we
may descend the derivatives in equations 3.8, 4.8, and 4.9.

Despite its superficially more complicated form, descending the rectification error
gradient with respect to θ∗X is relatively straightforward, as long as we can generate
samples from the elements of MX . On the other hand, evaluating the derivatives of
D(PZ ‖ QZ) (3.8) and D(Q∗X ‖ QX) (4.8) with respect to the parameters θX , θZ ,
and ΘXZ requires approximating more complicated expectations.

As described in subsection 3.1.2, we may apply contrastive divergence minimiza-
tion to approximately minimize D(PZ ‖ QZ). In fact, we can also approximate the
derivatives of D(Q∗X ‖ QX) with contrastive divergence. As long as we can generate
samples from Q∗X , we can use these samples to initiate the short Gibbs chains required
to estimate the approximate contrastive divergence derivatives.

At the same time, rectification can improve the efficiency of the minimization of
D(PZ ‖ QZ). If we initialize the parameters such that ΘXZ = 0 and θ∗X = θX , then
D(Q∗X ‖ QX) is 0, and QXZ models an exactly rectified harmonium. This implies
that we can estimate the derivatives of D(PZ ‖ QZ) with exact samples drawn from
PX and then PZ|X . As long as the rectification error remains small, then this strategy
should allow us to avoid any amount of Gibbs sampling in fitting the model. On the
other hand, since D(Q∗X ‖ QX) is small, Q∗X is a good approximation to QX , which
implies that the Gibbs sampler for estimating the rectification error derivatives should
converge quickly to QX given a sample from Q∗X . Algorithmically this is the same
as contrastive divergence minimization, but practically it means that by generating
a handful of iterations of the Gibbs sampler, we may tractably approximate the true
derivatives of D(Q∗X ‖ QX). In section 7.2 I implement and validate this approach
with restricted Boltzmann machines.

54

Chapter 4. Harmonium Rectification

4.2 Deep Harmonium Rectification

In section 3.2 I generalized second-order harmoniums to collections of n random
variables, where the conditional distribution of each random variable given all the
others is always an element of the same exponential family. Although theoretically
interesting, the complexity of most computations with higher-order harmoniums grow
exponentially with the order. One of the primary motivations for considering deep
harmoniums in particular (subsection 3.2.3), and deep generative models in general, is
that when carefully designed, they may capture rich hidden structure while reducing
the complexity of the incumbent computations to be linear in the number of layers.
Unfortunately, in spite of its second-order structure, sampling and training deep
harmoniums in general remains intractable.

I address these issues in this section by applying the harmonium factorization
theorem to generalize the theory of rectification developed in the previous section for
deep harmoniums. In a three-layer deep harmonium (X, Y, Z), for example, there
are two factorizations of the deep harmonium to consider, namely, the harmonium
((X, Y), Z), and the harmonium (X, (Y, Z)). I show that when both of these factor-
izations are rectified, we can reduce the complexity of sampling the distribution of the
deep harmonium to the sum of the complexity of sampling each bilayer. I also show
how these two forms of rectification can be understood in terms of the rectification
of the lower and upper bilayers of the deep harmonium. Based on this theory, I then
develop a novel algorithm for fitting a deep harmonium to data.

4.2.1 Rectified Deep Harmoniums

Let us consider the deep harmonium (X, Y, Z) defined by the exponential families
MX ,MY , andMZ in light of the theory of rectification developed in subsection 4.1.1.
According to the harmonium factorization theorem (3.7), ((X, Y), Z) is a second
order harmonium defined by MX ⊗MY and MZ . If the factorization ((X, Y), Z)
of (X, Y, Z) is rectified, then PXY ∈MX ⊗MY and PXY |Z ∈MX ⊗MZ , such that
PXY is conjugate to PXY |Z . Where X and Y are the latent random variables and Z
is the observable random variable, this means that Bayesian inference on the latent
variables of a rectified deep harmonium (X, Y, Z) is about as straightforward as it is
for rectified second-order harmoniums.

Sampling of the distribution PXY Z based on rectification is less straightforward.
If the factorization ((X, Y), Z) is rectified, we must still somehow generate a sam-
ple from PXY before we can sample from PZ|XY , which is often intractable. If the
factorization (X, (Y, Z)) is rectified, then we may generate samples from PX , but in
this case we must generate a sample from PXY |Z in order to generate a sample from
PXY Z , which again is often intractable.

However, as I show, if both factorizations ((X, Y), Z)) and (X, (Y, Z)) are rectified,
then we may generate a sample from PXY Z by first sampling from PX , and then
generating samples from PY |X and PZ|Y . In general, I define a deep harmonium as
rectified if it is rectified at every level of its hierarchy.

Definition 4.3 (Rectified Deep Harmonium). A deep harmonium (Xi)
n
i=1 is rectified

if ((Xi)
k
i=1, (Xi)

n
i=k+1) is rectified for every 0 < k < n.

As previously described, the following theorem states that we can sample from
the distribution P(Xi)ni=1

of a rectified deep harmonium as long we can sample from

55

4.2. Deep Harmonium Rectification

the component exponential families which define its corresponding deep harmonium
family.

Theorem 4.8. Let D(Xi)ni=1
be the deep harmonium family defined by the sequence

of exponential families (MXi)
n
i=1 with minimal sufficient statistics. If (Xi)

n
i=1 is a

rectified deep harmonium with distribution P(Xi)ni=1
∈ D(Xi)ni=1

, then PX1 ∈MX1, and
PXk|Xk−1

∈MXk for every 1 < k ≤ n.

Proof. PX1 ∈MX1 because (X1, (Xi)
n
i=2) is a rectified harmonium. Because (Xi)

n
i=1 is

an nth-order harmonium, PXn|(Xi)n−1
i=1
∈MXn , and because of the graphical structure

of the deep harmonium, PXn|(Xi)n−1
i=1

= PXn|Xn−1 . Finally, because of the harmonium

factorization theorem (3.7), for 1 < k < n, P(Xi)ki=1
∈ D(Xi)ki=1

, which implies that
PXk|(Xl)k−1

l=1
= PXk|Xk−1

∈MXk .

Rectified deep harmoniums inherit many of the properties of rectified second-
order harmoniums, but in order take advantage of these properties, we must develop
an analogue to the rectification theorem (4.1) for deep harmoniums. Ultimately I
will show that a deep harmonium is rectified if and only if every bilayer in the deep
harmonium is rectified. Proving this claim requires the following lemma.

Lemma 4.9. Let D(Xi)ni=1
be a deep harmonium family defined by the exponential

families (MXi)
n
i=1 with minimal sufficient statistics. Let (Xi)

n
i=1 be a deep harmo-

nium with distribution P(Xi)ni=1
∈ D(Xi)ni=1

and with parameters given by the biases

θX1 , . . . ,θXn and interaction matrices ΘX1X2 , . . . ,ΘXn−1Xn. Then ((Xi)
n−1
i=1 , Xn) is

rectified if and only if

ψXn(θXn + sXn−1(xn−1) ·ΘXn−1Xn) = sXn−1(xn−1) · ρXn−1 + ρn−1, (4.15)

for rectification parameters ρXn−1 and ρn−1, such that the bias θ∗Xn−1
of Xn−1 in the

distribution P(Xi)
n−1
i=1
∈ D(Xi)

n−1
i=1

is θ∗Xn−1
= θXn−1 + ρXn−1.

Proof. Suppose that equation 4.15 holds, and let us denote the sufficient statistic of
the deep harmonium family D(Xi)

n−1
i=1

by s(Xi)
n−1
i=1

. Then

p(Xi)
n−1
i=1

(x1, . . . ,xn−1) =

∫
ΩXn

p(Xi)ni=1
(x1, . . . ,xn)µXn(dxn)

∝ e
∑n−1
i=1 θXi ·sXi (xi)+

∑n−2
i=1 sXi (xi)·ΘXiXi+1

·sXi+1
(xi+1)∫

ΩXn

eθXn ·sXn (xn)+sXn−1
(xn−1)·ΘXn−1Xn

·sXn (xn)µXn(dxn)

= e
∑n−1
i=1 θXi ·sXi (xi)+

∑n−2
i=1 sXi (xi)·ΘXiXi+1

·sXi+1
(xi+1)

+ eψXn (θXn+sXn−1
(xn−1)·ΘXn−1Xn

)

= e
∑n−1
i=1 θXi ·sXi (xi)+

∑n−2
i=1 sXi (xi)·ΘXiXi+1

·sXi+1
(xi+1)+sXn−1

(xn−1)·ρXn−1
+ρn−1

∝ e
∑n−2
i=1 θXi ·sXi (xi)+

∑n−2
i=1 sXi (xi)·ΘXiXi+1

·sXi+1
(xi+1)+sXn−1

(xn−1)·(θXn−1
+ρXn−1

),

which implies that P(Xi)
n−1
i=1
∈ D(Xi)

n−1
i=1

.
Conversely, suppose that P(Xi)

n−1
i=1
∈ D(Xi)

n−1
i=1

. Then according to the rectification

theorem (4.1),

ψXn(θXn + s(Xi)
n−1
i=1

((xi)
n−1
i=1) ·Θ(Xi)

n−1
i=1 Xn

) = s(Xi)
n−1
i=1

((xi)
n−1
i=1) · ρ(Xi)

n−1
i=1

+ ρn−1.

56

Chapter 4. Harmonium Rectification

Because (Xi)
n
i=1 is defined by exponential families with minimal sufficient statistics,

and Xn only interacts with Xn−1, theorem 3.9 implies that all interactions between
Xn and Xk for k < n − 1 are 0, and therefore that s(Xi)

n−1
i=1

((xi)
n−1
i=1) ·Θ(Xi)

n−1
i=1 Xn

=

sXn−1(xn−1) ·ΘXn−1Xn .
This implies that s(Xi)

n−1
i=1

((xi)
n−1
i=1)·ρ(Xi)

n−1
i=1

depends only on xn−1. Let us reexpress

the rectification parameters ρ(Xi)
n−1
i=1

as the tuple ρ(Xi)
n−1
i=1

= (ρ(Xi)
n−2
i=1
,ρXn−1 ,P(Xi)

n−2
i=1 Xn−1

),
such that

s(Xi)
n−1
i=1

((xi)
n−1
i=1) · ρ(Xi)

n−1
i=1

=s(Xi)
n−2
i=1

((xi)
n−2
i=1) · ρ(Xi)

n−2
i=1

+ sXn−1(xn−1) · ρXn−1

+ s(Xi)
n−2
i=1

((xi)
n−2
i=1) ·P(Xi)

n−2
i=1 Xn−1

· sXn−1(xn−1).

If the right hand side of this equation depends only on xn−1, then because all sufficient
statistics under consideration are minimal, proposition 3.3 implies that ρ(Xi)

n−2
i=1

and
P(Xi)

n−2
i=1 Xn−1

must be zero. Therefore

ψXn(θXn + s(Xi)
n−1
i=1

((xi)
n−1
i=1) ·Θ(Xi)

n−1
i=1 Xn

) =ψXn(θXn + sXn−1(xn−1) ·ΘXn−1Xn)

=s(Xi)
n−1
i=1

((xi)
n−1
i=1) · ρ(Xi)

n−1
i=1

+ ρn−1

=sXn−1(xn−1) · ρXn−1 + ρn−1.

This lemma describes how to rectify the factorization ((Xi)
n−1
i=1 , Xn) of the deep

harmonium (Xi)
n
i=1. This lemma can be recursively applied to every bilayer of a deep

harmonium by simply again using the fact that subsequences ((Xi)
k
i=1) of a rectified

deep harmonium are themselves deep harmoniums.

Theorem 4.10 (The Deep Rectification Theorem). Let D(Xi)ni=1
be a deep harmonium

family defined by the exponential families (MXi)
n
i=1 with minimal sufficient statistics.

Let (Xi)
n
i=1 be a deep harmonium with distribution P(Xi)ni=1

∈ D(Xi)ni=1
and with param-

eters given by the biases θX1 , . . . ,θXn and interaction matrices ΘX1X2 , . . . ,ΘXn−1Xn.
Then (Xi)

n
i=1 is rectified if and only if for some parameters (ρXi)

n−1
i=1 and (ρi)

n−1
i=1 ,

ψXk(θXk + ρXk + sXk−1
(xk−1) ·ΘXk−1Xk) = sXk−1

(xk−1) · ρXk−1
+ ρk−1, (4.16)

for every 1 < k ≤ n, where ρXn = 0.

Proof. Lemma 4.9 implies that 4.16 holds for k = n for some rectification parameters
ρXn−1 and ρn−1.

As a consequence, P(Xi)
n−1
i=1
∈ D(Xi)

n−1
i=1

such that (Xi)
k
i=1 is a deep harmonium,

where the bias of Xn−1 is θXn−1 +ρXn−1 . Lemma 4.9 therefore implies that P(Xi)
k−1
i=1
∈

D(Xi)
k−1
i=1

if and only if

ψXn−1(θXn−1 + ρXn−1 + sXn−2(xn−2) ·ΘXn−2Xn−1)

= sXn−2(xn−2) · ρXn−2 + ρn−2,

for some parameters ρXk−2
and ρk−2. This establishes equation 4.16 for k = n− 1.

By recursively applying lemma 4.9 in this manner to every bilayer of (Xi)
n
i=1, we

may establish equation 4.16 for every k.

57

4.2. Deep Harmonium Rectification

Figure 4.3: The deep harmonium (X,Y, Z) is rectified if the factorizations ((X,Y), Z) and (X, (Y,Z))
are rectified, and the rectification of ((X,Y), Z) and (X, (Y,Z)) reduces to the rectification of the
bilayers (X(1), Y (1)) and (Y (2), Z(2)). In particular, ((X,Y), Z) is rectified if and only if the harmo-
nium bilayer (Y (2), Z(2)) is rectified. If ((X,Y), Z) is rectified, then the upper bilayer (X(1), Y (1))
is equivalent to (X,Y), and ((X,Y), Z) is rectified if and only if (X,Y) is rectified.

Intuitively, theorem 4.10 reduces the rectification of a deep harmonium to the
rectification of its bilayers. In order to formalize this intuition for a rectified deep har-
monium (Xi)

n
i=1 with rectification parameters (ρXk)

n−1
i=1 and (ρi)

n−1
i=1 , I will often define

the bilayer random variables (X
(k−1)
k−1 , X

(k−1)
k) as the second-order harmonium with

distribution P
X

(k−1)
k−1 X

(k−1)
k

∈ HXk−1Xk and parameters (θXk−1
,θXk + ρXk ,ΘXk−1Xk).

Based on this definition, (Xi)
n
i=1 is rectified if and only if (X

(k−1)
k−1 , X

(k−1)
k) is recti-

fied for every 1 < k ≤ n; I visualize this in figure 4.3. Note that based on this
construction, the uppermost bilayer (X

(1)
1 , X

(1)
2) is equivalent to (X1, X2).

Theorem 4.10 implies that the complexity of rectification only grows linearly with

58

Chapter 4. Harmonium Rectification

the number of layers in the deep harmonium. Analogous to corollary 4.4, we may also
show that as a consequence of this theorem, the log-partition function of a rectified
deep harmonium is a necessarily simple structure.

Corollary 4.11. Let D(Xi)ni=1
be a deep harmonium family defined by the exponen-

tial families (MXi)
n
i=1. Moreover, let (Xi)

n
i=1 be a deep harmonium with distribution

P(Xi)ni=1
∈ D(Xi)ni=1

and parameters θ(Xi)ni=1
given by the biases θX1 , . . . ,θXn and in-

teraction matrices ΘX1X2 , . . . ,ΘXn−1Xn, and suppose that (Xi)
n
i=1 is rectified with

rectification parameters (ρXi)
n−1
i=1 and (ρi)

n−1
i=1 . Then the log-partition function of the

harmonium is given by

ψ(Xi)ni=1
(θ(Xi)ni=1

) = ψX1(θX1 + ρX1) +
n−1∑
i=1

ρi.

Proof. Since ((Xi)
n−1
i=1 , Xn) is rectified, corollary 4.4 implies that

ψ(Xi)ni=1
(θ(Xi)ni=1

) = ψ(Xi)
n−1
i=1

(θ(Xi)
n−1
i=1

) + ρn−1.

Since (Xi)
n−1
i=1 is also rectified, we may again apply corollary 4.4 to conclude that

ψ(Xi)ni=1
(θ(Xi)ni=1

) = ψ(Xi)
n−2
i=1

(θ∗
(Xi)

n−2
i=1

) + ρn−2 + ρn−1,

where θ∗Xn−2
are the natural parameters of the distribution P(Xi)

n−2
i=1
∈ D(Xi)

n−2
i=1

, with
biases on Xn−2 equal to θXn−2 + ρXn−2 . By recursively applying corollary 4.4 in this
manner, we may derive the equation in the theorem statement.

4.2.2 Fitting and Rectifying Deep Harmoniums

The approach developed in subsection 4.1.3 for optimizing harmoniums can be ex-
tended to deep harmoniums, although it unsurprisingly requires additional considera-
tions. In general, where D(Xi)ni=1

is the deep harmonium family defined by (MXI)
n
i=1,

our goal will be to optimize the deep harmonium model Q(Xi)ni=1
∈ D(Xi)ni=1

. In order
to rectify a deep harmonium, for every 1 < k ≤ n, we will consider the rectifier
Q∗Xk ∈ MXk , and attempt to rectify the bilayer model Q

X
(k−1)
k−1 X

(k−1)
k

∈ HXk−1Xk . For

the sake of clarity, but without loss of generality, I will develop the algorithm for
the three-layer deep harmonium model QXY Z . At the end of this subsection I will
explain how to generalize this algorithm to the n-layer case.

For the three-layer case, the algorithm I present is a three-stage algorithm based
on the pretraining and fine-tuning approach first introduced by Hinton et al. (2006).
The first stage of the optimization algorithm is to optimize the parameters θY , θZ ,
and ΘY Z of the lower bilayer model QY (2)Z(2) , and the parameters θ∗Y of the rectifier
Q∗Y . In this case our objective is to minimize the relative entropy of PZ with respect
to QZ(2) , and we also to minimize the rectification error of Q∗Y with respect to QY (2) .
Since the lower bilayer is a second-order harmonium, we may achieve these goals in
the same manner described in subsection 4.1.3. The objective of the first stage of the
algorithm is therefore to evaluate

arg min
θY ,θZ ,ΘY Z ,θ

∗
Y

{
αZD(PZ ‖ QZ(2)) + αYD(Q∗Y ‖ QY (2)

}
, (4.17)

59

4.2. Deep Harmonium Rectification

for some positive constants αZ and αY . Once this objective function has been mini-
mized, we move on to stage two.

In stage two we freeze the parameters θZ and ΘY Z , and we optimize the param-
eters of the upper bilayer θX , θY , and ΘXY . Stage two is based on the following
upper-bound on the training objective D(PZ ‖ QZ).

Theorem 4.12. Let DXY Z be a deep harmonium family defined by the exponential
families MX , MY , and MZ and let QXY Z ∈ DXY Z be a deep harmonium model.
Finally, let PZ be a target observable distribution, and Y be the random variable with
distribution PY given by

pY (y) =

∫
ΩZ

pY |Z(y | z)PZ(dz),

for an arbitrary, strictly positive conditional density pY |Z. Then

D(PZ ‖ QZ) ≤ D(PY ‖ QY) + c.

for a constant c which is independent of the parameters θX , θY , and ΘXY of the
deep harmonium.

Proof. The following derivation is adapted from Salakhutdinov (2015).

Recall from equation 2.4 that D(PZ ‖ QZ) = H(PZ , QZ) − H(PZ), and from
equation 2.3 that

H(PZ , QZ) = −
∫

ΩZ

log
dQZ

dµZ
dPZ = −EP [log qZ(Z)]. (4.18)

If we consider log qZ(Z) and apply Jensen’s inequality we find that

log qZ(Z) = log

∫
ΩY

qY Z(y, Z)µY (dy)

= log

∫
ΩY

qY Z(y, Z)

pY |Z(y | Z)
pY |Z(y | Z)µY (dy)

= logEP
[qY Z(Y, Z)

pY |Z(Y | Z)
| Z
]

≥ EP
[

log
qY Z(Y, Z)

pY |Z(Y | Z)
| Z
]

= EP [log qY (Y) | Z] + EP [log qZ|Y (Z | Y) | Z]

− EP [log pY |Z(Y) | Z]. (4.19)

If we insert equation 4.19 back into equation 4.18 we may write

H(PZ , QZ) ≤ H(PY , QY)− EP [EP [log qZ|Y (Z | Y) | Z]]

+ EP [EP [log pY |Z(Y | Z) | Z]], (4.20)

where

−EP [EP [log qY (Y) | Z]] = EP [log qY (Y)] = H(PY , QY). (4.21)

60

Chapter 4. Harmonium Rectification

Notice that the second term on the right hand side of inequality 4.20 depends
only on the parameters θZ and ΘY Z , and the third term depends on none of the
parameters of (X, Y, Z). Therefore, by defining the constant

c = −EP [EP [log qZ|Y (Z | Y) | Z]]

+ EP [EP [log pY |Z(Y | Z) | Z]]−H(PZ)−H(PY), (4.22)

inserting equation 4.22 and equation 4.21 back into equation 4.20, and rearranging
terms, we establish the result of this theorem.

The consequence of this theorem is that by reducing D(PY ‖ QY) with respect
to the parameters θX , θY , and ΘXY , we may lower an upper-bound on D(PZ ‖ QZ)
and hopefully, by extension, reduce it. As discussed in Hinton et al. (2006) and
Salakhutdinov (2015), and shown in Neal and Hinton (1998), if PY |Z is the conditional
distribution of a harmonium and pY |Z ·pZ = pY Z ∈MY Z , then the inequality is tight.
Moreover, if PZ is not the marginal of a harmonium, we can nevertheless tighten the
bound by minimizing the relative entropy of a harmonium with respect to PZ . Given
this, where QY (2)Z(2) is the result of evaluating objective 4.17, we define PY |Z as the
conditional distribution of a harmonium with parameters θ′Y = θY and Θ′Y Z = ΘY Z .
When we further optimize the parameters of the harmonium in stage two, we leave
these parameters fixed.

Now we must figure out how to minimize D(PY ‖ QY). In the original pretraining
approach presented in Hinton et al. (2006) for training a deep belief network, QY is
replaced with the marginal of a harmonium which is defined as the transpose of the
lower bilayer, which ensures that this new marginal is equal to the replaced marginal.
This is a severe restriction, and is rarely done in practice, and so inequality 4.20 is
rather used heuristically to motivate pretraining. The form of pretraining developed
for deep Boltzmann machines in (Salakhutdinov and Hinton, 2012) also requires a
number of additional approximations. By applying the theory of rectification to
pretraining, we may avoid these approximations and optimize QY in a principled and
practical manner.

As described in the previous subsection, if the harmonium (Y (2), Z(2)) in stage one
is rectified, then the marginalQXY of the deep harmonium modelQXY Z is equal to the
upper bilayer model QX(1)Y (1) . Since the lower bilayer is approximately rectified, we
may instead conclude that QXY is approximately equal to the distribution QX(1)Y (1) .
Therefore, we can approximately minimize D(PY ‖ QY) with respect to θX , θY , and
ΘXY by minimizing D(PY ‖ QY (1)). By theorem 4.12, this approximately reduces an
upper bound on D(PZ ‖ QZ).

In addition to training the deep harmonium on data in stage two, we also wish to
rectify the upper bilayer of the model. However, because the lower bilayer is approx-
imately rectified, theorem 4.10 allows us to approximately reduce this rectification to
the rectification of (X(1), Y (1)). Therefore, where we define Q∗X ∈MX as the rectify-
ing distribution of the upper bilayer with parameters θ∗X , we define the objective of
stage two of the deep harmonium optimization algorithm as evaluating

arg min
θX ,θY ,ΘXY ,θ

∗
X

{
αYD(PY ‖ QY (1)) + αXD(Q∗X ‖ QX(1))

}
,

for some positive constants αY and αX . Note that the rectification of the factorized
harmonium ((X, Y), Z) does not depend on these parameters, and so evaluating this

61

4.2. Deep Harmonium Rectification

objective does not modify the rectification error of the lower bilayer. Since this
objective once again has the form of the objective defined in the previous subsection
for second-order harmoniums, we may again evaluate it with the techniques developed
therein. Once this objective function has been minimized, we move on to stage three,
wherein we attempt to train all the parameters of the harmonium model in parallel.

Now, based on equation 2.18, if we are given a sample z ∈ ΩZ from the target
distribution PZ , then stochastically minimizing D(PZ ‖ QZ) requires that we esti-
mate the stochastic cotangent vector which starts at EQ[sXY Z(X, Y, Z)] and ends at
EQ[sXY Z(X, Y, Z) | Z = z]. Let us refer to the starting point of this vector as the
model point, and the end point of this vector as the posterior point. If QXY Z ap-
proximately models a rectified deep harmonium, then we can generate approximate
samples from QXY Z with a single pass of sampling, as long as the elements of the com-
ponent exponential families which define DXY Z can be sampled. By generating such
samples, we may estimate the model point of a strongly rectified deep harmonium
with minimal computational cost.

Estimating the posterior point without extensive Gibbs sampling is more challeng-
ing, yet we can draw inspiration for solving this problem from contrastive divergence
minimization. Although contrastive divergence minimization can only be applied
to second-order harmoniums, it is nevertheless an algorithm for approximating the
cotangent vector defined by the model and posterior points. In the case of second-
order harmoniums, however, it is the posterior point that is trivial to calculate, and
contrastive divergence minimization is rather designed to minimize the number of
Gibbs-sampling steps required to estimate the model point.

Contrastive divergence minimization can be intuitively understood as the follow-
ing procedure. Given an observation, the posterior is sampled in order to estimate
the posterior point. Then, using the posterior sample to initialize the Gibbs sampler,
each step of Gibbs sampling, on average, moves away from the posterior point in the
direction of the model point. We then define the approximate cotangent vector as
starting from the last step of the Gibbs sampler and ending at the estimated poste-
rior point. If we adapt this strategy to our problem, we may begin by generating a
sample from the model distribution to estimate the model point. We then initialize
the Gibbs sampler with this model sample, and use Gibbs sampling to move from
the model point in the direction of the posterior point, and use the end point of the
Gibbs sampler to estimate the cotangent vector. I refer to this algorithm as dual
contrastive divergence minimization, and I visualize these algorithms in figure 4.4.

As is conventional, let us refer to the contrastive divergence minimization algo-
rithm with n steps of Gibbs sampling as CD-n, and let us similarly refer to the dual
contrastive minimization algorithm as DCD-n. We may intuitively understand the
efficiency of CD-n for low n by considering figure 4.4. Because each step of Gibbs
sampling moves the posterior distribution in the direction of the model distribution,
and since it is only the direction that we truly care about, CD-1 is often sufficient
to produce good samples, and each additional step only improves the quality of the
direction. Moreover, the shortness or bias of the CD-1 cotangent vector is at least
partially compensated by the fact that the CD-1 estimation procedure has a smaller
variance than the theoretically correct Gibbs sampler. Also note that if the genera-
tive model is perfect, such that the model and posterior distributions are the same,
then the average cotangent vector produced by CD-1 will be 0.

All of these arguments for the efficiency of CD-n translate, mutatis mutandis, into

62

Chapter 4. Harmonium Rectification

Figure 4.4: An intuitive depiction of estimating effective cotangent vectors with CD-5 and DCD-5
in mean coordinates. The red dot represents the model point and the blue point represents the
posterior point. Each coloured vector starts at the estimated average of the sufficient statistic at
step k of the corresponding algorithm, and ends at step k + 1. The black vector represents the
resulting cotangent vector. In both cases, using a short Gibbs chain would still result in a cotangent
vector which moves the parameters of the harmonium in the correct direction. Left : A depiction of
CD-5. CD-n starts from the posterior point and moves toward the model point. Right : A depiction
of DCD-5. DCD-5 stats from the model point and moves toward the posterior point.

arguments for the efficiency of DCD-n. To the best of my understanding, there are
two primary reasons why the gradients estimated by CD-n may nevertheless fail to
point in the right direction, and why general convergence proofs for CD-n have not yet
been found. On one hand, the cotangent vectors are defined by the expected values of
the sufficient statistic of the harmonium in question, but the marginal distributions of
the Gibbs sampler Markov chain are not elements of the corresponding harmonium
family. As such, even though the distribution of the Markov chain may move in
the right direction, the sufficient statistic may capture the wrong features of that
distribution, such that the resulting cotangent vector will point away from the local
optima.

On the other hand, as explained in section 2.2, cotangent vectors must theoret-
ically be corrected by the metric tensor in order to compute the true gradient. In
practice however, this is rarely done, because computing the metric is too expensive.
Moreover, when the cotangent vectors are unbiased in direction, failing to correct the
cotangent vector is not a fundamental problem, since, loosely speaking, the correc-
tion made by the metric tensor is never more than 90 degrees, and the local minima
of the corrected and uncorrected gradients are the same. However, when estimated
cotangent vectors are biased, failing to correct for the curvature of the manifold of
harmoniums may also result in a misleading gradient.

All that being said, contrastive divergence minimization is a highly effective algo-
rithm in practice, and by extension, dual contrastive divergence minimization should
be as well. Let us now finally formalize DCD-n. To begin, let us define the transition
distribution of the Gibbs chain (Xk, Yk)k∈N for the posterior QXY |Z=z of (X, Y, Z) as

pX′Y ′|X,Y (x′,y′ | x,y) = qX|Y (x′ | y′)qY |X,Z(y′ | x, z),

and define the initial distribution of the Gibbs sampler by PX0Y0 = QXY . The DCD-n

63

4.2. Deep Harmonium Rectification

objective is then to minimize the relative entropy D(PXnYnZ ‖ QXY Z). Putting all of
this together, we define the objective of rectifying and fitting a deep harmonium as

arg min
θXY Z ,θ

∗
X ,θ
∗
Y

{
αZD(PXnYnZ ‖ QXY Z) + αYD(Q∗Y ‖ QY (2)) + αXD(Q∗X ‖ QX(1))

}
,

for some positive constants αZ , αY , and αX .
This algorithm may be generalized to an n-layered harmonium model Q(Xi)ni=1

in
the following way. Stage 1 remains the same, and is used to train and rectify the
lowest bilayer Q

X
(n−1)
n−1 ,X

(n−1)
n

. When stage 1 is complete, stage two may be iteratively

applied from k = 2 to k = n in order to train and rectify Q
X

(k−1)
k−1 X

(k−1)
k

) for every

1 < k ≤ n. Once the deep harmonium model is approximately rectified and partially
trained, we may apply stage three to train the entire model Q(Xi)ni=1

and minimize
the rectification errors D(Q∗Xk ‖ QX

(k)
k

) in parallel, for all 1 < k ≤ n.

64

Chapter 5

Bayesian Inference with Artificial
Neural Networks

In chapters 3 and 4 I described a large class of models which have priors which
are conjugate to their posteriors, and thereby support efficient Bayesian inference.
Nevertheless, this efficiency has remained relatively abstract, as I have yet to show
how to implement Bayesian inference computationally. In this chapter I develop a
theory of how to implement Bayesian inference with artificial neural networks.

In the first section of this chapter I consider Bayesian inference on static (i.e. non-
dynamic) latent variables. There I introduce the concepts of implementing inference
with a function, and encoding beliefs in some computational medium. I begin the
second section by describing how to implement Bayesian prediction with abstract
functions, and I introduce a class of multilayer perceptron designed for this purpose.
By combining these multilayer perceptrons with a model of the emission distribution,
I then show how to construct a class of recurrent neural networks, and train them to
approximately implement a Bayes filter.

5.1 Implementing Static Inference

In this section I begin to formalize the concept of “implementing Bayesian infer-
ence”. In the case of Bayesian inference on static latent variables, this reduces to
implementing Bayes’ rule and supporting conjugate priors. I then develop a simple
theory of how to encode belief parameters with a different set of parameters, while
still implementing Bayes’ rule. This will allow me to unify a number of models from
deep learning and computational neuroscience. Moreover, where we interpret these
alternative parameters as the vector of firing rates of a population of neurons, this
will allow us to describe how to encode beliefs in a neural population.

5.1.1 Implementing Bayes’ Rule

In order to implement Bayes’ rule in a machine or a mammalian brain, we must be
able reduce Bayesian inference to the evaluation of tractable functions. One approach
to this is to assume that the prior beliefs PX and posterior beliefs PX|Z are in some
sets of probability distributions M and M ′ parameterized by Θ and Θ′, respectively.
In this case we may interpret Bayes’ rule as a function which computes the parameters
of the posterior given the observation z ∈ ΩZ and the parameters of the prior θ ∈ Θ.

65

5.1. Implementing Static Inference

Definition 5.1 (Implementing Bayes’ Rule 1). A function f : ΩZ × Θ → Θ′ imple-
ments Bayes’ rule with respect to the likelihood PZ|X if the posterior PX|Z=z ∈ M ′

has parameters f(z,θ) ∈ Θ′, for any observation z ∈ ΩZ and prior PX ∈ M with
parameters θ ∈ Θ.

Consider the harmonium familyHXZ defined by the exponential familiesMX and
MZ . We saw in subsection 3.1.2 that the parameters of the posterior of a harmonium
are given by an affine function, and so let us endeavour to use this function to define
an implementation of Bayes’ rule. In general, the posterior PX|Z of a harmonium
distribution in the family HXZ is always in the exponential familyMX , such that we
may define the set of posteriors as M ′ =MX .

Let us fix a harmonium likelihood PZ|X (equation 3.6) with parameters θZ and
ΘXZ . By construction, any prior PX in the set of prior distributions M = {PX : PZ|X ·
PX ∈ HXZ} ensures that the posterior of PZ|X · PX has the desired affine form.
Moreover, because the posterior fixes the parameters θZ and ΘXZ , θX is the only
set of free parameters in the equation for the prior distribution (3.4), such that the
parameter space Θ = ΘX parameterizes M . Based on this construction the function

f : ΩZ ×ΘX → ΘX

(z,θX) 7→ θX + ΘXZ · sZ(z)

implements Bayes’ rule with respect to the likelihood PZ|X . Note however, that
although Θ = ΘX , M 6= MX , because the elements of M do not typically have the
exponential family form of the elements of MX .

As discussed in section 2.6, we often wish to evaluate Bayes’ rule given a sequence
of observations, and conjugate priors can greatly reduce the complexity of these
computations. In general, the priors of a harmonium are not conjugate to their
posteriors, and cannot support the recursive application of Bayes’ rule in relation
2.23. However, if the likelihood PZ|X is rectified, then M = MX , such that PX is
conjugate to PX|Z . In this case we may define an implementation of Bayes’ rule as

f : ΩZ ×ΘX → ΘX

(z,θ∗X) 7→ θ∗X − ρX + ΘXZ · sZ(z), (5.1)

where ρX and ρ0 are the rectification parameters of PZ|X , and θ∗X are the natural
parameters of PX ∈ MX . Based on this implementation of Bayes’ rule with respect
to a rectified likelihood, we may implement a general solution to recursive relation
2.23.

Proposition 5.1. Let HXZ be the harmonium family defined by MX and MZ. Let
X be the latent variable with distribution PX ∈ MX , and let (Zi)

n
=1 be a sequence of

random observations such that

1. (Zi)
n
i=1 are conditionally independent given X,

2. PZi|X is a harmonium likelihood with parameters θZi and ΘXZi,

3. and PZi|X is rectified with rectification parameters ρiX and ρi0.

66

Chapter 5. Bayesian Inference with Artificial Neural Networks

Then the function

f : ΩZ × · · · × ΩZ ×ΘX → ΘX

(z1, . . . , zn,θ
∗
X) 7→ θ∗X −

n∑
i=1

ρiX + ΘXZi · sZ(zi),

implements Bayes’ rule with respect to the likelihood P(Zi)ni=1|X .

Proof. Let (fi)
n
i=1 be the sequence of functions

fi : ΩZ ×ΘX → ΘX (5.2)

(z,θ∗X) 7→ θ∗X − ρiX + ΘXZi · sZ(z),

and let f (n) be the function given recursively by

f (i)(z1, . . . , zi,θ
∗
X) = fi(zi, f

(i−1)(z1, . . . , zi−1,θ
∗
X)), (5.3)

f (0)(θ∗X) = θ∗X .

By construction, f (n) = f , and we need only show that it indeed implements recursive
Bayesian inference.

For the case i = 1, f (1)(z1,θ
∗
X) = θ∗X−ρ1

X+ΘXZ1 ·sZ(z1), which are the parameters
of the posterior PZ1|X ∈MX .

For i > 1, suppose that f (i−1)(z1, . . . , zi−1,θX) are the parameters of the posterior
PX|(Zj)i−1

j=1
∈ MX . Because the observations (Zj)

i−1
j=1 are conditionally independent

given X, PXZi|(Zj)i−1
j=1

= PZi|X ·PX|(Zj)i−1
j=1

. Since PZi|X is rectified, corollary 4.3 implies

that PZi|X · PX|(Zj)i−1
j=1
∈ HXZ with parameters (f (i) − ρiX ,θZi ,ΘXZi). According to

equation 3.5, the posterior of this distribution at zi has parameters f (i)−ρiX +ΘXZi ·
sZ(zi), which according to equations 5.2 and 5.3, is the value of f (i)(z1, . . . , zi,θX).
Thus PX|(Zj)ij=1

∈MX has parameters f (i)(z1, . . . , zi,θX).

Therefore, for any i, f (i) implements Bayes’ rule with respect to P(Zj)ij=1|X , and in

particular when i = n.

In the proof of this proposition we saw the functions (fi)
n
i=1 which transform the

prior parameters and an observation into the parameters of the sequence of posteriors.
Intuitively, each of these functions may correspond to different sensory modalities,
which provide independent information about the latent state. These different sources
of information are then summed by the function f , which integrates the independent
observations into a single set of beliefs, and combines them with the parameters of
the prior θX .

If fi = f for any i and some function f , then the single function f may be recursively
applied to infer the latent state given an arbitrary number of observations. In this
case we may think of f as specifying a recurrent neural network, which accumulates
information about a static latent variable over time. The case where the stimulus
is dynamic leads to implementing Bayesian filtering, which I consider later in this
chapter.

67

5.1. Implementing Static Inference

5.1.2 Encoding Beliefs

In this subsection my goal is show how we can encode the prior and posterior distri-
butions of a harmonium in a pair of additional random variables, and to implement
Bayesian inference with respect to these encodings.

Definition 5.2 (Encoding). Given the random variables X ∈ ΩX and Z ∈ ΩZ , the
distribution over X encoded by z ∈ ΩZ is PX|Z=z.

The distribution encoded by z is simply another name for the conditional distri-
bution of X given Z at z. The name however emphasizes that it is the distribution
encoded by z for which we aim to implement Bayesian inference.

Let us consider the harmonium familyHXZ and the harmonium (X,Z) with distri-
bution PXZ and parameters (θX ,θZ ,ΘXZ), and two additional exponential families
MV andMW . Let us refer to V ∈ HV as the random prior encoding and W ∈ HW as
the random posterior encoding8. When W and V are large random vectors composed
of positive values, we may use them to represent the rates of neural populations in a
brain.

In order to justify referring to V and W as encodings of the prior and posterior,
respectively, I want to ensure that the conditional distribution distributions of the
latent variable given these variables satisfy PX|V = PX and PX|W = PX|Z . I will do
this with a new definition of implementation analogous to what I provided in the
previous subsection.

Definition 5.3 (Implementing Bayes’ Rule 2). A function w : ΩZ ×HV → Θ imple-
ments Bayes’ rule with respect (X,Z, V,W) where W = w(Z, V) if PX|V = PX and
PX|W = PX|Z .

If we assume that PX|V = PX , then we may characterize this definition as requiring
that the random variables (X,Z, V,W) are a Bayesian network represented by the
graph in figure 5.1, such that their distribution can be factorized as

PVWXZ = PZ · PV · PW |V,Z · PX|W .

This graphical representation implies that W captures all the information available
in V and Z about X. Enforcing this representation requires that PZV = PZ ·PV , and
more importantly that PX|ZVW = PX|W . Because PX|V = PX and w is a function of
Z, this implies that PX|Z = PX|ZVW , and therefore that PX|W = PX|Z .

Let us begin constructing an implementation of Bayes’ rule for encodings by defin-
ing V as independent of Z, and defining the density encoded by the prior encoding
v as

pX|V (x | v) ∝ esX(x)·(θVX+ΘXV ·v)+ψZ(θZ+sX(x)·ΘXZ), (5.4)

where ΘXV ∈ ΘX ⊗ ΘV is the prior decoder matrix, and θVX ∈ ΘX is the decoder
bias. Based on equation 3.4, pX|V=v is equal to the prior PX of the harmonium
PXZ when θX = θVX + ΘXV · v. Therefore, we may ensure that PX|V = PX , where

8Note that, although I use the notation HV and HW to define the state spaces of V and W ,
the distributions of V and W will not be elements of the exponential families MV and MW . This
notation is nevertheless convenient when we later build larger neural networks involving these belief
encodings, as the state spaces of V and W must overlap with certain exponential family sample
spaces.

68

Chapter 5. Bayesian Inference with Artificial Neural Networks

Figure 5.1: Here I depict a directed graphical representation of the distribution PVWXZ . This graph
captures all the features required to describe the notion of prior and posterior encodings, except for
the fact that PX|V = PX .

PX ∈MX with parameters θX , by defining PV as any distribution over the pre-image
{v : θX = θVX + ΘXV · v}.

Let us now define W by W = w(Z, V), where

w : ΩZ × HV → HW

(z,v) 7→ A · sZ(z) + B · v + w0, (5.5)

where w0 ∈ HW , and where A ∈ HW ⊗ ΘZ and B ∈ HW ⊗ ΘV are matrices which
we refer to as the observation and prior recoder matrices, respectively. Based on
this construction, we may state the following proposition about the conditions under
which w implements Bayesian inference.

Proposition 5.2. Let HXZ be a harmonium family, and let the harmonium distri-
bution PXZ be an element of HXZ. Suppose that PX|V is given by equation 5.4, that
PX|V = PX , and that W = w(Z, V) is given by equation 5.5. Then w implements
Bayesian inference with respect to (X,Z, V,W) if and only if

ΘXZ = ΘXW ·A,
ΘXV = ΘXW ·B,
θVX = θWX + ΘXW ·w0, (5.6)

for some ΘXW ∈ ΘX ⊗ΘW , θWX ∈ ΘW , and w0 ∈ HW , and

pX|W (x | w) ∝ esX(x)·(θWX +ΘXW ·w).

Proof. Because W is a function of V and Z, PX|ZVW = PX|ZV . Therefore equations
5.6 are satisfied if and only if

pX|ZV (x | z,v) ∝ esX(x)·ΘXZ ·sZ(z)+sX(x)·(θVX+ΘXV ·v)

= esX(x)·θWX +sX(x)·ΘXW ·(A·sZ(z)+B·v+w0)

= esX(x)·θWX +sX(x)·ΘXW ·w(z,v).

69

5.2. Implementing Bayesian Filtering

In this equation, because z and v interact with x exclusively through w, the Fisher-
Neyman factorization theorem9 implies that this equation holds if and only if PX|ZV =
PX|W , and

pX|W (x | w) ∝ esX(x)·(θWX +ΘXW ·w).

5.2 Implementing Bayesian Filtering

In this section I show how to implement and learn to implement Bayes filters. I begin
by defining the concept of implementation for Bayesian prediction in particular, and
Bayesian filtering in general. I then develop a form of recurrent neural network which
I call exponential family multilayer perceptrons, or EFMLPs for short. EFMLPs are
a reformulation of classic multilayer perceptrons using the language of exponential
families, and provide a general class of regression architecture for approximately
implementing Bayesian prediction.

I then define two classes of neural network for modelling Bayes filters based on
EFMLPs. I show how these neural networks improve on existing models based on
the universal representation theory of multilayer perceptrons (Hornik, 1993). Finally,
I derive a gradient descent approach to training these neural networks given the
observations from a hidden Markov chain.

5.2.1 Implementing Bayesian Prediction

Let us now generalize the theory from the previous section on implementing Bayesian
inference given sequences of independent observations, to include Bayesian filtering
over a hidden Markov chain (Xk, Zk)k∈N (see section 2.6). For simplicity, I will assume
that the emission distribution PZ|X of the Markov chain is time-invariant. This will
allow us to reduce the implementation of a Bayes filter to a pair of mutually recursive
functions.

A Bayes filter is an online combination of Bayes’ rule and prediction, and so the
theory we have so far developed addresses the first part of implementing a Bayes
filter. In order to implement Bayesian prediction, let us assume that the predictions
PXk+1|(Zi)ki=0

and posteriors PXk|(Zi)ki=0
for any k ∈ N are in some sets M and M ′

parameterized by Θ and Θ′, respectively. In this case we may interpret prediction as
a function which computes the parameters θk+1 ∈ Θ of the prediction distribution
at time k + 1 given the parameters θ′k ∈ Θ′ of the posterior at time k.

Definition 5.4 (Implementing Bayesian Prediction 1). The function g : Θ′ → Θ
implements Bayesian prediction with respect to the transition distribution PX′|X if
the prediction PXk+1|(Zi)ki=0

∈ M has parameters g(θ′k) ∈ Θ, for any k ∈ N, and any
posterior PXk|(Zi)ki=0

∈M ′ with parameters θ′k ∈ Θ′.

In the context of a time-invariant emission distribution PX|Z , I define an imple-
mentation of a Bayes filter as a pair of functions which implement Bayes’ rule and
implement Bayesian prediction.

9See the Wikipedia article on sufficient statistics at https://en.wikipedia.org/w/index.php?
title=Sufficient_statistic&oldid=795500815.

70

https://en.wikipedia.org/w/index.php?title=Sufficient_statistic&oldid=795500815
https://en.wikipedia.org/w/index.php?title=Sufficient_statistic&oldid=795500815

Chapter 5. Bayesian Inference with Artificial Neural Networks

Definition 5.5 (Implementing a Bayes Filter 1). The pair of functions f : ΩZ ×
Θ → Θ′ and g : Θ′ → Θ implement a Bayes filter with respect to the Markov chain
(Xk, Zk)k∈N if f implements Bayes’ rule with respect to the emission distribution PZ|X ,
and g implements Bayesian prediction with respect to the transition distribution
PX′|X .

Because the implementations of Bayes’ rule and Bayesian prediction map into
each others domains, we can use the implementation of a Bayes filter to compute the
posteriors at any time k.

Proposition 5.3. If the pair of functions (f ,g) implement a Bayes filter with re-
spect to the hidden Markov chain (Xk, Zk)k∈N, then for any k > 0, the posterior
PXk|(Zi)ki=0=(zi)ki=0

∈ M ′ has parameters f(zk,g(θ′k−1)) ∈ Θ′, for any observation zk ∈
ΩZ and any previous posterior PXk−1|(Zi)k−1

i=0 =(zi)
k−1
i=0
∈M ′ with parameters θ′k ∈ Θ′.

Proof. This follows from a similar recursive argument to the one used in proposition
5.1, where the components function under considerations are given by

f (k+1)(z1, . . . , zk+1) = f(zk+1,g(f (k)(z1, . . . , zk))).

In this case however, we do not need to make use of rectified likelihoods.

In contrast with the case of static latent variables, this proposition describes how
to process sequences of observations without depending on conjugate priors or recti-
fied likelihoods. Nevertheless, there remain several advantages to conjugate priors in
the context of Bayesian filtering.

Let HXZ be the harmonium family defined by MX and MZ . First of all, if the
observations come from multiple independent senses, and therefore the implementa-
tion of Bayes’ rule must integrate multiple, conditionally independent observations
at every timestep, then rectified emission distributions and proposition 5.1 provide a
practical means of doing so. Secondly, if the emission distribution is rectified, then
when we later attempt to train neural networks to implement a Bayes filter, we may
still take advantage of the algorithms developed in chapter 4 to efficiently estimate
the learning gradients. Finally, in most cases where solutions of the prediction and
update equations afford closed-form expressions, the predictions of a Bayes filter are
indeed conjugate to the posteriors.

The simplest example of this is when MX is the categorical distribution with
states ΩX = {xi}ni=1. In this case the prediction equation may be evaluated brute-
force by computing

pXk|(Zi)k−1
i=0

(xk | (zi)k−1
i=0) =

n∑
i=1

pX′|X(xk | xi)pXk−1|(Zi)k−1
i=0

(xi | (zi)k−1
i=0).

This equation corresponds more or less to computing the mean parameters of a cat-
egorical distribution, and by using the forward and backward mappings, we may
construct a corresponding function g : ΘX → ΘX which implements this equation in
the natural parameter space ofMX . Moreover, since any emission distribution PZ|X
is rectified if MX is the categorical distribution (theorem 4.5), we may combine this

71

5.2. Implementing Bayesian Filtering

g with the function f defined in equation 5.1 to construct a general implementation
(f ,g) of a Bayes filter over a latent variable with finite states.

Let us now consider the case whereMX andMZ are multivariate normal families.
Theorem 4.6 implies that if the emission distribution is given by PZ|X=x = N(m+M ·
x,Σ), then PZ|X is rectified, and evaluating Bayes’ rule is trivial. Similarly, suppose
that the transition distribution of (Xk)k∈N is given by PX′|X=x = N(N · x,T), and
that the posterior PXk|(Zi)ki=0

∈MX with parameters µk and Σk. Then the prediction

distribution PXk+1|(Zi)ki=0
has parameters µ0

k+1 and Σ0
k+1 given by

µ0
k+1 = N · µk,

Σ0
k+1 = N ·Σk ·N> + T,

(Thrun et al., 2005; Särkkä, 2013).
By again relying on the isomorphisms between the different parameterizations of

MX , we may use these equations to define the implementations f and g, and construct
the implementation (f ,g) of a Bayes filter. Moreover, we need not limit ourselves
to multivariate normal observations, and we may combine the implementation g of
Bayesian prediction with the implementation f of Bayes’ rule of any rectified emission
distribution. The pair (f ,g) is then an implementation of a Bayes filter on a hidden
Markov chain with observations with a form of our choosing.

Moreover, this technique for implementing Bayes filters is not limited to optimal
solutions. The most well-known extension of Kalman filtering to nonlinear dynamical
systems is the extended Kalman filter (Thrun et al., 2005; Särkkä, 2013). Although
the extended Kalman filter does not exactly solve the prediction equation, it does
compute good multivariate normal approximations to the true solutions.

The extended Kalman is applied to hidden Markov models with transition dis-
tributions of the form PX′|X=x = N(h(x),T). Where P̂Xk|(Zi)ki=0

is the approximate

posterior at time k with parameters µ0
k+1 and Σ0

k+1, the approximate, multivariate-

normal prediction P̂Xk+1|(Zi)ki=0
of the extended Kalman filter has parameters

µ0
k+1 = h(µk),

Σ0
k+1 = ∂µkh(µk) ·Σk · ∂µkh(µk)

> + T. (5.7)

Observe that these equations reduce to the Kalman filter prediction equations when
h is a linear function.

There is another approximate solution to the prediction equation that I make use
of in this dissertation. The von Mises family is an exponential family with a state
space equal to [−π, π], and is naturally suited to describing probability distributions
over rotational data. The von Mises family can be parameterized by the mean µ and
so-called concentration parameter κ. When κ is small, the von Mises distribution
vM(µ, κ) is approximately equal to the normal distribution N(µ, κ−1).

Suppose we are given the transition distribution defined by PX′|X=x = vM(h(µ), λ).

If we are given the approximate, von Mises posterior P̂Xk|(Zi)ki=0
with parameters

(µk, κk), and assume that λ and κk are small, then we may compute approximate
predictions P̂Xk+1|(Zi)0i=1k

by evaluating the parameters

µ0
k+1 = h(µk),

1

κ0
k+1

=
(h′(µk))

2

κk
+ λ−1,

72

Chapter 5. Bayesian Inference with Artificial Neural Networks

based on equations 5.7. I will apply this technique for implementing an approximate
von Mises Bayes filter later in this dissertation.

5.2.2 Exponential Family Multilayer Perceptrons

A discriminative model is a statistical model which is a function of an additional vari-
able, and multilayer perceptrons are one of the most well-known classes of discrim-
inative model. In this subsection I develop a general form of multilayer perceptron
based on the theory of exponential families, which I refer to as exponential fam-
ily multilayer perceptrons (EFMLPs). An exponential family multilayer perceptron
(EFMLP) is designed to process the natural parameters of belief distributions, and
as we will see in the next section, EFMLPs are especially well suited to implementing
the predictions of a Bayes filter.

Suppose we are given a sequence of n exponential families (MYi)
n
i=1, with dual co-

ordinate systems HYi and ΘYi . WhereMYi+1Yi are the harmonium families defined by
these exponential familiesMYi+1

andMYi , I recursively define an n-layered EFMLP
as the function

θYn|Y1 : HY1 → ΘYn

ηY1 7→ θYn + ΘYnYn−1 · ηYn−1|Y1(ηY1), (5.8)

where ηYn|Y1 is defined as

ηYn|Y1 : HY1 → HYn

τY1 7→ ηYn(θYn|Y1(ηY1))

for n > 1, and where ηY1|Y1(ηY1) = ηY1 for n = 1. Taken together, I denote the
parameters of an EFMLP by χ = (ΘY2Y1 ,θY2 , . . . ,ΘYnYn−1 ,θYn) and the parameter
space by X .

Where we denote Y1 by W and Yn by X, I define the EFMLP discriminative
model QX|W of X given W as

qX|W (x | w) = esX(x)·θX|W (w)−ψX(θX|W (w)). (5.9)

which is the exponential family distributionQX|W=w ∈MX with parameters θX|W (w)10.
I depict an example three-layer EFMLP in figure 5.2.

Now suppose we wish to train the EFMLP discriminative model QX|W with pa-
rameters χ. Let X ∈ ΩX and W ∈ HW be random variables, and let us define the
conditional relative entropy as

D(PX|W ‖ QX|W) =

∫
HW

∫
ΩX

log
pX|W (x | w)

qX|W (x | w)
PXW (dx, dw).

10Note that although a generative model can be thought of as a parameterized joint distribution,
a discriminative model is not in general a parameterized conditional distribution. A conditional
distribution is derived from a joint distribution, whereas a discriminative model is simply a function
which takes an input and returns a distribution. The input of a discriminative model is simply
another set of parameters of the model, and may not have any well define probabilistic relationship
with the random variable of the output distribution.

73

5.2. Implementing Bayesian Filtering

Figure 5.2: A diagram of the composition of a generic three-layer perceptron where the domain of
θX|W is HW and the codomain is HX . The functions θY |W and θX|Y represent the affine steps of
the evaluation of the multilayer perceptron. If we define the hidden layer in terms of the product
family MY of independent Bernoulli distributions, then the coordinate transform τY defines the
transfer function of the multilayer perceptron as the logistic function.

Then based on equation 2.12, it follows that

∂χiD(PX|W ‖ QX|W) =

EP [(EQ[sX(X) | W]− EP [sX(X) | W]) · ∂χiθX|W (w)]. (5.10)

The derivative in equation 5.10 is the expected value of the dot product of a pair
of random vectors on (Ω,F , P). Let us denote the first random vector by

RX = EQ[sX(X) | W]− EP [sX(X) | W],

and refer to it as the residual of the EFMLP. The second vector in this dot product
is the derivative of the EFMLP θX|W at w with respect to the parameter χi. The
derivatives of θX|W (w) with respect to the final-layer parameters θYn and ΘYnYn−1

are given by

∂θYnD(PX|W ‖ QX|W) = EP [RX],

∂ΘYnYn−1
D(PX|W ‖ QX|W) = EP [RX ⊗ ηYn−1|Y1(W)]. (5.11)

To evaluate the derivatives with respect to the remaining parameters of the net-
work, we must apply the chain rule to ηYn−1|Y1(W). Observe that the derivatives of
ηYn−1|Y1(W) at θYn−1|Y1(W) are equal to the Hessian ∂θYn−1|Y1θYn−1|Y1

ψYn−1(θYn−1|Y1(W)),

and that the derivatives of θYn−1|Y1(W) with respect to the parameters θYn−1 and
ΘYn−1Yn−2 have the same form as equations 5.11 with a different random residual.
Therefore, by defining the recursive residuals as the random variables

RYi = RYi+1
·ΘYi+1Yi · ∂θYi|Y1θYi|Y1ψYi(θYi|Y1(W)),

for RYn = RX , we may express the derivatives in equation 5.10 with respect to all
the component parameters of χ as

∂θYiD(PX|W ‖ QX|W) = EP [RYi],

∂ΘYiYi−1
D(PX|W ‖ QX|W) = EP [RYi ⊗ ηYi−1|Y1(W)].

Backpropagation is the algorithm of recursively evaluating these expectations based
on realizations of W (Rumelhart et al., 1986), and this recursion ends at the input

74

Chapter 5. Bayesian Inference with Artificial Neural Networks

y

-0.5

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3
x

N
e
g
a
ti

v
e
 L

o
g
-L

ik
e
lih

o
o
d

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000
Epochs

Figure 5.3: An application of backpropagation to training EFMLPs whereMW =MX is the family
of normal distributions with known variance andMY is the product family of 20 Bernoulli families.
Top: A depiction of the learned and target functions. In particular, I depict the mean of the target
function (black line), the noisy samples used to train the network (black dots), as well as the mean
of the EFMLP trained with vanilla gradient descent (red line), classic momentum (blue line), and
the Adam algorithm (green line). Bottom: The negative log-likelihood of the data for the three
learned EFMLPs (red, blue, green, as before).

W , which does not depend on the parameters χ. I present an example of learning an
EFMLP with backpropagation in figure 5.3.

My primary use for EFMLPs in this dissertation is in modelling harmoniums
for Bayesian inference. That is, where HXZ is the harmonium family defined by
MX and MZ , I consider EFMLPs for which MYn = HXZ . As defined by equation
5.9, training this EFMLP discriminative model for all but the simplest harmonium
families is intractable, since training the final layer would involve optimizing a third-
order tensor. However, we may construct a powerful, yet tractable class of EFMLP
harmonium model by considering discriminative harmonium models with densities of
the form

qXZ|W (x, z | w) ∝ eθX|W (w)·sX(x)+θZ ·sZ(z)+sX(x)·ΘXZ ·sZ(z), (5.12)

which is the density of a harmonium with distribution QXZ|W=w ∈ HXZ and parame-
ters (θX|W (w),θZ ,ΘXZ), where θX|W is an EFMLP with domain HW and codomain
ΘX .

As long as the residual RX can be effectively sampled, then training a harmonium
discriminative model with the form of equation 5.12 is no more complicated than the

75

5.2. Implementing Bayesian Filtering

one presented in equation 5.9. Moreover, the remaining, non-conditional parameters
θZ and ΘXZ of the conditional harmonium may be trained by the methods discussed
and developed in chapters 3 and 4. Especially in the case of rectified harmoniums, the
resulting model also affords an intuitive interpretation. That is, we may think of the
EFMLP θX|W (w) as computing the parameters the prior QX|W=w. Given this prior
and the likelihood QZ|X which is independent of the parameters θX|W (w), we may
then compute the posterior of the harmonium model QXZ|W=w given the observation
z ∈ ΩZ by evaluating QX|Z=z,W=w.

5.2.3 Modelling a Bayes Filter

In this subsection I develop theory for modelling Bayes filters. This work generalizes
and unifies the work on modelling time series in Sutskever et al. (2009) and Boulanger-
Lewandowski et al. (2012), and the work on implementing Bayesian filtering in neural
circuits in Beck et al. (2011). As I show, Sutskever et al. (2009) present a model
for approximate filtering which exactly implements Bayes’ rule, but which has no
guarantees on its ability to approximate the predictions; Boulanger-Lewandowski
et al. (2012) present a model which can approximate the prediction equation in a
principled manner, but fails to implement Bayes’ rule in general; and Beck et al.
(2011) develop a theoretical neural circuit which can exactly implement a Kalman
filter, but training the neural circuit was not considered.

I present a pair of model Bayes filters which extend the machine learning ap-
proaches of Sutskever et al. (2009) and Boulanger-Lewandowski et al. (2012), and
which exactly implements Bayes’ rule and can approximate the solution of the pre-
diction equation with the marginal distribution of a harmonium arbitrarily well. The
model in Beck et al. (2011) can be interpreted as a form of the second model intro-
duced here, and I discuss the proposed neural circuit directly in subsection 6.2. The
general approach I take is to rely on the theory of harmoniums to compute exact
posteriors, and to use the EFMLPs introduced in the previous subsection to compute
approximate predictions.

In all cases we start with a hidden Markov chain (Xk, Zk)k∈N, defined by the
initial distribution PX0 , the transition distribution PX′|X , and we assume that the
emission distribution PZ|X is time-invariant. At a any time k, our goal is to model the
conditional distribution PXkZk|(Zi)k−1

i=0
of the hidden Markov chain with a discriminative

harmonium model QXkZk|(Zi)k−1
i=0

, which is an element of the harmonium family HXZ

at every k. Now, if QXkZk|(Zi)k−1
i=0

depends directly on the entire history of random

observations (Zi)
k−1
i=0 , then the complexity of QXk|(Zi)k−1

i=0
grows linearly with time, and

a distinct model must be learned for every k.
In order to avoid the complexity issues of maintaining the complete history of

observations and learning a sequence of models, let us consider an EFMLP which
computes the parameters of the discriminative harmonium model QXkZk|(Zi)k−1

i=0
as a

function of the parameters of the previous model posterior QXk−1|(Zi)k−1
i=0

. Observe that

we may tractably compute the model posterior QXk|(Zi)ki=0
as a function of the previous

model posterior by evaluating the EFMLP, and computing the posterior distribution
of QXkZk|(Zi)k−1

i=0
. By repeating this procedure, we define a recurrent neural network

based on the EFMLP which models a Bayes filter at every time k.
Based on the theory which I have so far presented in the dissertation, there are two

forms of recurrent neural network which we might define for computing the parame-

76

Chapter 5. Bayesian Inference with Artificial Neural Networks

Figure 5.4: Here I depict the directed graphical representation of an EFMLP Bayes filter. The
random variables in the graph are latent states Xk, the observations Zk, and the mean parameters
Mk of the dynamic model posterior.

ters of the discriminative harmonium model. In both cases the EFMLP parameterizes
a discriminative harmonium model with the form given in relation 5.12, such that the
observable biases θZ and interactions parameters ΘXZ of the harmonium are time-
invariant, and the two models differ only in how they compute the dynamic latent
biases.

I refer to the first kind of recurrent neural network as the EFMLP Bayes filter. In
an EFMLP Bayes filter, the latent parameters of the discriminative harmonium model
are computed by the EFMLP θX|M : HX → ΘX , which takes the mean parameters
of the previous model posterior and returns the latent biases of the discriminative
harmonium model. More formally, let us recursively define the random posterior
mean parameters by

Mk = τX(ΘXZ · sZ(Zk) + θX|M(Mk−1)), (5.13)

where M0 = ηX0 are the mean parameters of the model prior QX0 . The discrimi-
native harmonium model QXkZk|(Zi)k−1

i=0
of the EFMLP Bayes filter at time k is then

QXZ|M=Mk−1
, where QXZ|M=Mk−1

∈ HXZ with parameters (θX|M(Mk−1),θZ ,ΘXZ).
I depict the graphical representation of an EFMLP Bayes filter in figure 5.4.

The RTRBM model of Sutskever et al. (2009) is a form of EFMLP Bayes filter
where θX|M a 2-layer EFMLP, such that θX|M is an affine function11. Established
results on universal approximation (Hornik, 1993) imply that an EFMLP architecture
requires at least one hidden layer of an arbitrary size with a non-polynomial transfer
function in order to model arbitrary latent biases. Although the RTRBM does apply
the logistic transfer function when computing the mean parameters of the previous
posterior, it does not first apply a parameterized linear transformation to the inputs
of these logistic units, and the size of the logistic layer is fixed by the dimension of
the parameter space of the posterior. Therefore, the RTRBM cannot model arbitrary
latent biases as a function of the parameters of the previous posterior.

11Both Sutskever et al. (2009) and Boulanger-Lewandowski et al. (2012) also consider observable
biases which depend on the previous posterior. However, since observable biases do not affect
posterior distributions in harmonium generative models, this has no affect on the analysis of this
section, and I elide this detail for the sake of simplicity.

77

5.2. Implementing Bayesian Filtering

Figure 5.5: Here I depict the directed graphical representation of a neural Bayes filter. The chain
is composed of latent states Xk, observations Zk, the prediction encoding Vk, and the posterior
encoding Wk. The arrow from Wk−1 to Vk represents the computation of the neural network ηV |W ,
such that Vk = ηV |W (Wk−1).

The second model I consider is based on the theory of belief encodings developed
in subsection 5.1.2. Consider two exponential families MV and MW . Let us define
two dynamic encodings (Vk)k∈N and (Wk)k∈N, with state spaces HV and HW , and
refer to them as the prediction and posterior encodings, respectively. We define the
conditional distribution of the posterior encodings PWk|Zk,Vk by

Wk = A · sZ(Zk) + B · Vk + w0,

where A and B are the observation and prediction recoders, and w0 is the encoding
bias.

Now suppose that θX|W : HW → ΘX is an n-layered EFMLP defined by the
sequence of exponential families (MYi)

n
i=1, where MY1 = MW , MYn = MX , and

MYn−1 =MV . Since θX|W (w) = θX + ΘXV · ηV |W (w) by mapping 5.8, if we define
Vk = ηV |W (Wk−1), then Vk encodes predictions over Xk as a function of the encoding
of the previous posterior, where ΘXV is the decoder matrix, and θX is the decoder
bias.

By combining the conditional distributions PX′|X , PZ|X , PWk|Zk,Vk , and PVk|Wk−1
,

we may construct the Markov chain (Xk, Zk, Vk,Wk)k∈N. We define the discriminative
harmonium model QXkZk|(Zi)k−1

i=0
at time k as the discriminative harmonium model

QZX|W=Wk−1
defined by the EFMLP θX|W . This model is also a form of recurrent

neural network, but it does not implement Bayes’ rule in general, unlike the EFMLP
Bayes filter. Therefore, we place an additional restriction on this recurrent neural
network, in order to ensure it does not lose information during the update step.

Definition 5.6 (Neural Bayes Filter). The Markov chain (Xk, Zk, Vk,Wk)k∈N is a
neural Bayes filter if at every time k, w implements Bayes’ rule with respect to
(Xk, Zk, Vk,Wk).

I depict the graphical representation of a neural Bayes filter in figure 5.5.
The RNN-RBM model presented in Boulanger-Lewandowski et al. (2012) is a form

of neural Bayes filter where ηV |W (W) = τV (W), such that θV = 0 and ΘVW = I.
In the RNN-RBM, the parameters A, B, w0, θX , ΘXV , ΘXZ , and θZ are treated
as independent, trainable parameters. Since the dimension of the state-space of Wk

78

Chapter 5. Bayesian Inference with Artificial Neural Networks

is not fixed by the complexity of the posterior, and is defined as an arbitrary affine
transformation of the sufficient statistics of the observation sZ(Zk) and the encoded
prediction Vk, an RNN-RBM can in theory approximate any latent bias arbitrary
well.

However, according to proposition 5.2, Wk encodes the posterior over Xk given
the predictions encoded by Vk if and only if Vk and Wk satisfy equations 5.6. If
the parameters of the RNN-RBM do not satisfy these equations, then Wk encodes
suboptimal posteriors, which implies that the RNN-RBM loses information about
the latent state. This loss of information can only be mitigated by ensuring that
equations 5.6 are satisfied, which prevents the EFMLP of the RNN-RBM from being
a universal approximator.

In this subsection I have introduced two recurrent neural networks – the EFMLP
Bayes filter, and the neural Bayes filter – both of which compute exact solutions to
the update equation (2.24) by computing the posterior of a harmonium model, and
can approximate the solution of the prediction equation (2.25) with the marginal of
a harmonium model with arbitrary latent biases. Due to the universal approxima-
tion theory of multilayer perceptrons (Hornik, 1993), the recurrent neural networks I
have introduced in this subsection can model Bayes filters arbitrarily well, when the
predictions are given by the marginal of a harmonium distribution. By contrast, the
RTRBM and RNN-RBM lack the requisite complexity to model these Bayes filters
in general.

5.2.4 Training a Model Bayes Filter

In this section I show how to train EFMLP Bayes filters and neural Bayes filters. Let
us once again consider the hidden Markov chain (Xk, Zk)k∈N, defined by the initial
distribution PX0 , the transition distribution PX′|X , and the time-invariant emission
distribution PZ|X . Training the neural Bayes filter requires additional considerations
which do not arise when training EFMLP Bayes filters, and so we begin with the
latter.

Let us consider the harmonium family HXZ defined by MX and MZ , and
the n-layer EFMLP θX|M defined by the exponential families (MYi)

n
i=1 where

MY1 = MYn = MX , with parameters χ. Let QXZ|M=Mk−1
∈ HXZ be the dis-

criminative harmonium model of the EFMLP Bayes filter at time k with parameters
(θX|M(Mk−1),θZ ,ΘXZ). Since we do not observe the latent states of the hidden
Markov chain directly, we train the EFMLP Bayes filter by minimizing the condi-
tional relative entropy

D(PZk|Mk−1
‖ QZ|M=Mk−1

) (5.14)

for every k.

The derivatives of entropy 5.14 with respect to the parameters θZ and ΘXZ are
simply the derivatives of the harmonium parameters given by equations 3.8. Based
on equations 2.17 and 5.10, the derivatives of entropy 5.14 with respect to χi is

∂χiD(PZk|Mk−1
‖ QZ|M=Mk−1

) = EP [RZk · ∂χiθX|M=Mk−1
(Mk−1)], (5.15)

where

RZk = rZk(Mk−1)

79

5.2. Implementing Bayesian Filtering

are the residuals of the neural network at time k, and where

rZk(mk−1) = EQ[sXZ(X,Z) |M = mk−1]

− EP [EQ[sXZ(X,Z) | Z = Zk,M = mk−1]].

Note that rZk at mk−1 is again simply the relative entropy derivatives of a harmonium
(3.8).

Since we have principled methods for estimating the residuals, all we must do to
estimate the expectation in equation 5.15 is to compute ∂χiθX|M(Mk−1). Although
backpropagation allows us to partially evaluate these derivatives, Mk−1 is defined
recursively by the EFMLP, and so backpropagation does not simply end when Mk−1

is reached. This leads to the algorithm known as backpropagation-through-time
(Williams and Zipser, 1989; Werbos, 1990; Sutskever et al., 2009; Makin et al., 2016)
for computing the complete derivatives of ∂χiθX|M(Mk−1).

Let us rewrite equation 5.13 as

Mk−1 = τX(Tk−1 + ΘXYn−1 · ηYn−1|M(Mk−2)),

where Tk−1 = ΘXZ · sZ(Zk−1) + θX . Then we may express θX|M(Mk−1) as

θX|M(Mk−1) = θX|M(τX(Tk−1 + ΘXYn−1 · ηYn−1|M(Mk−2))).

If we compare this equation to the definition of an EFMLP in mapping 5.8, we
see that θX|M at Mk−1 is equivalently a (2n + 1)-layered EFMLP at Mk−2 with
random bias Tk−1 in layer n + 1. By repeatedly expanding Mk−i for all i, we may
express backpropagation-through-time on θX|M(Mk−1) as simply backpropagation on
the (kn + k − 1)-layered EFMLP with random biases (Ti)

k−1
i=1 , where ∂χiTi = ∂χiθX .

Since the parameters of each subnetwork in the (kn + k − 1)-layered EFMLP are
shared, we then sum the derivatives of χi computed at each subnetwork to compute
the complete derivative of χi.

Although well-defined, backpropagation-through-time can be problematic in prac-
tice (Bengio et al., 1994; Pascanu et al., 2013). Moreover, because the posterior
PXk|(Zi)ki=0

captures all the information about the latent state available in the ob-
servations, if the conditional relative entropy in expression 5.14 is 0, then (Mk)k∈N
is a Markov chain. This suggests that as entropy 5.14 is minimized, the long-range
dependencies in backpropagation-through-time can be ignored when modelling Bayes
filters. When training model Bayes filters in chapter 7, I therefore consider a one-step
approximation to the true derivative of θX|M(Mk−1) with respect to χi, and assume
that (Mk−1) is independent of the parameters χ. As we will see, this works well in
practice.

Let us now consider how to train a neural Bayes filter. Expression 5.14, equation
5.15, and the subsequent derivation of backpropagation-through-time continue to
apply to neural Bayes filters. The additional consideration we must address when
training neural Bayes filters is how we train the additional parameters of the belief
encoding (see equations 5.6) which arise when computing the derivatives of Wk−1,
while ensuring that equations 5.6 remain satisfied. In theory, we would need apply
some form of projected gradient descent to ensure that equations 5.6 are satisfied, but
this is highly nontrivial in the context of the non-convex optimization of minimizing
the marginal relative entropy.

80

Chapter 5. Bayesian Inference with Artificial Neural Networks

There are two advantages of neural Bayes filters over EFMLP Bayes filters. The
first is in using the encodings (Vk)k∈N and (Wk)k∈N to model real neural populations,
which involves matching the encoding and decoding parameters to real data, and not
necessarily optimizing them with respect to entropy 5.14. The second is in defining
the encoding and decoding transformations to confer additional useful properties on
the respective populations, such as defining the distributions encoded by (Vk)k∈N and
(Wk)k∈N to be independent of the mean firing rate of the populations, as done in Beck
et al. (2011). As such, in practice, the parameters of the affine belief encoding of a
neural Bayes filter should be trained with an independent objective or set by hand,
which is the strategy I take in chapter 7.

81

Chapter 6

Bayesian Inference with Biological
Neural Networks

In this chapter I have two principle goals. Firstly, I show that a large class of well-
known models of the brain from the computational neuroscience literature are special
cases of the theory I have developed in this dissertation. Secondly, I wish to highlight
some of the properties of these models which demonstrate them to be especially good
at implementing Bayesian inference, and thereby to show that the biological neural
networks of the brain are the right kind of neural networks for solving the problems
of embodied cognition.

I begin this chapter by reviewing linear-nonlinear (LN) models of single neuron
activity. I then introduce the theory of neural coding known as probabilistic popu-
lation codes (PPCs), which defines neural coding in terms of Bayesian inference. An
important class of PPC is the family of linear probabilistic population codes (LPPCs),
which are a kind of PPC that can tractably implement Bayes’ rule.

I then develop the connection between LPPCs and harmoniums, as well as their
connection with the theory of rectification. As I show, the structure of neural noise as
modelled by LN models results in simple conditions for rectification, which demon-
strates that biological neurons are especially well-suited to implementing Bayesian
inference.

As we move into the field of theoretical neuroscience, it will be helpful to mod-
ify our vocabulary so that our discussions are consistent with the terminology used
therein. In particular, I will tend to refer to latent variables X as stimuli, and observ-
able variables Z as neurons or populations of neurons. In the latter case, Z represents
the spike count or firing rate of the neuron(s) in question.

6.1 Linear-Nonlinear Neurons

A linear-nonlinear (LN) model is a simple model of how a neuron responds to a
stimulus (Gerstner and Kistler, 2002; Simoncelli et al., 2004), yet one which can nev-
ertheless provides a good approximation to the statistics of neural activity (Plesser
and Gerstner, 2000; Paninski, 2004; Ostojic and Brunel, 2011). LN models are typi-
cally applied to modelling the discrete-time dynamic activity of a neuron. Although
the brain exists in continuous time, typical mammalian neurons have a maximum
firing rate between 500 and 1000 Hertz (Sterling and Laughlin, 2015), so that the
brain can essentially be modelled as a discrete-time stochastic process where each

83

6.2. Linear Probabilistic Population Codes

time k covers an interval on the order of of h = 1000−1 seconds. Moreover, as we
will see, at this timescale LN neurons are approximately equal to a continuous-time,
inhomogeneous Poisson process (see Jost, 2014, chapter 3).

Suppose that (Xk, Zk)k∈N is a hidden Markov chain, and let us refer to (Xk)k∈N
as the random dynamic stimulus, and (Zk)k∈N as the LN neuron. An LN neuron is a
binary, dynamic random variable defined by the emission distribution

P (Zk = 1 | xk) = hf(a · xk),
where a is a so-called linear filter, h is the time-step, and f : ΩX → R+ is known as
the transfer function. The value f(a ·xk) at time k is the firing rate of (Zk)k∈N at time
k, and the LN neuron is “spiking” when Zk = 1, and the neuron is “quiescent”when
Zk = 0. The number of spikes in the interval of s = nh seconds is Zn =

∑n−1
i=0 Zi.

When the LN neuron has a constant firing rate c over this interval, then Zn is a
binomial random variable defined by a spiking probability hc over n trials.

The Binomial distribution converges to a Poisson distribution as the probability
of spikes per time-step decreases and the number of trials increases, and the ratio
between them is held constant. Formally, if N is a Poisson random variable with
rate λ, B is a Binomial random variable defined by n trials and a spiking probability
p = λ/n, then limn→∞ PB = PN (Jost, 2014), where

P (N = k) =
e−λλk

k!
.

I depict the relationship between Bernoulli, binomial, and Poisson distribution in
figure 6.1.

Consider an LN neuron (Zk)k∈N with a firing rate f(a · Xk) at time k. Neurons
usually fire well below their maximum rate; in one study, the average firing rate of
neurons in the hippocampal and entorhinal cortex was found to be less than 1Hz,
with a maximum of about 10Hz (Mizuseki and Buzsáki, 2013). If we assume that
the firing rate of (Zk)k∈N at time k is at most 10Hz, and that h = 0.001, then the
probability that a neuron fires at time k is 0.01. On the other hand, the chance
that a Poisson random variable with rate λ = 0.01 is equal to 0 or 1 is more than
99.995%. Therefore, if we approximate a hippocampal/entorhinal LN neuron with an
inhomogeneous Poisson process with instantaneous firing rate f(a·Xt), where (Xt)

R+

t=1

is a continuous-time dynamic stimulus, then we would only expect the continuous-
time model to deviate from the LN neuron by only about one spike every 20 seconds.

The approximate equivalence between these discrete- and continuous-time models
is both intuitively and technically advantageous. On one hand, the brain is indeed
a continuous-time system, and it is convenient to describe its continuous-time state
as the collection of instantaneous firing rates of all its constituent neurons. On the
other hand, real-world stimuli are also continuous-time phenomena, and a continuous-
time model of the coupled stimulus-brain system allows us to avoid unnecessarily
discretizing the dynamics of the stimulus. Moreover, being able to treat neurons as
either Bernoulli or Poisson random variables means that we may apply and combine
the theory of both types of random variable when analyzing LN neurons.

6.2 Linear Probabilistic Population Codes

In this section we move beyond modelling the response statistics of single neurons, to
modelling Bayesian inference in populations of neurons. There are many established

84

Chapter 6. Bayesian Inference with Biological Neural Networks

P
ro

b
a
b
ili

ty
 M

a
ss

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15
Count

P
ro

b
a
b

ili
ty

 M
a
ss

0

0.2

0.4

0.6

0.8

1

0 2 4
Count

P
ro

b
a
b

ili
ty

 M
a
ss

0

0.2

0.4

0.6

0.8

1

0 2 4
Count

P
ro

b
a
b

ili
ty

 M
a
ss

0

0.2

0.4

0.6

0.8

1

0 2 4
Count

Figure 6.1: A depiction of the convergence of Bernoulli and Binomial distributions (black) to Poisson
distributions (red). Top: A Poisson distribution with rate λ = 5, and two Bernoulli distributions
with n = 10 and n = 100 trials, and probabilities of success p = 0.5 and 0.05. Bottom: Three
plots comparing three pairs of Bernoulli and Poisson distributions, with parameters λ = p = 0.4,
λ = p = 0.2, and λ = p = 0.1, respectively. As depicted in the third plot, the probability that a
Poisson random variable is greater than 1 when λ = 0.1 is less than 0.005.

frameworks for understanding how populations of neurons store and process infor-
mation about stimuli (see Pouget et al., 2013), but it is the theory of probabilistic
population codes which I consider in this dissertation. An example of a probabilistic
population code is given by collections of independent LN neurons paired with their
stimuli. However, the definition of an LPPC is more general than what is described
by a product of LN neurons alone.

Let us consider a random stimulus X and a population of dZ neurons Z = (Zi)
dZ
i=1.

A code is a definition of how to encode and decode information about one thing into
and from some alternative representation. A probabilistic population code (PPC)
is a stochastic code defined as a pair of random variables (X,Z), where encoding
information about the stimulus x in Z is defined as sampling the likelihood PZ|X=x,
and decoding the information in the sampled vector z ∈ ΩZ is defined as evaluating
the posterior PX|Z=z (Zemel et al., 1998).

A linear probabilistic population code (LPPC) is a PPC for which the likelihood
PZ|X ∈ MZ , where MZ is an exponential family with a sufficient statistic equal
to the identity function. LPPCs – in particular those where MZ is the product
family of independent Poisson distributions – have been shown to effectively model
the statistics of neural responses (Jazayeri and Movshon, 2006; Graf et al., 2011).
The mean of the ith LPPC neuron conditioned on x is defined as γfi(x), where
fi : ΩX → R+ is the so-called tuning curve of the neuron, and γ is the gain. Because
sZ is the identity function, the mean parameters of the likelihood PZ|X=x are simply
E[sZ(Z) | X = x] = E[Z | X = x] = γf(x). We may thus write the likelihood of an

85

6.2. Linear Probabilistic Population Codes

LPPC in exponential family form as

pZ|X(z | x) = eτ
∗
Z(γf(x))·z−ψZ(τ∗Z(γf(x))). (6.1)

Based on this form, an LPPC is called a linear PPC because the log-likelihood is
linear in the population response z12.

Let us consider a few examples of LPPCs, as defined by their tuning curves. When
MZ is the product family of independent Poisson distributions, the two most widely
applied tuning curves in the context of LPPCs are the Gaussian and von Mises tuning
curves. The 1-dimensional Gaussian tuning curve is

fi : R→ R+

x 7→ e
−(x−x0i)

2

2σ2
i , (6.2)

with preferred stimuli x0
i , and tuning widths σ2

i . The von Mises tuning curve is

fi : [−π, π]→ R+

x 7→ eκi cos(x−xi0), (6.3)

with preferred orientations x0
i , and concentrations κi.

On the other hand, if MZ is the product family of Bernoulli distributions, then
a standard tuning curve for dX-dimensional stimuli is the logistic function combined
with a linear transformation

fi : ΩX → [0, 1]

x 7→ (1 + eai·x)−1

where ai is the linear filter of the ith neuron. This defines each neuron in the LPPC
as an LN neuron at some time k with a logistic transfer function.

Another assumption which is often made in the context of LPPCs with Poisson
neurons is that the sum of the tuning curves is independent of the stimulus (Ma et al.,
2006; Beck et al., 2011), such that

dZ∑
i=1

fi(x) = λ, (6.4)

for some constant λ. Because the gain is proportional to the sum of the tuning
curves, this constraint allows the gain to model so-called nuisance parameters such as
contrast, which influence the response of the neurons but do not contain information
about the stimuli. Another important consequence of LPPCs which satisfy equation
6.4 is that they can trivially implement Bayesian inference with conjugate priors. In
the next section I show how this result is a special case of rectification, but for now
let us develop some intuition about this phenomenon through simulation.

12In Ma et al. (2006); Beck et al. (2008, 2011) LPPCs are defined in a slightly more general way,
as they assume that the stimulus dependent parameters of PZ|X can be modulated by the covariance
matrix of Z given X. However, because an LPPC has an identity sufficient statistic, the covariance
of Z given X can only vary as a function of the base measure µZ . This way of adding covariance to
the neural population is difficult to generalize beyond the case of one-dimensional stimuli, and so I
do not include it in my presentation.

86

Chapter 6. Bayesian Inference with Biological Neural Networks

R
a
te

0

2.5

5

7.5

10

12.5

15

ππ/20-π/2-π
Stimulus

R
a
te

0

2.5

5

7.5

10

12.5

15

ππ/20-π/2-π
Stimulus

Figure 6.2: The sum (black line) of the tuning curves (blue lines) of two von Mises LPPCs. In both
cases κi = 1.5 and γ = 1. Left : A von Mises LPPC with 3 neurons. The sum of the tuning curves
varies noticeably over the stimulus space. Right : A von Mises LPPC with 6 neurons. Doubling
the number of neurons results in a sum of tuning curves which is nearly indistinguishable from a
straight line.

I depict the sum of the tuning curves of two von Mises LPPCs in figure 6.2. Notice
how the sum of the tuning curves quickly converges to a straight line as the number of
neurons in the population is increased, such that equation 6.4 can be approximately
satisfied with ease in the one-dimensional case. These plots provide an important
intuition about Bayesian inference in LPPCs. If we consider the left plot in figure
6.4, a null response z = 0 suggests that the stimulus is in between the preferred
stimuli of the model. However, when the sum of the tuning curves is constant, a
null response provides no information about the stimulus, and the posterior over
the stimulus given the null response is equal to the prior. The result of this is a
high degree of regularity in the beliefs computed by the LPPC, and ultimately the
existence of conjugate priors.

I depict an example of Bayesian inference with a von Mises LPPC in figure 6.3.
This figure illustrates Bayesian inference in LPPCs as originally formulated in Ma
et al. (2006) where it was presented as a form of “cue integration”. That is, where
both Z1 and Z2 are defined as responses to a stimulus X with a likelihood given
by equation 6.1, the authors showed that the response Z3 defined as a certain linear
combination of Z1 and Z2 retains all the information in Z1 and Z2 about X under the
assumption of a flat prior. This linear circuit for implementing Bayesian inference
over encoded beliefs is ultimately a special case of the belief encodings I developed
in subsection 5.1.2.

Bayesian inference in LPPCs was also extended and applied to implementing
Bayes filters in neural circuits (Beck and Pouget, 2007; Beck et al., 2011); these
models are ultimately special cases of the neural Bayes filters introduced in subsection
5.2.3 with emission distributions defined by LPPC likelihoods. In the case of linear
dynamical systems and Gaussian tuning curves addressed in Beck et al. (2011), the
optimal 2-layer EFMLP has the form

θV |W (w)

h
= Θ(2) ·w + w ·Θ(3) ·w + 1(w0 − 1 ·w

dW
),

under the assumption that the emission distribution satisfies equation 6.4, and where
h is the time-step in the time-discretized system. Intuitively, Θ(2) drives the rate of

87

6.3. LPPCs and Harmoniums

R
e
sp

o
n
se

0

2

4

6

8

10

0

0.5

1

1.5

2

P
ro

b
a
b
ili

ty
 D

e
n
si

ty

-π -π/2 0 π/2 π
Stimulus

R
e
sp

o
n
se

0

2

4

6

8

10

0

0.5

1

1.5

2

P
o
st

e
ri

o
r

D
e
n
si

ty

-π -π/2 0 π/2 π
Stimulus

R
e
sp

o
n
se

0

2

4

6

8

10

0

0.5

1

1.5

2

P
o
st

e
ri

o
r

D
e
n
si

ty

-π -π/2 0 π/2 π
Stimulus

R
e
sp

o
n
se

0

2

4

6

8

10

0

0.5

1

1.5

2

P
o
st

e
ri

o
r

D
e
n
si

ty

-π -π/2 0 π/2 π
Stimulus

Figure 6.3: A realization of Bayesian inference with the second von Mises LPPC from figure 6.2.
In each plot I show the true stimulus (black line), the population response (black dots), where each
black dot shows the number of spikes produced by the neuron with the given preferred stimulus,
and the belief density (red line). Top Left : In the absence of spikes, the prior is flat. Top Right :
The posterior given the flat prior and a response z1 of the LPPC with gain γ = 0.5. Bottom Left :
The posterior given the flat prior and a response z2 of the LPPC with gain γ = 1. Bottom Right :
The posterior given the flat prior with the response z1 +z2, which is a more accurate posterior than
in the other two cases.

the population in proportion to the linear dynamics, Θ(3) quadratically drives the rate
of the population in proportion to the noise in the dynamics, and w0 is a parameter
which encourages the component-wise average of the rates of the computed by the
network to remain near w0.

Moreover, Beck et al. (2011) show how to take the limit of this equation as h→
0 by approximating the Poisson-distributed responses with Bernoulli distributions
as described in the previous section; they also show how to resample the encoding
random variable W with minimal loss of information, such that W may be interpret
as a population of spiking neurons. The result is a continuous-time, spiking, recurrent
neural network which implements a Bayes filter to an arbitrary degree of precision.
In future work I hope to combine this technique with the methods that I present
in my dissertation, towards developing a continuous-time, spiking, recurrent neural
network which can learn to implement a Bayes filter without knowledge of either the
transition or emission distributions.

6.3 LPPCs and Harmoniums

Both harmoniums and LPPCs are pairs of random variables (X,Z), where the like-
lihood PX|Z is an element of some exponential family MZ . Moreover, when imple-
menting Bayesian inference based on equation 6.4, the posterior PX|Z of an LPPC
is typically an element of some exponential family MX . As such, although it may

88

Chapter 6. Bayesian Inference with Biological Neural Networks

seem as though equation 6.1 is more general than the affine form of a harmonium
likelihood (3.6), theorem 3.1 implies that in practice, an LPPC is typically a form of
harmonium.

Proposition 6.1. Suppose that there exists an LPPC (X,Z) with likelihood PZ|X ∈
MZ defined by the tuning curves f and gain γ which satisfies PX|Z ∈MX . Then

τ∗(γf(x)) = θZ + ΘXZ · sX(x), (6.5)

for some parameters θZ and ΘXZ.

Proof. If PXZ has an LPPC likelihood PX|Z and a posterior PZ|X , then this follows
from theorem 3.1 and by combining equations 3.6 and 6.1 for the likelihood of (X,Z).

Note that this proposition does not depend on the form of PX|Z , but rather only
its existence for some (X,Z), and thus applies in general to tuning curves f and gain
γ which satisfy the conditions.

For example, let us suppose thatMZ is the product family of independent Poisson
distributions, such that τ ∗Z,i(θZ) = log(θZ,i) (appendix A), and let us again consider
the Gaussian and von Mises tuning curves. In the case of Gaussian tuning curves, we
can satisfy equation 6.5 by setting the elements of the interaction matrix ΘXZ equal
to

θXZ,1,i =
x0
i

σ2
i

, θXZ,2,i = − 1

2σ2
i

, (6.6)

and setting the elements of the bias θZ equal to

θZ,i = log γ − (x0
i)

2

2σ2
i

, (6.7)

and by letting s(x) = (x, x2), which is the sufficient statistic of the family of normal
distributions. On the other hand, we can satisfy equation 6.5 for von Mises tuning
curves by setting the elements of the interaction matrix ΘXZ equal to

θXZ,1,i = κ cos(x0
i), θXZ,2,i = κ sin(x0

i),

and setting the elements of the bias θZ equal to

θZ,i = log γ,

and by letting s(x) = (cos(x), sin(x)), which is the sufficient statistic of the family of
von Mises distributions.

By definition, LPPCs with exponential family posteriors are always a form of har-
monium, and in the previous subsection we found that LPPCs with Poisson neurons
afford conjugate priors if the sum of the tuning curves is independent of the stimulus.
By definition, a rectified harmonium has conjugate priors, and therefore equation 6.4
must somehow be related to the rectification equation (4.1). In this next proposition
I show that we may in fact generalize the approach to conjugate priors provided by
equation 6.4 with the theory of rectification.

89

6.4. Homogeneous LPPCs

Proposition 6.2. Let HXZ be a harmonium family defined by MX and MZ, where
MZ is the product family of independent Poisson distributions. Let (X,Z) be a
harmonium with distribution PXZ ∈ HXZ. If

dZ∑
i=1

EP [Zi | X = x] = ρX · sX(x) + ρ0, (6.8)

for some parameters ρX and ρ0, then (X,Z) is rectified with rectification parameters
ρX and ρ0.

Proof. Note that the log-partition function of a single Poisson exponential familyMZi

is given by ψZi(θZi) = eθZi = τZi(θZi). Therefore, by equation 3.7, PZ|X=x ∈ MZ for
any x ∈ ΩX satisfies

ψZ(θZ + ΘXZ · sX(x)) =

dZ∑
i=1

τZ,i(θZ + ΘXZ · θZ)

=

dZ∑
i=1

EP [Zi | X = x]

= ρX · sX(x) + ρ0,

which implies by theorem 4.1 that (X,Z) is rectified with rectification parameters
ρX and ρ0.

It is also worth noting that at low rates, this proposition can be approximately
applied to LN neurons, as discussed in subsection 6.1.

6.4 Homogeneous LPPCs

Let us analyze the general conditions under which LPPCs can satisfy the rectification
equation. Consider the Gaussian (6.2) and von Mises (6.3) tuning curves. In both
cases, if we assume that the set of tuning curves {fi}dZi=1 have preferred stimuli x0

i

and shared shape parameters σ2 or κ, then we may express the ith tuning curve as
fi(x) = f(x − x0

i), where f is a tuning curve with preferred stimulus 0 and shape
parameter σ2 or κ. Let us refer to LPPCs with this structure as homogeneous.

Definition 6.1 (Homogeneous LPPC). The LPPC (X,Z) defined byMX andMZ is
a homogeneous LPPC with tuning function f : ΩX → R+ and gain function γ : ΩX →
R+ if:

1. MZ is the product family of independent Poisson distributions.

2. For every i, EP [Zi | X = x] = γ(x0
i)f(x− x0

i).

It turns out that homogeneous LPPCs which cover the latent space ΩX with a
sufficient number of tuning curves can always be rectified by modulating the gain
function. Proving this requires rudimentary harmonic analysis (see Deitmar and
Echterhoff (2014) for a thorough treatment of the topic).

90

Chapter 6. Bayesian Inference with Biological Neural Networks

Generally speaking, suppose that Ω is a locally compact, abelian group with group
action + and inverse −. Then there exists a Haar measure ν on the Borel σ-algebra
of Ω, with which we define the convolution of g and h as

(g ∗ h)(x) =

∫
Ω

g(x)h(x− y)ν(dy).

In this case there also exists an invertible function F known as the Fourier transform
for which

F (g ∗ h) = F (g)F (h). (6.9)

Proposition 6.3. Let (X,Z) be a homogeneous LPPC defined by MX and MZ,
with a tuning function f and gain function γ. Moreover, suppose that ΩX is a locally
compact abelian group with action + and inverse −, and that

dZ∑
i=1

γ(x0
i)f(x− x0

i) =

∫
ΩX

γ(x0)f(x− x0)ν(x0) = (γ ∗ f)(x). (6.10)

Then there exists a gain function γ given by

γ = F−1
(F (sX · ρX + ρ0)

F (f)

)
,

such that (X,Z) is rectified with rectification parameters ρX and ρ0.

Proof. By combining equation 6.10 with proposition 6.2 and the definition of a ho-
mogeneous tuning curve, we find that

(γ ∗ f)(x) = ρX · sX(x) + ρ0.

Let us define the function g(x) = ρX · sX(x) + ρ0. Then equation 6.9 implies that

γ ∗ f = g

=⇒ F (γ)F (f) = F (g)

=⇒ F (γ) =
F (g)

F (f)

=⇒ γ = F−1
(F (g)

F (f)

)
.

In order to apply this proposition we must verify whether equation 6.10 is satisfied.
In the case where ΩX is a discrete space, this is relatively straightforward, as the Haar
measure ν is simply the counting measure. In this case equation 6.10 is satisfied if
there exists a tuning curve with a preferred stimulus at every point in the space. Of
course, this may require a prohibitively large number of neurons, and this strategy
will not work at all when ΩX is uncountable. Nevertheless, as we will see and as
already suggested in figure 6.2, a sum of a small number of neural tuning curves
quickly approximates the conditions for rectification.

In order to analyze rectification in a LPPC where ΩX ⊂ R, let us us assume that
(X,Zk)k∈N is a sequence of LPPCs, where (X,Zk) has dZk = k neurons and preferred

91

6.4. Homogeneous LPPCs

R
a
te

0

5

10

15

20

25

30

-4 -2 0 2 4
Stimulus

P
ri

o
r

D
e
n
si

ty

0

0.5

1

1.5

2

-4 -2 0 2 4
Stimulus

R
a
te

0

5

10

15

20

25

30

-4 -2 0 2 4
Stimulus

P
ri

o
r

D
e
n
si

ty

0

0.5

1

1.5

2

-4 -2 0 2 4
Stimulus

R
a
te

0

5

10

15

20

25

30

-4 -2 0 2 4
Stimulus

P
ri

o
r

D
e
n
si

ty

0

0.5

1

1.5

2

-4 -2 0 2 4
Stimulus

Figure 6.4: In this figure I present three pairs of plots which visualize rectification in homogeneous
LPPCs with Gaussian tuning curves, where σ2 = 0.5. In the top plot of each example I present the
tuning curves of the LPPC (blue lines), the sum of the tuning curves as a function of the stimulus
(black line), and the right hand side of equation 6.8 as a function of the stimulus (dashed red line),
based on rectification parameters ρX and ρ0 which approximately solve equation 6.8. In the bottom
plot I depict the true prior of the model computed with numerical integration (black line), and the
approximate prior with parameters θ∗X = θX + ρX (dashed red line). In all cases, the θX are the
natural parameters of a normal distribution with mean 0 and variance 1. Left : A rectified LPPC
with a constant sum of tuning curves such that ρX = 0. The parameters of the prior are simply θX .
Middle: A rectified LPPC where ρX,1 = 1.6, and ρX,2 = 0. The mean of the prior with parameters
θ∗X is shifted to the right. Right : A rectified LPPC where ρX,1 = 0, and ρX,2 = −0.635. The mean
of the prior is unchanged, but the precision is higher.

stimuli (x0
k,i)

dZ
i=1. Let us also assume that (X,Zk) is homogeneous with tuning function

f and gain function γ scaled by a−b
k

, and with preferred stimuli distributed uniformly
over the interval [a, b]. If γ and f are integrable, then in the limit of infinite neurons,
the left hand side of equation 6.8 is given by the integral

lim
k→∞

k∑
i=1

γ(x0
k,i)f(x− x0

k,i)
a− b
k

=

∫
[a,b]

γ(x0)f(x− x0)λ(dx0),

where λ is the Lebesgue measure. Since the Lebesgue measure is the Haar measure
on R, this construction nearly results in a convolution. If γ and f are periodic on
[a, b], such as is the case when MX is the von Mises family, and a = −π and b = π,
then this equation is indeed a convolution. When ΩX = R, then we may take the
limit of this equation as a→ −∞ and b→∞.

For example, in the case of an infinite-neuron LPPC with Gaussian tuning curves
and tuning width σ2, the solution for γ is

γ(x) =
ρX,1x+ ρX,2(x2 − σ2) + ρ0√

2πσ2
.

92

Chapter 6. Bayesian Inference with Biological Neural Networks

In figure 6.4 I present three examples of approximately rectified, homogeneous LPPCs
with Gaussian tuning curves based on the gain function defined in the above equation.
As stated in corollary 4.2, if the likelihood of the LPPC (X,Z) satisfies equation 6.8,
then the prior PX of (X,Z) has parameters θ∗X = θX + ρX . In each example in
figure 6.4, the parameters θX are the same, and the prior density pX depicted in the
lower plots is changed by modulating the gain γ in equation 6.1 as a function of the
preferred stimuli of the neurons.

There is another advantage of gain-modulated homogeneous LPPCs which is
worth highlighting. Note that in the equation for the interactions 6.6 and observable
biases 6.7 of a harmonium based on 1-dimensional Gaussian tuning curves, the gain
only appears in the observable biases θZ . Since the posterior of a harmonium PX|Z
is independent of the observable biases (3.5), this means that we may freely alter the
gain of the neurons, without changing the beliefs encoded by a particular population
response. This suggests that homogeneous LPPCs are particularly flexible in their
ability to satisfy the rectification equation (4.1).

93

Chapter 7

Simulations

In this dissertation I have presented numerous plots which demonstrate theory as
I have developed it. However, I have for the most part not presented plots which
validate the gradient descent algorithms that I have developed, as these algorithms
take hours to execute, and require more careful analysis in order to evaluate their
progress and success.

In this chapter I present the most sophisticated simulations that I have produced
based on the theory developed in this dissertation. I begin by introducing the libraries
that I have developed for the Haskell programming language, with which I have
implement the complex numerical simulations that I present. I then continue by
presenting my simulations of training and rectifying a restricted Boltzmann machine
on the MNIST dataset, followed by my simulations of training neural Bayes filters,
with which I model particular neural circuits from the mammalian brain.

7.1 Geometric Optimization Libraries

Although I have not prominently featured my programming work in this dissertation,
programming is how I have spent the bulk of my majority during my doctoral work.
The fruits of this labour are a collection of libraries for the Haskell programming
language, which I call the Geometric Optimization Libraries, or simply Goal for
short. In my experience with implementing numerical algorithms, the majority of
my time as a programmer is spent debugging. This is, again in my opinion, the least
enjoyable part of programming, and I have developed Goal in order minimize this
tedium.

At the lowest level, programs are engaged with manipulating indistinguishable
numbers in memory. In the language of computer science, a type system is a way
of assigning extra information to these numbers in order to ensure that they are not
manipulated and combined inappropriately. In this vein, Goal provides a type system
for numerical optimization. In particular, Goal provides a type system which treats
numbers as points on a manifold, and provides functions for finding particular points
on these manifolds.

I begin this section with a short introduction to type systems and Haskell. I then
introduce Goal, and its core types such as manifolds, points, and tangent spaces, and
the application of these types to describing exponential family manifolds. For the
sake of simplicity, the definitions I provide are not always the same as they are in
the Goal libraries, and this introduction is not a complete survey of all the code I

95

7.1. Geometric Optimization Libraries

have implemented. The purpose of this introduction is rather to provide a clear and
concise overview of the novelty and practical value of Goal.

7.1.1 Type Systems and Haskell

Code is typically compiled before it is executed, and so there is a difference between
errors which arise while compiling code, and errors which arise while executing the
program which it describes. On one hand, the most straightforward kind of compile-
time error is a parsing error, where the compiler simply cannot understand what the
programmer has written. On the other hand, a program can be compiled, but then
still result in errors when executed. For example, a compiler can compile a program
which adds two numbers from specified locations in memory, but this programming
will crash if these locations do not exist.

In general, it is better to recognize errors at compile-time rather then run-time.
Compile-time errors are revealed more or less instantly, and do not depend on the
inputs to the program. Conversely, programs may need to be run for extended periods
of time before run-time errors emerge, and they may only emerge under very specific
conditions. However, compile-time errors can only be found through some kind of
analysis on the part of the compiler, and so defining and catching compile-time errors
requires a system for performing this analysis.

If we think of code as essentially a collection of expressions, then a type system
is a system for assigning types to these expressions. The primary purpose of a type
system is to help identity and reduce errors. Although type systems can be applied
to manage run-time errors, type systems are fundamental to defining and identifying
nontrivial compile-time errors. When every expression in the code of a given language
must have an unambiguous type before it can be compiled, then the language is known
as strongly-typed.

An important element of a strongly-typed language is that the expressions can
be analyzed in isolation – if one expression depends implicitly on another expres-
sion, then it may be difficult to assign that expression a coherent type. Program-
ming languages which forbid implicit interactions between expressions (also known
as side-effects) are known as functional programming languages. Arguably the most
well-known, strongly-typed, functional programming language is Haskell, and all the
simulations I have run and plots I have generated in this dissertation were written in
the Haskell programming language.

In order to illustrate the Haskell type system, let us write a program for managing
the types of animals that live in a house. The fundamental building blocks of the
Haskell type system are algebraic data types (ADTs). We can define an ADT to
describe the world of possible pets that live in a house:

data Pet = Dog | Hamster | Goldfish

In the language of Haskell, Pet is a type constructor, and Dog, Hamster, and
Goldfish are value constructors, all of which in this case have zero arguments.

Let us create two pets:

fluffy :: Pet

fluffy = Dog

96

Chapter 7. Simulations

goldy :: Pet

goldy = Goldfish

Fluffy is a Dog, and Goldy is a Goldfish, and both are of the Pet type. Let us
suppose that Fluffly and Goldy belong to Susie. We can define a list of Susie’s pets
with Haskell lists:

susiesPets :: [Pet]

susiesPets = [fluffy, goldy]

The type of susiesPets is a list of pets. The square brackets in the type declaration
of susiesPets is the type constructor of a list, and it takes a single argument. As such,
a list is a polymorphic type, because we could make a list of any given type. For
example, the length function counts the number of elements in a list, and it has the
following type:

length :: [a] -> Int

This is to say that the length function can calculate the length of any list, regard-
less of the type of element it contains.

Let us create another kind of animal:

data Pest = Mouse | Cockroach | Spider

If we wish to describe the list of pests in Susie’s house, we can again use the list
structure:

susiesPests :: [Pest]

susiesPests = [Mouse, Mouse, Mouse, Spider]

We do not care so much about pests, and so we do not give them names. Un-
fortunately, Susie has three mice and a spider in her house. Thankfully, she has no
cockroaches. We can calculate the number of mice in someones house with a few
functions. First, let us define a function which checks whether or not a pest is a
mouse:

isMouse :: Pest -> Bool

isMouse Mouse = True

isMouse _ = False

This function is True if the input is a Mouse, and False otherwise, as indicated
by the underscore. We will then use the filter function, which has the following type:

filter :: (a -> Bool) -> [a] -> [a]

The filter function takes as input a function which either accepts or rejects a value
of some type, a list of that type, and returns a list of accepted values. We can then
count mice with the following function:

countMice :: [Pest] -> Int

countMice ps = length (filter isMouse ps)

97

7.1. Geometric Optimization Libraries

That is, we count the number of elements of the given list which are mice.

It is important to note that the list type in Haskell is homogeneous. Trying to
create a list out of a dog and a mouse would result in a compile-time error, as dogs
and mice do not have the same type. Nevertheless, we sometimes want to group
together different types. The algebraic structure of Haskell types allows us to do this
easily:

data HouseAnimal = HousePet Pet | HousePest Pest

A house animal is either a house pet or a house pest, and we may construct
a HouseAnimal with either of the single-argument value constructors HousePet or
HousePest. We may then construct a list of house animals as follows:

someAnimals :: [HouseAnimal]

someAnimals = [HousePet Dog, HousePest Rat, HousePest Mouse]

If we want to create a single function which converts from the base type to the
house type, we cannot do this directly, because the function must have a single type.
We can get around this by using Haskell typeclasses. For example, we may define a
ToHouseAnimal typeclass:

class ToHouseAnimal a where

toHouseAnimal :: a -> HouseAnimal

We may then instantiate this class for Pets and Pests as follows:

instance ToHouseAnimal Pet where

toHouseAnimal p = HousePet p

instance ToHouseAnimal Pest where

toHouseAnimal p = HousePest p

The map function applies a function to every element of a list, and the ++
operator concatenates two lists. With these various definitions, we may list all of the
animals that live in Susie’s house:

susiesAnimals :: [HouseAnimal]

susiesAnimals = map toHouseAnimal susiesPets

++ map toHouseAnimal susiesPests

Although sound, this use of typeclasses is not very practical. We could model the
animals that live in a house by better organizing the ADTs which define them, while
avoiding the more complicated syntax of typeclasses. In the following subsections, as
I introduce my Goal library, we will see more practical applications of these various
parts of the Haskell type system.

98

Chapter 7. Simulations

7.1.2 Manifolds

Goal is a Haskell library for numerical optimization. The core datatypes, typeclasses,
and functions of Goal are modelled after concepts from differential geometry. As I
hope to demonstrate, drawing on concepts from differential geometry provides an
interface for numerical optimization algorithms which is effective, intuitive, and con-
cise. In particular, Goal is effective because it provides good definitions for the
compile-time evaluation of numerical programs; Goal is intuitive because the various
definitions which it employs ensure that the purpose of complex numerical algorithms
remain transparent; and Goal is concise because the rich structure associated with ev-
ery numerical object allows us to implement complex algorithms with a few high-level
functions.

To begin, the most fundamental typeclass in Goal is Manifold :

class Manifold m where

dimension :: m -> Int

Any type which is a Manifold must have a function which defines its associated
dimension. Let us define a few manifolds. The simplest manifold is Euclidean space:

data Euclidean = Euclidean Int

instance Manifold Euclidean where

dimension (Euclidean n) = n

The value constructor Euclidean is defined simply by an integer, which specifies
its dimension. If we take the tensor product of two manifolds, we can define a
third manifold with a dimension equal to the product of the dimensions of the input
manifolds:

data Tensor m n = Tensor m n

instance (Manifold m, Manifold n) => Manifold (Tensor n m) where

dimension (Tensor n m) = dimension m * dimension n

Optimization is concerned with finding the best points on a manifold. As such,
we must define a type for a point on a manifold. Now a manifold itself is simply a
set, and can in principle be made of just about anything. As such, it is not easy to
define a general type for a point on a manifold. What we can easily do, however, is
define a point on a manifold in a particular coordinate system, or chart:

data c :#: m = Point m [Double]

Although I have called the value constructor of a point Point, the type constructor
of a point is rather the operator : # :. As we will later see, defining the type
constructor of a point as an operator leads to much more readable types for the
resulting points. I have chosen this symbol because the datatype operators in Haskell
must be surrounded by colons, and the # symbol looks rather like the grid of a
coordinate system.

The : # : type constructor is a function of two types, c and m. m indicates
the manifold on which the point lies, and c indicates the chart in which the point is

99

7.1. Geometric Optimization Libraries

expressed. The value constructor Point is also a function of two arguments, but in
this case it is the coordinates of the point as given by a list of doubles (real values),
and the manifold m on which the point lies.

Notice that the chart c in the type constructor : # : does not appear as an
argument of the value constructor Point. This means that c is a so-called phantom
type. A phantom type is a type which only lives at the type level. In practice what
this means is that the only way for the chart to influence computations is through
typeclasses. The most fundamental typeclass in Goal which depends on the chart of
a point is the Transition typeclass, which re-expresses a point in a different chart.

For example, let us consider two charts on Euclidean space:

data Cartesian

data Polar

Observe that because charts are phantom types, they do not need value construc-
tors. The Transition typeclass is then defined as:

class Transition c d m where

transition :: c :#: m -> d :#: m

The transition function takes a point in c-coordinates, and returns the same point
in d-coordinates. In the case of the 2-dimensional Euclidean space for example, we
may instantiate the coordinate transforms between the Cartesian and Polar charts
as follows:

instance Transition Cartesian Polar Euclidean where

transition (Point (Euclidean 2)) [x,y]) =

Point (Euclidean 2) [sqrt (x^2 + y^2), atan2 y x]

instance Transition Polar Cartesian Euclidean where

transition (Point (Euclidean 2)) [r,a]) =

Point (Euclidean 2) [r * cos a, r * sin a]

Note that we do not need to specify the charts of the input and output of the
transition function, as they are inferred from the definition of the function in the
Transition class. I depict an example of transforming from Cartesian into Polar
coordinates in figure 7.1.

7.1.3 Differential Geometry

We have now amassed a number of definitions for working numerically with mani-
folds. However, we are still not in a position to perform numerical optimization, as
this requires that we define types and functions for working with differentiable and
Riemannian manifolds. Ultimately we want to define gradient descent of a function
on a manifold, which requires definitions for tangent spaces and metric tensors. To
begin, let us define tangent spaces:

100

Chapter 7. Simulations

y

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
x

a
n
g
le

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
radius

Figure 7.1: Here I depict an application of the transition function from Cartesian to Polar coordi-
nates. Left : A regular grid of points in Cartesian coordinates. Right : I map the grid of points from
the left plot into Polar coordinates with the transition function, and plot the angle and radius of
the resulting points.

data Tangent c m = Tangent (c :#: m)

instance Manifold m => Manifold (Tangent c m) where

dimension (Tangent (Point m _)) = dimension m

A tangent space is a kind of manifold with a more complicated definition than
what we have seen so far. Mathematically, a tangent space is a vector space defined
at a single point. In Goal, however, we do not work with points directly, but rather
the coordinates of points in particular charts. In Goal I therefore define the tangent
space at a point c : # : m as the tangent space of the manifold m embedded locally in
the chart c. The value constructor Tangent thus takes a single point as an argument,
and the type constructor Tangent takes two arguments, which indicate the chart and
manifold of the underlying point. Finally, the dimension of a given tangent space
is the dimension of the underlying manifold, in accordance with the mathematical
definition.

In order to define gradient descent on a manifold, we also need to define cotan-
gent spaces. In order to express cotangent spaces in Goal I apply another practical
trick. Rather than defining a cotangent space as a distinct kind of manifold, I define
a cotangent space as an element of a tangent space in a different coordinate sys-
tem. This works in practice because tangent and cotangent spaces are isomorphic. I
therefore define two charts for tangent spaces:

data Directional

data Differential

A point in a tangent space in directional coordinates represents a tangent vector,
and a point in differential coordinates represents a cotangent vector. The last step
toward implementing gradient descent on manifolds is defining the metric tensor. In
order to express the metric tensor in a particular chart, we define the Function chart:

101

7.1. Geometric Optimization Libraries

data Function c d

The type constructor Function takes two arguments, which correspond to the
chart of the domain and codomain of the function question. Given this definition, we
may then define a manifold as Riemannian with the following typeclass:

class Manifold m => Riemannian c m where

metric :: c :#: m -> Function Directional Differential

:#: Tensor (Tangent c m) (Tangent c m)

flat :: Directional :#: Tangent c m

-> Differential :#: Tangent c m

sharp :: Differential :#: Tangent c m

-> Directional :#: Tangent c m

This is the most verbose typeclass definition that I present, but it is not especially
complicated. Firstly, a Riemannian manifold is defined by the function metric which
takes a point, and returns a matrix in the tensor product space of the tangent and
cotangent space. As such, it is a bilinear form on two tangent vectors, which matches
the definition of the metric tensor. Notice that we have two additional functions, flat,
and sharp, in this class. These functions are simply the applications of the metric
tensor and its transpose to a tangent and cotangent vector, respectively.

We are now ready to implement gradient descent on a manifold. Firstly, we define
a single step of gradient descent as the function:

gradientStep

:: Manifold m

=> Double

-> Directional :#: Tangent c m -> c :#: m

gradientStep eps (Point (Tangent (Point m xs)) fs') =

Point m (zipWith (+) xs (map (*negate eps) fs'))

The most complicated part of this function is simply deconstructing the given
tangent vector. We break the tangent vector down into the underlying manifold m,
the coordinates of the current point xs, and the coordinates of the tangent vector fs’.
We then multiply the tangent vector by the negative of the scalar eps, which is the
step size of the gradient descent, and we add this to the coordinates xs, and return a
new point on the manifold m with these coordinates.

Finally, we may implement gradient descent on a manifold with the following
function:

gradientDescent :: (Riemannian c m, Manifold m)

=> Double

-> (c :#: m -> Differentials :#: Tangent c m)

-> (c :#: m)

-> [c :#: m]

gradientDescent eps df p0 =

iterate (gradientStep (-eps) . sharp . df) p0

102

Chapter 7. Simulations

The three arguments to gradientDescent are the step size eps, the differential
map of the function we are trying to minimize df, and the initial point of the gradient
descent p0. The iterate function returns a list which contains repeated applications
of the given function on the initial point. In this case, the initial point is p0, and
the given function is the composition of applying the differential map, applying the
transition function to compute the tangent vector, and taking a step along the vector.
I use this gradient descent function in computing figure 2.2, in combination with the
definitions I provide in the next subsection.

7.1.4 Exponential Families

Now that we have some general tools for working numerically with points on man-
ifolds, let us implement exponential family manifolds using this tool set. The first
step is to define some charts:

data Standard

data Natural

data Mean

The Natural and Mean coordinate systems indicate the natural and mean coordi-
nate systems developed for exponential family manifolds in section 2.3. The Standard
chart is used to represent some standard set of parameters for a family, for example
the mean and variance of the normal family.

The next step is to define the class of exponential family manifolds:

class Manifold m => ExponentialFamily m where

sufficientStatistic :: m -> Double -> Mean :#: m

baseMeasure :: m -> Double -> Double

logPartitionFuntion :: Natural :#: m -> Double

negativeEntropy :: Mean :#: m -> Double

The sufficientStatistic and baseMeasure define an exponential family. We must
also include the logPartitionFunction and negativeEntropy functions in this definition,
as there is no automatic way to compute the integrals which define them.

Based on the ExponentialFamily class, we may define the probability density of a
point on an exponential family manifold in general as:

density :: ExponentialFamily m

=> Natural :#: m -> Double -> Double

density p@(Point m _) x =

exp (p <.> sufficientStatistic m x - logPartitionFunction p)

Here the < . > function is the dot product between the two points in natural and
mean coordinates, respectively.

In contrast to the case of integrals, we may use automatic differentiation libraries
to implement the transition function between the Mean and Natural coordinates
by computing the derivatives of the logPartitionFunction and negativeEntropy. The

103

7.2. Restricted Boltzmann Machines

transition functions from Natural to Mean coordinates and Mean to Natural coor-
dinates implement the forward and backward mappings, and so merely by defining
the logPartitionFunction and negativeEntropy functions, we may automatically im-
plement a variety of statistical algorithms. For example, given a list of data, we
may compute the maximum likelihood estimator of a normal distribution in Natural
coordinates as follows:

normalMLE :: ExponentialFamily m

=> [Double] -> Natural :#: Normal

normalMLE xs = transition $ sufficientStatisticN Normal xs

Here, the sufficientStatisticN function is the average of the sufficientStatistic over
the given data xs. By combining the exponential family class with automatic differen-
tiation, we may also automatically instantiate the Riemannian class for exponential
families, as well as easily implement the exponential family multiplayer perceptrons
defined in section 5.2.2.

At this point Goal is composed of roughly ten thousand lines of code, and what
I have described here is only an overview of some of the core functionality of Goal.
Beyond this I have implemented types and functions for working with manifolds
of neural networks and mechanical systems, for simulating mechanical systems and
stochastic systems, as well as additional optimization techniques, and for implement-
ing filtering and control theory algorithms. All of these libraries, as well as the scripts
for generating the figures in this dissertation, are available online at my repository
https://hub.darcs.net/alex404/goal.

7.2 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) is a harmonium model defined by a pair of
product familiesMX andMZ of independent Bernoulli distributions. In this section
I train a pair of RBMs on the MNIST dataset of handwritten digits. I train the
first RBM with the rectification-based algorithm which I introduced in subsection
4.1.3, and I compare the result with the second RBM which I train with contrastive
divergence minimization (Hinton, 2002). This experiment demonstrates that models
which are not naturally rectified can be approximately rectified and still explain data.

The MNIST dataset is a collection of 8-bit greyscale images with 28× 28 pixels,
such that each element of the MNIST set is a 784-dimensional vector of integers
between 0 and 255. For the purposes of this experiment, I transform the MNIST
dataset into a target distribution PZ of vectors of 0s and 1s. Since I ultimately use
stochastic gradient descent (see section 2.2) to train the RBMs, I define PZ implicitly
with the following sampling procedure: I select a random element of the MNIST
training set with a uniform probability; I normalize each pixel to be between 0 and
1 such that each value can be interpreted as a probability of the pixel being 0 or 1; I
then resample these pixels to be either 0 or 1 based on the assigned probability.

In this experiment I train a pair of RBMs to model this PZ . In both cases the
RBMs are defined by the exponential familiesMX andMZ , whereMX is the product
family of 64 independent Bernoulli distributions, andMZ is the product family of 784
independent Bernoulli distributions. The first model QR

XZ is an RBM trained with
rectification-based algorithms, and the second model QCD

XZ is trained with contrastive

104

https://hub.darcs.net/alex404/goal

Chapter 7. Simulations

Rectification-Based Algorithm: Contrastive Divergence Minimization:

-L
o
g
-L
ik
e
lih
o
o
d

0

100

200

300

400

500

600

0 5 10 15 20
Epoch

Figure 7.2: In this figure I compare the results of training QR
XZ and QCD

XZ on MNIST. Top: The
receptive fields of each of the 64 neurons in the hidden layers of the trained RBMs. Bottom: The
approximate negative log-likelihood of QR

X on the validation date of MNIST.

divergence minimization. In the second case, contrastive divergence minimization is
a widely-applied algorithm for approximating the derivatives of D(PZ ‖ QCD

Z) with
respect to the parameters of the RBM.

In the case of QR
XZ , I minimize the training objective D(PZ ‖ QR

Z) in parallel with
the rectification error D(P ∗X ‖ QR

X), where P ∗X is the rectifier described in section
4.1.3. Under the assumption that the rectification error is small, I approximate the
expectations in the derivatives of D(PZ ‖ QR

Z) (see equations 4.8) with approximate
samples from QXZR generated by sampling QR

X followed by QR
Z|X .

I implement gradient descent on these approximate gradients with the Adam
algorithm (Kingma and Ba, 2014). For this I use a learning rate of ε = 0.001, and
otherwise I use the standard parameters listed in the paper. I trained each model for
20 epochs, where each epoch is composed of 1000 gradient steps, and each gradient
step is the average of the approximate gradients of 10 samples from PZ . I plot the
results of this experiment in figure 7.2.

In the upper plots of this figure I display the receptive fields of the hidden neurons
in both RBMs. The receptive field of neuron i is the vector of probabilities QZ|X=δi ,
where δi is a vector where the ith element is 1, and all other elements are 0. The
receptive field visualizes the image to which the given neuron most strongly responds.
There are many similarities between these two collections of receptive fields: the
trained neurons respond weakly to pixels on the edge of the image, and many neurons

105

7.3. Biological Neural Circuits

have patches of low-response embedded in a high-response area. On the other hand,
the receptive fields of QR

XZ reveal that the hidden neurons of QR
XZ respond most

strongly to images which look roughly like digits. By contrast, the representation
learned by QCD

XZ appears much more distributed in nature.
In the lower plot I depict the approximate negative log-likelihood of QR

Z given
10,000 samples from the MNIST validation dataset after each training epoch. In
general, there is no closed-form expression for the negative log-likelihood of a harmo-
nium model. However, when the harmonium model is approximately rectified, then
we may use corollary 4.4 to compute the approximate negative-log likelihood. As
can be seen, the rectification-based algorithm minimizes this approximate negative
log-likelihood, and thereby appears to effectively train QR

XZ to represent the MNIST
dataset.

7.3 Biological Neural Circuits

In this section I run three simulations in which I model how a biological neural circuit
learns to implement a Bayes filter and thereby compute beliefs about a dynamic
stimulus. The three stimuli are colour sequences which I model as a finite-state
Markov chain; the position of a mouse on a track which I model as a 1-dimensional
linear dynamical system; and the angle and angular velocity of a human arm, which
I model as a pendulum.

I model these neural circuits with neural Bayes filters (Xk, Zk, Vk,Wk)k∈N, with
emission distributions given by the likelihood of a homogeneous LPPC. For the pur-
poses of this section, I refer to (Zk)k∈N as the observation population, (Vk)k∈N as the
prediction population, and (Wk)k∈N as the posterior population.

A neural Bayes filter is defined by the parameters of the emission distribution
ΘZ and θZ , and the recoder A; the parameters of the prediction population θVX and
ΘV , and recoder B; the parameters of the posterior population θWX and ΘW ; and the
initial prior encoding v0. For the purposes of the experiments in this section, I set
these parameters by hand. The remaining parameters are the parameters χ of the
EFMLP v, which I optimize with the method described in subsection 5.2.4, except
for the weights in the output layer ΘW .

In order to test what kind of population codes are likely used by the brain, I
train two candidate neural circuits which differ in the parameters of the prediction
and posterior populations. Moreover, when training the EFMLP in each circuit, I
apply and compare contrastive divergence minimization with a rectification-based
algorithm, leading to a total of four sub-experiments in each experiment. In each
experiment I also validate the learned filter against the corresponding optimal, or
mostly optimal, filter. The result of this section are adapted from my article Sokoloski
(2017).

7.3.1 Training and Validation Procedure

In each simulation I define the sum of the tuning curves of the homogeneous LPPC
as constant, so that ρX = 0. I define the parameters of the prediction and posterior
populations by θVX = θWX = 0, and ΘV = ΘW . This implies that the recoder
B = I. In this case we may intuitively think of the two neural populations as a
single population for encoding approximate beliefs. Finally, I set the initial rates of

106

Chapter 7. Simulations

Parameter Experiment 1 Experiment 2 Experiment 3
dZ = dV = dW 10 10 20

dY 100 200 500
nt 10, 000 10, 000 20, 000

Table 7.1: In this table I show the simulation parameters which change in each experiment. These
are the sizes of the observation, prediction, and posterior populations dN , dY , dZ , respectively; the
number of hidden neurons in the EFMLP dY ; and the number of steps in the training simulation
nt. In all experiments, ΘZ = ΘY and y0 = 0; in the naive circuit ΘZ = ΘN , and in the orthogonal
circuit ΘZ is constructed from orthogonal rows which are also orthogonal to 1. Where ie is the
epoch, the initial learning rate of the Adam algorithm is ε = 0.00005 · 1.25−(ie−1), and contrastive
divergence is run with ie contrastive divergence steps.

the prediction population to y0 = 0, such that the prediction population initially
encodes a flat prior over the stimulus.

I define the parameters of the posterior population ΘW in one of two ways. The
first is by setting ΘW = ΘZ , which I refer to as the naive code. In the case A = I.
I refer to the second code as the orthogonal code, based on the code presented in
the supplementary material of Beck et al. (2011). In this case we construct ΘW

from a set of mutually orthogonal rows, which are also orthogonal to the vector of
ones, such that ΘZ,i · ΘZ,j = 0 for i 6= j, and ΘZ,i · 1 = 0. As a result of this,
ΘW · 1 = 0, which implies that for any rates of the posterior population w, the rates
w + c1 encode the same beliefs for any scalar c. The details of constructing ΘW , as
well as a corresponding recoder A which satisfies equations 5.6, can be found in the
supplementary material of Beck et al. (2011).

For the naive code, because ΘZ = ΘV = ΘW , all three neural populations in
the circuit have the same number of neurons. In the case of the orthogonal code,
because ΘV = ΘW , the prediction and posterior populations have the same number
of neurons; this number however need not equal the number of neurons in the obser-
vation population. Although we could set the number of neurons in the prediction
and posterior populations to be different from the number in the observation popula-
tion, I define ΘW to have the same number of columns as ΘZ in order to ensure that
differences in circuit performance are not simply due to differences in the number of
parameters. This implies that in all the cases we consider, dZ = dV = dW , which is to
say that the observation, prediction, and posterior populations always have the same
number of neurons. For the number of neurons in each experiment, and a summary
of all simulation parameters, see table 7.1.

In all experiments I define the EFMLP : HW → HV by the three exponential
familiesMW ,MY , andMV . I defineMY to be the product family of dY independent
Bernoulli distributions, so that the transfer function in the hidden layer of the EFMLP
is the logistic function. I defineMW andMV to be product families of independent
Poisson distributions, so that the EFMLP has an exponential transfer function in the
output layer. I use the exponential function on the output layer to ensure that the
rates computed by the EFMLP are always positive. This is especially important in
the case of the naive code, as negative rates cannot be reliably decoded by ΘZ .

The training objective for v is to minimize the relative entropy in expression 5.14.
In order to approximate the derivatives of this expression, I apply either contrastive
divergence minimization, or I use the rectification of the emission distribution to es-

107

7.3. Biological Neural Circuits

timate the expectations in the derivatives with approximate samples (see equation
5.15). Given the proposed neural circuits and gradient approximation schemes, I run
four parallel simulations in every experiment, by applying either contrastive diver-
gence minimization (CD) or the rectification-based algorithm (R) to approximating
the stochastic gradient (2.5), in order to train the neural circuits based on either the
naive (NV) or orthogonal (OT) population codes. I denote these four simulations
and corresponding circuits by NV-R, NV-CD, OT-R, and OT-CD.

In each experiment I train each neural circuit over the course of twenty epochs,
where each epoch is composed of a training simulation of nt steps. During the training
simulation, where ie is the number of the current epoch, I reset the rates of the
prediction population Vk to 0 every (ie − 1)2 number of steps. I do this because
newly initialized EFMLPs v tend to be unstable, in that recursively evaluating Wk

for large k tends to result in rates which diverge and fail to encode accurate beliefs.
By first training θW |V on shorter, stable paths, we may avoid this problem and better
maximize the likelihood of the parameters χ.

I use the Adam algorithm to update the parameters χ (Kingma and Ba, 2014).
At every epoch I define the initial learning rate to be ε = 0.00005

1.25ie−1 , and otherwise I
use the parameters listed in the paper. Finally, when applying contrastive divergence
minimization, I also set the number of contrastive divergence steps equal to the epoch
number ie.

After each training epoch I validate the trained neural circuits on a simulation
of nv = 200, 000 steps. I compute the sequence of rates w0, . . . ,wnv of the posterior
population as a function of the sequence of validation responses z0, . . . , znv without
resetting the rates of the prediction population. Where ε is a function which mea-
sures error given a stimulus and the natural parameters of a belief distribution, I
then compute the average of the error measure EW =

∑nv
i=0

ε(xi,ΘW ·wi)
nv

. In the first
and second experiments I define ε as the negative log-likelihood, and in the third
experiment, since the negative log-likelihood does not have a closed-form expression,
I define ε as the mean-squared error.

By computing the average error EOpt =
∑nv

i=0
ε(xi,θk)
nv

on the belief parameters
θk of the closed-form filters described in section 5.2.1, I compute a lower-bound on
the error of the trained circuits. Conversely, since any useful filter must provide
more information about the stimulus then the instantaneous responses, I compute
EZ =

∑nv
i=0

ε(xi,ΘZ ·zi)
nv

to provide a performance upper-bound. Finally, by computing

the ratio r = EW−EZ
EOpt−EZ

, I express the performance of the neural circuit in question as

a percentage of the distance achieved from the upper- to the lower-bound.
Finally, in the last two experiments I also estimate the tuning curves of the hidden

layer of the EFMLP with respect to the stimuli. I estimate these tuning curves by
simulating the trained neural circuits for nv steps, and then sorting these steps into
bins, where each bin contains the activity of the hidden layer of the EFMLP when the
stimulus is near a particular stimulus value. I then average the rate of each hidden
neuron in each bin, in order to estimate the mean activity of the hidden neuron given
the stimulus that corresponds to the bin.

7.3.2 Colour Sequence Learning

In this simulated experiment I imagine that subjects are shown sequences of colours
drawn from red, green, and blue. The colours are described by a Markov chain, such

108

Chapter 7. Simulations

that each colour has a certain probability of appearing based on the previously seen
colour. Subjects must learn to predict the sequence as well as possible. I assume
that the stimuli change quickly, so that subjects do not always perceive the stimulus
before it transitions to the next stimulus value. I consider how this problem might
be solved in the ventral stream, and model colour-sensitive neurons in the visual area
V4 with the observation population, and sequence-learning neurons in the inferior
temporal cortex with the prediction and posterior populations (Roe et al., 2012).

For simplicity, let us denote the three colour values by r, g, and b. The transition
probabilities of the Markov chain are

pX′|X(r | r) = pX′|X(b | b) = 0.8, pX′|X(g | g) = 0.5,

pX′|X(r | g) = pX′|X(b | g) = 0.25, pX′|X(g | r) = pX′|X(g | b) = 0.15,

pX′|X(b | r) = pX′|X(r | b) = 0.05.

Intuitively, blue tends to stay blue and red tends to stay red, whereas green is a
relatively transitory state. Moreover, red and blue tend to first transition through
green before reaching blue and red, respectively.

I assume that the observation population has dN = 10 neurons, and that the gain
γ = 1. I define the tuning curve of neuron i given blue as fi(b) = e0.4(i−1)−5, given
red as fi(r) = f10−i(b) and given green as fi(g) = 1

n

∑10
i=1 fi(b). This construction

ensures that equation 6.4 is satisfied exactly. Intuitively, the low-index neurons of
the observation population respond to red, the high-index neurons respond to blue,
and the observation population responds with a uniform pattern of activity to green,
which provides little information about the true colour. Finally, I set the number of
hidden neurons in the EFMLP to dY = 100.

I depict the results of the simulations of the NV-R, NV-CD, OT-R, and OT-
CD circuits in figure 7.3. As displayed in the left panel, the circuit which best
approximates the true beliefs of the Bayes filter is the orthogonal circuit trained
with the rectification-based approximation of the stochastic cross-entropy gradient
(solid red), which achieves r = 95.4% of the performance of the Bayes filter. In this
experiment, because the emission distribution is exactly rectified, it is unsurprising
that the rectification-based gradient produces the best results, as it is in fact equal to
the true stochastic gradient. It is surprising, however, that the choice of population
code has such a dramatic effect on the learning. Where the orthogonal circuits more
or less completely recover the true beliefs, the naive circuits cannot even surpass the
baseline provided by the responses.

In the right panels of figure 7.3 I display 30 steps of a simulation from this system.
In the top right panel I use the opacities of coloured squares to show the dynamic
beliefs of both the optimal and OT-R filter, and one can see how the beliefs of the
two filters are nearly identical. In the bottom right panel I show the corresponding
population responses. In total, the observation population spikes 25 times over the
course of the simulation. Both filters initially recognize that the stimulus is blue.
However, in the middle of the simulation when the stimulus changes to red and back
to blue again, the filters cannot recognize this, as no spikes reveal this transition.

7.3.3 Self-Localization

In this simulation I model self-localization in a mouse confined to a one-dimensional
track, which explores the local track while avoiding straying too far from its home

109

7.3. Biological Neural Circuits

A
v
e
ra

g
e
 N

e
g

a
ti

v
e
 L

o
g

-L
ik

e
lih

o
o
d

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20
Epoch

Learned

Stimulus

Optimal

0 10 20 30
Step

Red

Blue

0 10 20 30
Step

Figure 7.3: Here I depict the training of the proposed neural circuits, and a simulation with the OT-
R circuit. Left : The average negative log-likelihood of the approximate beliefs given the stimuli over
each epoch. I display the descent of the NV-R circuit (blue), the NV-CD circuit (dashed blue), the
OT-R circuit (red) and the OT-CD circuit (dashed red). I also depict the baseline (black) provided
by the population responses and the optimum (green) computed by the discrete Bayes filter. Top
Right : A simulation from the Markov chain (coloured circles), as well as the learned an optimal
filters. The beliefs of the optimal filter (top) and the learned filter (bottom) are indicated by the
opacity of a colour, which corresponds to the inferred probability of the stimulus value. Bottom
Right : The responses of the observation population over the 30 steps of the simulation. Spikes
(black diamonds) from a particular neuron are arranged along the x-axis in accordance with the
neuron index.

position. I model the dynamics of the position of the mouse with a stochastic, one-
dimensional, linear dynamical system. By applying a neural Bayes filter, I model how
the mouse learns to track its position in a novel environment with place cells in the
hippocampus, given noisy position estimates provided by visual cues (McNaughton
et al., 2006). I model place cells with the posterior population, and cue-sensitive cells
with the observation population.

Since the position of the mouse is a continuous-time variable, we may describe it
with the linear stochastic differential equation

dXt = aXtdt+ bdWt,

where Wt is a Wiener process. Where h is the time-step, this implies that the tran-
sition distribution PX′|X of the time-discretized system at x is a normal distribution
with mean x+ hax and variance hb2. In this case I set a = −1, b = 1, and h = 0.02.
I then define the observation population to have dZ = 10 neurons with the 1-d Gaus-
sian tuning curves defined in equation 6.2, with gain γ = h ·100 = 2, preferred stimuli
x0
i distributed uniformly over the interval [−7, 7], and variance σ2 = 2. Finally, I set

the number of hidden neurons of the EFMLP to dY = 200.
I depict the results of the four simulations in figure 7.4. As depicted in the top

right panel, the orthogonal circuit trained with the rectification-based algorithm (red)
best approximates the optimal filter, achieving r = 96.0% of the performance of the
optimal filter, which is slightly better than the OT-CD circuit. In the left panel I
display a 2 second simulation from the system. The black dots indicate the mean of

110

Chapter 7. Simulations

P
o
si
ti
o
n

-2

-1

0

1

2

0 0.5 1 1.5 2
Time

A
v
g

.
-L

o
g
-L

ik
e
lih

o
o
d

0

0.5

1

1.5

2

0 5 10 15 20
Epochs

A
ct
iv
a
ti
o
n

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3
Position

Figure 7.4: Here I depict the training of the proposed neural circuits, and simulations with the
OT-R circuit. Top Right : The descent of the negative log-likelihood using the same colour scheme
as in figure 7.3. Left : A simulation from the dynamical system, where I depict the stimulus (black
line), and the dynamic mean of the response posteriors (black dots), the optimal belief distribution
(green line), and the learned belief distribution (red line). Bottom Right : Six tuning curves from
the hidden layer of the EFMLP.

the posterior PX|Z=zk of each response zk under the assumption of a flat prior. The
mean of the optimal beliefs (green line) given these responses is very close to the
true stimulus, and the mean of the learned beliefs (red line) is nearly identical to the
optimum. In the bottom right panel I display six approximate tuning curves from
the hidden layer of the trained EFMLP v, which has learned sigmoid tuning curves
over the stimuli.

7.3.4 Proprioception

In this final simulated experiment I model how a human optimizes its forward model
of the swing of its arm. I focus on the role of the cerebellum in proprioception, and
assume that Purkinje cells in the cerebellum receive information about the angle and
angular velocity of the shoulder from proprioceptors, and use this information to drive
a forward model of arm position (Kawato et al., 2003; Franklin and Wolpert, 2011).
I model the neural populations in the cerebellum with the prediction and posterior
populations, and the proprioceptors with the observation population.

For simplicity, I assume that the arm may be described by a single rigid body
at a joint, and that the subject uses random motions of the arm in order to explore
its dynamics. I therefore model the arm as a stochastic pendulum, which is a two-
dimensional stochastic process over the angular position q, and the angular velocity
q̇. I define the discrete-time transition dynamics PX′|X of the stochastic pendulum at
x = (q, q̇) as a multivariate normal distribution with mean x + ha(x) and covariance
matrix h2Σ, where h is the time-step. The function a is known as the drift, and is

111

7.3. Biological Neural Circuits

given by

a1(q, q̇) = q̇,

a2(q, q̇) = −g sin(q)− cq̇,

where g = 9.81 is the gravitational constant and c = 0.1 is the coefficient of friction.
I define the covariance matrix of the process by

Σ(1,1)(q, q̇) = Σ(1,2)(q, q̇) = Σ(2,1)(q, q̇) = 0,

Σ(2,2)(q, q̇) = σ2
q̇ ,

where σ2
q̇ = 1 is the variance of the noise process. By restricting the noise to the

velocity, we may interpret the noise to be the result of the subject applying random
forces to its arm. Finally, I define h = 0.02.

I define the gain of the emission distribution PZ|X as γ = h · 100 = 2, and I define
the tuning curves of PZ|X with two independent sets of tuning curves over the angle
and angular velocity, such that half the neurons in the observation population respond
to angle, and the other half to angular velocity. Since the angle is periodic, I define the
tuning curves over the angle as a set of von Mises tuning curves (6.3) with 10 preferred
stimuli q0

i distributed uniformly over the period [−π, π], and concentration κ = 1/2.
The tuning curves over the angular velocity are again 1-dimensional Gaussian tuning
curves as defined in equation 6.2 with 10 preferred stimuli distributed uniformly over
the interval [−12, 12], and covariance σ2 = 4. The sufficient statistic of the exponen-
tial familyMX determined by these tuning curves is sX(q, q̇) = (cos q, sin q, q̇, q̇2). In
total, the neural populations have dZ = dW = dV = 20 neurons, and I set the number
of neurons in the hidden layer of the EFMLP v to dY = 500.

I depict the results of the four simulations in figure 7.5. For the purposes of valida-
tion, I apply an approximate EKF based on the von Mises approximation developed
in section 5.2.1. As displayed in the top left panel, the circuit which best approx-
imates the optimal beliefs, by an extremely slim margin over the OT-R circuit, is
the orthogonal circuit trained with the contrastive divergence minimization (dashed
red), which achieves r = 89.7% of the performance of the approximate EKF.

In the lower two panels I depict a 4 second simulation from the system. The
black dots, green line, and red line depict the mean of the response posteriors, the
approximate EKF, and the learned beliefs, as in the previous section. The blue
line depicts the mean of the posteriors of an approximate Kalman filter with linear
dynamics given by the small-angle approximation, and which updates its beliefs with
the same strategy as the approximate EKF. As can be seen, a straightforward linear
model is not sufficient for tracking the nonlinear stimulus.

In the upper right two panels I depict two tuning curves from the hidden layer of
the trained EFMLP I plot the two-dimensional tuning curves by plotting the stimulus
angle on the x-axis, and indicating the angular velocity with the colour of the line,
where black corresponds to -6, and red to 6. As can be seen in these plots, the
tuning curve over the angle is a von Mises tuning curve, and the angular velocity is
a monotonic function, and the two components interact multiplicatively.

7.3.5 Analysis of Results

One of the most striking results of these simulations was that the performance of
the naive circuit was significantly worse than the orthogonal circuit. In the self-

112

Chapter 7. Simulations

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

0

0.5

1

1.5

2

2.5

0 5 10 15 20
Epochs

A
ct
iv
a
ti
o
n

0

0.2

0.4

0.6

0.8

1

ππ/20-π/2-π
Angle

A
ct
iv
a
ti
o
n

0

0.2

0.4

0.6

0.8

1

ππ/20-π/2-π
Angle

A
n
g
le

π

π/2

0

-π/2

-π

0 1 2 3 4
Time

A
n
g

u
la

r
V

e
lo

ci
ty

-7.5
-5

-2.5
0

2.5
5

7.5
10

0 1 2 3 4
Time

Figure 7.5: Here I depict the training of the proposed neural circuits, and simulations with the OT-
CD circuit. Top Right : The descent of the mean squared error of the approximate beliefs using the
same colour scheme in figure 7.3, where green indicates the approximate EKF beliefs. Top Right :
Two tuning curves from the hidden layer of the multilayer perceptron. The stimulus angle is plotted
on the x-axis, and the stimulus angular velocity is indicated by the colours from red to black, where
black indicates an angular velocity of -6, and red indicates a velocity of 6. Bottom: Simulation
of the angle and angular velocity from the dynamical system. I depict the stimulus (black line),
and the dynamic mean of the response posteriors (black dots), the approximate EKF belief density
(green line), the approximate KF belief density (blue line), and the learned belief density (red line).

localization and proprioception experiments, the naive circuit performs reasonably
well, though not nearly as well as the orthogonal circuit. In the sequence learning
experiment, however, the naive circuit fails to even achieve the upper-bound on the
error provided by the instantaneous information in the responses. This is surprising,
as the theory of universal approximation ensures that there exists parameters for the
naive circuits for which their performance should be comparable to the orthogonal
circuits. Nevertheless, it appears that the learning itself is heavily impacted by the
choice of population code, and this finding is in line with computational (Boulanger-
Lewandowski et al., 2012) and experimental (Chang and Snyder, 2010) evidence which

113

7.3. Biological Neural Circuits

suggests that diverse population codes improves performance in neural circuits.
I also found that the hidden layer of the prediction network learns tuning curves

over stimuli. In the self-localization experiment (7.3.3), training the network resulted
in sigmoid tuning curves over the unobserved stimuli. Although sigmoid tuning curves
are often found in the brain (Pouget and Sejnowski, 1995; Pouget et al., 2000), sigmoid
tuning curves for self-location have not been found in the limbic system. Although
it could be the case that there exists an as of yet undiscovered neural population in
the limbic system with tuning curves which match those of the learned hidden layer,
I rather suspect that the proposed model neural circuits fail to capture essential
features of the self-localization circuitry.

In simulation 7.3.4, training the neural circuit resulted in von Mises tuning curves
over the angle, and sigmoid tuning curves over the angular velocity, which interact via
multiplication. When the tuning curve over one stimulus interacts multiplicatively
with the tuning curve over another stimulus, it is known as a gain-field or gain
modulation (Salinas and Thier, 2000), and gain-fields have been found in many areas
of the brain (Salinas and Thier, 2000; Hwang et al., 2003; Paninski et al., 2004).
In particular, Herzfeld et al. (2015) demonstrated that eye position and velocity is
encoded by Purkinje cells in the cerebellum with the same gain-field structure as
in the arm-localization circuit. Although the stimuli in this experiment and our
simulated experiment are different, both respective neural circuits must ultimately
predict the motion of parts of the body, and they do so in similar manners.

It is well-known that given data which match population activity for encoding
stimuli, gain-fields can arise spontaneously in the hidden layer of multilayer percep-
trons (Zipser and Andersen, 1988). At the same time, Gaussian/sigmoid gain-fields
have been used to model the neural computation of coordinate transformations in the
posterior parietal cortex (Pouget and Sejnowski, 1995), and were found to be espe-
cially apt for computing addition over the encoded variables. In the proprioception
experiment, although the neural circuit is not performing a coordinate transforma-
tion per se, it is learning to add velocity to position at every time, and therefore
the emergence of this particular gain-field fits well into the existing theory. What is
novel in my work however, is that the neural network is not trained solve a standard
regression problem as in Zipser and Andersen (1988), but is trained rather as part of a
more complex neural circuit for implementing a Bayes filter. As I have demonstrated,
gain-fields continue to emerge in this context.

114

Chapter 8

Conclusion

In this dissertation I have developed a general theory of how embodied agents can
implement Bayesian inference with neural networks. I began the development of
this theory with an analysis of a large class of log-linear graphical model called nth-
order harmoniums. I then developed the theory of rectified harmoniums, which are a
constrained form of harmonium which support conjugate priors and exact sampling.
In order to implement Bayesian filtering, I combined rectified harmoniums with a
recurrent neural network for computing approximate predictions.

I then applied this theory within the context of computational neuroscience. In
particular, I developed the connections between harmoniums and linear-nonlinear
neurons and linear probabilistic populations codes, and showed how my theory can
model phenomena such as proprioception and gain-modulated tuning curves in the
brain. Moreover, I developed an innovative library for the programming language
Haskell within which I implemented the large range of simulations which support my
dissertation.

In concluding this dissertation I present an argument for the fundamental im-
portance of neural computation to embodied cognition. This argument serves as a
review of a number of the topics I covered in my dissertation, but also serves to em-
phasize how the theories I have developed address fundamental issues in embodied
perception. I will then present an outlook of how these results can be extended in
the future.

8.1 Brains, a Priori

What is cognition, and what distinguishes it from life or matter? The theory of
optimization has been applied in physics, biology, and cognitive science to model,
respectively, the dynamics of particles, the evolution of populations, and learning
and inference in cognitive agents. Beyond its efficiency as a compact explanation of
diverse phenomena, the way in which optimization is applied in these three fields can
also help us distinguish their respective subjects.

In physics, Lagrangian mechanics describes the dynamics of particles as the solu-
tion of an optimization problem. Nevertheless, mechanical systems always realize the
optimum of the Lagrangian optimization problem, whereas living things and cogni-
tive agents are never so perfect. Mechanical systems are always optimized, whereas
life and cognition are always adapting to the environment.

So what then distinguishes cognition from life? Let us formalize optimization as

115

8.1. Brains, a Priori

the process of maximizing some value as a function of some variables. In the case of
life, we would formalize natural selection as the process of maximizing the fitness of a
genetic population as a function of all the variables which describe the environmental
niche of the population in question.

At an abstract level, we may think of cognition as the maximization of reward.
In a particular context, this reward will correspond to the goal of some task, such as
find food and water or hide from predators. However, whereas natural selection is a
physical process realized directly by the cycle of death and reproduction, a cognitive
agent does not know the values of the variables which define its rewards. Cognitive
agents must first infer the state of the world before they can realize how to effectively
interact with it.

A cognitive agent gathers information about the world through its senses, and
the agent must optimally combine the information that each of the senses provide.
Moreover, the agent must account for the dynamics of the environment, and keep
collected information up-to-date as the environment changes. Bayesian inference is
the most general theory of probabilistic inference which accounts for and unifies all
these forms of inference.

Two of the most well-known theoretical arguments for the generality of Bayesian
inference are Cox’s theorem and the class of Dutch book arguments (Jaynes, 2003;
Talbott, 2015). On one hand, Cox’s theorem demonstrates that the consistent ex-
tension of propositional logic on binary truth values to continuous probabilities is
given by Bayesian inference. On the other hand, Dutch book arguments demonstrate
that failing to follow the principles of Bayesian inference can lead gamblers to make
wagers which they are guaranteed to lose.

Nevertheless, Bayesian inference only describes optimal inference given a proba-
bilistic description of all the relevant physical and cognitive variables. Before an agent
can infer the unknown environment in a particular context, the agent must learn a
model of the environment in general. Therefore, part of the optimization problem
that a cognitive agent must solve is to optimize the parameters of its model of the
world. One of the most principled ways of defining this optimization problem is as
minimizing the relative entropy of the world distribution with respect to the internal
model of the agent (Shore and Johnson, 1980).

A fundamental constraint on a cognitive agent is that it must dynamically solve
the problems of learning and inference within a finite computational medium. This
entails that both the complexity of the beliefs inferred by the agent and the complexity
of the generative model used to compute these beliefs must be bounded. To address
this, a cognitive agent may combine exponential family models with conjugate priors,
as I studied in chapter 4 under the rubric of rectified harmoniums.

On one hand, it is possible to bound the complexity of a generative model by
defining a statistic that summarizes the information gathered about the model pa-
rameters. It turns out that under mild conditions, the most general class of models
with summary statistics is the class of exponential families (Koopman, 1936). On
the other hand, the complexity of the probability distributions – or beliefs – that the
agent infers may also be bounded by assuming that the agent represents its beliefs
parametrically. In this case the agent may employ prior beliefs which are conjugate
to posterior beliefs, which can also ensure that the complexity of posterior beliefs
remains bounded (see section 2.6).

In order to further reduce the complexity of learning and inference, a cognitive

116

Chapter 8. Conclusion

agent may also employ models with a particular representational topology. That is,
an agent may assume that some physical or cognitive variables only interact through
intermediate representations, as represented by a graphical model. The theory of
graphical models provides a manner of formalizing this concept of intermediate rep-
resentation, which can greatly simplify computations amongst the constituent vari-
ables.

By analyzing several ways of bounding complexity, we have already arrived at a
description of the internal model of a cognitive agent with a high degree of structure
– a structure which is exemplified in my theory of rectified deep harmoniums (section
4.2). Nevertheless, we have yet to address how an agent learns to update its beliefs to
account for a changing environment. As I showed in section 5.2, implementing optimal
updates can be reduced to solving a regression problem – compute the parameters
which best predict future observations as a function of current beliefs. Moreover,
multilayer perceptrons are an excellent candidate for implementing these predictions,
as they approximate functions arbitrarily well (Hornik, 1993).

The theory of universal representation of multilayer perceptrons depends on an
arbitrarily large intermediate layer of simple pattern detectors (Hornik, 1993). These
pattern detectors are sometimes called “neurons”, and pattern detectors which em-
ulate biological neurons have proven to be highly efficient computationally. In the
context of regression, multilayer perceptrons are often composed of pattern detectors
which emulate the average firing rate of biological neurons. Moreover, as I showed in
section 6.3, large populations of Poisson neurons can be rectified in a straightforward
manner, and thereby implement Bayesian inference and support efficient learning
algorithms.

Finally, as discussed in section 6.1, spiking neurons support a continuous-time
semantics, which is an important feature when describing embodied systems. In
general, continuous-time stochastic processes can be described as jump processes, or
diffusions, or a combination of the two. In the context of computation, jump processes
implement digital computation, whereas diffusions implement analogue computation.
Both digital and analogue computation are used in animal brains, but spiking neurons
are the most energy efficient for transmitting information over the long distances of
large, mammalian brains (Sterling and Laughlin, 2015).

In spite of the title, the arguments I have made in this section have not been
strictly a priori. Rather, they have been a collection of arguments based on reason,
fact, and speculation, and whatever else might help make the case for the importance
of neural computation. Nevertheless, when all assembled, I believe these arguments
indeed make the case that the ubiquity of neural computation is not an accident of
evolution. Rather, neural computation is the result of the requirements imposed by
learning to implement Bayesian inference in embodied, dynamic, cognitive systems.

8.2 Outlook

In my dissertation I raised a number of questions which I have yet to answer, and
there are a number of ways I hope to extend this work in the future. In particular,
I derived a number of results concerning the efficiency of rectified deep harmoniums
in subsection 4.2.1. In spite of the potential indicated by these models, I have yet to
validate the algorithms I presented in subsection 4.2.2 for fitting and rectifying deep
harmonium models. The reason for this is simply that validating models of this com-

117

plexity can take months, if not years of work. Nevertheless, in section 7.2 I provided
an initial validation of an algorithm for fitting and rectifying a two-layer harmonium,
which is a key component of the algorithm I developed for deep harmoniums.

Neural adaptation is the change over time in the statistics of how sensory neurons
respond to stimuli (Kohn, 2007; Wark et al., 2007). Neural adaptation is a diverse
phenomenon, covering effects in many parts of the brain (Kohn, 2007; Symonds et al.,
2017), on different timescales (Wark et al., 2009; Zavitz et al., 2016), and at the single
neuron and population level (Benucci et al., 2013; Solomon and Kohn, 2014). One
application of my theory of rectification is in modelling how a neural population could
adapt to stimuli without losing its ability to implement Bayesian inference. To the
best of my knowledge, there are no models which can explain this combination of
adaptation and inference, and I hope to investigate this proposal further.

I also hope to extended my theory of learning to implement Bayesian filtering
to include continuous-time models. Much recent work has been done on how to
efficiently solve Bayes filters for continuous-time processes (Susemihl et al., 2013;
Harel et al., 2015; Cseke et al., 2016), but this work does not address training a
recurrent neural network to approximately implement continuous-time filtering. Such
a neural network would compute differential predictions which change the beliefs of
an agent smoothly over time. These networks have the intuitive feature that when
the neural network evaluates to 0, the beliefs of the agent do not change. However,
training a continuous-time recurrent neural network requires addressing additional
technical challenges which do not arise in the discrete-time case.

Applying the theory of rectification to linear probabilistic population codes led
naturally to defining homogeneous LPPCs. In the context of large populations of
neurons, the activity of a homogeneous LPPC can be described by a convolution of a
shift-invariant tuning curve and a gain function. Moreover, any rectification param-
eters can be implemented by a homogeneous LPPC with a particular tuning curve
with an appropriate choice of gain function. In deep learning, neural networks based
on convolutions have been widely applied in image classification tasks (LeCun and
Bengio, 1995; Krizhevsky et al., 2012). My theory of rectification suggests that deep,
generative, convolutional models may support especially efficient learning and infer-
ence algorithms. In future work I hope to combine rectification with convolutional
neural networks, towards developing a new class of highly-efficient models of natural
images.

118

Appendix A

List of Exponential Families

In this appendix I list a number of exponential families that arise in this disserta-
tion. For a definition of the various notation and terms, see either the Notation or
Glossary sections at the beginning of the dissertation, or consult section 2.3. The
definition of a given exponential family can very depending on where constants and
coefficients are included in the base measure and sufficient statistic. My primary
references for these definitions are Nielsen and Garcia (2009) and the Wikipedia
entry on exponential families at https://en.wikipedia.org/w/index.php?title=
Exponential_family&oldid=780623893.

Categorical Family

The family of all distributions over a finite set of elements.

Ω = {xi}n+1
i=1

s(x) = (s1(x), . . . , sn(x))

si(x) =

{
1, if x = xi

0, otherwise

µ({x}) = 1

ψ(θ) = log(1 +
n∑
i=1

eθi)

φ(η) =
n∑
i=1

ηi log(ηi) + (1−
n∑
i=1

ηi) log(1−
n∑
i=1

ηi).

Bernoulli Family

The family of all distributions over 0 and 1.

Ω = {0, 1}
s(x) = x

µ({x}) = 1

119

https://en.wikipedia.org/w/index.php?title=Exponential_family&oldid=780623893
https://en.wikipedia.org/w/index.php?title=Exponential_family&oldid=780623893

ψ(θ) = log(1 + eθ)

φ(η) = η log(η) + (1− η) log(1− η).

Poisson Family

A family of single-parameter distributions over the natural numbers.

Ω = N
s(x) = x

µ({x}) =
1

x!
ψ(θ) = eθ

φ(η) = η log(η)− η.

Von Mises Family

A family of unimodal distributions over rotations. The log-partition function and
negative entropy of the von Mises family do not have closed-form expressions, how-
ever there are algorithms for sampling from a von Mises distribution, and so many
operations with von Mises distributions can be approximated.

Ω = [−π, π]

s(x) = (cos x, sinx)

µ([0, 1]) = 2π.

Normal Family

The family of normal distributions over the real line.

Ω = R
s(x) = (x, x2)

µ([0, 1]) =
1√
2π

ψ(θ1, θ2) = − θ2
1

4θ2

− 1

2
log(−2θ2)

φ(η1, η2) = −1

2
log(η2 − η2

1)− 1

2
.

Multivariate Normal Family

The family of multivariate normal distributions over Euclidean space.

120

Ω = Rn

s(x) = (x,x⊗ x)

µ([0, 1]n) = (2π)−
n
2

ψ(θ,Θ) = −1

4
θ ·Θ−1 · θ− 1

2
log(−2|Θ|)

φ(η,H) = −1

2
(1 + η ·H · η + log |H|).

121

Bibliography

Ackley, D. H., G. E. Hinton, and T. J. Sejnowski (1985). A learning algorithm for
Boltzmann machines. Cognitive science 9 (1), 147–169.

Altun, Y., A. J. Smola, and T. Hofmann (2004). Exponential families for conditional
random fields. In Proceedings of the 20th Conference on Uncertainty in Artificial
Intelligence, pp. 2–9. AUAI Press.

Amari, S.-i. and H. Nagaoka (2007). Methods of Information Geometry, Volume 191.
American Mathematical Soc.

Arnold, B. C., E. Castillo, and J. M. Sarabia (2001). Conditionally specified distribu-
tions: An introduction (with comments and a rejoinder by the authors). Statistical
Science 16 (3), 249–274.

Arnold, B. C. and S. J. Press (1989). Compatible conditional distributions. Journal
of the American Statistical Association 84 (405), 152–156.

Athreya, K. B. and S. N. Lahiri (2006). Measure Theory and Probability Theory
(Springer Texts in Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Beck, J., P. Latham, and A. Pouget (2011). Marginalization in Neural Circuits with
Divisive Normalization. The Journal of Neuroscience 31 (43), 15310–15319.

Beck, J., W. J. Ma, R. Kiani, T. Hanks, A. Churchland, J. Roitman, M. Shadlen,
P. Latham, and A. Pouget (2008, December). Probabilistic Population Codes for
Bayesian Decision Making. Neuron 60 (6), 1142–1152.

Beck, J. M. and A. Pouget (2007). Exact inferences in a neural implementation of a
hidden Markov model. Neural computation 19 (5), 1344–1361.

Bengio, Y., P. Simard, and P. Frasconi (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks 5 (2), 157–166.

Benucci, A., A. B. Saleem, and M. Carandini (2013, June). Adaptation maintains
population homeostasis in primary visual cortex. Nature Neuroscience 16 (6), 724–
729.

Bernigau, H. (2015, April). Causal Models over Infinite Graphs and their Application
to the Sensorimotor Loop.

Besag, J. (1974). Spatial Interaction and the Statistical Analysis of Lattice Systems.
Journal of the Royal Statistical Society. Series B (Methodological) 36 (2), 192–236.

123

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pp. 177–186. Springer.

Boulanger-Lewandowski, N., Y. Bengio, and P. Vincent (2012). Modeling Temporal
Dependencies in High-dimensional Sequences: Application to Polyphonic Music
Generation and Transcription. In Proceedings of the 29th International Coference
on International Conference on Machine Learning, ICML’12, USA, pp. 1881–1888.
Omnipress.

Boyd, S. P. and L. Vandenberghe (2004). Convex Optimization. Cambridge, UK;
New York: Cambridge University Press.

Casella, G. and E. I. George (1992, August). Explaining the Gibbs Sampler. The
American Statistician 46 (3), 167.

Chang, S. W. C. and L. H. Snyder (2010, April). Idiosyncratic and systematic as-
pects of spatial representations in the macaque parietal cortex. Proceedings of the
National Academy of Sciences 107 (17), 7951–7956.

Coen-Cagli, R., A. Kohn, and O. Schwartz (2015, October). Flexible gating of con-
textual influences in natural vision. Nature Neuroscience 18 (11), 1648–1655.

Cseke, B., D. Schnoerr, M. Opper, and G. Sanguinetti (2016). Expectation propaga-
tion for continuous time stochastic processes. Journal of Physics A: Mathematical
and Theoretical 49 (49), 494002.

Deitmar, A. and S. Echterhoff (2014). Principles of Harmonic Analysis. Universitext.
Cham: Springer International Publishing.

Doya, K. (2007). Bayesian Brain: Probabilistic Approaches to Neural Coding. MIT
press.

Ernst, M. O. and M. S. Banks (2002, January). Humans integrate visual and haptic
information in a statistically optimal fashion. Nature 415 (6870), 429–433.

Fischer, B. J. and J. L. Peña (2011, August). Owl’s behavior and neural representa-
tion predicted by Bayesian inference. Nature Neuroscience 14 (8), 1061–1066.

Franklin, D. W. and D. M. Wolpert (2011). Computational mechanisms of sensori-
motor control. Neuron 72 (3), 425–442.

Friston, K. (2003, November). Learning and inference in the brain. Neural Net-
works 16 (9), 1325–1352.

Friston, K. (2010, January). The free-energy principle: A unified brain theory?
Nature Reviews Neuroscience 11 (2), 127–138.

Friston, K. J., J. Daunizeau, J. Kilner, and S. J. Kiebel (2010, February). Action
and behavior: A free-energy formulation. Biological Cybernetics 102 (3), 227–260.

Funamizu, A., B. Kuhn, and K. Doya (2016, December). Neural substrate of dynamic
Bayesian inference in the cerebral cortex. Nature Neuroscience 19 (12), 1682–1689.

124

Ganguli, D. and E. P. Simoncelli (2014, October). Efficient Sensory Encoding and
Bayesian Inference with Heterogeneous Neural Populations. Neural Computa-
tion 26 (10), 2103–2134.

Geman, S. and D. Geman (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. Pattern Analysis and Machine Intelligence, IEEE
Transactions on (6), 721–741.

Gerstner, W. and W. M. Kistler (2002, August). Spiking Neuron Models: Single
Neurons, Populations, Plasticity. Cambridge University Press.

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence.
Nature 521 (7553), 452–459.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio (2014). Generative adversarial nets. In Advances
in Neural Information Processing Systems, pp. 2672–2680.

Graf, A. B. A., A. Kohn, M. Jazayeri, and J. A. Movshon (2011, February). Decoding
the activity of neuronal populations in macaque primary visual cortex. Nature
Neuroscience 14 (2), 239–245.

Harel, Y., R. Meir, and M. Opper (2015). A Tractable Approximation to Optimal
Point Process Filtering: Application to Neural Encoding. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.), Advances in Neural
Information Processing Systems 28, pp. 1603–1611. Curran Associates, Inc.

Herzfeld, D. J., Y. Kojima, R. Soetedjo, and R. Shadmehr (2015). Encoding of action
by the Purkinje cells of the cerebellum. Nature 526 (7573), 439–442.

Hinton, G. E. (1989). Connectionist learning procedures. Artificial intelligence 40 (1),
185–234.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural computation 14 (8), 1771–1800.

Hinton, G. E., P. Dayan, B. J. Frey, and R. M. Neal (1995). The” wake-sleep”
algorithm for unsupervised neural networks. SCIENCE-NEW YORK THEN
WASHINGTON-, 1158–1158.

Hinton, G. E., S. Osindero, and Y. W. Teh (2006). A fast learning algorithm for deep
belief nets. Neural computation 18 (7), 1527–1554.

Hornik, K. (1993, January). Some new results on neural network approximation.
Neural Networks 6 (8), 1069–1072.

Hwang, E. J., O. Donchin, M. A. Smith, and R. Shadmehr (2003, November). A
Gain-Field Encoding of Limb Position and Velocity in the Internal Model of Arm
Dynamics. PLOS Biol 1 (2), e25.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge university
press.

125

Jazayeri, M. and J. A. Movshon (2006, May). Optimal representation of sensory
information by neural populations. Nature Neuroscience; New York 9 (5), 690–6.

Jost, J. (2014). Mathematical Methods in Biology and Neurobiology. Universitext.
London: Springer London.

Kappen, H. J., V. Gómez, and M. Opper (2012, February). Optimal control as a
graphical model inference problem. Machine Learning 87 (2), 159–182.

Kawato, M., T. Kuroda, H. Imamizu, E. Nakano, S. Miyauchi, and T. Yoshioka
(2003). Internal forward models in the cerebellum: fMRI study on grip force and
load force coupling. Progress in brain research 142, 171–188.

Kersten, D., P. Mamassian, and A. Yuille (2004, February). Object Perception as
Bayesian Inference. Annual Review of Psychology 55 (1), 271–304.

Kingma, D. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 .

Knill, D. C. and A. Pouget (2004). The Bayesian brain: The role of uncertainty in
neural coding and computation. TRENDS in Neurosciences 27 (12), 712–719.

Knill, D. C. and W. Richards (1996). Perception as Bayesian Inference. Cambridge
University Press.

Kohn, A. (2007, March). Visual Adaptation: Physiology, Mechanisms, and Func-
tional Benefits. Journal of Neurophysiology 97 (5), 3155–3164.

Kollar, D. and N. Friedman (2009). Probabilistic Graphical Models: Principles and
Techniques. The MIT Press.

Koopman, B. O. (1936). On distributions admitting a sufficient statistic. Transactions
of the American Mathematical society 39 (3), 399–409.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). ImageNet Classification with
Deep Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems
25, pp. 1097–1105. Curran Associates, Inc.

Kullback, S. and R. A. Leibler (1951). On information and sufficiency. The annals
of mathematical statistics 22 (1), 79–86.

Le Roux, N. and Y. Bengio (2008). Representational power of restricted Boltzmann
machines and deep belief networks. Neural computation 20 (6), 1631–1649.

LeCun, Y. and Y. Bengio (1995). Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks 3361.

LeCun, Y., Y. Bengio, and G. Hinton (2015). Deep learning. Nature 521 (7553),
436–444.

Ma, W. J., J. Beck, P. Latham, and A. Pouget (2006, October). Bayesian inference
with probabilistic population codes. Nature Neuroscience 9 (11), 1432–1438.

126

Makin, J. G., B. K. Dichter, and P. N. Sabes (2015, November). Learning to Estimate
Dynamical State with Probabilistic Population Codes. PLoS Comput Biol 11 (11),
e1004554.

Makin, J. G., B. K. Dichter, and P. N. Sabes (2016, May). Recurrent Exponential-
Family Harmoniums without Backprop-Through-Time. arXiv:1605.05799 [cs,
stat] .

Matsubara, T., V. Gómez, and H. J. Kappen (2014, June). Latent Kullback
Leibler Control for Continuous-State Systems using Probabilistic Graphical Mod-
els. arXiv:1406.0993 [cs] .

McCullagh, P. (2002). What Is a Statistical Model? The Annals of Statistics 30 (5),
1225–1267.

McGeer, T. (1990). Passive dynamic walking. I. J. Robotic Res. 9 (2), 62–82.

McNaughton, B. L., F. P. Battaglia, O. Jensen, E. I. Moser, and M.-B. Moser (2006,
August). Path integration and the neural basis of the ’cognitive map’. Nature
Reviews Neuroscience 7 (8), 663–678.

Meyn, S. P. and R. L. Tweedie (2009). Markov Chains and Stochastic Stability.
Cambridge university press.

Mizuseki, K. and G. Buzsáki (2013, September). Preconfigured, Skewed Distribution
of Firing Rates in the Hippocampus and Entorhinal Cortex. Cell Reports 4 (5),
1010–1021.

Montúfar, G. and N. Ay (2011, February). Refinements of Universal Approximation
Results for Deep Belief Networks and Restricted Boltzmann Machines. Neural
Computation 23 (5), 1306–1319.

Montúfar, G., K. Ghazi-Zahedi, and N. Ay (2015, September). A Theory of Cheap
Control in Embodied Systems. PLOS Computational Biology 11 (9), e1004427.

Montúfar, G. and J. Morton (2015a, November). Dimension of Marginals of Kronecker
Product Models. arXiv:1511.03570 [cs, math, stat] .

Montúfar, G. and J. Morton (2015b, January). When Does a Mixture of Products
Contain a Product of Mixtures? SIAM Journal on Discrete Mathematics 29 (1),
321–347.

Montúfar, G. and J. Rauh (2016, September). Hierarchical models as marginals of
hierarchical models. International Journal of Approximate Reasoning .

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT press.

Nair, V. and G. E. Hinton (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pp. 807–814.

Neal, R. M. (2012). Bayesian Learning for Neural Networks, Volume 118. Springer
Science & Business Media.

127

Neal, R. M. and G. E. Hinton (1998). A view of the EM algorithm that justifies
incremental, sparse, and other variants. In Learning in Graphical Models, pp. 355–
368. Springer.

Nielsen, F. and V. Garcia (2009, November). Statistical exponential families: A
digest with flash cards. arXiv:0911.4863 [cs] .

Ostojic, S. and N. Brunel (2011, January). From Spiking Neuron Models to Linear-
Nonlinear Models. PLoS Computational Biology 7 (1), e1001056.

Paninski, L. (2004, November). Maximum likelihood estimation of cascade point-
process neural encoding models. Network: Computation in Neural Systems 15 (4),
243–262.

Paninski, L., S. Shoham, M. R. Fellows, N. G. Hatsopoulos, and J. P. Donoghue
(2004). Superlinear population encoding of dynamic hand trajectory in primary
motor cortex. The Journal of neuroscience 24 (39), 8551–8561.

Pascanu, R., T. Mikolov, and Y. Bengio (2013). On the difficulty of training recurrent
neural networks. ICML (3) 28, 1310–1318.

Pfeifer, R. and G. Gómez (2009). Morphological computation–connecting brain, body,
and environment. Creating Brain-Like Intelligence, 66–83.

Plesser, H. E. and W. Gerstner (2000, February). Noise in Integrate-and-Fire Neu-
rons: From Stochastic Input to Escape Rates. Neural Computation 12 (2), 367–384.

Pouget, A., J. Beck, W. J. Ma, and P. Latham (2013). Probabilistic brains: Knowns
and unknowns. Nature Neuroscience 16 (9), 1170–1178.

Pouget, A., P. Dayan, and R. Zemel (2000). Information processing with population
codes. Nature Reviews Neuroscience 1 (2), 125–132.

Pouget, A. and T. J. Sejnowski (1995). Spatial Representations in the Parietal Cortex
May Use Basis Functions. In G. Tesauro, D. S. Touretzky, and T. K. Leen (Eds.),
Advances in Neural Information Processing Systems 7, pp. 157–164. MIT Press.

Radford, A., L. Metz, and S. Chintala (2015, November). Unsupervised Repre-
sentation Learning with Deep Convolutional Generative Adversarial Networks.
arXiv:1511.06434 [cs] .

Rawlik, K., M. Toussaint, and S. Vijayakumar (2012). Path Integral Control by
Reproducing Kernel Hilbert Space Embedding. Arxiv preprint arXiv:1208.2523 .

Robert, C. P. and G. Casella (2004). Monte Carlo Statistical Methods. Springer Texts
in Statistics. New York, NY: Springer New York.

Roe, A. W., L. Chelazzi, C. E. Connor, B. R. Conway, I. Fujita, J. L. Gallant, H. Lu,
and W. Vanduffel (2012, April). Toward a Unified Theory of Visual Area V4.
Neuron 74 (1), 12–29.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986, October). Learning
representations by back-propagating errors. Nature 323 (6088), 533–536.

128

Salakhutdinov, R. (2015, April). Learning Deep Generative Models. Annual Review
of Statistics and Its Application 2 (1), 361–385.

Salakhutdinov, R. and G. Hinton (2009). Deep boltzmann machines. In Artificial
Intelligence and Statistics, pp. 448–455.

Salakhutdinov, R. and G. Hinton (2012, April). An Efficient Learning Procedure for
Deep Boltzmann Machines. Neural Computation 24 (8), 1967–2006.

Salinas, E. and P. Thier (2000). Gain modulation: A major computational principle
of the central nervous system. Neuron 27 (1), 15–21.

Särkkä, S. (2013). Bayesian Filtering and Smoothing. Number 3. Cambridge Univer-
sity Press.

Shore, J. and R. W. Johnson (1980). Axiomatic derivation of the principle of max-
imum entropy and the principle of minimum cross-entropy. Information Theory,
IEEE Transactions on 26 (1), 26–37.

Simoncelli, E. P., L. Paninski, J. Pillow, and O. Schwartz (2004). Characterization of
neural responses with stochastic stimuli. The cognitive neurosciences 3, 327–338.

Smolensky, P. (1986, February). Information Processing in Dynamical Systems:
Foundations of Harmony Theory. Technical report.

Snyder, D. L. (1972). Filtering and detection for doubly stochastic Poisson processes.
Information Theory, IEEE Transactions on 18 (1), 91–102.

Sokoloski, S. (2017, June). Implementing a Bayes Filter in a Neural Circuit: The
Case of Unknown Stimulus Dynamics. Neural Computation 29 (9), 2450–2490.

Solomon, S. G. and A. Kohn (2014, October). Moving Sensory Adaptation beyond
Suppressive Effects in Single Neurons. Current Biology 24 (20), R1012–R1022.

Sterling, P. and S. Laughlin (2015). Principles of Neural Design. MIT Press.

Susemihl, A., R. Meir, and M. Opper (2013, March). Dynamic state estimation
based on Poisson spike trains—towards a theory of optimal encoding. Journal of
Statistical Mechanics: Theory and Experiment 2013 (03), P03009.

Susemihl, A., R. Meir, and M. Opper (2014, June). Optimal Population Codes for
Control and Estimation. arXiv:1406.7179 [cs, math, q-bio, stat] .

Sutskever, I., G. E. Hinton, and G. W. Taylor (2009). The Recurrent Temporal
Restricted Boltzmann Machine. In D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou (Eds.), Advances in Neural Information Processing Systems 21, pp. 1601–
1608. Curran Associates, Inc.

Symonds, R. M., W. W. Lee, A. Kohn, O. Schwartz, S. Witkowski, and E. S. Suss-
man (2017, January). Distinguishing Neural Adaptation and Predictive Coding
Hypotheses in Auditory Change Detection. Brain Topography 30 (1), 136–148.

Talbott, W. (2015). Bayesian Epistemology. In E. N. Zalta (Ed.), The Stanford
Encyclopedia of Philosophy (Summer 2015 ed.).

129

Tansey, W., O. H. M. Padilla, A. S. Suggala, and P. Ravikumar (2015, June). Vector-
Space Markov Random Fields via Exponential Families. In PMLR, pp. 684–692.

Theodorou, E. A. and E. Todorov (2012). Relative Entropy and Free Energy Dualities:
Connections to Path Integral and KL Control. Submitted.

Thrun, S., W. Burgard, and D. Fox (2005). Probabilistic Robotics. MIT press.

Todorov, E. (2010). Policy gradients in linearly-solvable mdps. In Advances in Neural
Information Processing Systems, pp. 2298–2306.

Toussaint, M. (2009). Probabilistic inference as a model of planned behavior.
Künstliche Intelligenz 3 (9), 23–29.

Toussaint, M. and C. Goerick (2010). A bayesian view on motor control and planning.
In From Motor Learning to Interaction Learning in Robots, pp. 227–252. Springer.

Wainwright, M. J. and M. I. Jordan (2008). Graphical models, exponential families,
and variational inference. Foundations and Trends® in Machine Learning 1 (1-2),
1–305.

Wark, B., A. Fairhall, and F. Rieke (2009, March). Timescales of Inference in Visual
Adaptation. Neuron 61 (5), 750–761.

Wark, B., B. N. Lundstrom, and A. Fairhall (2007, August). Sensory adaptation.
Current Opinion in Neurobiology 17 (4), 423–429.

Wei, X.-X. and A. A. Stocker (2015, September). A Bayesian observer model con-
strained by efficient coding can explain ’anti-Bayesian’ percepts. Nature Neuro-
science 18 (10), 1509–1517.

Welling, M., M. Rosen-zvi, and G. E. Hinton (2005). Exponential Family Harmo-
niums with an Application to Information Retrieval. In L. K. Saul, Y. Weiss,
and L. Bottou (Eds.), Advances in Neural Information Processing Systems 17, pp.
1481–1488. MIT Press.

Werbos, P. J. (1990). Backpropagation through time: What it does and how to do
it. Proceedings of the IEEE 78 (10), 1550–1560.

Williams, R. J. and D. Zipser (1989, June). A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks. Neural Computation 1 (2), 270–280.

Yang, E., P. Ravikumar, G. I. Allen, and Z. Liu (2013). Conditional Random Fields
via Univariate Exponential Families. In Advances in Neural Information Processing
Systems, pp. 683–691.

Yang, E., P. Ravikumar, G. I. Allen, and Z. Liu (2015). Graphical models via univari-
ate exponential family distributions. Journal of Machine Learning Research 16 (1),
3813–3847.

Yuille, A. and D. Kersten (2006, July). Vision as Bayesian inference: Analysis by
synthesis? Trends in Cognitive Sciences 10 (7), 301–308.

130

Zahedi, K. and N. Ay (2013). Quantifying Morphological Computation. En-
tropy 15 (5), 1887–1915.

Zavitz, E., H.-H. Yu, E. G. Rowe, M. G. P. Rosa, and N. S. C. Price (2016, April).
Rapid Adaptation Induces Persistent Biases in Population Codes for Visual Motion.
Journal of Neuroscience 36 (16), 4579–4590.

Zemel, R. S., P. Dayan, and A. Pouget (1998). Probabilistic interpretation of popu-
lation codes. Neural computation 10 (2), 403–430.

Zipser, D. and R. A. Andersen (1988, February). A back-propagation programmed
network that simulates response properties of a subset of posterior parietal neurons.
Nature 331 (6158), 679–684.

131

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten Quellen
und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sinngemäß aus
veröffentlichten oder unveröffentlichten Schriften entnommen wurden, und alle Angaben,
die auf mündlichen Auskünften beruhen, als solche kenntlich gemacht. Ebenfalls sind alle
von anderen Personen bereitgestellten Materialien oder erbrachten Dienstleistungen als
solche gekennzeichnet.

New York City, June 25, 2019

. .
(Sacha Sokoloski)

132

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Notation
	Introduction
	Inference in Deep Learning
	Inference in Computational Neuroscience
	Dissertation Outline
	Related Work

	Mathematical Background
	Measure Theory
	Statistical Models
	Exponential Families
	Graphical Models
	Stochastic Chains
	Bayesian Inference

	Families of Harmoniums
	Second-Order Harmoniums
	Second-Order Conditional Specification
	Properties of Harmoniums

	Higher-Order Harmoniums
	Higher-Order Conditional Specification
	Harmonium Factorization
	Deep Harmoniums

	Harmonium Rectification
	Second-Order Harmonium Rectification
	Rectified Second-Order Harmoniums
	Exact Rectification
	Approximate Rectification

	Deep Harmonium Rectification
	Rectified Deep Harmoniums
	Fitting and Rectifying Deep Harmoniums

	Bayesian Inference with Artificial Neural Networks
	Implementing Static Inference
	Implementing Bayes' Rule
	Encoding Beliefs

	Implementing Bayesian Filtering
	Implementing Bayesian Prediction
	Exponential Family Multilayer Perceptrons
	Modelling a Bayes Filter
	Training a Model Bayes Filter

	Bayesian Inference with Biological Neural Networks
	Linear-Nonlinear Neurons
	Linear Probabilistic Population Codes
	LPPCs and Harmoniums
	Homogeneous LPPCs

	Simulations
	Geometric Optimization Libraries
	Type Systems and Haskell
	Manifolds
	Differential Geometry
	Exponential Families

	Restricted Boltzmann Machines
	Biological Neural Circuits
	Training and Validation Procedure
	Colour Sequence Learning
	Self-Localization
	Proprioception
	Analysis of Results

	Conclusion
	Brains, a Priori
	Outlook

	List of Exponential Families
	Bibliography

