Towards Dynamic Programming on
Generalized Data Structures

and Applications of Dynamic Programming in Bioinformatics

Der Fakultat fur Mathematik und Informatik
der Universitat Leipzig
angenommene

DISSERTATION

zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr. rer. nat.)

im Fachgebiet
Informatik
vorgelegt von

Master of Science Bioinformatik Sarah J. Berkemer
geboren am 23.03.1990 in Speyer

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. Peter F. Stadler, Universitat Leipzig, Deutschland

2. Prof. Dr. Danny Barash, Ben-Gurion Universitat, Israel

Die Verleihung des akademischen Grades erfolgt mit Bestehen der

Verteidigung am 05.02.2020 mit dem Gesamtpradikat summa cum laude.

termination 51te constr “C“’lt applied Slngle either

pair o re3 right
o0 Ewc‘&iméé e G LG T i
H_CSS:E 35;;: eeeee o described
E Pin C2 o

© . O _|_y,88 species ,using
% L"Sfuation e O dE L tenee
S O mUSGd protein 2

o
2
oy
@
B
=
&
=y
El

incl

input stringe distinct

gu"sg;:éral application g ivens

require block use

we POSition

Jlist E
recexamples tWo -
ohoifowing do%avaneruva“ﬁe

s b : dshown

case baseq--e»

left data structuremeBQBWdat
TT exist

cu<z': _TRNA corresponding

riptiol cod ng region

itemize item
aFen S APN.
contain efore

induced subgraph 1@ .t hod < secundary structure g e n O m e es

obtalnedbo

DNA © G)calculate CalculatedconneCted component

1nput structure similar]_ orlglnal

erecursion equatwn base pall’

mdeflnltlon%&%mn

mple Version inside, condition g _information

s structur ef £m

decomposltlon

Wuimanshow ddt num tota yo ere edgep

current empty chlldren

various S e resulting
cluster

rrrrrr descrlptwn

stepdlfferent well considerres O

th restriction non
Pa rtia]E Fder="o0

weoz definedP legenetlc tree o
" tree alignment “9"S1S g ramma r‘ et IH

indicateway. _ formal grammarm

transcription termination Talignment graph €@ described sec non terminal

al

=%
@
o
o
B
i
=
=
o
o
o
o

>

ma

cl

> DP.

é 2z dynamic

rsion

inconparable

l

input sequence C

Bibliographic Description

Title: Towards Dynamic Programming on Generalized Data Struc-
tures
Subtitle: and Applications of Dynamic Programming in Bioinformatics
Type: Dissertation
Author: Sarah J. Berkemer
Year: 2019
Professional discipline: ~Computer Science
Language: English
Key Words: Dynamic Programming, Generalized Alignments, Data Struc-
tures, Applications of Dynamic Programming in Bioinformat-
ics

This thesis is based on the following publications.

S. J. Berkemer, L.-K. Maier, F. Amman, S. H. Bernhart, J. Wortz, P. Méarkle, F. Pfeiffer,
P. F. Stadler, and A. Marchfelder (2020). “Identification of RNA 3’ ends and termination

sites in Haloferax volcanii”. In: RNA Biology 0.0, pp. 1-14. DOI: 10.1080/15476286.

2020.1723328.

S. J. Berkemer, A. Hoffmann, C. R. Murray, and P. F. Stadler (2017a). “SMORE: Synteny
Modulator of Repetitive Elements”. In: Life 7.4, p. 42. DOI: 10.3390/11fe7040042.

S. J. Berkemer, C. Honer zu Siederdissen, and P. F. Stadler (2017b). “Algebraic dynamic
programming on trees”. In: Algorithms 10, p. 135. DOI: 10.3390/210040135.

S. J. Berkemer, C. Honer zu Siederdissen, and P. F. Stadler (2019). “Compositional
Properties of Alignments”. In: Mathematics in Computer Science, submitted.

S. J. Berkemer and S. E. McGlynn (2020). “Phylogenetic domain separation of protein
families constrains functional inference of LUCA”. In: Molecular Biology and Evolution,
under review.

C. A. Velandia-Huerto*, S. J. Berkemer*, A. Hoffmann, N. Retzlaff, L. C. Romero Mar-
roquin, M. Herndndez Rosales, P. F. Stadler, and C. I. Bermiidez-Santana (2016).
“Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies”. In: BMC
Genomics 17, p. 617. DOI: 10.1186/s12864-016-2927-4.

*The authors share first authorship.

https://doi.org/10.1080/15476286.2020.1723328
https://doi.org/10.1080/15476286.2020.1723328
https://doi.org/10.3390/life7040042
https://doi.org/10.3390/a10040135
https://doi.org/10.1186/s12864-016-2927-4

Abstract

Dynamic programming (DP) is a way to solve optimization problems where the problem is
divided into overlapping subproblems and the overall solution is composed out of optimal
solutions to these subproblems. The solution to a subproblem is computed once and
then stored in a table such that it can be reused when needed. In this way, a search
space of exponential size can be explored in polynomial time. Dynamic programming was
developed by Bellman in 1952, and early applications included detection of typing errors
in programming code.

DP algorithms are widely used in bioinformatics, e.g., for the comparison of genomic
sequences, called sequence alignment, or the prediction of molecule structures, also called
folding. However, a steady increase of data sets and corresponding analytical methods
requires more complex data structures to be used. Hence, the goal is to be able to apply
dynamic programming to more than just strings. Within the framework of algebraic
dynamic programming (ADP) it is possible to individually explore distinct building blocks
of DP algorithms. This separation leads to the possibility of independently developing
and changing such building blocks.

The thesis is divided into two parts where the first part describes theoretical aspects of
DP algorithms and their development. It includes an introduction to dynamic programming
(Chapter 2) which gives all relevant definitions and explanations for a better understanding
of the subsequent chapters. The second part of the thesis lists possible applications of DP
algorithms to biological data sets to show challenges, advantages and limitations thereof.
An introductory chapter (Chapter 5) explains backgrounds of biological data and a short
overview of existing algorithms.

The theoretical part of the thesis is concerned with the development of DP algorithms
based on ADP and the generalization of input structures. A basic assumption of DP
algorithms is the existence of a certain underlying order of elements inside the input
structure which is the basis for a structure preserving traversal and decomposition of the
input. In order to be able to apply DP algorithms to trees and forests, Chapter 3 defines
decomposition operators which are then used to formulate algorithms such as alignment
and editing on trees and forests. The algorithms are described by recursion equations
as well as formal grammars within the framework of ADP. This allows to additionally
formulate grammars for the application of inside-outside versions of the algorithms to
calculate probabilities.

A large part of bioinformatics research is concerned with alignments. Here, the
applications reach from simple comparisons of sequences to determine relations thereof
or tracing back evolutionary history to finding mutations, detecting repetitive areas, or

vi

mapping sequencing data to reference genomes. These applications are based on strings,
however, one might want to compare more sophisticated structures such as trees or
graphs, e.g., to compare molecules structures. Chapter 4 describes structural properties
of alignments. Here, the definition of alignments on total orders (strings) is given and it
is shown how alignments can be represented as alignment graphs. Based on this graph
structure, the alignment definition is extended to partial orders and then further to
alignments on general structures. Here, alignments of trees and forests as well as graphs
are given as examples.

Another important aspect in bioinformatics research and application of algorithms is
the possibility to adapt existing algorithms to new purposes. As data sets differ in various
aspects, one wants to be able to use the basic principles of the algorithm but modify
certain conditions. The second part of the thesis describes applications of DP algorithms
including two modified versions of existing DP algorithms.

Chapter 6 describes a method to detect duplicated genetic elements. Here the alignment
algorithm on strings is modified such that n:1 or 1:n matches can be detected. The
algorithm is developed within the framework of ADP such that only a few parts had to
be adapted and modified. The modified alignments are used to trace back the evolution
of repetitive elements in primate genomes by detecting duplications within gene clusters.

Another DP algorithm on trees is the Fitch algorithm solving the minimal evolution
problem. In Chapter 7, a modified version of the Fitch algorithm is used to find the
minimal number of splits needed to separate archaeal and bacterial proteins inside a
phylogenetic tree. Together with pairwise inter- and intra-domain distances, this leads
to a measure of genes being well conserved during evolution or showing high amounts
of horizontal gene transfer within the subtrees. One can see that this measure confirms
earlier findings for the small ribosomal subunits that are assumed to being conserved since
the last universal common ancestor (LUCA), thus, the last common ancestor of archaea
and bacteria. Furthermore, it shows high variances for oxygen related groups of proteins
confirming the assumption that oxygen concentration on early earth has been much lower
than today.

Chapter 8 describes the analysis of sequencing data in order to detect transcription
termination sites (T'TS) in the archaeon Haloferaxz volcanii. Here, various algorithms
are applied as a pipeline to find additional properties of those sites such as sequence or
secondary structure motifs. In this way, TTS can be detected in a genome-wide approach
which is the first of this kind and completely independent of existing gene annotations.

vii

Zusammenfassung

Dynamische Programmierung (DP) ist eine Methode um Optimisierungsprobleme zu
l6sen. Hierbei wird das Problem in sich tiberlappende Teilprobleme unterteilt und eine
optimale Losung zu jedem der Teilprobleme berechnet. Diese werden dann wiederrum zur
Gesamtlosung zusammengesetzt. Teillosungen werden in einer Tabelle gespeichert, sodass
jede Teillosung nur einmal berechnet werden muss. So kann ein Suchraum exponentieller
Grofle in polynomieller Zeit durchsucht und eine optimale Losung gefunden werden. Die
dynamische Programmierung wurde 1952 von Bellman entwickelt und eine der ersten
Anwendung war die Detektion von Tippfehlern beim Programmieren.

DP Algorithmen werden oft und sehr vielschichtig in der Bioinformatik angewendet
wie zum Beispiel beim Vergleich von Gensequenzen, Sequenzalignment genannt, oder der
Vorhersage von Molekiilstrukturen. Die Menge an Daten und somit auch deren Analyse
steigt stetig an, weshalb neue und komplexere Datenstrukturen immer wichtiger werden.
Fin Ziel ist es deswegen, DP Algorithmen zu entwickeln, die auf komplexeren Daten-
strukturen als Strings angewendet werden kénnen. Durch das Prinzip der algebraischen
dynamischen Programmierung (ADP) kénnen DP Algorithmen in kleinere Bestandteile
zerlegt werden, die dann unabhéngig voneinander weiterentwickelt und abgedndert werden
kdnnen.

Die Arbeit ist in zwei Teile gegliedert, wobei der erste Teil die theoretische Arbeit
zur Entwicklung von Algorithmen der dynamischen Programmierung beinhaltet. Hierbei
werden zuerst Prinzipien und Definitionen zur dynamischen Programmierung vorgestellt
(Kapitel 2), um ein besseres Verstindnis der darauffolgenden Kapitel zu gewéhrleisten.
Der zweite Teil der Arbeit zeigt unterschiedliche bioinformatische Anwendungen von
DP Algorithmen auf biologische Daten. In einem ersten Kapitel (Kapitel 5) werden
Grundsétze biologischer Daten und Algorithmen vorgestellt, die dann in den weiteren
Kapiteln benutzt werden.

Der theoretische Teil der Arbeit beschéaftigt sich mit der Entwicklung von DP Algo-
rithmen mit ADP und der Verallgemeinerung von Eingabestrukturen. DP Algorithmen
beruhen auf der Annahme, dass die Elemente der Eingabestruktur basierend auf einer
bestimmten Relation geordnet sind. Das bestimmt die Reihenfolge, in der die Eingabe-
struktur traversiert wird. Somit kann der DP Algorithmus auf schon berechnete kleinere
Teillosungen zuriickgreifen. In Kapitel 3 werden hierfiir Operatoren definiert, die Baum-
und Waldstrukturen in ihre Elemente zerlegen. Damit kénnen dann DP Algorithmen
definiert werden, wie Alignment und Editing auf Bd&umen und Wéldern. Die Algorithmen
werden durch Rekursionsgleichungen sowie formalen Grammatiken beschrieben. Basierend

viii

auf der Beschreibung mit Grammatiken kénnen dann auflerdem Wahrscheinlichkeiten fiir
das Alignment von Knoten in Bdumen berechnet werden.

In vielen Bereichen der bioinformatischen Forschung werden Sequenzalignments genutzt.
Die Ziele sind hierbei oft sehr unterschiedlich und reichen vom einfachen Vergleich von
Sequenzen um Verwandtheit oder evolutiondre Entwicklung zu bestimmen bis hin zur Iden-
tifikation von Mutationen, Detektion von repetetiven Regionen im Genom oder Mapping
von Sequenzierdaten auf ein Referenzgenom. Diese Anwendungen basieren hauptséchlich
auf Strings, wobei auch viele weitere Datenstrukturen in der Bioinformatik genutzt werden,
wie zum Beispiel Baume oder Graphen mit denen Molekiilstrukturen dargestellt werden
konnen. Kapitel 4 untersucht strukturelle Eigenschaften von Alignments und beginnt mit
der Definition von Alignments auf total geordneten Strukturen (Strings). Alignments
konnen auch als Graphen dargestellt werden. Basierend auf dieser Graphstruktur wird der
Alignmentbegriff dann erweitert und auf partiell geordneten Strukturen definiert. Dariiber-
hinaus werden Alignments dann auf allgemeinen Strukturen definiert. Als Beispiele werden
Alignments auf Bdumen und allgemeinen Graphen gezeigt.

Ein weiterer wichtiger Punkt in der bioinformatischen Forschung und Anwendung
von existierenden Algorithmen zur Analyse von Daten ist die Moglichkeit, Algorithmen
auf eigene Daten und Bediirfnisse anzupassen. Dabei soll der Kern des Algorithmus
oft bestehen bleiben wihrend duere Bedingungen angepasst werden. Zwei solche Falle
werden im zweiten und angewandten Teil der Arbeit vorgestellt.

Kapitel 6 beschreibt eine Methode um Genduplikationen zu detektieren. Hier wird der
Alignmentalgorithmus auf Strings so angepasst, dass 1:n oder n:1 Matchings gefunden
werden konnen. Dieser Algorithmus ist basierend auf ADP angepasst und wird angewandt
um die evolutionare Entwicklung von repetetiven Elementen in Primatengenomen zu
erforschen.

Ein weiterer DP Algorithmus auf Baumstrukturen ist der Fitch Algorithmus, der
basierend auf phylogenetischen Bdumen die minimale Anzahl an Mutationen wahrend der
Sequenzevolution von Genen berechnet. In Kapitel 7 wird eine modifizierte Version des
Fitch Algorithmus angewandt, um die minimale Anzahl von Schnittkanten zu finden, die
benotigt wird um Proteine aus Bakterien und Archeen in phylogenetischen Bdumen zu
trennen. Zusammen mit einer weiteren Messung von Distanzen zwischen den Bldttern der
phylogenetischen Badume kann man sehen, welche Proteine evolutiondr gut konserviert
sind und welche Proteine viele Mutationen und horizontalen Gentransfer aufzeigen. Wie
durch andere Arbeiten in dem Feld bestéatigt, zeigt sich, dass kleine Einheiten von
ribosomalen Proteinen sehr gut konserviert sind. Dagegen zeigen Proteine, die am
Sauerstoffmetabolismus beteiligt sind, sehr starke Veranderungen, was durch die Annahme
bestétigt wird, dass die Sauerstoffkonzentration in frithen Stadien der Erdentwicklung
geringer war als heute.

Kapitel 8 beschéftigt sich mit der Detektion von Transkriptionsterminationsstellen
(TTS) im Archaeum Haloferax volcanii. Hier werden unterschiedliche Algorithmen ange-
wandt um weitere Figenschaften der Terminationsstellen zu finden, wie zum Beispiel
Sequenz- oder Strukturmotive. Dadurch kénnen TTS genomweit und unabhéngig von
existierenden Genannotationen gefunden werden.

ix

Acknowledgment

Dear Peter, thank you very much for all the support! I very much enjoyed the time as a
PhD student not only because I could do many different projects but also because I would
always get a quick answer to all my questions. I did learn a lot about doing research but
also about working in many different countries with a broad range of people from various
(working) cultures. Thank you for giving a chance to so many people and for not stopping
research at the door of the institute but making the world a research office.

Dear reviewers, thank you for reviewing this thesis even though it got a little bit longer
than I planned.

Dear Petra, Jens, Sven, Andrea and Steve, you keep the system going! Thank you
for keeping our Beerinformatics institute alive, being there to help everyone regardless of
the problem size and secretly fixing things in order to create a great environment to do
research!

Dear Berni and Fabian, thank you for so patiently teaching me how to work with
sequencing data, answer all my questions and show me how to give extremely creative
names to files containing the most important data sets of the project.

Dear colleagues at the Beerinformatics institute and also those who already left,
thanks for all the good discussions, cakes, and coffee breaks! A special thanks to Fabian
for creating the thesis template and for always quickly answering all the questions and
demands for additional features!

I also would like to thank people from the MPI MIS and IMPRS in Leipzig, especially
Antje Vandenberg, Jorg Lehnert and Jirgen Jost.

Dear Anita Marchfelder and Shawn McGlynn, thank you for the good collaboration
and many discussions that taught me a lot - beside the research topics - about cooperations
and communication in interdisciplinary research.

Dear coauthors and coworkers, I want to say thank you, as with every project, I learned
a little bit more about research, collaborations, communication and organizing projects
but also about other countries, disciplines and cultures.

Dear Marc, thank you for being so motivated when teaching, discussing and doing
research! This is highly contagious!

Dear family and friends, dear Jugger team mates! Thank you for your support,
endurance of my bad moods and a lot of good times together!

Dear Sven, thanks for always supporting and helping me in all areas, for so much
time spent together, for the possibility to talk about everything and for giving me the
permission to spend every summer in another country.

I hope to meet you all again at some time and some place in the world!

Contents

xi

I

1

11

Contents

Introduction

Dynamic Programming in Bioinformatics

1.1 The Structure of Data Structures
1.2 Traversing Data Structures
1.3 Dynamic Programming
1.4 Applied Dynamic Programming in Bioinformatics
1.5 Structure of the Thesis

Theoretical Aspects of Dynamic Programming

Introduction to Dynamic Programming

2.1 String-to-String Correction oL oL
2.2 Dynamic Programming oo
2.3 Dynamic Programming Algorithms in Bioinformatics

Dynamic Programming on Trees and Forests

3.1 Trees and Forests as Data Structures
3.2 Single-tape DP on Trees and Forests
3.3 Two-tape and Multi-Tape DP on Trees and Forests
3.4 Tree Alignment
3.5 Tree Editing oL
3.6 Benchmarking against RNAforester
3.7 Software Availability o
3.8 Conclusion

Dynamic Programming with Alignments on General Data Structures
4.1 Formal Definitions of Sequence Alignments
4.2 Alignments of Partially Ordered Sets
4.3 Composition of Alignments L.
4.4 Blockwise Decompositions L0
4.5 Recursive Construction. Lo
4.6 Alignments as Relations oo oL
4.7 Tree Alignments Lo

O 3 O U

11

14
14
21
39

48
48
51
54
95
63
66
67
67

Contents

4.8 Alignments of Graphs o
4.9 Alignments for General Structures
4.10 Concluding Remarks oo

IIT Bioinformatics Applications of Dynamic Programming

5 On Popular Input Data to Dynamic Programming Algorithms

5.1 Biological Sequences
5.2 The Phylogenetic Tree of Life
5.3 Genetic Evolutionary Relationships
5.4 Algorithms & Methods

6 Duplication Alignments to Reconstruct Evolutionary History

6.1 Concerted Evolution oo
6.2 Creation of Gene Clusters
6.3 Quantitative Analysis of Evolutionary Events
6.4 Results. e
6.5 Benchmarking and Application to Artificial Data
6.6 Implementation
6.7 Concluding Remarks oo

7 Dynamic Programming on Phylogenetic Trees: Towards the Last

Common Ancestor

7.1 Orthologous Proteins
7.2 Topology of Phylogenetic Trees
7.3 Interdomain vs Intradomain Distances
7.4 Permutation Analysis o
7.5 Concluding Remarks oo

8 TUnbiased Map of Transcription Termination Sites in Haloferax volcanii146

8.1 Transcription Termination in Archaea
8.2 Dar-Sorek Method,
8.3 Imnternal Enrichment-Peak Calling
84 IE-PCresults e
8.5 Concluding Remarks

IV Conclusion & Future Work

9 Dynamic Programming in Theory and Applications

9.1 Theoretical Aspects of Dynamic Programming Algorithms

9.2 Application of Dynamic Programming Algorithms in Bioinformatics

9.3 Discussion & Future Work

... 146

161

164
... 164
165

Contents

xiii

Appendices 169
A Dynamic Programming on Trees and Forests 171
A.1 Affine Gap Costs for Tree and Forest Alignment 171
A.2 Inside-Outside for Alignment and Editing 173
B Dynamic Programming on Phylogenetic Trees: Towards the Last
Common Ancestor 175
B.1 Additional Tables 175
C Unbiased Map of Transcription Termination Sites in Haloferax volcanii179
C.1 Mapping RNAsequencing data 179
C.2 Dar-Sorek-Method 179
C.3 Internal Enrichment 180
List of Abbreviations 181
Bibliography 183

Curriculum Scientiae 205

xiv Contents

Part I. Introduction

Part 1

Introduction

Chapter 1. Dynamic Programming in Bioinformatics 3

CHAPTER

Dynamic Programming in
Bioinformatics

Contents
1.1 The Structure of Data Structures 4
1.2 Traversing Data Structures 5
1.3 Dynamic Programming 0L 6
1.4 Applied Dynamic Programming in Bioinformatics 7

1.5 Structure of the Thesis

Chapter 1. Dynamic Programming in Bioinformatics

Dynamic Programming was first described by Bellman (1952) and various algorithms are
based on its principles (Sankoff, 1972; Sellers, 1974; Kruskal, 1983; Wagner and Fischer,
1974; Levenshtein, 1966). Dynamic programming was soon applied in the emerging fields
of computer science to find typing errors in program code (Wagner and Fischer, 1974;
Levenshtein, 1966), in computational biology to analyze and compare biological sequences
(Needleman and Wunsch, 1970; Nussinov and Jacobson, 1980), and in linguistics to compare
words of different languages (Kondrak, 2000; Cysouw and Jung, 2007; Steiner et al., 2011).
Using dynamic programming techniques, search spaces of exponential size can be explored
in polynomial time yielding an optimal solution to the stated optimization problem.
Dynamic programming algorithms belong to the class of mathematical optimization
problems and are closely related to Greedy and Divide-and-Conquer algorithms (Cormen
et al., 2009).

The main principle of dynamic programming (DP) is the recursive traversal of the
input structure, being decomposed into intermediate substructures, and the memoization
(storage) of optimal results thereof. Hence, application of DP algorithms to for instance
biological data leads to the question of how to best wrap the data into a feasible structure.

1.1 The Structure of Data Structures

The most basic data structures in computer science are sets and lists, together with cycles
being closed lists and trivial cases such as the singleton element, the empty data structure
and no structure at all. Algebraic definitions of data structures are unified by the theory
of combinatorial species, developed by Joyal (1981). The concept of combinatorial species
leads to the definition of combinatorial objects and corresponding generating functions.
Irrespective of further aspects of combinatorial species, this introduction will make use of
the basic definitions of data structures to give an intuition for their recursive construction
and decomposition as well as their shapes and order of elements. Following Yorgey (2010)
and Yorgey (2014), a set will be denoted by F, a list by L and a cycle by C. No structure
at all is given by 0, the empty structure by I and the singleton element is denoted X.

Data structures are defined and distinguished based on their internal structure, thus
the way how elements inside the structure are set up. Given a set E, one can imagine
a bag of elements which always has the same outer shape (a bag) independently of the
number of contained elements. In contrast, a list L forms a sequence of elements where the
size of the list grows with the number of its elements. The order of elements inside the list
is fixed and removal or insertion of elements is restricted to its ends, as further described
below. The structure of a cycle C' is similar to a list with an additional connection of the
first and last element. If a new element is inserted in the cycle, the order of the remaining
elements is kept fixed. Elements in a data structure can only be distinguished by their
order or if they are uniquely labeled. As there is no further internal structure in a set,
elements of a set F can only be distinguished based on unique labels. Figure 1 depicts the
basic data structures set, list and cycle with elements uniquely labeled by color and shape.

It is possible to recursively describe such data structures by the way they are constructed.
To construct a list L, one starts with the empty structure 7 and increases its size by
inserting a singleton element X using the corresponding concatenation operator e. Thus,

Chapter 1. Dynamic Programming in Bioinformatics

& == O

Figure 1: Basic data structures depicted as combinatorial species: set E (left), list L (middle)
and cycle C (right) with four uniquely labeled elements.

a list is then algebraically formulated by
L=14+XelL (1.1)

with I being the empty list. The operator + stands here for a logical ’or’ (V) and the e
operator stands for the concatenation of an element X to an existing list L. Thus, a list
L is either empty (1) or contains at least one element concatenated to a list (X o L). The
above description of data structures is based on the topic of combinatorial species coined
by Joyal (1981). More detailed information can be found in Yorgey (2010), Yorgey et al.
(2014), Bergeron et al. (1998), Yorgey (2014), and Flajolet and Sedgewick (2009).

1.2 Traversing Data Structures

Given a (labeled) data structure, a possible goal of an algorithm might be a structure
preserving traversal such that all elements are visited. Given a list L, one way of traversal
would be to start at one end and linearly traverse the elements until the other end, thus
the same way the list has been constructed. In each step, the number of elements to be
visited will decrease while the number of visited elements increases. In this way, each
element will be visited once where the focused element is located at the border between
visited elements and elements to be visited. In each step, the focus shifts towards the
next element not yet visited. In a cycle C, one needs to identify a start element which
then corresponds to the start element of a list resulting in an equivalent way of traversal.
Given a set E of elements, there is no clear order or structure of elements that defines the
way of traversal. Even with a distinguished start element, there are still many possible
combinations of elements in the remaining set.

Such a traversal of data structures can be described by the concept of differentiation of
combinatorial species. Algebraically, the differentiation defines the shape of surrounding
data points with respect to a certain element. For combinatorial species, the derivative
is a species with a ’hole’, being the element in focus and thus, an empty data point in
the current derivative (Yorgey, 2010; Yorgey, 2014; McBride, 2008). As described in
Yorgey (2010) and Yorgey (2014), the derivative of the empty structure is no structure
1’ = () and the derivation of the singleton element results in the empty structure X’ = 1.
As the shape of a set E does not change, its derivative is still a set, thus £/ = E. A
list decomposes into two lists around the 'hole’ L’ = L2. Here, the lists represent the
list of visited elements and the list of elements to be visited (McBride, 2008). A cycle

Chapter 1. Dynamic Programming in Bioinformatics

1 ‘

112

10

<LHm S NS

I -

@

112

m x>

112

Figure 2: Basic data structure decomposition based on a the concept of species differentiation
(Yorgey, 2010; Yorgey, 2014). The differentiation of species shapes the structure with respect to
the focused element which becomes a ’hole’ or empty element in the data structure. The empty
element is depicted by the dotted circle. The structure of set E (top) is kept, the list L (middle)
is decomposed into two lists around the ’hole’ and the cycle C' (bottom) is transformed into a
list because the empty element splits its adjacent elements apart. The list decomposition can
be thought of as the element in focus (hole’) with the elements on the right side being already
traversed (yellow and red) and its left side still being to traversed (blue and purple) (McBride,
2008).

decomposes into a list at the location of the empty element, C’ = L. Differentiation of E,
L and C is depicted in Figure 2.

1.3 Dynamic Programming

A key element of a DP algorithm is the stepwise recursive traversal of the input structure
in an order preserving way such that the same steps are applied to all substructures of the
input. In the case of lists, the way of traversal corresponds to the recursive description
of the data structure as shown in Equation 1.1 and thus, to the way of decomposing the
data structure such that each element is visited as described by the differentiation of
data structures in Figure 2 (Bird and De Moor, 1993; De Moor, 1994; McBride, 2008).
Not every data structure can be described recursively or can easily be decomposed in a
recursive manner. Hence, additional information such as a preset order of elements based
on element indices is required to make sure that the data structure is traversed completely
and in an order-preserving way. A scoring function or scoring algebra can be added to
assign scores based on the labels or the structure of elements.

Classical formulations of DP algorithms are described by recursion equations. However,
adaptation of recursion equations to more formal descriptions generalizes and extends the
scope of underlying theory and applications. A possible formulation is based on formal
grammars. Two main arguments support the more formal descriptions of DP algorithms
such as formal grammars:

Chapter 1. Dynamic Programming in Bioinformatics

e Indices are implicitly included in the input structure. This is called index structure
and usually corresponds to the way of traversal of the input. Thus, the formal
description of the DP algorithm does not have to deal with indices.

e Algorithm formulation and scoring algebra are separated such that they can be
developed independently and will later be connected.

The principle of separating building blocks of DP algorithms into independent entities has
been developed within the framework of algebraic dynamic programming (ADP) (Giegerich,
2000; Giegerich and Meyer, 2002) which will be further explained in Subsection 2.2.7.
More detailed definitions and descriptions of dynamic programming will be given in
Chapter 2. Dynamic programming is based on sequential calculation of subsolutions.
Thus, a (partially) ordered input structure with an initial (start) element is essential to
solve the problem. The underlying index structure assures that smaller instances are
calculated first and takes care for the correct storage and lookup of such intermediate
solutions. This becomes important for the development of DP algorithms to more general
data structures as described in Chapter 3 and Chapter 4.

1.4 Applied Dynamic Programming in Bioinformatics

In Bioinformatics, DP algorithms are a useful tool to solve tasks such as sequence alignment
(Sankoff and Kruskal, 1983) or RNA secondary structure prediction (Hofacker et al., 1994;
Lorenz et al., 2011a) (see Section 2.3). Here, the description of dynamic programming
algorithms as formal grammars is common practice (Durbin et al., 1998).

Classical input structures to DP algorithms are strings or lists, or - in biological terms -
sequences. Especially alignment algorithms used to compare two or more input structures
make heavily use of strings as inputs. However, there is more than just sequences, and
further data sets might require other data structures, e.g., trees and forests.

A simple, yet often encountered, example of a tree is the structure of a text such as a
book. Books are divided into chapters, sections, subsections, and blocks of text, imposing
a hierarchical structure in addition to the linear order of words. Many other formats for
data exchange are based on similar structures, including json and xml. In bioinformatics,
tree structures encode, among others, the (secondary) structure of RNA and phylogenetic
trees as described in Subsection 2.3.2, hence DP algorithms on trees have a long history
in computational biology. Well-studied problems include the computation of parsimony
and likelihood scores for given phylogenies (Felsenstein, 1981), tree alignment (Chauve
et al., 2016) and tree editing (Zhang and Shasha, 1989), reconciliation of phylogenetic
trees (Jacox et al., 2016), and RNA secondary structure comparison (Schirmer et al.,
2014; Rinaudo et al., 2012). Tree structures will be further explained in Subsection 2.2.1
and Chapter 3 from a computer science point of view and in Chapter 5 and Chapter 7
explaining biological background and applications.

Alignments play an important role in particular in bioinformatics as a means of
comparing two or more strings by explicitly identifying correspondences between letters
(usually called matches and mismatches) as well as insertions and deletions (Durbin et al.,
1998). Alignments are calculated using dynamic programming where one of the first
algorithms is the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). The

Chapter 1. Dynamic Programming in Bioinformatics

aligned positions are interpreted either as deriving from a common ancestor (“homologous”)
or to be functionally equivalent. Alignments have also been explored as means of comparing
words in natural languages, (see e.g. Kondrak (2000), Cysouw and Jung (2007), Steiner
et al. (2011), and Bhattacharya et al. (2018)), as a convenient way of comparing ranked
lists (Fagin et al., 2003), for comparison of text editions (Wolff, 2000; Tiepmar and G.
Heyer, 2017), and to analyze synteny in the comparison of genomes (Grabherr et al., 2010;
Velandia-Huerto et al., 2016).

Alignment problems are usually phrased as optimization problems where different cases
obtain distinct scores optimizing towards a certain goal, e.g., minimizing or maximizing
the sum of scores. Most commonly a scoring model is defined for pairs of sequences
and generalized to multiple alignments as sums over certain pairwise alignments that
are obtained as projections. The pairwise scoring is usually specified either in terms of
matches or in terms of edit operations (insertions, deletions, or substitutions). Since
alignments provide a method of specialized comparisons of two or more input structures, a
desirable approach is to be able to apply the alignment algorithm to a large class of input
structures. However, each input might still require distinct rules that are in general not
needed. Hence, one wants the algorithm to still be adaptable to given constraints. This
also holds for other DP algorithms, thus an extendable set of rules and scoring functions
sets a good basis for applicable DP algorithms. A large part of the thesis will focus on
alignments of generalized structures which includes strings and trees in Chapter 3 and
further generalizations in Chapter 4. An extension of the alignment algorithm on strings
is described in Chapter 6.

With the advent of sequencing technologies, biological sequence analysis became a
main task in bioinformatics applications. Thus, sequence comparison algorithms are
the underlying technique of many bioinformatics tools and appear in a large number
of projects. In many cases, raw sequencing data is mapped to a reference genome as
a first step in order to trace back the origins of sequence fragments. Given unknown
fragments, a database search for similar sequences might reveal sequences of related
organisms or genes. Sequence comparisons are also used to derive families of genes and
their evolutionary history. An overview of popular algorithms and tools based on DP
algorithms in bioinformatics is given in Section 5.4. Applications of the tools are described
in Chapter 6, Chapter 7 and Chapter 8 which include applications and extensions of
sequence comparisons as well as other algorithms based on dynamic programming.

1.5 Structure of the Thesis

This thesis will give an introduction to dynamic programming from the perspective of
bioinformatics and corresponding applications. Therefore, it is composed out of two main
parts. The first part describes theoretical aspects of dynamic programming including
definitions and references to existing work in Chapter 2. The subsequent two chapters will
deal with the stepwise generalization of input structures to DP algorithms, focusing on trees
and forests as input structures in Chapter 3 and the creation of alignments on general data
structures in Chapter 4. The chapters are based on Berkemer et al. (2017b) and Berkemer
et al. (2019), respectively. The second part will deal with adaptations and extensions
of DP algorithms and resulting applications to biological data with an introductory

Chapter 1. Dynamic Programming in Bioinformatics

chapter on the biological background and bioinformatics tools (Chapter 5). The next
chapters then describe applications of DP algorithms reaching from own adaptations
and implementations (Chapter 6, Chapter 7) to pure application (Chapter 8) based on
Velandia-Huerto et al. (2016) and Berkemer et al. (2017a), Berkemer et al. (2020) and
Berkemer and McGlynn (2020), respectively.

A concluding chapter (Chapter 9) will present an outlook on future work and perspec-
tives on developments about theory and application of DP algorithms in bioinformatics.

10

Chapter 1.

Dynamic Programming in Bioinformatics

Part II. Theoretical Aspects of Dynamic Programming

11

Part 11

Theoretical Aspects of Dynamic
Programming

Chapter 2. Introduction to Dynamic Programming 13

CHAPTER

Introduction to Dynamic
Programming

Contents
2.1 String-to-String Correction 14
2.1.1 Calculating Distances between Strings 15
2.1.2 Pairwise Comparison of Strings 17
2.2 Dynamic Programming 21
2.2.1 Basic Data Structures 22
2.2.2 Mathematical Formulation 27
2.2.3 From Recursion Equations to Formal Grammars 29
2.2.4 From Formal Grammars to Parsers 32
2.2.5 Calculating Probabilities 35
2.2.6 Index Structures 36
2.2.7 Algebraic Dynamic Programming 36
2.3 Dynamic Programming Algorithms in Bioinformatics 39
2.3.1 Sequence Alignment 41

2.3.2 Structure Prediction 42

14

Chapter 2. Introduction to Dynamic Programming

Dynamic programming is a general paradigm for solving combinatorial problems with
a search space of exponential size in polynomial time (and space). The key idea is that
the optimal solution of the overall problem can be constructed by combining optimal
solutions of subproblems. During the recursive deconstruction of the original problem
instance, the same smaller subproblems are required repeatedly and thus memoized.
Dynamic programming is typically applied to optimization and (weighted) enumeration
problems. Not all such problems are amenable to this strategy however. Bellman’s
principle (Bellman, 1952) codifies the key necessary condition, the intuition which can be
expressed for optimization problems as follows: The optimal solution of any (sub)problem
can be obtained as a suitable combination of optimal solutions of its subproblems.

This chapter will start with a well-known example, the string-to-string correction
problem (Section 2.1) to introduce dynamic programming. The main principles of a
dynamic programming algorithm are (i) the recursive traversal and decomposition of
its input and (ii) the memoization of intermediate results which will be explained in
Subsection 2.1.1. Next to a formal definition of dynamic programming algorithms in
Subsection 2.2.2, Section 2.2 will explain the relation to formal grammars (Subsection 2.2.3),
to parsers (Subsection 2.2.4) and an algebraic way of writing dynamic programming
algorithms, called algebraic dynamic programming (ADP) (Subsection 2.2.7).

The last part of this chapter will focus on two basic dynamic programming algorithms
frequently used in bioinformatics applications. Basic principles of string alignments are
described in Subsection 2.1.2 and a short review about the topic is given in Subsection 2.3.1.
Subsection 2.3.2 describes the fundamentals of structure prediction based on dynamic
programming. .

2.1 String-to-String Correction

The string-to-string correction problem was originally introduced to detect spelling errors
(Glantz, 1956). Especially words that differ by exactly one letter from their original version
as a result of a wrongly typed key were targeted and considered to be easily detectable
and correctable (Morgan, 1970). The string-to-string correction problem will serve as an
introductory example do dynamic programming (DP) algorithms. A formal definition will
be given after this first example in Subsection 2.2.2.

As described by Navarro (2001), the string-to-string correction problem was introduced
in various versions (Sankoff, 1972; Sellers, 1974; Kruskal, 1983; Wagner and Fischer,
1974; Levenshtein, 1966; Needleman and Wunsch, 1970) and applications reached from
correction of spelling errors to comparisons of texts or biological sequences in evolutionary
scenarios, summarized by the term string-to-string comparison which is an extension to
string-to-string correction where algorithmic principles are very similar. Input to the
string-to-string correction problem can be words of a natural language, key terms of a
programming language, biological sequences or other word-like structures. Possible ways
of depicting results of the string-to-string correction algorithm are shown in Figure 3.
Here, one can clearly see diverging positions in the input strings and subsequences of
characters that are in common.

Figure 3 shows three commonly used ways to depict results of string-to-string corrections
(Kruskal, 1983). Figure 3 (left) shows a trace where matching positions of the first string

Chapter 2. Introduction to Dynamic Programming

15

S D
R<>F <~ F RATLWAY
A <> R R R
RAILWAY | | A FRI-DAY
o/ f
S
FRIDAY W <S> D L L RATLIAY
A A WD FR-I -DAY
Y Y A A
Y Y

Figure 3: Comparison of the strings railway and friday depicted in three ways based on
Kruskal (1983). The trace (left) shows corresponding letters in an order-preserving way by
connecting them through non-crossing edges. Middle: Two listings of operations to transform
the string railway into the string friday. Operations are substitution (S), deletion (D) and
insertion (I). Both listings need a minimal number of operations (four) and thus, are co-optimals.
Right: Alignments corresponding to the listings. Instead of listing the operations, input strings
are depicted columnwise, whereas columns with a gap symbol ’—’ are insertions or deletions,
columns with the same letters are matches and mismatches otherwise.

are connected to positions in the second string. Connections are required to be non-
crossing and each element has at most one connection to an element in the other string.
The middle part of Figure 3 shows two different listings of operations needed to transform
railway into friday. This way of comparing strings is usually referred to as string editing
based on edit operations such as insertion, deletion and substitution. The rightmost part
of Figure 3 shows two alignments of the input strings. Each alignment corresponds to one
of the listings described before. Instead of lists of edit operations, string alignments are
depicted by a matrix with matrix columns showing matching positions of the input strings
whereas a position in one string is matched to at most one position in another string.
These are called alignment columns. If letters of a column are equal, they indicate a
match case, if not, it is called a mismatch. Columns containing a gap symbol (—) indicate
deletions or insertions whereas gap-only columns are not allowed. A formal definition of
string alignment will be given in Subsection 2.1.2.

2.1.1 Calculating Distances between Strings

String-to-string correction is an optimization problem which aims to find the minimal
number of operations needed to transform one string into another string. Basic edit
operations are hereby substitution, deletion and insertion as shown in Figure 3. Based on
the symmetric character of deletions and insertions, they are often summarized by the
term indel (Kruskal, 1983).

Optimization problems are usually equipped with a scoring scheme in order to optimize
towards a certain goal for instance reaching a minimal or maximal score. A basic
scoring system for the comparison of two strings of equal length is the Hamming distance
(Hamming, 1950). Thus for two strings ¢ = x1...2, and y = y1 ...y, the Hamming

16

Chapter 2. Introduction to Dynamic Programming

distance dy (z,y) is defined as the amount of positions in and y that differ:

dy(z,y)= > 1, forie{l,...n} (2.1)

TiFYi

For general strings (of various lengths), string editing is used which allows shifts in
positions in order to maximize the number of matching letters. The optimality criterion
is then a minimal number of edit operations where each operation is weighted by a score
of 1, respectively. The overall score is the sum of weights of all operations needed to
solve the problem. The listings in Figure 3(middle) differ, however, they both consist of a
minimal number of operations. They are both optimal solutions to the string-to-string
correction problem, also called co-optimals. This scoring model is called Levenshtein
distance (Levenshtein, 1966). In contrast to the Hamming distance, the Levenshtein
distance is defined on strings of distinct lengths as positional shifts are allowed when
comparing strings x =1 ...x, and y = y; ... Y, with:

dL(Z—].,]—].) lfl'Z:y]
dr(i,j7) = , f e{l,...n},je{l,...m}. (2.2
sg) =min g 0F T orie{l...np,j € {L...m} (22)
dr(i,j—1)+1

The Levenshtein distance is a widely used distance measure for string editing. The cases
described in Equation 2.2 correspond to edit operations where the first case describes
matching positions, the second case stands for substitutions and the last two cases show
insertion and deletion. The costs for each operation except the match case are set to 1 (as
the match case is not an edit operation, it does not ’cost’ anything). It holds that the
value of the Levenshtein distance is at most equal to the length of the longer input string.
For strings of equal lengths, the Hamming distance (Hamming, 1950) is always an upper
bound to the Levenshtein distance. The Hamming distance and the Levenshtein distance
are 0 if and only if the input strings are equal.

The order of edit operations in the listing is of importance for the course of the
algorithm being able to edit the same position in a string several times. This makes the
algorithm quite flexible, however, also more time and space consuming than other variants
of string comparison (Kruskal, 1983).

There exist many other scoring models (Navarro, 2001), e.g., the edit distance proposed
by Wagner and Fischer (1974) where distinct edit operations have different costs which
results in the algorithm preferring certain cases over others. Setting a higher weight
for substitutions than for two indel operations, i.e. Wgsypstitution > 2Windel, it is always
cheaper to only use indel and match cases. In this case, the algorithm is the same as the
one for finding the largest common subsequence (Kruskal, 1983) and correlates with the
trace depicted in Figure 3 by keeping matching positions untouched.

The alignment distance (Needleman and Wunsch, 1970) is a further extension to the
edit distance where scores for substitutions are additionally differentiated by considering
equality of letters in a column. In contrast to the distances explained above, matching
position are given a score unequal to 0 which further extends the way the algorithm
chooses the optimal solution.

Chapter 2. Introduction to Dynamic Programming

17

2.1.2 Pairwise Comparison of Strings

As shown in Figure 3, there exist various versions of depicting commonalities and differences
in two strings. In comparison to the trace showing matching letters or the listing of

edit operations, alignments use gap characters (—) to indicate insertions and deletions.

There are various ways of depicting alignments where a popular way is using a matrix
representation.

Definition 1 (Alignment, cf. Chapter 4)

An alignment of k sequences S = s',...s* of various lengths is a matriz with k rows
corresponding to the sequences s' to s¥. Let s¢ be the i-th position in sequence a, a €
1,...k and |s*| denote the length of sequence a. The most common representation of
an alignment is as a rectangular matrix whose k rows are indexed by the sequences and
whose columns are indexed by integers i € [1,L], where L is the number of alignment
columns. Fach sequence s € S is then associated with a strictly monotonically increasing
function as : [1,]s]] — [1, L] such that for each i € [1,]s|], as(2) is the index of the column
containing s;. The alignment matriz contains a gap symbol — in row s and column [
whenever a; (1) =), otherwise, the matriz element is Sasl(): Gap-only columns are
excluded from the alignment.

Consider the following simple example:

001111100
0011011--
--1000100
123456789

The rows correspond to sequences a, b and ¢ and row 4 indicates the indices of alignment
columns. We have a4(i) =i for 1 <i <9, ag(i)=ifor 1 <i <7, and ac(i) =1+ 2 for
1 < < 7. For the 8th column of the example we have a;1(8) = 8, a; *(8) = 0, o *(8) = 6;
hence the entries in the 8th column are Uo-1(g) = a8 = 0, — because ab_l(8) = (), and
Cazl(s) = C6 = 0. The actual values of the sequence elements, i.e., the s; are of course
important to determine the scoring.

A proper alignment is preserving the structure of its input, thus removing the gap
symbols from the alignment rows will result in the original input sequences.

(2.3)

0 T p

Definition 2 (Structure Preserving Alignment, c¢f. Chapters 3 and 4)
A string alignment is said to be structure preserving if there exists a map m, : [1, L] —
[1,|s%]] with s* € S and a € {1,...k}.

Figure 4 shows an example for the function 7 in the case of string alignment. More
complex cases will be described in Chapter 3 on tree structures and in Chapter 4 for
general structures.

Alignments are mainly used for string comparison, thus one can calculate a distance
or similarity value of two strings whereas the optimality criteria are either minimizing
the distance or maximizing the similarity score. Here, scores of alignment columns are
summed to retrieve the overall score. Alignment columns correspond to cases match,
mismatch, insertion and deletion that are scored independently (Needleman and Wunsch,

18

Chapter 2. Introduction to Dynamic Programming

(s1,52) @— &3 O D— OO @

W/ \71'2
s1i@F—®—O®—6—6G—0©@

20— @—0O—©—W—®—®

Figure 4: Example of the function 7 mapping the components of the aligned structure to its
original structures, S1 and S2. Colors and positions of elements in (S1,52) indicate from where
they originated.

1970). Additionally, each position in the input can be changed at most once which makes
the string alignment algorithm less flexible than string editing. Deleting the gap symbols
from each sequence in the alignment will retrieve the original input sequence. Hence,
an alignment of strings is the smallest common superstring of the inputs. This can be
generalized to other input structures and is described in Chapter 4.

String editing and string alignment algorithms as described above are dynamic pro-
gramming (DP) algorithms and commonly described by recursion equations. Thus, the
same steps are applied to all instances of the problem, namely to all pairs of positions in
the input strings. Recursion steps are indicated by repeated application of the function
on a slightly changed input as also depicted in the recursion equations for the calculation
of the Levenshtein distance in Equation 2.2. Here, the input to dj, are indices pointing to
position in the input strings.

The following recursion equations (Equation 2.6) describe the string alignment problem
optimizing for the smallest distance between the two input strings as, among others,
described by Wagner and Fischer (1974) and Needleman and Wunsch (1970). The problem
of string comparison is well-known in computer science and bioinformatics and described
in various publications and textbooks, e.g. Durbin et al. (1998) and Cormen et al. (2009).

The inputs are two strings (also called sequences) x = z1x2 ...z, and y = y1y2 - . . Y-
The operations are align, insert and delete with corresponding scores Waiign, Winsert and
Wqelete- Lhe recursion equations are based on indices ¢ and j of the input strings with
1<i<nand1<j<m. Inorder to not (re)calculate the solutions of smaller problem
instances again and again, results are stored in a matrix d € Z"T1Xm*1 which is called
memoization table. Here, indices of a cell in the matrix match with the indices of the
input strings. In this way, the recursion step draws the results for the smaller preceding
instances from neighboring cells in the matrix as depicted in Figure 5 and specified in
the recursion equations based on indices. The base case of the recursion is dp o = 0. The
initialization of the algorithm calculates the scores for aligning each input sequence against

Chapter 2. Introduction to Dynamic Programming

19

Seq2 , |, ,

4 5 6 7

Seql - R[A|[ILWAY

Aligh A,R
1| B 3
2|R B Cost:

Insert A in|Selq2 match 0
4D mismatch 2
<| A insert 1
6l Y delete 1

Figure 5: String-to-string comparison of the sequences friday (Seql) and railway (Seq2) with
operations align (green), insert (pink) and delete (orange) which is the same as inserting in the
second input sequence. The cost function is written on the r.h.s where match and mismatch scores
correspond to the alignment case for equal or unequal letters, respectively. The memoization table
is filled such that small instances of the problem (= shorter strings) are calculated first. Then,
current tiles can be filled by looking up values that have been calculated before. For each case, a
specific cost and the value of the corresponding preceding tile are summed up. The resulting
value in the current tile is the minimum of all (three) possibilities. Blue numbers indicate indices
of the matrix and the corresponding input sequences. The complete solution is shown in Figure 6.

an empty string:

doj = doj—1 + Waetete(— y5), 1 <j<m (2.4)
dio =di—1,0 + Winsert(xi,—), 1 <i<n (2.5)

The optimized solution is the smallest possible value as indicated by the following recursion
equations:

difl,jfl + walign(xiu yj)7
dij = min § di—1; + Winsert (i, —), (2.6)
di,j—l + wdelete(_ayj)'

The recursion equations describe how to calculate the result for every pair of indices (3, j)
of the input strings. The result is the minimal value of three possible scores corresponding
to the cases align (or substitute), insert and delete. They are composed out of a scoring
value (walign,wmsen Or Wgelete) and the result of the algorithm applied to a smaller
instance of the problem (recursion step), shown by a decrement in at least one of the
indices, thus ¢ — 1 or j — 1. The recursion equations describe the top-down approach of the
algorithm which starts from the complete sequence as an input. In contrast, the matrix
is filled by a bottom-up approach, thus one starts from the empty sequences to fill the
matrix (upper left corner) until the complete sequences are traversed (lower right corner
of the matrix).

20

Chapter 2. Introduction to Dynamic Programming

Seq2 0 1 2 3 4 5 6 7 Cost:
Seql - RIAIT LIWA Y [maton 0]
0ol=-10(1 2 3 4|5|/6 |7 .
[mismatch 2|
|Fl1/2/3 4 5|6|7|8 =
insert 1
> Ri2112|3/4/5 67
|delete l|
5 I3 2(3[23]4/5 6
4+ D/4 3|4 /3|4 6 7
s A5 4/3/4/5 6 6 IZIAI_Il
5 Y6 5/4/5|6 - L

Figure 6: Complete memoization table for the string-to-string comparison of strings (or se-
quences) friday (Seql) and railway (Seq2). Blue numbers indicate indices of the memoization
table and input sequences. Scores written in cell (7, j) are the subsolution for substrings (1,1)
and (1,7). Costs of rules are written on the r.h.s. with the final alignment below. The colored
tiles show the backtracking steps corresponding to the cases match (green), mismatch (blue),
insertion (orange) and deletion (pink). The final cost for the complete alignment is written in
cell (6,7) and depicts the minimal distance between the input strings.

The scoring functions are applied on the current positions of the input strings, whereas
Winsert ANd Wyelete score an alignment column with a gap symbol. The score for the
alignment case depends on the letters of the input:

match if x; =y, 2.7)
mismatch if ; # y; '

walign(xia yj) = {
Equation 2.6 corresponds to the recursive structure of the Needleman- Wunsch algorithm
(Needleman and Wunsch, 1970), a widely known algorithm in bioinformatics to compare
biological sequences.
Given the example in Figure 5, the value of the current cell is calculated by minimizing
over the three possible values, thus

di 1+ Walign(R, A) =242 =4 (green)
d22 = min § di o + Waetete (R, —) = 1+ 1 = 2 (pink) =2 (2.8)
da1 + Winsert(—, A) = 3+ 1 = 4 (orange)

Given the example calculation in Equation 2.8, the three recursion cases directly
correspond to the colored cells in Figure 5. In order to reach the next cell, the cost of the
applied rule is added to the value in the previous cell. After calculating all the scores, the
minimal value will be chosen to be memoized at dz 2 and reused in the next step of the
algorithm.

Chapter 2. Introduction to Dynamic Programming

21

FR.. RA.
i M D
FR FR FR -
RA - RA RA |
b —m~L B T D
FTR FR | FR FR IR FR [FRZ- JFR- FR-
RA- RA- RA. RA a A R-A RA A R-A
L D D DI II D[! I‘ L2
RF R JF-R F--R -FR| -FR F-R -FR | FR-- FR FR- " [FR- | F-R-
-A - RA- RA- RA-- -RA R-A -RAL RA | R--A A
R-A
D| 0f 4 o if D 4
-F-R F--R --FR FR- - -FR F-R-
R-A -RA- RA- - --RA R--A “R-A

Figure 7: Recursion tree displaying all possible cases when aligning the sequences fr (top line)
and ra (bottom line). Grey areas show subsequences that have been processed, light green areas
show currently processed positions and not yet processed characters are shown on its r.h.s. Bold
letters at the branches indicate recursion cases of (mis)match (M), insertion (I) and deletion (D).
The dark green areas show that the case of aligning the letters F' and R appear several times.
The white cells indicate distance scores of the branch from the corresponding leaf to the root of
the tree. The yellow cell shows the optimal solution.

The score of the overall solution is written in the ’last’ cell of the memoization table,
dp,m as shown in Figure 6. However, one more step is needed to retrieve the structure of
the solution. This is called backtracking. Here, one starts from the cell containing the final
score tracing back the way of the algorithm. By reconsidering the three possibilities, one
follows the way of the optimal score that was used to calculate the value of the current
cell as shown in Figure 6. It is also possible to remember for each cell where the optimal
score was taken from. This would save time for the backtracking step, however, it needs a
second memoization table in order to store the required information.

The tree in Figure 7 depicts possible recursion steps when only aligning prefixes of
length two of friday and railway, namely fr and ra. As given in the recursion equations,
there are three possible cases depicted as the children of a node in the tree: (mis)match M
(middle), insertion I (left) or deletion D (right). If less than three children are displayed,
the missing cases cannot be applied due to empty input strings. It can be seen that certain
cases such as aligning the letters F' and R appear several times (dark green area) and
thus, their value is stored in the memoization table and then reused when needed.

2.2 Dynamic Programming

The string editing and alignment algorithms as described above are algorithms optimizing
towards a certain goal, e.g., minimizing the cost for the total number of edit operations
or the distance between the input strings. This kind of optimization algorithms can be
solved using DP. Dynamic programming was developed and first described by Bellman

22

Chapter 2. Introduction to Dynamic Programming

(1952) as a mathematical optimization method. The term ’programming’ does not refer
to writing code but rather tabulation of intermediate solutions.

The way of tabulating intermediate values leads to a stepwise recursive process. Thus,
the same calculations are applied repeatedly to substructures of the input. As a con-
sequence, Bellman (1952) states DP algorithms as sequential decision processes where
in each step the algorithm decides for the optimal value based on a given policy. In
mathematical optimization, the policy is also called objective function. The mechanism is
depicted in Figure 5 showing possibilities of how to fill a cell in the matrix which directly
corresponds to the recursion step applied to each instance of the problem. The optimal
possibility is chosen by the objective function. This is described by Bellman’s principle of
optimality (Bellman et al., 1954) whereas a corresponding formal description is given in
Subsection 2.2.2:

An optimal policy has the property that whatever the initial state and initial decisions
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decisions.

The principle behind optimization algorithms is to find the optimal solution in a large
set of possible solutions. This can be done by first calculating all possible solutions and
then filter for the optimal one. Given a DP algorithm, Bellman’s principle states that
calculating the optimal solution to the problem is equivalent to taking the optimal solution
in each step (optimal substructure) concatenating subsolutions in order to get the overall
solution (overlapping subproblems). Thus optimal overlapping subsolutions are composed
such that they result in the optimal overall solution, then the final solution does not
contain any non-optimal (sub)solutions. Given the recursion equations, subsolutions are
hereby calculated several times (e.g. the score for the optimal alignment of just the first
two letters of the input strings, R and F' as depicted in Figure 5 and Figure 7 on page
21). In order to compute each subsolution at most once, a memoization table is used that
stores all subsolutions.

The recursion equations describe the algorithm in a top-down manner, thus starting
from the complete sequences and recurring on smaller substrings. However, one can
directly calculate the solution in a bottom-up approach, filling the memoization table in
an order-preserving way. This means that for all input strings (or structures) the order of
elements has to be preserved while filling the table, starting with the first letters of the
input strings. Then, it is assured that needed subsolutions for the current step have already
been calculated (Cormen et al., 2009). Applying a DP algorithm to more than two inputs
is possible, however, the dimension of the memoization table corresponds to the number of
input structures, and thus, time and space requirements increase significantly. The creation
of a multiple sequence alignment (MSA) to directly compare various sequences is a popular
tool in bioinformatics. Due to high resource requirements, MSAs are constructed based
on heuristics. More details about the usage of MSAs will be given in Subsection 2.3.1.

2.2.1 Basic Data Structures

Since a key element of dynamic programming is the recursive traversal of the input,
this subsection will give an overview and definitions of possible input structures of DP

Chapter 2. Introduction to Dynamic Programming

23

algorithms. Data structures consist of a finite set of elements S, with |S| being the number
of elements in the set. There exist (pairwise) relations R between the elements of S. Thus,
the set of relations between elements of S defines the complete structure. The subsequent
definitions list basic data structures and corresponding order relations, also summarized
in Table 1.

An often used relation between elements is their order:

Definition 3 (Partial Order, cf. Jost (2015))
Given a set S and a binary relation R (<) on its elements. The set is a partially ordered
set (or poset) if for all elements a,b,c € S the following holds:

e a < a (reflexivity),
e ifa<bandb<c then also a < ¢ (transitivity),

e ifa<bandb<athena=> (antisymmetry).

The definition of the partial order (PO) allows to have pairs of elements a,b € S to be
incomparable. If all pairs a,b € S are mutually comparable, the order is a total order
(TO). The elements of the set S are hereby not further specified. A relation is called a
pre-order if it is reflexive and transitive. If a relation fulfills reflexivity and transitivity
but is additionally symmetric, it is called equivalence relation (ER). A totally ordered
finite set {s1,...$,} can also be denoted by a n-tuple (s1,...s,) or a list [s1,...s,] onn
elements which are by definition totally ordered. Since all of the data structures can be
represented as a graph in general, its definition is given first:

Definition 4 (Graph)

Let G = (V, E) be a graph with vertex set V and directed edge set E C {{v,w}|lv,w € V}.
Edges directed from the source v to the target node w are denoted as (v,w) € E. Directed
graphs are also called digraphs. A graph G = (V, E) is undirected, if its edges are undirected
or for each edge (v,w) € E there exists a corresponding edge (w,v) € E. Then, an edge
between nodes v,w € V is denoted as {v,w} € E.

Vertex set and edge set of the graph G can also be denoted by V(G) and E(G) or Vg
and Eg, respectively. Edges can be labeled and the label is denoted by label(e), e € E.
Analogously, nodes in a graph can be labeled, too, denoted by label(v), v € V. A graph
is called complete or a clique if E =V x V| also denoted by K, with n = |V].

Depending on the purpose of the graph data structure, the definition of a directed or
undirected version of the graph is essential. If not further specified, graphs defined here
are assumed to be simple, thus there is at most one edge between any pair of nodes and
no edges from a node to itself (loop).

Definition 5 (Graph Complement) B B
The complement of a graph G = (V, E) is the graph G = (V,) such that for all pairs of
nodes u,v € V with (u,v) ¢ E, there is an edge (u,v) € E.

Figure 8 shows an example as the complement of a thin spider graph is a thick spider
graph. This is indicated by the node labels as body nodes of the thin spider become feet
nodes of the thick spider.

24

Chapter 2. Introduction to Dynamic Programming

= body

e .
= feet
L % € R = head

Figure 8: Example for spider graphs (cf. Berkemer et al. (2015)) showing a thin spider (left)
and a thick spider (right). Spiders are defined based on their node partitions where the body
nodes from a clique, the feet an independent set and each of the nodes in the head must be
connected to each of the nodes in the body. A thin spider is the complement graph of a thick
spider.

Definition 6 (Node Degree)

The degree deg(v) of a node v € V(G) is the number of incident edges to v, thus deg(v) =
|{e € Elv € e}| for an undirected edge e. If G is a directed graph, one distinguishes
between the number of incoming and outgoing edges, called indegree (indeg(v)) and
outdegree (outdeg(v)), respectively.

The degree distribution of a graph shows the number of nodes in G having a certain
degree d. Certain types of graphs can be classified based on the shape of their degree
distribution such as scale-free networks (Newman, 2010) where the degree distribution
follows a power law or spider graphs (Berkemer et al., 2015) where the degree distribution
can be used to distinguished different types of nodes, see Figure 8.

Definition 7 (Path & Cycle)

Let G = (V,E) be a directed graph. Then a path Py in G is a set of k nodes {vy,... v}
and k — 1 edges such that (vi,viy1) € E, Vi € {1,...k — 1}. The nodes vy and vy, are
source and sink nodes of the path. A cycle is a path Py = (v1,...vx) with an additional
edge (vg,v1) between the last and the first nodes of the path. Cycles of length k are also
denoted by Ck. Paths and cycles in an undirected graph do not have a direction, thus it is
possible to walk along the path or cycle in both directions.

Thus, a path in a directed graph is a totally ordered set of nodes whereas the order is
defined based on its edge set. A path directly corresponds to the structure of a string or
sequence.

Definition 8 (String or Sequence)

A string is a finite sequence of elements of S with S being a finite totally ordered set w.r.t.
a binary relation R. The Kleene star of S is the set S* of all strings composed out of the
concatenation of elements taken from S, cf. Droste and Kuich (2009).

The graph representation of a string is a simple directed path Pg| on |S| nodes.

Chapter 2. Introduction to Dynamic Programming

25

{d.a,g}

Figure 9: Hasse diagram for set inclusion (C) whose structure is a DAG. The source node is the
empty set) and the sink depicts the complete set {d, a, g}. An edge between two nodes indicates
its source node’s label being a proper subset of the sink node’s label. Transitive edges are not
drawn within the Hasse diagram but the subset relation still holds for nodes connected by a path.
If two nodes are not connected, they are incomparable.

Definition 9 (Subgraph and Induced Subgraph)

Given a graph G = (V, E) a subgraph H of G is a graph on a subset of vertex and edge set,
thus H = Vg, Ey) with Vg CV and Eg C E. An induced subgraph additionally requires
that if {v,w} € E and v,w € Vg then {v,w} € Eg, Yv,w € Vg. An induced subgraph is
also denoted by H = (V, E)[VH].

Induced subgraphs show the structure of a graph in a certain neighborhood of nodes. For
some types of graphs, certain kinds of induced subgraphs are not allowed, e.g. Pys in
cographs (Hellmuth and Wieseke, 2015). Induced Pys also appear in spider graphs, e.g.,
the path 0 — x — y — 1 in the thick spider in Figure 8.

Definition 10 (Connected Component)
A connected component of a graph G = (V, E) is an induced subgraph H = (Vy, Ep) of G
such that there is a path between every pair of nodes in V.

If a graph consists of one connected component , it is called connected, otherwise it is
disconnected.

Definition 11 (Directed Acyclic Graph)
A directed acyclic graph (DAG) is a directed graph that does not contain any cycles.

A DAG G = (V, E) represents a partial order where pairs of nodes v,w € V are incompa-
rable if there is no path between them. Partial orders are frequently displayed by Hasse
diagrams (Hasse, 1985) whose structure is a DAG as shown in Figure 9.

Definition 12 (Ordered Trees and Ordered Forests)
An ordered forest F = (V, E) is a DAG where the set of nodes can be partitioned into three
disjoint sets such that

26

Chapter 2. Introduction to Dynamic Programming

structure relations example for R
string/sequence TO <
tree/forest PO sibling < and parent < order
set ER collection, complete graph
DAG PO directed edges
graph PO (un)directed edges

Table 1: Table listing basic data structures and corresponding underlying order relations.

e W= (ry,...7.) is the sequence of roots of the trees in the forest. Roots have only
outgoing edges and are thus source nodes,

e the set of inner nodes I having exactly one ingoing edge and at least one outgoing
edge,

o the set of leaves L with elements having exactly one incoming and no outgoing edge
and thus, are sinks.

An ordered forest F' can be composed out of several connected components, which defines
an ordered set of trees {7171,...T;} in the forest. A rooted ordered tree with vertex set V/
is uniquely defined by two mutually exclusive partial order relations: the ancestor order
< defined such that x < y whenever y is located on the path from the root to x, and the
stbling order < defined in terms of the ordering of the children of each vertex: The last
common ancestor of two nodes u and v in a tree is a node [being in the set of nodes in
the intersection of paths from the root to the nodes u and v where [is the node in the
set being closest to u and v. Thus, for two vertices x and y that are incomparable w.r.t.
=<, let w be their last common ancestor and v and v be the distinct children of w such
that z < w and y < v. Then = <y if and only if u < v (Gértner and Stadler, 2019). By
construction, two vertices are either identical or comparable w.r.t. either the ancestor or
the sibling order. The observation extends to ordered forests, where the sibling order is
extended such that vertices from any two constituent subtrees are are always comparable
w.r.t. the sibling order.

Furthermore, there are two distinct types of orders defined on the nodes of a tree or
forest: The preorder starts at the (leftmost) root of the tree or forest going always first to
its left child or, if the node is a leaf, further to its right sibling. In this way, the nodes
of the tree are mapped into a sequence. The postorder starts at the leftmost child of a
tree or forest and continues to its right sibling. Thus, children of a node get listed before
their parent node. Edges in a tree are directed from the root towards the children. If the
direction is clear due to the placement of the root, edges will be displayed as undirected
edges due to simplicity.

Table 1 summarizes the most basic data structures described in this chapter. All the
data structures can be seen as sets of elements with a pairwise relation R which defines
the structure. A set is a collection of elements without further structural properties.
Therefore, one can depict a set as a complete graph such that all pairs of elements are in
a pairwise relation. As this relation is reflexive, transitive and symmetric, it is an ER.

Chapter 2. Introduction to Dynamic Programming

27

2.2.2 Mathematical Formulation

Dynamic programming algorithms can be easily formulated using recursion equations.
However, this description does not include any requirements on the input structure or the
equations themselves in order to describe a dynamic programming (DP) algorithm. A
more complete definition is formulated by Tendeau (1998) and will be given below after a
few basic definitions.

As mentioned above, the principle of a DP algorithm is the composition of optimal
subsolutions. Thus, in order to mathematically describe DP algorithms, we need two
operators to (i) compose (concatenate) subsolutions and (ii) choose the optimal one
(objective function). Such a combination of operators is given by the mathematical
structure of a semiring which is composed out of two monoids.

Definition 13 (Monoid, cf. Jost (2015))
A monoid M is a structure (M, -, e) such that

e the binary operation - : M x M — M maps a pair of elements k,1 € M to their
product k-1 € M,

e - is associative, thus k- (I-m) = (k-1)-m, for all k,l,m € M,
o ¢ is the neutral element such that e-m =m-e=m, for allm e M.

The monoid is additionally called commutative if k-1 =1-k, for all k,1 € M.

The nonnegative natural numbers N> with addition 4+ and 0 as neutral element are
the monoid (N>¢, +,0). Taking two monoids together will result in a semiring:

Definition 14 (Semiring, c¢f. Kuich (1997))
A semiring R is a structure (R, ®,®,0,1) such that

o (R,®,0) is a commutative monoid,
e (R,®,1) is a monoid,

o multiplication is distributive over addition from both sides, i.e.
Eo(lem)=((kol)® (ke@m) and
kel)em=(kem)® (l®m), forall k,l,m € R,

e 0 is absorbent for the multiplication, i.e., 0@ m=m ®0 =20, for allm € R.

The natural numbers N with addition 4+ and neutral element 0 and multiplication with
neutral element 1 are the semiring (N, +,-,0,1). A very basic semiring is the boolean semir-
ing ({TRUE, FALSE}, V, A, FALSE, TRUE). Widely used semirings in DP algorithms are
the tropical (R U {oo}, min, 4+, 00,0) and the arctic (R U {—oo}, max, +, —o00, 0) semiring.
However, calculation of probabilities or just enumerating the search space require distinct
semirings such as the Viterbi semiring (R}, max, -,0,1) defined on the real numbers in
the interval [0, 1] or the counting semiring (N, +,-,0,1). More detailed descriptions of
semirings can be found in Goodman (1998) and Kuich (1997). Semirings mentioned above
are also listed in Table 2.
Tendeau (1998) gives a definition for DP algorithms:

28

Chapter 2. Introduction to Dynamic Programming

Name Semiring
boolean ({TRUE, FALSE}, v, A,FALSE, TRUE)
counting (N,+,-,0,1)
tropical (R U {0}, min, +, 0o, 0)
arctic (RU{—o00}, max, +, —00,0)
Viterbi (R, max, -,0,1)
probabilities (R,+,-,0,1)

Table 2: Summary of well-known and widely used semirings used for DP algorithms.

Definition 15 (Dynamic Programming, Tendeau (1998))
A dynamic programming problem over input d € D can be described by the following
elements:

e a recursively defined function: F: D — R with R being a semiring (R, ®,®,0,1),
e q partial pre-order < on D,

e a function ¢ : D x D* — R being the contribution in each recursive step where
o(d,dy, ... dy) is the weight of the current step for d depending on the previous values
dy to dg,

e a binary relation © C D x D* that associates with each element d € D some
predecessor sequences in (di,...,d;) € D* that contain only elements smaller than
d w.r.t <, ie,Vd € D,Y(dy,...,dy) € D*,do (dy,...,dy) = d; < d, foralli€
{1,...k}.

Given the above definition, a DP algorithm can be written as (Tendeau, 1998):

vde D, F(d) = P (¢(d,d1,..,dk)® (0 F(di)> (2.9)

do(dl,..,dk) ie{l,‘.,k}

The above equation summarizes the structure of DP algorithms. The recursive equation F’
includes a case distinction over possible structures of the current input. The chosen case
then defines the predecessor sequence to recurse on as well as the score contribution of
the current recursive step. The calculation of scores is applied on the semiring operations
addition & and multiplication ®. This is reflected in the first part of Equation 2.9
@do(dlwdk)} (...) where possible cases of the recursive function are summarized by addition.
This is also called objective function and corresponds to, e.g., max or min in the application
of string alignment. The second part of Equation 2.9 is composed out of the recursive step
Xic {1k} F(d;) that applies F' to smaller instances of the problem, thus, predecessor
sequences. In the case of string alignment, each case only leads to one predecessor
sequence, as shown below. Depending on the case, the scoring function ¢(d,ds, .., dy)
results in a score on the current instance of the problem The score and result of the
recursive step are summarized by multiplication ® which corresponds to addition + in
the Needleman-Wunsch algorithm.

Chapter 2. Introduction to Dynamic Programming

29

Consider the recursion tree in Figure 7 on page 21 as an example. The current input
is the pair of word prefixes fr and ra. The recursion equation of the Needleman-Wunsch
algorithm consist of the cases align, insert, delete and empty where align is divided into
match and mismatch within the scoring function and the empty case can only be applied
to an empty input. The scoring is based on the semiring (N U {co}, min, +, 00,0). The
first step of the program is to minimize over all rules that can be applied to the current
input:

F(fr,ra) =min{Fuiign(fr,ra), Fieiete(f7,70), Finsers(fr,ra)}
=min{waiign(r,a) + F(f,r),

Waelete(—, a) + F(fr,r),

Winsert(r, =) + F(f,ra)}

The recursive calls behave analogously, e.g., for the case F(f,r):
F(fv 7“) = Inin{walign(fa T) + F(Ea 6), wdelete(_a 7") + F(f; 6)7 Winsert (fa _) + F(G; T)}

The case F'(e, €) will now recurse on the empty rule and halt. The cases of the recursion
equation above directly correspond to the branches of the recursion tree in Figure 7 on
page 21. As the string alignment algorithm only recurses on one smaller instance of
the input, there are no further summands to consider. However, there exist algorithms
recursing on more than one instance, which will be described in Subsection 2.2.4.

2.2.3 From Recursion Equations to Formal Grammars

Recursion equations as shown for the Needleman-Wunsch algorithm in Equation 2.6 on
page 19 are a well-known tool to describe DP algorithms. They explicitly include the
memoization table such that indices of the matrix match with positions in the input
structures, as explained by Equation 2.8 and Figure 6 on page 20.

Another way to describe DP algorithms is to use formal grammars which was adapted
in many bioinformatics applications (Dong and Searls, 1994; Searls, 1992; Durbin et al.,
1998) but is also widely used in computer science and linguistics to describe languages
and classes thereof (Chomsky, 1959; Goodman, 1998; Hopcroft and Ullman, 1979). The
definition of dynamic programming given by Tendeau (1998) is described using recursion
equations as well as formal grammars.

The most difficult issue in this context is to identify a sufficiently generic representation
of the search spaces on which the individual application problems are defined. Following
Giegerich (2000), a natural starting point is a rewriting system which defines instances
of the input that can possibly be replaced by intermediate structures. This leads to the
definition of a formal grammar G which specifies a set of rules on how to generate or
read strings of the corresponding language L(G). The benefit of using formal grammars
compared to explicit recurrences is mostly defined in the high-level description of the
solution space by the problem at hand. Formal grammars work on an input alphabet,
the set 3. Words of the language L(G) are elements of ¥*. The empty word is denoted
by € ¢ ¥. Regarding alignments, an additional symbol — ¢ ¥ denotes the empty word,
too. However, there is a clear distinction between the symbols due to practical reasons:

30

Chapter 2. Introduction to Dynamic Programming

given the string alignment in Figure 6 on page 20, gap symbols are a key element of its
representation such that alignment columns can clearly be distinguished and indels are
made explicit. Removing the gap symbols results in the original input word using the
function 7w defined in Definition 2 on page 17. Thus, the ’—’ symbol is used as an explicitly
written empty word and the symbol ¢’ is used to denote the empty input.

Definition 16 (Weighted Formal Grammar, Tendeau (1998))
A weighted context-free formal grammar (CFG) on a semiring (R, ®,®,0,1) is a 5-tuple
G =(N,%, P, S,w) with —, e ¢ ¥ denoting the empty word where

e N is a finite set of non-terminal symbols,

e Y is a finite set of terminal symbols,

e PC N x (NUT)* is a finite set of production rules for T =X U {—, ¢},
e S € N is the start symbol,

e w: P — R is a weight function.

In the following, non-terminals are denoted by capital letters and terminals by lower-case
letters. Greek letters denote words of terminals and non-terminals. The production
rules introduced above are of the form A — «. If the weight of a production rule is
w(A — o) = r, with r € R, we shortly write A = a.

Production rules of a grammar G can fail. If a rule fails, it does not produce a result
on the right-hand side. In an implementation, right-hand sides typically yield sets or lists
of results, where a failure of a rule naturally leads to an empty set or an empty list. In the
algebraic dynamic programming (ADP) framework described in Subsection 2.2.7, rules
are either executed as a whole or fail completely. A rule failing partially is not possible.

Definition 17 (Regular Weighted Formal Grammar)

Let G = (N, X, P, S,w) be a weighted formal grammar. If the productions are of the type
P C (N xTN U N x T), then G is called right-linear. Left-linear grammars are defined
analogously with productions of the form P C (N x NT U N x T). Both, left- and
right-linear grammars are called regular.

Here, weighted regular grammars are a subset of weighted context-free grammars as
given in the Chomsky hierarchy (Chomsky, 1959) defining classes of languages which
specify certain properties of the language and corresponding grammars. DP algorithms
can be applied not only to just one input structure but also to two or more independent
inputs. As described in Tendeau (1998), a DP algorithm can be described by recursion
equations, formal grammars and finite automata. In the context of finite automata, DP
algorithms applied to one input structure are denoted as single-tape and two or more
inputs as multi-tape algorithms (see also Subsection 2.2.4). For all algorithms considered
here, the input tape is immutable.

Definition 18 (Multi-tape Inputs)
A multi-tape input is a n-vector of input tapes. In a multi-tape grammar G, operating
on n words, production rules can be specified to n tapes and thus the i’th element of the

Chapter 2. Introduction to Dynamic Programming

31

vector is operated on by symbols in the i’th position of each rule of the grammar where
rules are analogously specified on vectors.

A formal grammar will be in general denoted by G and the number of tapes will only be
specified when needed. The definitions for the set of non-terminals N, terminals T, the
alphabet 3 and start symbol S are defined for a single tape, thus the set of non-terminals
for all n tapes together is a subset of all possible combinations, N™. The production rules
are defined by P™ C N™ x (N™UT™) which forbids to have a non-terminal on one tape
be combined with a terminal on another tape.

In the example for pairwise alignments below, inputs are 2-dimensional vectors. A
simple version of the Needleman-Wunsch algorithm written as a weighted formal grammar
Go = ({X}, %, P, X,w) with the set of production rules is given by:

(%)~ <§l)<z> | (ff(f) | @(i) | -~ (2.10)

The grammar is defined on two input sequences and thus has a two-line symbol on the
left-hand side, the two-tape non-terminal (¥). Here, X is a non-terminal of the grammar,
a a terminal character, ¢ the empty string and ’—’ the “no input read”-symbol. The
left-linear grammar is defined on the cases Xa or X—. Two-tape terminals, e.g. (), act
on individual inputs, here not moving on the first input, but reading a character “into” a
on the second input. The operations of the grammar can be explained for each symbol
individually, while grouping into columns indicates that the symbol on each line, and
thereby input, operates in lockstep with the other symbols in the column. Multiple tapes
are not processed independently, i.e., ‘actions’ are taken concurrently on all tapes. Since
we consider the insertion of a gap symbol also as an ’action’, it is not allowed to insert gap
symbols on all the tapes at the same time. Hence, in each step at least one of the tapes

is 'consuming’ an input character. The algorithm is therefore guaranteed to terminate.

There is no explicit start symbol, however, one could add a rule (g) - (%) The weight
function w assigns a weight to each production rule as it was shown in the example in
Figure 6 on page 20 aligning the words friday and railway.

The language of a formal grammar L(G) is the set of all possible words that can be
generated by applying a finite sequence of production rules of the grammar. Any formal
weighted grammar G = (N, X, P, S, w) over a semiring (R, ®,®,0,1) and with T = %
induces a derivation relation =gC (N UT)T x (N UT)* as follows:

aXfB=gapfiff (X - ¢)€e P, for X €N, «o,8,0 € (NUT)*
If aXf =g a¢f with the rule (X — ¢) € P and w(X — ¢) = r then we also write
aXp =T>g agf. Applying a grammar G on an input v is called a derivation of the grammar:

Definition 19 (Derivation of G, ¢f. Droste and Kuich (2009))

Let G = (N, X, P, S,w) be a weighted grammar over a semiring (R, ®,®,0,1). A derivation
6 of G on an input v is a sequential application of the derivation relation starting with
start symbol S and ending with v:

5:8 2 oy = ... =y forr; € R, « € (NUX)", v € ¥

32

Chapter 2. Introduction to Dynamic Programming

The derivation § of a grammar G on an input v produces a sequence of rule applications
until v is reached.

Given a weighted formal grammar G and an input v, there may exist various derivations
ending with v. Thus one can combine the weights of single derivations into a weighted
language or series:

Definition 20 (Series of G)
Let G = (N,%, P,S,w) be a grammar over a semiring (R, ®,®,0,1) and §: S = ay =
... =2 v a derivation of G on input v. The weight of derivation § is

The series generated by such a grammar is the function L(G): ¥* — R defined by
L(G)(v) = @(w(é) | § derivation of G on v).

The series is a function describing the language of a weighted grammar. In the unweighted
case, the semiring R would be the boolean semiring and thus, return true if a word is in
the language and false otherwise.

For the development and application of formal grammars describing dynamic pro-
gramming problems on strings, several approaches have been developed in recent years
(Giegerich, 2000; Honer zu Siederdissen et al., 2015a; Honer zu Siederdissen, 2012; Sauthoff
et al., 2011; Sauthoff et al., 2013). The formulation of DP algorithms using formal
grammars results in a separation of the rule description, the weight function and the
memoization. This approach is called ADP (Giegerich, 2000; Giegerich and Meyer, 2002)
and will be defined in Subsection 2.2.7.

2.2.4 From Formal Grammars to Parsers

Another well-known problem that can be solved using dynamic programming is the matrix-
chain-multiplication (Cormen et al., 2009). Given two matrices M, N with dimensions
a x b and b X ¢, respectively. Then, the number of single operations needed to calculate the
product M x N of both matrices is a - b - c. Now assume a sequence of matrices My ... M,
to be multiplied. The goal is to find a bracketing of the matrices such that the number of
single operations needed is minimized when calculating the matrix product.

Let i,k,7 € {1,...n} be indices of the matrices and m(i, j) be the minimal number
of operations needed to calculate a product including matrices ¢ to j with ¢ < j, 4,5 €
{1,...n}. Let r(i) denote the number of rows of matrix ¢ and ¢(:) the number of its
columns. Hence, the number of multiplications for the matrix product M; - M;,1 is
r(i)-r(i+1)-c(i+ 1) as c¢(i) = r(¢ + 1) is the number of columns of M; and the number
of rows of M; 1. Then the recursive solution is given by:

m(i,j) = Zg}qlgﬂ (m(i, k) + m(k+1,5) +r@@) - r(k+1) - c(j)) (2.11)
with initialization defined as m(i,i) = 0. The corresponding formal grammar is a context-
free grammar (CFG) as there are two parallel distinct recursive calls given in the recursion

Chapter 2. Introduction to Dynamic Programming

33

equation. The corresponding case in Equation 2.12 is called 'mult’ with two non-terminal
symbols M M. The terminal m describes the case when a matrix is taken as single element
in the current step and e denotes the empty input. Note that the 'mult’ case combines
two subsolutions opposite to the usual choice of the currently optimal subsolution done
in each step of the DP algorithm. Let G = ({M},X, P, M, w) be the grammar for the
matrix-chain-multiplication problem with the following production rules:

M- m | MM ’ €

~— |~~~ (2.12)

single mult done
The Needleman-Wunsch algorithm described by the grammar in Equation 2.10 and the
matrix-chain-multiplication given in Equation 2.12 not only differ concerning their classes
of formal grammars but also in the calculation of scores. The string alignment algorithm
has a scoring system that scores grammar rules differently in order to distinguish distinct
(evolutionary) events. Only the distinction between match and mismatch cases is based
on the sequence data itself. In contrast, the scoring of the matrix-chain-multiplication
problem is completely based on the dimensions of the matrices such that distinct grammar
rules are not required to have different scores, i.e., all the rule based scores are set to
1. A further difference between the Needleman-Wunsch algorithm and the matrix-chain-
multiplication is the number of input structures. While the latter is applied to only
one sequence of matrices, the former compares two strings, thus is applied to two input
structures.

Chomsky and Schiitzenberger (1963) added weights to context-free languages and
obtained algebraic power series. This formalism generalizes context-free grammars in
such a way that the productions in a context-free grammar (CFG) correspond to a set of
equations in an algebraic system. The weighted context-free language is defined as the
least solution of the equation system. Petre and Salomaa (2009) give a detailed survey on
the topic.

Given the description of DP algorithms as formal grammars, one can use properties
of formal language theory to extend notions and applications of DP algorithms. Formal
grammars are closely related to finite automata and complement the concepts of generating
and parsing words of a language (Hopcroft and Ullman, 1979). A parser therefore is
considered to check if the input is part of the language. Parsers can also be combined with
weight structures such as semirings (Goodman, 1998). Describing a DP algorithm using
weighted formal grammars can be interpreted as parsing the input in an optimal way.

The parser generates a parse tree in order to depict the way of the program. Parse
trees and derivations of a grammar are two distinct ways of describing the sequence of

grammar rules applied to an input. Parse trees are tree structures with specific node
labels:

Definition 21 (Parse Tree, cf. Hopcroft and Ullman (1979))
A parse tree is a tree depicting a derivation of a grammar G = (N, X, P, S,w) on an input
v s.t. the following holds:

e cvery vertex has a label such that

— the root has the label S,

34

Chapter 2. Introduction to Dynamic Programming

M
M M

M MM M

m mm m

(Mg - My) - (M- Mq) Mg - (My- (M- Ma)) Mg - ((My - M) - Ma)

Figure 10: Example parse trees (top) for the grammar G in Equation 2.12 and the input
Mabea = Mo MyM:M, as product of four matrices. Red nodes stand for the start symbol, black
nodes and edges indicate the 'mult’ rule and blue nodes and edges show the ’single’ rule of the
grammar. e-rules are omitted. The bottom line indicates the bracketings for the matrix products
resulting from the above parse trees, respectively.

— inner nodes have labels in N,

— leaves have labels in T,

o if an inner verter has a label X € N and its children have labels C1,...Cr, € NUT
then there exists a production rule in P with X — Cq,...C,

e if a leaf has label € it is the only child of its parent node.

As an example, consider a product of four matrices, Mypcq = Mo My MM, as an input
to the grammar G in Equation 2.12. Then, a possible derivation of G on P is:

ma Wsingle ma Wsingle
§: M == MM 28 mM =2 o MM =25 mmM

Wsingle Wsingle Wdone

22 mm MM =25 mmmM ==L mmmm =225 ¢

This derivation corresponds to the parse tree in the middle of Figure 10.

Given matrix dimensions for the matrices in Mypcq = MMy M. M4, one can calculate
a score for each parse tree which equals the number of single operations needed to
calculate Mypeq. A possible way to solve the matrix-chain-multiplication problem would
be to calculate all possible parse trees (or derivations) for an input and choose the
one corresponding to the minimal score. This corresponds to calculating the series in
Definition 20 using the tropical semiring (R, min, +, 00, 0).

In comparison, DP algorithms do not calculate all possible parse trees but rather all
pairs of possible subsolutions and recurse on the best one as defined in Equation 2.9. Thus,
the only interest lies in the parse tree corresponding to the optimal solution in order to
extract the derivation and thus, the structure of the solution (e.g. by backtracking the
memoization table).

Chapter 2. Introduction to Dynamic Programming

35

M

FR-I-DAY
-RAILWAY

}Forward}]Backward(

Inside

Figure 11: Example of the forward-backward (L.h.s) and inside-outside calculations (r.h.s).
Forward and inside values are calculated based on a well-defined substructure (white) whereas
backward and outside probabilities are the based on the complementary structure (yellow).

2.2.5 Calculating Probabilities

Instead of calculating the solution with the optimal score, it is also possible to calculate
the most probable path through the memoization table. This can be done by applying
a grammar G = (N, X, P, S,w) where the weight function w : P — R is defined by the
Viterbi semiring (R}, max,-,0,1) based on real numbers in the interval [0,1]. and the
weight function defines probabilities for each production rule. The optimal score is based
on the maximal probability. This is called the Viterbi algorithm (Durbin et al., 1998;
Viterbi, 1967).

In order to calculate the total probability for an input v to be derived by a grammar
G, one can use the inside semiring (R>¢, +, -, 0, 1). Here, rule probabilities are multiplied
within one derivation and scores of all derivations are summed up to get the final result
(Durbin et al., 1998; Goodman, 1998; Goodman, 1999). Since it is possible to use semirings
as weight structures for distinct kinds of grammars, different algorithms can be defined
based on the grammar-semiring combination. If the inside semiring is applied as a weight
structure to a regular grammar, the algorithm is called forward algorithm. If the grammar
is a CFG, the algorithm name matches the semiring, thus it is called inside algorithm
(Durbin et al., 1998; Goodman, 1998).

While the inside or forward probabilities define the probability of a certain (sub)de-
rivation to be in place, the backward or outside probabilities define the probability
of derivations occurring with exactly the inside part missing as shown in Figure 11.
The corresponding algorithms are called backward algorithm for regular grammars and
analogously, outside algorithm for CFGs. Forward and inside probabilities are calculated
with a DP algorithm starting from the smallest substructure ending when the structure
is traversed completely. This is based on the order of elements in the input structure.
In order to calculate backward or outside probabilities, one needs to reverse the order
relation of the input. Thus, the backward algorithm starts with a complete input and
stops when the input is traversed completely, reaching the smallest (first) element. The
outside algorithm is additionally more complicated as it requires two bounds between
the inside and the outside part as depicted in Figure 11. Analogously to the forward
or inside algorithm, being applied to all possible subsolutions, the backward or outside

36

Chapter 2. Introduction to Dynamic Programming

algorithm is also applied to all possible substructures and the order of calculation is
reversed. Combining the algorithms, thus applying forward-backward or inside-outside on
an input v, one can deduce probabilities for each element in v to be in a certain position
of the resulting structure. The description of inside-outside algorithm in the framework of
ADP is described in Subsection 2.2.7 including more detailed descriptions of the algorithm.
Chapter 3 shows results of the inside-outside algorithm applied to trees and forests as
input structures. More detailed descriptions of the forward-backward and inside-outside
algorithms can be found in Durbin et al. (1998) for bioinformatics applications and in
Goodman (1998) and Goodman (1999) regarding parsers in the field of linguistics.

2.2.6 Index Structures

The order of elements of the input structure is a key element for the application of DP
algorithms. Given strings as an input, their totally ordered set of elements defines the
order of program execution. However, other input structures, such as trees or forests,
require to first determine the order of dependencies in the input before running the
program. This is called the index structure of the input. For trees and forests, popular
index structures are preorder and postorder on trees, as described in Subsection 2.2.1 and
in Chapter 3. The index structure is implicitly combined with the input and the recursion
equations of the program. Irrespective of time and space requirements, one could also
first create a dependency graph and use connected components and topological sorting to
determine the order of the program for more complex inputs. There exist more time and
space efficient ways of calculating the optimal order of items (Goodman, 1998) which also
depends on the kind of algorithm applied to the input. For sets, a possible structure is the
power set and its partial order defined by subset inclusion. Set structures together with
DP algorithms have been discussed in Honer zu Siederdissen et al. (2015b). Chapter 4
gives a more detailed description about order relations on input structures, especially for
alignments, and gives characterizations of possible input structures.

2.2.7 Algebraic Dynamic Programming

Algebraic dynamic programming (ADP) (Giegerich, 2000; Giegerich and Meyer, 2002) is
designed around the idea of higher order programming and starts from the realization that a
dynamic programming algorithm can be separated into four parts: (i) grammar, (ii) algebra,
(iii) signature, and (iv) memoization. These four components are devised and written
separately and combined to form possible solutions. As mentioned in Subsection 2.2.6,
each input requires an additional index structure to determine the order of program
execution on its elements. Even though implementing this step is usually included in the
process of reading the input, one needs to specify the index structures required for the
DP algorithm.

One advantage of ADP is that the decoupling of the individual components makes
each individual component much easier to design and implement. Another advantage is
that different components can be reused easily. This is in particular true for the grammar,
which defines the search space. Hence, it needs to be specified only once. The grammar
specifies how to decompose the input based on the production rules. The scoring algebra
specifies the cost function and the selection criterion, including the objective function,

Chapter 2. Introduction to Dynamic Programming

37

count eval

align(s, (%)) = s align(s, (%)) = s + Waiign(u, v)
delete(s, (*)) = s delete(s, (*)) = s + Waetete (U, —)
insert(s, (7)) =s insert(s, (7)) = 8 + Winsert(—,v)

empty(e) =1 empty(e) =0
choice([z1,...xn]) =21+ ... + 24 choice([z1, ... x,]) = h(z1,...240)
with u,v € ¥ and s € R with u,v € ¥ and s € R

Figure 12: Two different scoring algebras written for the grammar of string alignment. Here,
s € R is the score, ¥ the input alphabet, — the gap symbol and € the empty string. The score
contributions w(., .) evaluate the edit operations, here (mis)matches, deletions and insertions,
depending on the values of terminal symbols. The choice function formalizes the selection criterion,
or objective function applied in each recursion step. In the count algebra (left) it returns the
sum of the alternatives. In the eval algebra (right), the choice function h is usually defined as
max or min to retrieve the optimal value.

and thus defines formally what is considered as an “optimal” solution. Based on the
objective function, the optimal solution is selected from the possible solutions. The algebra
is based on a semiring and the scope of the evaluation algebra is quite broad, see also

Subsection 2.2.2. It can be used e.g. to count and list prioritized (sub)optimal solutions.

The signature is used as a connecting element between grammar and algebra such that
they can be reused and exchanged independently from each other as long as they fit to the
signature. The subsolution to each instance of the problem is stored in the memoization
table such that it can be reused when needed. In this section, the four parts of ADP will
be shortly explained using string alignment as an example whose grammar has already
been given in Equation 2.10 on page 31.

Pairwise string alignment is a two-tape algorithm, thus the grammar is given by

Go = (N,X,P,S,w) with N = {X}, S = X and the production rules given below.

Alignment of biological sequences is defined on the alphabet ¥ = {A,C,G,T} when
aligning DNA sequences (for more details on DNA, see Chapter 5).

X X\(a X\(a XN (— €
(¥) = <Xl)<a> | <:2<t_> | <iz£;> | - (2.10)

The grammar defines 4 different cases: (i) matching the current positions of the input
strings, (ii)-(iii) inserting a gap symbol in one or the other of the input strings or the case
(iv) when both input strings are empty.

As the algorithm should return the best possible alignment of the input strings, each
of the production rules is assigned a scoring function in the scoring algebra. The scoring
algebra will take the current score and return an updated score including the weight for
the current case (align, delete or insert). An additional function is added to the scoring
algebra, the objective function or choice function which defines on how to choose the
optimal value.

38

Chapter 2. Introduction to Dynamic Programming

For each grammar, we can choose a scoring algebra independently. The scoring algebra
w is usually based on the arctic or tropical semiring, where & defines the objective function
or choice function A and ® defines the concatenation of scores and recursive call. Two
possible scoring algebras are given in Figure 12.

The signature in ADP provides a set of function symbols that provide the glue between
the grammar and the algebra. Thus, a type signature is defined for each of the scoring
functions, analogously to type signatures found in functional programming. Figure 13
shows the signature for the Needleman-Wunsch algorithm. This signature fits to both
scoring algebras in Figure 12 and the grammar in Equation 2.10. Here, ¥ is the input
alphabet, thus the input has to be an element of 3. R is the semiring defining the scores
as above.

align: Rx () = R
deletion : R x (§) — R
insertion : R x (5) — R

empty : € - R
choice : [R] = R

Figure 13: Signature for the problem of string alignment. The signature lists the situations
that need to be evaluated differently by specifying the input and output for each situation. Here,
the scores are defined over the semiring R, 3 is the input alphabet, thus elements have to be a
letter from X, — is the gap symbol and € the empty string.

The last part needed for ADP is the memoization to store the subsolutions. For the
Needleman-Wunsch algorithm one simply uses a matrix of size O(s x t) where s and t are
the lengths of the input strings to store the subsolutions.

A definition of dynamic programming based on ADP is given in Miklés (2019) together
with more detailed descriptions on ADP in general.

ADPfusion

Algebraic dynamic programming (Giegerich and Meyer, 2002) in its original form was
designed for single-sequence problems. Alignment-style problems were solved by con-
catenating the two inputs and including a separator. Originally, ADPfusion (Honer zu
Siederdissen, 2012) was designed along the lines of ADP, but gained provisions to abstract
over both, the input type(s), and the index space. With the advent of generalized alge-
braic dynamic programming (Hoéner zu Siederdissen et al., 2015a; Honer zu Siederdissen
et al., 2015b; Riechert et al., 2016) inputs were generalized to strings and sets, as well as
multiple tapes (or inputs) of those. A further generalization to tree and forest structures
is described in Chapter 3.

The ADPfusion framework is written in the functional language Haskell. Here, it is
possible to lift two-tape algorithms to their multi-tape version for regular grammars (Honer

Chapter 2. Introduction to Dynamic Programming

39

zu Siederdissen et al., 2015a) and automatically deduce the outside (or backward) grammar
based on the inside (or forward) version (Hoéner zu Siederdissen et al., 2015b; Riechert
et al., 2016). Beyond many implementations of the Needleman-Wunsch algorithm, the
implementation based on ADPfusion (Algebraic Dynamic Programming with compile-time
fusion of grammar and algebra) (Hoéner zu Siederdissen, 2012) is designed in a way to
be extendable to different scoring functions, problem descriptions, and data structures
(Honer zu Siederdissen et al., 2015a).

Inside-Outside algorithms in ADPfusion

As the description of algorithms in ADPfusion is based on formal grammars, it uses distinct
non-terminals for the inside version of the corresponding grammar and its outside version
(Honer zu Siederdissen et al., 2015b). Here, all grammars that do not use the outside or
backward algorithm are based on the inside grammar and are explained and shown during
former sections, e.g. Subsection 2.2.3 and Subsection 2.2.4. Non-terminals of the outside
grammar are denoted by adding an asterisk '*. Non-terminals in a grammar correspond
to a certain range of indices of the input structure. Inside non-terminals recurse inside of
this range, outside non-terminals on the indices outside of this range. Each inside rule has
corresponding outside rule(s). Figure 14 shows an example for an inside-outside rule of a
regular grammar (usually called forward-backward) and a context-free grammar (CFG).
In the regular case, inside and outside grammar are equivalent except that the indices
range beneath the non-terminals differs. The inside algorithm starts from the empty input,
the outside algorithm from the complete input as initialization step. Outside grammars
are more complicated for CFGs. Thus, given the rule M — NO from the matrix-chain-
multiplication algorithm (see Subsection 2.2.4), the non-terminal M is rewritten into
non-terminal N and O, thus it recurses on two parts of the current input. The original
rule only uses M as non-terminal, however, to better distinguish the cases, N and O
replace M non-terminals. The rule M — NO calculates a score for splitting up M into IV
and O. If one wants to know a score for all possible variations of the algorithm instance
on N, one calculates its outside value N*, thus everything outside of this rule. This value
is the sum of the outside probability of its predecessor, thus M* and the inside value for
0O, as O is part of the rule M — NO, thus we keep the inside value. The outside rule is
then N* — M*O. This is also shown in Figure 14. One calculates the outside values for
O* analogously, thus O* — M*N. Chapter 3 will show inside and corresponding outside
grammars for DP algorithms on tree and forest structures.

A more detailed description of the ADP version of tree and forest alignment and
editing including the grammars for inside and outside algorithms is given in Chapter 3.
Applications of the ADPfusion framework can be found in, e.g., Berkemer et al. (2017a),
Velandia-Huerto et al. (2016), and Prohaska et al. (2018). An extension to the usual
Needleman-Wunsch alignment based on the ADPfusion framework is described in Chap-
ter 6.

2.3 Dynamic Programming Algorithms in Bioinformatics

Frequent tasks in bioinformatics include analysis of biological sequences, mainly comparison
of different sequences using alignments or analysis of molecule structures which can be

40

Chapter 2. Introduction to Dynamic Programming

Forward FR-I FR- +
-RAI T |-R I
G — () 6

Backward }FR_I-D _ }FR-I-Dﬂ +
-RATILW -RATLW A

@ - 60

m m m m
M — N O
N NN AN
m m m
N* — M* o

Figure 14: Example of inside and outside versions of a regular two-tape grammar (top, forward
and backward) and a single-tape CFG (bottom, inside and outside). Descriptions of corresponding
formal grammars are given below each case.

calculated using structure prediction algorithms. Biological sequences include DNA, RNA
and proteins (amino acid sequences). More details and biological background is given in
Chapter 5. For now, we think of biological sequences as strings of different letters.

Two well-known and basic DP algorithms frequently used in various bioinformatics
applications are described in the following subsections. The first will deal with sequence
alignment algorithms for which basics were already given with the description of the
Needleman-Wunsch algorithm, see Subsection 2.1.2. There exists various extensions
and versions of this algorithm which are usually described by a regular grammar. The
subsequent section describes the basic algorithm for structure prediction. Its input is just
one sequence which is predicted to be able to form a certain structure by folding onto
itself. The algorithm can be described by a CFG which is an extension to the grammar
for matrix-chain-multiplication, given in Equation 2.12.

Further algorithms will be described in Section 5.4 directly referring to the correspond-
ing biological applications.

Chapter 2. Introduction to Dynamic Programming

41

2.3.1 Sequence Alignment

The literature on alignments is extensive. However, it its concerned almost exclusively
with practical algorithms and applications. The alignment problem for two input strings
has an elegant recursive solution for rather general cost models and has served as one of
the early paradigmatic examples of dynamic programming (Needleman and Wunsch, 1970;
Sankoff and Kruskal, 1983). Since these algorithms have only quadratic space and time
requirements for simple cost models (Needleman and Wunsch, 1970; Gotoh, 1982), they are
of key importance in practical applications. The same recursive structure easily generalizes
to alignments of more than two sequences (Carrillo and Lipman, 1988; Lipman et al., 1989)
even though the cost models need to be more restrictive to guarantee polynomial-time
algorithms (J. Kececioglu and Starrett, 2004). The computational effort for these exact
solutions to the alignment problem increases exponentially with the number of sequences,
hence only implementations for 3-way (Gotoh, 1986; Konagurthu et al., 2004; Kruspe and

Stadler, 2007) and 4-way alignments (Steiner et al., 2011) have gained practical importance.

A wide variety of multiple sequence alignment algorithms problems (for arbitrary numbers
of input sequences) have been shown to be NP-hard (J. D. Kececioglu, 1993; L. Wang
and T. Jiang, 1994; Bonizzoni and Della Vedova, 2001; Just, 2001; Elias, 2006) and MAX
SNP-hard (Wareham, 1995; Manthey, 2003). The construction of a practical multiple
sequence alignment (MSA) therefore relies on heuristic approximations. These fall into
several classes (see e.g. Edgar and Batzoglou (2006) and Baichoo and Ouzounis (2017) for
reviews):

(1) Progressive methods typically compute all pairwise alignments and then use a “guide
tree” to determine the order in which these are stepwisely combined into a multiple

alignment of all input sequences. The classical example is ClustalW (Larkin et al., 2007).

The approach can be extended to starting from exact 3-way (Konagurthu et al., 2004;
Kruspe and Stadler, 2007) or 4-way alignments (Steiner et al., 2011).

(2) Iterative methods start to align small gapless subsequences and then extend and
improve the alignment iteratively until the score converges. The iterative approach is
often used as a refinement step in combination with different other basic methods.

(3) Consistency-based alignments and consensus methods start from a collection of partial
alignments (often exact pairwise alignments) to obtain candidate matches and extract
a multiple alignment using agreements between the input alignments. A paradigmatic
example for the combination of consistency-based alignments and the iterative approach
is DIALIGN (Morgenstern, 1999) using additionally local motifs as anchors.

Most of the successful multiple alignment algorithms in computational biology combine
these paradigms. For example T-COFFEE (Notredame et al., 2000) and ProbCons (Do
et al., 2005) use consistency ideas in combination with progressive constructions; MUSCLE
(Edgar, 2004) and MAFFT (Katoh et al., 2005) combine progressive alignments with iterative
refinements.

A key assumption underlying consistency based methods is transitivity: considering
three input sequences z, y, and z, if z; aligns with y; and y; aligns with zj, then z;
should also align with z;. While this property holds for the pairwise constituents of
a multiple alignment, it is a well known fact that the three score-optimal alignments

that can be constructed from three sequences in general violate transitivity, see Fig. 15.

TRANSALIGN (Malde and Furmanek, 2013) uses transitivity to align input sequences to a

42

Chapter 2. Introduction to Dynamic Programming

(a) (b) (c) (@)
A 0000111110000 A 0000111110000 B 000011011---- B 000011011
B 000011011---- C 1000----10000 C 1000----10000 C 100010000
s =4 s =4 s = -4 s =5

Figure 15: Alignments of three binary sequences A, B, and C with a simple scoring model
considering additive contributions of columns. In this example, we use a score of +1 for matches,
0 for mismatches, and —1 for gaps. Alignment (c) is transitively implied by optimal alignments
(a) and (b), but it is not an optimal pairwise alignment of B and C which is displayed in (d).

target database using an intermediary database of sequences to increase the search space.
Here, intermediary sequences show which subsequences of input and target sequence
can be transitively aligned. This may result in a few well aligned subsequences that are
then extended to one aligned region via a simple scoring function. The same notion of
transitivity is also used in psiblast (Altschul et al., 1997) to stepwisely increase the set
of sequences that are faintly similar to an input sequence.

This thesis includes theoretical work on alignments of trees and forests in Chapter 3
and a more general approach to alignments based on accepted input structures and a
generalized view on alignments in Chapter 4. As alignments are the underlying principles
of a large number of algorithms in bioinformatics, Chapter 6, Chapter 7 and Chapter 8
make use of alignments applied to biological sequences where Chapter 6 includes an
adapted version of the basic alignment algorithm to detect duplicated characters.

2.3.2 Structure Prediction

Biological molecules, especially RNA sequences and proteins, are required to adapt a
certain shape in order to be functional. Thus, the sequences fold onto themselves such that
they form structure elements that stabilize the molecule and open possibilities to bind to
or interact with other molecules or elements of the cell. A more detailed description of the
biological processes is given in Chapter 5. Here, we focus on the algorithmic principles as
structure prediction (or short ’folding’) is based on DP algorithms.

Examples are shown using RNA sequences, however protein folding has similar princi-
ples. An RNA molecule is a sequence composed out of four letters (bases), A, C, G and
U. The building blocks can form certain connections called base pairs. The set of possible
base pairs is P = {AU,UA,CG,GC,UG,GU}. Given a sequence s = $1, .., S, it has to
hold that

e base pairs are formed between two positions in the structure s;, s;, ¢ # j if s;5; € P,
e every base of the sequence is included in at most one base pair,

e base pairs can be nested thus if s;,s;, ¢ < j is a base pair, s, s; with £ <i < j <
and sis; € P can form a base pair,

e crossing base pairs are not allowed, thus if s;,s;, ¢ < j is a base pair, s, s; with
k < i <1< jcannot be a base pair,

Chapter 2. Introduction to Dynamic Programming

43

single left | —
i i+l j
single right e —oe
1 -1

base pair /\

i i+l i1 j
bifurcation *——=0 oO—0@
i k k+l

Figure 16: Recursion cases for the Nussinov algorithm. Black circles represent bases, if they are
connected by an arc, they form a base pair. Horizontal lines are the input sequence. The green
parts depict the input for the next recursion step, black parts show structures corresponding to
terminals in the formal grammar. Letter correspond to the indices of the input structure as given
in the recursion equation.

e in biological applications, neighboring bases s;, s;4+1 cannot form a base pair due to
space constraints. Thus, a minimal distance between bases is required to be able to
form a base pair.

One of the first algorithms to calculate structures of biological molecules is the Nussinov
algorithm, a DP algorithm that aims to maximize the possible number of base pairs
(Nussinov et al., 1978; Nussinov and Jacobson, 1980).

The recursion equation for the Nussinov algorithm can be written as follows (¢f. Durbin
et al. (1998)):

5(i + 1, 7) + Weingleteft

5(i,J — 1) + Wsingleright

s(i+1,7 — 1) + Weasepair

mazi<r<;s(i, k) + s(k + 1, 7) + Weifurcation

s(i,j) = max

(2.13)

The Nussinov algorithm iterates over the input sequence from the front and from the
back or splits the input sequence in two parts and recurses on them. This can also be
seen in Figure 16 that depicts the four recursion cases of the Nussinov algorithm. In order
to calculate the maximum possible number of base pairs for an input sequence, a DP
algorithm can be used. Here, a memoization table is filled, as depicted in Figure 17. The
initialization is done by

s(i,i—1) = —o0

S(ia Z) = max(wsinglelefta wsingleright)

After the initialization step, the memoization table is filled such that short base pairs,
e.g. starting with a range of only one base in between, are calculated first, thus the
algorithm is going from short-range to long-range base pairs. This corresponds to filling
the matrix diagonal by diagonal starting in the middle going toward the upper corner on
the r.h.s. The structure of the solution can be found by backtracking where the base pairs

44

Chapter 2. Introduction to Dynamic Programming

included in the solution correspond to the cells in the matrix that show an increase of the
score, shown by the colored squares in Figure 17.

As the algorithm tries to maximize the number of base pairs, a possible scoring would
be to only score Wygsepair positively, e.g. by 1, and give a neutral score to the other cases,
thus 0. This scoring scheme is used in Figure 17. To simplify the grammar representation,
nucleotides will be denoted by n and nucleotides forming a base pair will be denoted 'n
and n’. In a different setting, n is denoted by ’. and 'n and n’ as (and), respectively.
This is called the dot-bracket notation and will be explained further in Chapter 5.

The Nussinov algorithm can be described by a context-free grammar (CFG). The
version of the grammar shown in Equation 2.14 is written analogously to the recursion
equations (Equation 2.13), however, there exist multiple ways to write down the Nussinov
algorithm.

59 8o | a8 W] 88 e 21

singleleft singleright basepair bifurcation empty

Again, one can draw a parse tree matching the derivations of the grammar. Figure 18
displays the parse trees of the solutions in Figure 17 where the red solution matches the
black and red parse tree and the solution depicted in blue belongs to the parse tree drawn
in black and blue. This way of depicting a structure is commonly used in bioinformatics
when comparing distinct structures. More details on how the comparison can be done is
given in Chapter 3.

The Nussinov algorithm only focuses on optimizing the number of possible base pairs
and completely omits biochemical or thermodynamical properties of the molecules. Zuker

o 1 2 3 4 5 6 7
GACGACU|C
0/o|1f1 1]1 2|3|G)o
©0/0/0 01|22 A
-mOOOllZCZm
00| 0|1{1|2|Gl: GACGACUC
w0 0[1[0/A]: S/ N1/
-0 00/ 0/|C|s
~oo 010 U |s
-ooOC7

Figure 17: Example of the Nussinov algorithm calculating the maximum number of possible
base pairs. A score for all possible base pair formations is calculated starting from low range
interactions (i, + 1) going towards long range interactions (i,7+n —1). The red and blue squares
show co-optimal solutions with 3 base pairs, respectively. The solutions are depicted on the right.
The scores are 1 for a possible base pair and 0 otherwise. The objective function maximizes the
current value.

Chapter 2. Introduction to Dynamic Programming

45

Figure 18: Parse trees corresponding to the solutions of the Nussinov algorithm on the sequence
GACGACUC as given in Figure 17. The inner nodes depict applied grammar rules as given in
Equation 2.14. The leaves of the trees are the letters of the input sequence such that the input
can be recovered by traversing the tree in preorder, thus starting at the root and always visiting
the leftmost child first. Red and blue color match the structures depicted in Figure 17.

and Stiegler (1981) were one of the first to formulate the folding algorithm based on
thermodynamical rules by setting energy parameters for different conformations of the
sequence. The recursion equations of the Zuker algorithm are depicted in detail in Zuker
and Stiegler (1981) and Bompfinewerer et al. (2008).

46

Chapter 2.

Introduction to Dynamic Programming

Chapter 3. Dynamic Programming on Trees and Forests 47

CHAPTER

Dynamic Programming on
Trees and Forests

Contents
3.1 Trees and Forests as Data Structures 48
3.2 Single-tape DP on Trees and Forests 51
3.2.1 The Minimum Evolution Problem 51
3.2.2 The Phylogenetic Targeting Problem 53
3.3 Two-tape and Multi-Tape DP on Trees and Forests 54
3.4 Tree Alignment Lo 55
3.4.1 Multi-tape Tree Alignment 59
3.4.2 The Affine Gap Cost Model for Alignments 60
3.4.3 Inside and Outside Grammars 61
3.5 Tree Editing 63
3.5.1 Outside Grammaro 65
3.5.2 Affine Gap Costs 65
3.6 Benchmarking against RNAforester 66
3.7 Software Availability o 67

3.8 Conclusion 67

48

Chapter 3. Dynamic Programming on Trees and Forests

This chapter will deal with dynamic programming algorithms on tree and forest structures
as inputs. Trees as data structures sit “somehow between” strings and sets. They have more
complex structures, in that each node not only has siblings, but also children compared to
lists which only have siblings, i.e., one kind of adjacency, for each node. Sets on the other
hand are typically used based on the principle of having edges between all nodes, with
each edge having a particular weight. This alone makes trees an interesting structure to
design a formal dynamic programming environment for. Tree and forest structures have
important functions in computer science, bioinformatics and linguistics as their structure
allows to represent nested data structures such as parse trees of programming code or
natural languages. Further applications in bioinformatics will be given in Chapter 5 and
Chapter 7.

The aim of the present chapter is to develop a general framework as a generic basis
for the design and implementations of dynamic programming (DP) algorithms on trees
and forests. Here, the focus is on well-known algorithms with existing implementations as
examples because in these cases the advantages of the algebraic dynamic programming
(ADP) approach (as described in Subsection 2.2.7) can be discussed directly in comparison
to the literature. Since DP algorithms are usually formulated in terms of recursion
equations, their structure is nicely reflected by formal grammars. These are more compact
than the recursions and more easily lend themselves to direct comparisons. We give a small
set of combinators — functions that formalize the recursive deconstruction of a given tree
structure into smaller components — for the design of such formal languages. This chapter
is based on Berkemer et al. (2017b) with the title Algebraic Dynamic Programming on
Trees and Forests. Additional information is given in the original work and in Appendix A.

3.1 Trees and Forests as Data Structures

Trees and forests as data structures are uniquely defined based on two partial orders
of the elements: the ancestor order and the sibling order (see also Subsection 2.2.1).
Thus, elements of trees or forests still exhibit a well defined structure that leads to two
obvious total orders on the elements, the preorder and postorder on trees and forests as
defined in Subsection 2.2.1. This chapter will also deal with the alignment of trees and
forests, however, a more generalized way for the construction of alignments will be given
in Chapter 4. In order to define formal grammars for DP algorithms on trees and forests,
we have to define how to split a tree or a forest into its substructures. On strings, the
concatenation operator is assumed implicitly to concatenate single symbols of the string.
We make the operators explicit as there is more than one operator on trees and forests.
Each operation transforms a tree or forest on the left-hand side of a rule (—) into one or
two elements on the right-hand side of a rule. Thus, the operators defined below will be
used in production rules of formal grammars, defined in Subsection 2.2.3.

Let T be a rooted, ordered tree and let F' be the ordered forest of trees Ti,..., T},
with root nodes r1,...,r, as defined in Definition 12 on page 25. Labels are associated
with roots, leaves and inner nodes of the tree or forest. For each tree T' it holds that it is
empty and contains no nodes, or there is a designated node r, the root of the tree. We
now define the set of operations that will lead to dynamic programming operations on
ordered trees and forests. The operations are shown within an example in Figure 19.

Chapter 3. Dynamic Programming on Trees and Forests

Definition 22 (Empty Tree or Forest)
If T is empty, then the rule T — € yields €. If F' is empty, then the rule F' — € yields €.

Definition 23 (Single Root)
If T with root r contains just the root r, then T — r yields r.

Definition 24 (Root Separation)
Given non-empty T, the rule T — r 1 F yields the root r of T, as well as the ordered forest
F=T.,...T,, of trees. Each T, is uniquely defined as the k’th child of the root r of T'.
T — F vr is isomorphic to this rule.

Definition 25 (Leaf Separation)

Given non-empty T, the left-most leaf | = lleaf(T') that is defined as the leaf the can be
reached by following the unique path from the root r of T wvia each left-most child until a
leaf has been reached. We write T' = T — 1 for the tree obtained from T by deleting the leaf
l and its incident edge. The rule T — 1 2T’ breaks up T into the leaf I and the remaining
tree T =T — 1.

The rule T'— T v s likewise extracts the right-most leaf.

Definition 26 (Forest Root Separation)

Let F =[T1,...,Tx| be a non-empty forest and let r be the root of T, the right-most tree
in F. The rule ' — F . r separates the right-most root r, that is, the resulting forest
F=1T,...,Tk-1,Te1,...,Tem] replaces Ty, in the the original forest by the child-trees
T, s Tem of r. The Tule F — r 1+ F analogously separates the left-most root r by
replacing the the leftmost tree of F' by the child-trees of its root.

Definition 24 is a special case where the forest only consists of one tree.

Definition 27 (Forest Separation)

The rule F' — T o F' separates the non-empty forest F into the left-most tree T, and the
remaining forest F'. T is uniquely defined by the ordering of F.

The rule F' — F' o T likewise yields the right-most tree.

The following lemma gives that both, tree and forest decomposition are well defined
and always lead to a decomposition using at least one of the definitions above.

Lemma 1 (Tree Decomposition)

Given any (empty or non-empty) tree T, at least one of the rules from Definition 22 to
Definition 25 yields a decomposition of the tree, where either T is decomposed into “atomic’
elements (e or a single node), or into two parts, each with fewer vertices than T.

4

Proof 1 Ewvery tree T is either empty (Definition 22), contains just one node which then is
the root (Definition 23), or contains one or more nodes (Definition 24 and Definition 25),
of which one is separated from the remainder of the structure.

Lemma 2 (Forest Decomposition)
For every forest F the operations Definition 22, Definition 26 or Definition 27 yield a
decomposition.

50

Chapter 3. Dynamic Programming on Trees and Forests

PSRN ToF
~AANFTA A
v %

'

Figure 19: Examples for operations defined on a tree or forest. Rules depicted here correspond
to root separation in a tree or forest (purple), forest separation into the leftmost tree (green) and
the remaining forest and leaf separation of the leftmost (red) and rightmost (blue) leaf. Dotted
lines indicate edges that are to be removed when the corresponding node is split from the tree.

Proof 2 The argument is analogously to the case of trees. The forest root separation
cases given in Definition 26 remove the left- or right-most root from the forest, hence they
constitute a decomposition of the structure. This might lead to a larger number of trees in
the resulting forest but reduces the total number of nodes.

Given those tree and forest concatenation operators, we are now able to define formal
grammars to describe DP algorithms on trees and forests.

Lemma 3 (Totality)

Given an arbitrary tree or forest, at least one of the operations specified in Definition 22
up to Definition 27 and Lemma 1 and Lemma 2 can be applied. Each of these operations
reduces the number of nodes associated with each non-terminal symbol or results in a single
node or an empty structure. Thus any finite input tree or forest can be decomposed by a
finite number of operations.

Proof 3 Let F be a forest. For the case of the empty forest, we apply Definition 22. In the
case of more than one tree, we apply Definition 27 which yields a single tree and another
forest that are both smaller than the original forest. This is also shown in Lemma 2.

In case of Definition 27, the resulting forest structure can be empty such that the
original forest only consisted of a single tree. Here, we continue with the possible tree
structures.

A tree T can be empty, or consist either of a single node or more than one node. For
the empty case, we apply Definition 22. In case of the tree consisting only of a single node,
we apply Definition 23. If T' consists of more than one node, we either apply Definition 24
or Definition 25. In case of Definition 24 the resulting structure consists of a single node
(an atomic structure) and a forest which in total has a smaller number of nodes than
the original tree. In the case of Definition 25, one leaf is eliminated from the tree, thus
this yields a tree that just differs from the original structure by one leaf. For the case of

Chapter 3. Dynamic Programming on Trees and Forests

51

algorithms working on two input structures, it is ensured that at least one of the current
structures is decomposed such that the total number of nodes decreases within the next
recursion step.

The operators on tree and forest structures defined above specify how these data
structures can be traversed. They specify a basis for the formulation of at least a large
collection of DP problems using tree and forest decomposition. Different DP problems
thus can be formulated (as a formal grammar) based on the same set of decomposition
rules. There are many ways of designing DP algorithms on tree structures (Chen, 2001;
Schwarz et al., 2017; Tai, 1979). At present we lack a formalized theory of decompositions
for arbitrary data structures hence we cannot formally prove that this set of operators
is sufficient to formulate any meaningful DP problem on trees. If necessary, however,
additional decomposition operators can be added to the list.

3.2 Single-tape DP on Trees and Forests

Dynamic programming algorithms on a single input tend to be concerned with the internal
structure of the input. Single-tape problems and their associated grammars therefore
deal with the structural decomposition of this one input. A well-known example in
bioinformatics is the Nussinov algorithm (Nussinov and Jacobson, 1980), described in
Subsection 2.3.2 that is applied to one input sequence and returns the optimal structure
based on a scoring scheme (often maximal number of paired nucleotides).

Analogously to single-tape DP on strings, there exist single-tape DP algorithms on
trees and forests. Here, problems include the search for an optimal partitioning of the
tree or detection of paths within the input structure. In contrast, two- or multi-tape DP
algorithms are usually used to compare two or more input structures with each other
with the aim of finding an optimal way of transforming one into the other or composing
them into a consensus structure. We start with two examples of DP algorithms on single
trees. Both solve well-known problems in computational biology but are also easy to state
without reference to their usual applications. We consider these trees as ordered since in
practice they are given with fixed, albeit arbitrary, order of the children. In the following
section we will then address algorithms that take pairs of labeled trees as input.

3.2.1 The Minimum Evolution Problem

Given a tree T with leaf set £, vertex set V(T') and edge set E(T'). The relation chd(v)
returns the set of children of a vertex v in a tree. X is the alphabet of the vertex labels.
The problem is described as given a labelling ¢ : £ — ¥, and a similarity function
w: Y x ¥ — R, find an extension £ : V(T) — ¥ such that: (i) £(v) = £(v) on £ and (ii)
w(l) ==, yerr) W(u,v) is maximal. Maximizing similarity amounts to minimizing
the number of evolutionary events that occur along the edges of the (phylogenetic) tree,
explaining the traditional name of the problem. This combinatorial optimization problem
is known as the “Minimum Evolution” or “Small Parsimony” problem.

A well-known solution to the Minimum Evolution Problem, known as Sankoff’s Algo-
rithm (Sankoff, 1975), consists of computing for each complete subtree of T', which by
construction is rooted in a vertex v € V, and each possible label a € ¥ of v, the score of

52

Chapter 3. Dynamic Programming on Trees and Forests

the best scoring labeling of that subtree. Let us call this quantity S, (a). It satisfies the
recursion

if /(v) =
Sy(a) = {O if £(v)] “ forallv e X
—oo otherwise

(3.1)
Sy(a) = Z max (S.(¢(c))) + w(a, £(c))) forallve V(T)\ L
cechd(v) e
The initialization for v € £ enforces that a score different from —oo is obtained only for
configurations where the label a at leaf v coincides with the input ¢(v). Otherwise, v
obtains a score of —oo that propagates upwards through the recursion for the inner nodes.
Probabilistic versions of the algorithm assign probabilities proportional to exp(score) to
each configuration, and thus a probability of 0 to any solution in which the leaf labels
deviate from the input. The grammar to Sankoff’s algorithm, Equation 3.1, is given by

Tz F F—ToF |e¢ (3.2)

Sankoff’s algorithm, and many others often used in particular in computational biology,
proceeds using two decomposition steps, namely, the separation of the root from the forest
of its child trees, and the stepwise decomposition of a forest into its component trees.
We remark that the same grammar can also be use to describe Fitch’s solution to the
Small Parsimony problem (Fitch, 1971) for binary trees, which was later generalized by
Hartigan (Hartigan, 1973) for arbitrary trees. Even though the same grammar is used, the
scoring algebra is completely different in the two algorithms, see Figure 20 and Figure 21.
Each scoring algebra consists of functions corresponding to the rules in the grammar, thus
in this case, a tree function, a forest function, a function for the empty case together
with the choice function form the algebra. Each (sub)solution consists of a list of pairs
(s7, Vr) consisting of the score s for the input tree T' and a set Vi, containing the nodes
included in the solution. Thus, each instance of the problem will also receive the list of
pairs [(st, V)] as an input. Let A be the set of possible labels in the tree and [the length
of the input list. Then Fitch/Hartigan uses the scoring algebra depicted in Figure 21. See
also Chapter 7 for a more detailed description and application of the Fitch algorithm. For
the Sankoff version, only a label-dependent score w for the trees is given as input, with
L7 as the set of labels in the current subtree T, as it can be seen in Figure 20. Thus, this
algebra (Figure 20) considers the Sankoff version of the small parsimony problem.

([s] + +sF, F')
([sl, w(Lr))
0

forest([s], F'
1, T

tree([s

empty([s], €
choice([s1, ..., Sk]

)
)
)
) = Sm with s, = max;(s;)

Figure 20: Scoring algebra for the Sankoff version of the small parsimony problem. Here, [s] is
the list of scores for possible (sub)solutions and with ++ a further element is added to the list.

Chapter 3. Dynamic Programming on Trees and Forests

53

forest([(s7, V)], F) = ([(s7, V)] + +(s77, Vir), F')
tree([(st, V)], T) = (s, Vrr) where
k(a) =| {T" | a € V' }Va € A,

s = E ST/,
T/

k = max,(k(a)),
Vi = Viay U{a | k(a) = k},
spr=s+1—k.
empty([(sr, V1)), €) = (0,0)
choice[(s7, V)1, ..., (s7, Vr)i] = (s, V)i with st = mazs,. ;((sT, Vr)i)

Figure 21: Scoring algebra for the Fitch/Hartigan version of the small parsimony problem.

3.2.2 The Phylogenetic Targeting Problem

Here we are again given a tree T' with leaf set £, this time together with a weight function
w: L x L — R. The weight w models the amount of information that can be gained
by comparing data measured for a pair of two taxa, i.e., a pair of leaves. Two pairs of
taxa u,v and x,y are said to be phylogenetically independent if the two paths from u to v
and from x to y, respectively, have no edge in common (Maddison, 2000). The task is to
find a set S of mutually phylogenetically independent pairs of taxa that maximizes the
total amount of information, i.e., that maximizes the total score f(S) = >, 1 esw(@,y),
see also Figure 22 for an example. This problem is of practical interest whenever the
acquisition of the data is very expensive, e.g., when extensive behavioral studies of animals
need to be conducted. It is natural then to “target” the most informative selection of
species (Maddison, 2000; Arnold and Nunn, 2010).

We consider here only binary, i.e., fully resolved phylogenetic trees. Feasible solutions
to this problem thus consist of a tree T' endowed with a set of disjoint paths that connect
pairs of leaves. Let us now consider a subtree. Depending on the choice of the paths, we
can distinguish two distinct types of partial solutions: In subtrees of type U all paths
between leaves in U are confined to U. In the other case, which we denote by W, a path
leaves the subtree through its root. In this case the root is connected by a path to one
leaf in the subtree. This path is incomplete and must be connected to a leaf in another
subtree. The solution of the complete problem must be of type U. The child-trees of a
type U tree are either both of type U or both of type W. In the latter case a path runs
through the root of U and connects the roots of the two type-W children. Further, denote
by G a forest consisting of two trees of the same type, and let H be a forest comprising

54

Chapter 3. Dynamic Programming on Trees and Forests

Figure 22: Two possible systems depicting edge disjoint paths between leaves of a tree. Paths
are shown in different colors and do not have to be vertex disjoint. Start and end nodes of the
paths are shown in the corresponding color. Unused edges and nodes as well as inner nodes are
shown in black.

two trees of different type. This yields the following grammar:

U—-riG
G—>U0U|W0W|e
W —riH
H—UW |WoU |e

(3.3)

The first and third rule, respectively, remove the root of a binary tree and leave us with
the forest of its two children. The rules for G and H describe the composition of these
two forests in terms of its constituent trees. Note that U o W and W o U refer to distinct
solutions since we assume that the phylogenetic tree is given as an ordered tree. There
are again several possible scoring algebras. As described in Arnold and Nunn (2010) and
Arnold and Stadler (2010), to obtain the best possible path system, the objective function
maximizes over the best possible path systems of the subtrees given from the current
instance of the program and adds up the scores.

3.3 Two-tape and Multi-Tape DP on Trees and Forests

Even though a forest is composed out of a sequence of trees, a forest F' is considered as a
single input. Additionally, any forest can be represented as a tree with the introduction of
a root node 1y of which the trees of the forest are the children. As such, a definition on
trees is enough to cover forests as well. See Chauve et al. (2016) for a similar definition.
As examples for DP algorithms on trees and forests, we will use the following sections
to describe two important and often-used DP problems on trees, the tree alignment (T.
Jiang et al., 1995) (Section 3.4) and tree editing (Selkow, 1977; Tai, 1979) (Section 3.5)
problems. Tree editing is concerned with finding the optimal edit script that transforms
the first input tree into the second input tree. Tree alignment, on the other hand, gives the
optimal alignment of two trees with each other, as will be described below in more detail.
Figure 23 shows the differences between tree alignment and tree editing of two trees Fj
and Fy. Tree alignment will find an optimal consensus tree (top) whereas tree editing
will find the least number of edit operations in order to transform one tree into the other

Chapter 3. Dynamic Programming on Trees and Forests

55

(a,a)
(gr_) (_’f)
a a
e delete ¢ dnsert f f
b c d b d

E E

Figure 23: Alignment of two forests Fi and F> (top) and a sequence of edit operations (relabel,

delete, insert) in order to transform F; into F (below). Tree alignment conserves the structures
of both original trees that can be recovered using the mapping 71 or w2, respectively. For more
details, see Sec. 3.4.

(bottom). Hence, tree alignment conserves the original structure of both trees opposite to
tree editing. Regarding string editing and string alignment, one can see analogous cases
where editing results in the largest common substructure and alignment in the smallest
common superstructure of its inputs. More details will be explained in Section 3.4 and
Section 3.5, respectively. These algorithms serve as a tutorial on how grammars on trees
are to be formulated. We expand on earlier work by introducing several variants. While

some are known from previous work (Honer zu Siederdissen et al., 2015a; Riechert et al.,

2016; Honer zu Siederdissen et al., 2015b), the terse and high level notation, ability to
construct combined grammars, and automatic derivation of the corresponding outside
grammar give a unique framework.

3.4 Tree Alignment

Our grammar for the case of tree alignment is based on the grammars formulated in
Schirmer (2011) and Schirmer and Giegerich (2011). We expand those grammars with
explicit tree concatenation operators as shown in the previous section. This allows our
algorithms to parse both trees and forests as input structures.

Furthermore, we extend the grammars with the automatic derivation of an outside
algorithm (Honer zu Siederdissen et al., 2015b), described in Subsection 3.4.3. The
combination of the inside and outside grammar allows for easy calculation of match
probabilities. Since this is automatic, any user-defined grammar can be extended in this
way as well. Though we point out that this still requires careful design of the inside
grammar (Chauve et al., 2016). Representations of alignments (cf. Figure 23) are typically
in the form of a tree that includes nodes from both trees, where matching nodes are given
as a pair and deleted nodes from both trees are inserted in a partial-order preserving

56

Chapter 3. Dynamic Programming on Trees and Forests

fashion.

Definition 28 (Tree Alignment)

Consider a forest W with vertez labels taken from (SU{—}) x (ZU{—}) with ¥ as alphabet.
Then we obtain mappings w1 (W) and mo(W') by considering only the first or the second
coordinate of the labels, respectively, and by then deleting all nodes that are labeled with the
gap character '—’, see Figure 23 above and Definition 2 on page 17. W is an alignment
of the two forests Fy and Fy if Fy = 71 (W) and Fy = mo(W) and can also be denoted as a
forest alignment (Fy, F»).

The cost of the alignment (F;, Fy) based on the original forests F; and Fy is the sum
of the costs based on the labels in (Fy, F3) as formulated in Equation 3.4. Each label
consists of a pair of labels (v1,v2), whereas vy corresponds to a label in the vertex set of
F or a gap symbol '—’ and analogously for vs.

WFL)= > (3.4)

(’Ul,’UQ)E(Fl,Fg)

Every alignment W = (Fy, F3) defines unique mappings (W) and (W), but the
converse is not true. The minimum cost alignment is in general more costly than the
minimum cost edit script. We will need a bit of notation. Let F be an ordered forest.
By i : F' we denote the subforest consisting of the first ¢ trees, while F' : j denotes the
subforest starting with the j + 1-st tree. By F¥ we denote the forest consisting of the
children-trees of the root v = rp of the first tree in F'. I'* = F : 1 is the forest of the
right sibling trees of F'.

Now consider an alignment A of two forests F; and Fy. Let a = r4 be the root of its
first tree. We have either:

i) a = (v1,v2). Then v; =g, and vy = rp,; A¥ is an alignment of Fli and Fj; A7 is
an alignment of F;” and Fj5”.

ii) @ = (vy,—). Then vy = rp ; for some k, A* is an alignment of F} and k : Fy, and
A7 is an alignment of F[” with Fs : k.

iii) @ = (—,v2). Then vy = rp,; for some k, At is an alignment of k : F; and F} and
A7 is an alignment of Fy : k with F;7.

These three cases imply the following dynamic programming recursion:

S(FY, Fy) + S(F7 Fy?) + 783
S(Fy, Fy) = min { ming, S(F, k2 Fy) + S(F7, Fy - k) + v (3.5)
ming, S(k : Fy, Fy) + S(Fy kb, F3?) + 92,

with initial condition S((,) = 0. The formal grammar underlying this recursion is

(£) %)o()| (36)

Chapter 3. Dynamic Programming on Trees and Forests

57

_>
n T1 F1 n T F—>

1 1

FAAA FF AAA

._>

nz T2 F:> n,- Zz Fz
EY AAA ar T AAA

A B

Figure 24: Alignment of two forests 1(top) and 2(bottom). Each of the forests is split into its
left-most tree T1,T> and the remaining forest Fy7, F5”. A The left-most tree will be split into its
root nodes ni,n2 and the forests of its children, Ff, F§ B In case n2 is deleted, a gap symbol
Zs is added and the recursion continues with F¥ and F.

It is worth noting that single tape projections of the form T — — + F' make perfect sense.
Since — is a parser that always matches and returns an empty string, which in turn is
the neutral element of the concatenator ¢ this formal production is equivalent to T"— F'.
Hence, it produces a forest F' that happens to consist just of a single tree T.

As depicted in Figure 24, fixing the left-most tree T in a forest, there are two directions
to traverse the forest: downwards towards the forests of the root’s children F* and sideways
towards the remaining forest /. Regarding one single forest, the subforests F* and F~
are two disjoint entities, thus once split, they do not share any nodes in a further step
of the decomposition algorithm. The grammar for tree alignment as described above is
inefficient, however, because there is no explicit split between F+ and F~ in the first step.
The grammar shown in Equation 3.7 explicitly splits the two forests in an earlier step to
avoid redundancy.

An efficient variant that makes use of a number of facts that turn this problem into the
equivalent of a linear grammar on trees has been described in Héchsmann (2005). Trees

are separated from their forests from left to right, and forests are always right-maximal.

Given a local root node for the tree, and a ternary identifier ({T,F,E}), each forest, tree,
and empty forest can be uniquely identified. Trees by the local root, forests by the local
root of their left-most tree, and empty forests by the leaves “above” them. The asymptotic
running time and space complexity for trees with m and n nodes respectively is then
O(mmn). This also holds for multifurcating trees as the decomposition rules do not care
if the tree is a binary tree or not. The children of a node in a tree always form a forest,
independent of the number of children.

If the nodes of the tree are labelled in preorder fashion several operations on the forest
can be done more efficiently. By splitting a forest into a tree and the remaining forest,
we need to store the tree’s indices to know where it is located in the forest. In case of a
pre-order indexing we can take the left-most tree without storing additional indices as the
left border of the tree is the smallest index (which is its root) of the original forest and the

58

Chapter 3. Dynamic Programming on Trees and Forests

right border of the tree is just the predecessor of the left-most root of the remaining forest.
Thus, storing the roots’ indices in a forest will directly give us the right-most leaves of the
corresponding trees.

We finally consider a variant of Equation 3.6 that distinguishes the match rule (T) —
(M(E) with a unique non-terminal (£) on the left-hand side of Equation 3.7. This
rule, which corresponds to the matching of the roots of two subtrees, is critical for the
calculation of match probabilities and will play a major role in Subsection 3.4.3. The
non-terminals (5) and (%) designate insertion and deletion states, respectively. Thus, we
can formulate the formal grammar for tree alignment as follows:

iter () = (D)o (5) | (B)o(E) [(B)o(F) | e

align (%) = (3)+ (%)

deletion (2) — (ﬁ)¢(g) (3.7)
insertion (%) — (;)L(?)

This grammar explicitly splits F* and F~ by applying iter. Hence, these parts recurse
independently from each other. As shown in Figure 24, aligning two trees can lead to
aligning the downward forest of one tree to the forest to the right of the other tree. Given
Equation 3.5, the first case corresponds to our first rule in iter and the align rule. Thus
replacing (7)) in iter we obtain (£) — ()« (11::)) o (E). Here, (1) will give the score
for aligning two non-terminals thus +,!. The tree concatenation operators +(L) and o()
correspond to Fli7 in and Fy7, F57, respectively. Replacing (%) and (%) in the deletion
and insertion rules, we get (L) — (") +(E£)) o (E)yand (£)— ((;;)+ (%)) o (&)- This
corresponds to case 2 and 3 in Equation 3.5. As depicted in Figure 24, given a deleted
root in one tree, we recurse by aligning both subforests. In case one of the subforests is
empty, it will be replaced by the first tree (the first &k trees, respectively) of the remaining
forest.

The following shows an example scoring algebra for the case of tree alignment with
linear gap costs. No costs are added in the iter case but scores obtained from subsolutions
are added, given by sy and sy. Here, U and V stand for the non-terminal characters
whereas u, v are terminals.

iter(sy, sv) = sy + sv
match(s, (¥)) = s + w(u,v)
deletion(s, (*)) = s + w(u -)
insertion(s, ()) = w(—,v) (3.8)
)

empty(e
choice(s1, s2,..) = mm(sl, Sa, ..)

with u,v € A and s, sy, sy € S

Dynamic programming algorithms are based on the order of elements in the input
structures which is defined by the index structure in algebraic dynamic programming
(ADP). For tree alignment, the index structure corresponds to the preorder in trees defined
in Subsection 2.2.1 on page 22.

Chapter 3. Dynamic Programming on Trees and Forests

59

3.4.1 Multi-tape Tree Alignment

The two-tape version of tree and forest alignment is given above, and it is possible to
extend this version to more than two tapes.

Definition 29 (Multiple Tree Alignment)

Let Ty, Ty, ..., Ty be ordered trees following Definition 12. The partial order of nodes of
each tree sorts parent nodes before their children and children are ordered from left to
right. An alignment between trees is an ordered tuple of functions f* with i € [1,..,k]
which defines a function matching nodes in tree T; to the consensus tree of the alignment:
(i) The set of matched nodes form a partial order-preserving bijection. That is, if
a = fi(a),b= fi(b) € T; are matched with f’(a), f7(b) € T} the partial orders a < b and
fi(a) < fi(b) hold for all nodes a,b and pairs of trees T;, T;. (ii) The set of deleted nodes
form a simple surjection from a node a € T; onto a symbol (typically -’) indicating no
partner. (iii) For trees Tj, (ii) holds analogously.

The problem descriptions in Definition 28 and Definition 29 are equivalent. Every
forest can be defined as a tree with the roots of the forest as children of a trees’ root.
Given Definition 28, the mappings 71 and 7o can therefore be applied to a forest as well.

Given Definition 29 (i), the partial order is also preserved in case of forests, as the
roots of the forests are partially ordered, too. Definition 29 (ii) and (iii) define the order
of the deleted nodes that is preserved within the tree. This is also true for forests, and
obtained by the mappings 7; and 72 defined in Definition 28.

A multiple alignment of forest structures can be constructed given Definition 22 up to
Definition 27 and Lemma 1 and Lemma 2. We now show that, given these definitions,
the alignment is well-defined and can always be constructed independently of the input
structures. We do not show here that the resulting alignment is optimal in some sense, as
this depends on the optimization function (or algebra) used.

Let (Fy,..., F}) be an input of k forests. Successive, independent application of the
operations specified in Definition 22 up to Definition 27 and Lemma 1 and Lemma 2 to
individual input trees yields the multi-tape version of the empty string (ei, ..., €x), i.e.,
the input is reduced to empty structures. Not every order of application necessarily yields
an alignment.

Just as in the case of sequence alignments (Héner zu Siederdissen et al., 2015a) the
allowed set of operations needs to be defined for multi-tape input. This amounts in
particular to specify which operations act concurrently on multiple tapes. The above-given
definitions can be subdivided into two sets. One set of operations takes a forest F' and
splits off the left- or right-most tree (F — F'T or F — TF"’), where both F’ and T are
allowed to be empty. In case of T' being empty then it holds that I = F. If F’ is empty,
then this yields a decomposition of F' only if F' consists of just a single tree. The other set
of operations removes atomic elements from a tree and yields a tree or forest, depending
on the rule used.

As in Honer zu Siederdissen et al. (2015a), all operations have to operate in “type
lockstep” on all inputs simultaneously. That is, either all inputs separate off the left-
or right-most tree and yield the trees (771,...,7)) and remaining forests (Fi,..., F),
or all operations remove a terminal or atomic element, yielding the terminal elements
(n1,...,n;) and remaining structure (S1,. .., Sk).

60

Chapter 3. Dynamic Programming on Trees and Forests

Furthermore, an operation T'— T '—' is introduced. This operation does not further
decompose T but provides a terminal symbol '—' as element n;. This is analogous to the
indel case in string alignments.

Theorem 1 (Alignment)
Every input (Fi,...,Fy) of forests can be deconstructed into (ey,...,€xr) by successive
application of the steps outlined above.

Proof 4 At least one of the decompositions defined above for forests (Definition 22 and
Definition 27) or trees (Definition 22 to Definition 25) can always be applied for each input.
Due to lockstep handling, all inputs simultaneously separate into a tree and remaining
forest (yielding two structures), or apply a rule yielding a terminal element. As such,
either all structures are already empty (= €) or at least one structure can be further
decomposed yielding a smaller structure.

The notation of composition of alignments and multi-tape alignments is extended and
generalized in Chapter 4.

3.4.2 The Affine Gap Cost Model for Alignments

The simple linear scoring of gaps in alignments as formulated by Needleman and Wunsch
(1970) in the original description is often a poor model in computational biology. Instead,
one typically uses affine gap cost with a large contribution for opening a gap and small
contributions for extending the gaps. The sequence alignment problem with affine gap
costs was solved by Gotoh (1982). The corresponding formal grammar, which is based
on the notation in Gotoh (1982) and in the version used by Hoéner zu Siederdissen et al.
(2015a), reads

M = M(y) | D) | Iy | e
D — My | D(*y | I(*) (3.9)
I = M) | D) | 1a)

)

where u and v are terminal symbols, ’—’ denotes the opening of a gap, and ’.’ denotes
the extension of a gap, typically scored differently. Considering only one tape or input

dimension, a deletion is denoted by a leading '—’ followed by a number of .’ characters,
e.g. a sequence '—. The sequence alignment problem with linear gap costs assumes a
constant score for each inserted gap symbol -’ This is not a very realistic assumption

for biological sequences, as it is more probable to insert or delete a connected substring
into genetic material rather than the same amount of singletons being deleted or inserted.
Hence, affine gap costs, i.e., a larger penalty for the insertion of the first gap symbol than
for the extension of an already existing gap, are commonly used in this field. Consequently,
algorithms prefer to insert longer connected gap regions than many singletons. For trees,
gap extensions can happen in two directions as a node in a tree has siblings as well as
children that are successors given the index structure. Once a node has been aligned to
an initial gap symbol ('—’) both its siblings and its children are extending the initial gap.
Compared to the three rules for matching, deletion and insertion, we now have to deal
with seven different cases. In Schirmer (2011) and Schirmer and Giegerich (2011) seven

Chapter 3. Dynamic Programming on Trees and Forests

61

rules for affine gap costs in forests are formulated based on different modes of scoring;:
no-gap mode, parent-gap mode and sibling-gap mode. Parent and sibling mode indicate
that the preceding node (either parent or sibling node) was considered a deletion. The
formal grammar expressing the seven rules for tree alignment with affine costs is shown in
Subsection A.1.1 in Appendix A. As the grammar includes a relatively high number of
rules, it was further summarized and optimized in two steps with the intermediate version
in Subsection A.1.2 and the final version of the grammar is shown in Equation 3.10 and
distinguishes between horizontal and vertical gap extension, corresponding to siblings and
children in the tree. (1) is the start symbol. Here, we either align the left-most trees or
add a gap in one of the roots. Adding a gap in one of the roots leads to a gap extension
in the horizontal case, hence (Q> and in the vertical case, thus (g). The rules on the

Q
right-hand side for (£) and (8) are the same, as (8 is a forest, too. However, (8)

represents a state where the previous node included a gap symbol. Thus, each gap that is
added in the next step will be scored with the gap extension score. For the case (£), no
gap was inserted in the direct predecessors, hence every gap added in the next step will

be scored with the gap opening score.

o o o
~ o~ N o~~~

evisviievlsviio le Tevl=V RS eSS e

™

(3.10)

13 33893 833 139
«

~ o~ —~ —~ 7 N

NN NS BN o OO0 Ty

— — — — o —

N
“~

3
«

3.4.3 Inside and Outside Grammars

The grammars we defined in previous sections are considered as inside grammars in the
ADP terminology.

In order to know which cases have to be calculated to obtain probabilities for possible
(sub)solutions, an outside grammar can be formulated. The outside grammar usually has
more rules than the inside grammar and is more complex. In particular, it involves addi-
tional non-terminals such as (F) that can be conceptualized as referring to complements
of non-terminals of the inside grammar. Its productions specify how the outside object on
the left-hand side can be decomposed. See also Subsection 2.2.5 and Subsection 2.2.7 for
more detailed descriptions of inside and outside calculations. Further information on the
implementation of inside outside calculations in ADP are given in Appendix A.

In general, the r.h.s. of the productions contain another outside non-terminal as well
as inside terminals and non-terminals. The inside objects are the ones that are currently
kept fixed whereas the outside objects on the right-hand side define the parts that are
used to calculate all possible (sub)solutions with the inside object being fixed. For a
detailed discussion of the relationship of inside and outside grammars we refer to Honer
zu Siederdissen et al. (2015b) and Durbin et al. (1998).

62

Chapter 3. Dynamic Programming on Trees and Forests

(F,F)
(a,a)

(b,b) (e,e)

(x,x)

(y,y) (z,2)
(. Ca &G Y

Figure 25: Example of tree alignment on input forests Fi (blue) and F> (red). The aligned
structure (Fi, F>) contains matching nodes (black) and nodes depicting insertions (blue) and
deletions (red).

Below, we give the outside grammar in Equation 3.11 (with start symbol (£, and
outside “epsilon” symbols ¢ — given that ¢ in an outside grammar terminates with fF [l input,
not the empty input) for the simple linear-cost tree alignment problem (Equation 3.11) and
combine inside and outside grammar to yield match probabilities. Results of inside-outside
calculations are probabilities for the alignment of elements of the input structures F; and
F5, shown in Figure 26 which correspond to the alignment in Figure 25.

Base cases and calculation of probabilities can be done in different ways. The most
basic version is using the inside semiring and probabilities for each production rule instead
of usual scores as described in Subsection 2.2.5. However, it is also possible to include
partition function and scaling parameter as implement in ADPfusion and described in
Section A.2.

(E) =) (E) [(Z) TGy (2) |

(E) =B (B 1D (F) 1By (B | o

(7=) = (&) ° (%) (3.11)
(7)) = (F) (P

(%) = (52)°(F)

The combined inside-outside algorithm with an affine gap cost model can be imple-
mented in complete analogy to the linear model. One usually designs the inside grammar
based on the recursion equations and the outside grammar is constructed automatically.
This yields an algorithm that computes the match probabilities using the affine gap cost
model. Further examples are shown in Section A.2.

Chapter 3. Dynamic Programming on Trees and Forests

63

Color Key
and Histogram

40 F

2
20

wnoo

v 1abcedfxVY z

Value

Figure 26: Example of Inside-Outside calculation for the tree alignment shown in Figure 25
on forests Fy (red) and F5 (blue). Cells in the heatmap show probabilities for the alignment of
corresponding nodes whereas dark colors show higher probabilities.

iy |
N < X O & 0o T 9

3.5 Tree Editing

The string-to-string correction problem can be generalized to forests. To this end, edit
operations need to be explained for trees. We consider substitution (or relabeling),
insertion, and deletion and associate them with costs vy, 72, or v%. Figure 27 gives an
example for tree editing of one tree into another tree. Here, one can see that nodes or
positions in the tree can be edited several times, e.g. the position of node b (blue) which
is deleted such that its child, node ¢, is moved on its position. Later, node g (red) is
inserted between the root and node c.

In this section, we explain our formal grammar for the string editing algorithm on trees
instead of strings. Comparing and editing strings is a well-known algorithm in computer
science applications, and hence, we expanded this application to trees as inputs described
by a formal grammar.

The grammar is based on Zhang and Shasha (1989) which shows one possible solution
for the tree editing dynamic programming (DP) algorithm. There exist other ways which
try to minimize the search space of possible solutions by explicitly choosing where to start
the next iteration step (Schwarz et al., 2017; Pawlik and Augsten, 2016; Bringmann et al.,
2018).

Definition 30 (Tree Editing, cf. Bille (2005))
A mapping between two ordered forests Fy to Fy is a binary relation M € V(Fy) x V(Fy)
between the verter sets of the two forests such that for pairs (z,y), (x',y’) € M holds

i) x =" if and only if y =y'. (one-to-one condition)

64

Chapter 3. Dynamic Programming on Trees and Forests

F a

N | b I(a,h

/l<.\e relabe) delete(b) /I\
C d

d e

insert(g)i

g N n i A
2 relabel(e, j) insert(f)
9 f <« g [<« 9 s
e
ce d j ce d e ¢

Figure 27: Example of the tree editing algorithm, transforming tree Fi into tree F». Operations
are relabel, delete and insert.

it) x is an ancestor of &' if and only if y is an ancestor of y'. (ancestor condition)

iii) x is to the left of ' if and only if y is to the left of y'. (sibling condition)

The one-to-one condition implies that for each z € Fj there is a unique “partner” y € Fy,
i.e., (z,y) € M, or x has no matching partner at all. With each mapping we can associate

the cost
Sowt D> W+ D> % (3.12)

(z,y)eM y:(z,y)¢M z:(z,y)¢M

Individual edit operations correspond to “elementary maps”. Maps can be composed in a
natural manner. Thus every edit script corresponds to a map. Conversely every map can
be composed of elementary maps, and thus corresponds to an edit script. Furthermore,
the cost of maps is subadditive under composition. As a consequence, minimum cost
mappings are equivalent to the minimum cost edit scripts (Tai, 1979).

The problem of minimizing (M) has a dynamic programming solution. For a given
forest ' and a root node v in F, we denote by F' — v the forest obtained by deleting
v and F'\ T'(v) is the forest obtained from F' by deleting with v all descendants of v.
Note that T'(v) — v is the forest consisting of all trees whose roots are the children of v.
Equation 3.13 shows the recursion equations.

D(Fy — v, F2) + 75!
D(Fy, Fy —

D(Fy, Fz) = min (Fy, o = v2) + (3.13)
D(T(v1) = v1,T(v2) — v2) + 7,1

+D(F1 — T(),FQ — T(UQ))

with D(@,0) = 0 for two empty forests. A key issue is to implement this algorithm in
such a way that only certain classes of subforests need to be evaluated. Here, forests are

Chapter 3. Dynamic Programming on Trees and Forests

65

decomposed into the right-most tree and the remaining forest, which is not specified in the
recursion equations in Equation 3.13. The corresponding tree editing grammar £ reads

E) = (B 1B | E:le (314)

Note that the empty symbol '—’ acts as neutral element for the concatenation operators,
which we take to act component-wise. The grammar is based on the tree editing algorithm
of Zhang and Shasha (1989), for which several more efficient implementations exist. In
particular, Dulucq and Tichit (2003) provides a detailed analysis of the Zhang-Shasha
algorithm.

Given the formal grammar in Equation 3.14 describing the tree editing problem, we
modeled the individual cases of the recursion in Equation 3.13. Replacing (L) in the
iteration rule we get (£) — (I)o ((1;) +(™)). This matches the third case of the recursion
equation, as we add the score for a match and recurse on the forests of the children and
the remaining forests. The other two cases of the recursion equation delete the right-most
root from one of the current forests using Definition 26, add the score for a deletion or
insertion and recurse on the remaining forests.

Tree editing and tree alignment make use of the same set of decomposition operators
but differ in their formal grammars and algebras. Many related algorithms on trees, such
as the ones described in Kan et al. (2014) and Kuboyama (2007), can also be expressed
by formal grammars with these decomposition operators. Depending on the details of the
problem at hand, the grammar might become more complicated; nevertheless, they usually
show striking similarities to the corresponding recursion equations. The underlying index

structure for tree editing corresponds to the postorder of trees defined in Subsection 2.2.1.

3.5.1 Outside Grammar

Analogously to the outside grammar for tree alignment (Equation 3.11), we give the
outside grammar for tree editing with start symbol (£.) and outside “epsilon” symbols o

*

— given that o in an outside grammar terminates with full input, not the empty input.

=S (M (I TE) M EY G EDY (B | o

(7)) = (5= (F)

3.5.2 Affine Gap Costs

(3.15)

The following grammar (Equation 3.16) describes tree editing with affine gap costs. Here,
non-terminals R and @ describe the gap modes.

]

o

(3.16)

—~ o~ 7 N~

SN I OO0 =y

— — N —

L1l

SH e e
o

+—

/
S5 00 I3
N—
(e}
-

Rl R e R L

A~ o~ o~ —~

66

Chapter 3. Dynamic Programming on Trees and Forests

10

E a2 3
= | B
r]
-
i Pt 1
1= L : -
: _-Te s]
E - A]
z [el =i]
[} [}
£ o1 _
2! E / e
I o L
S L - .l | B]
001k o~ e | w----u ADPforestry (linear)
E .| ¢ 1 w----m partition function (linear)
r .-® 1 = —m ADPforestry (affine)
r = 1 = —a partition function (affine)
0.001 o — e----e RNAforester (linear)
F 3 e —e RNAforester (affine)
C | | | i
32 64 128

RNA sequence length [nt]

Figure 28: Comparison of the running times (in seconds) of RNAforester and ADPforestry
measured as an average over 50 instances of random RNA secondary structures of different
lengths using linear and affine gap costs, respectively. The benchmarks were performed on an
Intel(R) Core(TM) i5-4570 machine with 32 Gb memory. RNAforester does not implement an
inside-outside (partition function) version of tree alignment.

3.6 Benchmarking against RNAforester

RNAforester (Hochsmann, 2005), which is designed to compare RNA secondary structures,
is the most widely used implementation of tree alignment. In order to compare our
Haskell implementation ADPforestry with RNAforester we therefore use RNA secondary
structures computed with RNAfold (Lorenz et al., 2011a) for 50 pairs of RNA sequences
of different lengths. The resulting pairs of secondary structures in “dot-bracket” notation
together with the RNA sequences directly serve as input for RNAforester. We measured
the performance of both programs with both for linear and affine gap costs models. In
addition, we show running times for the inside-outside (partition function) algorithms
implemented in ADPforestry.

Benchmarking results are compiled in Figure 28. ADPforestry at present only imple-
ments a simple scoring scheme and none of the elaborate RNA specific scoring schemes
provided by RNAforester. It also does not attempt to reproduce the detailed, largely
RNA-specific output of RNAforester. In contrast to ADPforestry, RNAforester only
solved the optimization version of the tree alignment problem. An alternative implemen-
tation of the inside-outside algorithms to compute the a posteriori probabilities of all
possible alignment edges is not available at all.

The comparably large effort for the calculation of probabilities is explained by (a)
the computation of not only the inside recursion as in case of optimization but also of
the corresponding, automatically generated outside recursion, and (b) the fact that the
outside recursion is more complex than the inside recursion. Here the inside grammar
for tree alignment with linear costs contains 6 rules whereas the corresponding outside

Chapter 3. Dynamic Programming on Trees and Forests

grammar is composed out of 8 rules. For the affine case, the inside grammar has 16 rules,
the outside grammar 25.

3.7 Software Availability

Implementations for the algorithms discussed here are available on hackage and github.
The ADPfusionForest framework extensions are available at http://hackage.haskell.
org/package/ADPfusionSet and prototypical implementations of the forest-based algo-
rithms at http://hackage.haskell.org/package/Forestry. The latter are accompa-
nied by a simple RNAforester variant.

3.8 Conclusion

Tree comparison has many applications and there exist several approaches in the literature
that optimize existing algorithms regarding the size of the search space or time and
memory requirements. Based on existing optimizations, we formalized the algorithms
tree editing (Zhang and Shasha, 1989) and tree alignment (Schirmer, 2011; Schirmer and
Giegerich, 2011) such that they can be written as formal grammars as it has been done for
string comparison (Honer zu Siederdissen et al., 2015a). Compared to strings, trees can
be traversed in two directions, thus our data structure is 2-dimensional. Each grammar
consists of terminals and non-terminals, whereas the terminals are single nodes and the
non-terminals specify a tree and a forest.

Giegerich and Touzet (2014) developed a system of inverse coupled rewrite systems
(ICORESs) which unify dynamic programming on sequences and trees. Rules written in this
system bear a certain resemblance to our system. We are not aware of an implementation
of ICORES, however, making comparisons beyond the formalism is difficult. All of these
approaches use trees and/or forests as input structures. Aims and methods, however, are
different.

In addition to the linear gap cost version of the algorithms, we developed grammars
that provide variants with affine gap costs. Compared to simple, linear cost functions,
additional non-terminals are required to distinguish between the initialization of a gap, or
gap opening, and gap extension.

For each (inside) grammar, the corresponding outside grammar of the original algorithm
(Honer zu Siederdissen et al., 2015b) can be automatically calculated. Using inside and
outside versions, we can specify match probabilities for each pair of subtrees. The inside
and outside grammar together thus allow the calculation of ensemble properties such as
the probability of each pair of local tree roots to be paired with each other.

Combining ADP with tree and forest structures as input, we are now able to apply
single-tape and multi-tape DP algorithms on tree-like data. Together with the inclusion
of Inside-Outside algorithms, the search space of DP algorithms on trees and forests can
be explored broadly. As grammar and algebra can be changed easily, it is possible to
compare results based on distinct grammars or cost functions.

http://hackage.haskell.org/package/ADPfusionSet
http://hackage.haskell.org/package/ADPfusionSet
http://hackage.haskell.org/package/Forestry

68

Chapter 3. Dynamic Programming on Trees and Forests

Chapter 4. Dynamic Programming with Alignments on General Data Structures 69

CHAPTER

Dynamic Programming with
Alignments on General Data
Structures

Contents
4.1 Formal Definitions of Sequence Alignments 70
4.2 Alignments of Partially Ordered Sets 74
4.3 Composition of Alignments 7
4.4 Blockwise Decompositions Lo 80
4.5 Recursive Construction Lo 81
4.6 Alignments as Relations 83
4.7 Tree Alignments 85
4.8 Alignments of Graphs oo 87
4.9 Alignments for General Structures 89

4.10 Concluding Remarks L0 91

70 Chapter 4. Dynamic Programming with Alignments on General Data Structures

Despite the immense practical importance of alignments (see also Subsection 2.3.1),
they have received very little attention as mathematical structures in the past. The
most comprehensive treatment is the Technical Report (Morgenstern et al., 1999) which
considers (pairwise) alignments as binary relations between sequence positions that
represent matchings and preserve order. The aim here is not to construct concrete
alignment algorithms but the systematic generalization of alignments from strings to more
general discrete objects. Such a generalization still supports the recursive construction that
underlies the exact dynamic programming algorithms employed to compute score-optimal
alignments in the totally ordered case. Following earlier work (W. Otto et al., 2011), the
language used here is closer to graph theory than the presentation of Morgenstern et al.
(1996) and Morgenstern et al. (1999).

This chapter is based on Berkemer et al. (2019) titled Compositional Properties of
Alignments and will almost completely disregard the scoring of alignments and instead
focus on the structure of (multiple) alignments as combinatorial objects. In the following
sections, we explore the consequence of relaxing some of the axioms to cover partial orders
in general. Additionally, this chapter is mainly concerned to ensure that alignments of
alignments are well-defined as a foundation for progressive alignment procedures, and that
decompositions into blocks exist that can form the basis of divide-and-conquer approaches
to aligning partially ordered sets. Following a brief discussion of the view of alignments as
compositions of pairwise matching relations, the chapter continues by further generalizing
the formalism to include first ordered trees, then directed and undirected graphs, and
finally essentially arbitrary finite spaces that admit well-behaved subspace constructions.

4.1 Formal Definitions of Sequence Alignments

Alignments are usually constructed from strings or other totally ordered inputs (see also
Subsection 2.1.1 and Subsection 2.2.1), hence the columns of the resulting alignment are
usually also treated as a totally ordered set. Consecutive insertions and deletions, however,
are not naturally ordered relative to each other:

gugugu--acgggcca guguguac--gggcca
gucuguug--gggcec gucugu--uggggecc

are alignments that are equivalent under most plausible scoring models. The idea to
consider alignment columns as partial orders was explored systematically in C. Lee et al.
(2002) and a series of follow-up publications (C. Lee, 2003; Grasso and C. Lee, 2004). Here,
(mis)matches are considered as an ordered backbone, with no direct ordering constraints
between an insertion and a deletion. The resulting alignments are then represented as
directed acyclic graphs (DAGs) (see also Subsection 2.2.1), more precisely, as the Hasse
diagrams of the partial order. The key idea behind the POA software (C. Lee et al.,
2002) is that a sequence of DAGs can be used as an input to a modified version of
the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). Recently this idea
has been generalized to the problem of aligning a sequence to a general directed graph
(Rautiainen and Marschall, 2017; Vaddadi et al., 2017).

Suppose we are given a set S of |S| > 1 sequences with not necessarily equal length.
For s € S we write s; for the i-th position in s, and |s| denotes the length of s, i.e., the
number of positions. The most common representation of an alignment is a rectangular

(4.1)

Chapter 4. Dynamic Programming with Alignments on General Data Structures 71

matrix whose rows are indexed by the sequences and whose columns are indexed by
integers ¢ € [1, L], where L is the number of alignment columns. Each sequence is then
associated with a strictly monotonically increasing function as : [1, |s|] — [1, L] such that
for each i € [1,]s]], as() is the index of the column containing s;. The alignment matrix
contains a gap symbol in row s and column k whenever o !(k) = (), otherwise, the matrix
element is Szl (k)" The following example has already been shown in Subsection 2.1.2 on
page 17, however, for reasons of consistency and completeness, it is shown again here:

001111100
0011011--
--1000100

i 123456789
The rows correspond to sequences a, b and ¢ and row 4 indicates the indices of alignment
columns. We have a4(i) =i for 1 <i <9, ag(i)=ifor 1 <i <7, and ac(i) =1+ 2 for
1 < < 7. For the 8th column of the example we have a;1(8) = 8, a; *(8) = 0, a;*(8) = 6;
hence the entries in the 8th column are Uo-1(g) = 8 = 0, — because ab_l(8) = (), and
Cazl(s) = C6 = 0. It will be convenient in the discussion below to also consider single

(4.2)

o o p

sequences as (trivial) alignments, using the identity on [1, |s]].

The actual values of the sequence elements, i.e., the s; are of course important to
determine the scoring. For our purposes, however, they are irrelevant, since we will only be
interested in the structure of the alignments. It therefore suffices to consider the sequence
positions X := [1,[s|] for each input sequence and their arrangement in the alignment
columns. This information is completely contained in the functions as. We can therefore
“forget” about almost all the details about the sequence s except its length, which by
construction satisfies | X4| = |s|. From here on, we can therefore treat s simply as an
index used solely to enumerate the elements of S. We will use the symbol e to indicate
that a particular cell in the alignment matrix is occupied, while — indicates gaps. The e
eventually will become vertices in a graph representation.

For our purposes the set of sequence positions X is simply a finite ordered set. To
emphasize this fact, and to make generalizations below more transparent, we write (X, <g)
to explicitly expose the order relation on X,. For a given set of sequences, furthermore,
we will need the set of all sequence positions defined as the disjoint union X := [, ¢ X,
of all sequence positions. The structure of an alignment with L columns is completely
determined by the function w : [1, L] — [[,c¢(Xs W {—}) such that w(k) = (ws(k)|s € 5),

where
_)l if agt (k) =0
b= {agl(k) i 0, () # 0

Thus w plays the role of a (slightly modified) inverse of a. It is customary, furthermore,
to exclude alignment columns that consist entirely of gap symbols:

Definition 31 (Proper Alignment)
An alignment on X =), o Xs defined by w is proper if there is no k such that ws(k) = —
forallse S.

ses

Given w, we construct a graph with vertex set X = (-J,.¢ X, and edge set A such
that zy € A if there is k € [1, L] and distinct sequences s and ¢ such that ws(k) = = and

72 Chapter 4. Dynamic Programming with Alignments on General Data Structures

wi(k) = y. In other words, positions z and y are joined by an edge if and only if « and y
appear in the same column of the alignment. We call this graph the alignment graph.

Lemma 4 Consider an alignment on X =) ,cg X determined by w. Suppose x € X,
y € Xs, and z € X; and both xy and xz are edges in the alignment graph. Then

(i) r, s, and t are pairwise distinct.

(ii) yz is also an edge in the alignment graph.

Proof 5 Property (i) follows immediately from the requirement that o is strictly mono-
tonically increasing, i.e., any two positions of the same sequence are mapped to distinct
alignment columns. Property (ii) follows directly from the definition. If xy and xz are
edges, then x, y, and z are located in the same alignment column and thus yz is an edge
of the alignment graph.

The alignment graph therefore is the disjoint union of complete graphs such that every
connected component (which is a clique) contains at most one element of each of the
input sequences X;. Every clique thus corresponds to an alignment column. We write
C(X,A) for the set of alignment columns, which for convenience we identify with their
vertex sets. More precisely, @ € C(X, A) is an alignment column if and only if there are
x€Q, kell,L], and s € S such that © = w,s(k) # —. In particular, for each s € S we
have either @ N X, =0 or @ N X = {ws(k)} for some k.

The alignment graph is consistent with the input orders <5 on X, s € S in the
following sense:

Lemma 5 Let Q' and Q" be two distinct connected components of the alignment graph
with vertex set X determined by w and suppose there are s,t € S such that v, € Q' N X,
Ys €Q'NX,, 2, € Q' NXy, and y; € Q" N X;. Then x, < ys if and only if xy <; ;.

Proof 6 By Lemma 4, two vertices x5 and x; are in the same connected component)
if and only if they are in the same column, i.e., if a(xs) = a(z:) =: k'. Analogously,
a(ys) = a(yy) =: k. By monotonicity of as and oy, we therefore have xs <s ys if and
only if k' < k", which in turn is true if and only if vy <¢ yz-

In particular, we may conclude:

Observation 1 Consider an alignment on X determined by w. Then there exists an
order on the alignment columns such that Q' <a Q" implies x <, y whenever x € Q' N X,
andy € Q" N X;.

Proof 7 By construction, the alignment columns are ordered. Lemma 5 implies that this
order is consistent with the order <, of each Xs.

In the following it will be convenient to write each element of X as a pair that explicitly
specifies the input sequence from which it derives. That is, we write (a,i) € X for i € X,
and a € S.

Chapter 4. Dynamic Programming with Alignments on General Data Structures 73

The simple observations of this section suggest to define an alignment by means of an
alignment graph with a suitable order of the columns. The following definition rephrases
the approach taken e.g. in Stoye et al. (1997), Morgenstern et al. (1996), and Morgenstern
et al. (1999) in a form that will be most convenient for further generalizations:

Definition 32 (Total Alignment, W. Otto et al. (2011))

A total alignment of a finite collection of finite totally ordered sets (Xs,<s), s €S, is a
triple (X, A, <) where X := J,cg X, (X, A) is an undirected, loop-free graph with vertex
set X with C(X, A) being the set of its connected components, and < is a total order
relation on C(X, A) such that the following conditions are satisfied.!

(1) Q € C(X, A) is a complete subgraph of (X, A).

(2) If (a,i) € Q and (a,j) € Q then i =j.

(4) If (a,1),(b,j) € P and (a, k), (b,]) € Q with i <, k then j <y l.
(5) If (a,1) € P, (a,j) € Q and (a,i) <, (a,j) then P < Q.

As above, the connected components of the alignment graph (X, A) play the role of the
alignment columns. Condition (2) ensures that every alignment column contains at most
one element of each ordered set X,. Conversely, every element (a, 7) is contained in exactly
one connected component, i.e., alignment column. Condition (4) requires that alignment
columns do not cross. Condition (5) ensures that the restriction of order on the columns
to each row recovers the order (X,,<,). A bit more formally, this can be phrased as
follows:

Observation 2 Let (X, A, <) be an alignment, P,Q € C(X,A), PN X, = {(a,)}, and
QNX,={(a,j)}. Then P < Q if and only if (a,i) <4 (a,j).

A well known observation in the theory of alignments is that Conditions (4) and (5) in
general only specify a partial order but not a total order of the alignment columns:

Lemma 6 Let (X, A) be an alignment graph and denote by < the relation defined for all
P,Q € C(X,A) by P<Q whenever there is an a € S such that (a,i) € P, (a,j) € Q and
i < j. Then the transitive closure < of < is a partial order on C(X, A).

Proof 8 By construction, < is antisymmetric. By definition P < Q if and only if there
is a sequence of columns P = Qq=Q1=<...<Qr = Q. Since the sequence of elements
(a,i) belonging to the same X, is strictly increasing with the column index j for each
a along any such sequence of columns, it follows that the transitive closure of < is still
antisymmetric. Thus < is a partial order.

As an immediate consequence, there is also a (not necessarily unique) total order < of the
alignment columns, obtained as an arbitrary linear extension of <, which by construction
satisfies

P <@, (a,i) € P,and (a,j) € Q implies i< j. (4.3)

We summarize this reasoning in

IThere is no condition (3) due to synchronization with the definitions for partial orders defined later.

74 Chapter 4. Dynamic Programming with Alignments on General Data Structures

Theorem 2 Let (X, A) be an alignment graph for X = |J,cq Xs and conditions (1),
(2), and (4) of Definition 32 are satisfied. Then there exists a total order < on C(X, A)
satisfying condition (5), i.e., such that (X, A, <) is a total alignment.

Theorem 2 provides the justification for considering alignment graphs with an order on the
columns instead of the matrix representation defined by w. Obviously (X, A, <), or more
precisely the order < of the alignment columns completely defines «, w, and L provided
we require that there are no alignment columns consisting entirely of gap symbols.

Before we proceed, a few remarks are in order: In this setting the actual data associated
with the sequence element (a,%), whether it is simply the i-th letter of input sequence
a or an extensive entry at position i of the list a, is treated as a label that influences
only the scoring but not the structure of the alignment. This separation between the
underlying (index) structure and the data associated with them is also used in algebraic
dynamic programming approaches to alignments (Honer zu Siederdissen et al., 2015b;
Berkemer et al., 2017b), where the structure of the recursions depends only on the possible
alignments (X, A, <) for a given set X, while the scoring depends on the labeling of X.
In order to treat (partially) local alignments it is necessary to distinguish aligned and
“unaligned” columns. Each unaligned column may contain only a single element, i.e.,
every unaligned position is considered as an insertion relative to all other elements of X.
Whether a position is aligned or unaligned affects only the scoring, hence at the level of
alignment graphs we do not need to concern ourselves with a distinction of local, partially
local, and global alignments.

4.2 Alignments of Partially Ordered Sets

Since the alignment of totally ordered sets in general only specifies a partial order of
columns but not a total order, it seems natural to ask whether the concept of alignments
and alignment graphs can be extended to partial orders instead of total orders on inputs.
From here, one therefore considers a collection of finite partial orders (X,,<q), a € S,
|S| > 1. As a generalization of Definition 32 we consider

Definition 33 (PO Alignment)
A partial order (PO) alignment of X is a triple (X, A, <) where (X, A) is a graph and <
is a partial order on the set of connected components C(X, A) such that

(A1) Q € C(X, A) is a complete subgraph of (X, A).

(A2) If (a,i) € Q and (a,j) € Q, then i =j.

(A3) If (a,i) € P, (a,j) € Q for some P,Q € C(X, A) and (a,i) <, (a,7) then P < Q.
(A4) P < Q, (a,i) € P and (a,j) € Q implies (a,i) <, (a,j) or (a,i) and (a,j) are

incomparable w.r.t. <.

Condition (A3) constrains the partial order on the columns to respect the partial order of
the rows. Condition (A4) insists that columns also must not cross indirectly.

Chapter 4. Dynamic Programming with Alignments on General Data Structures 75

Figure 29: Property (A4") is not sufficient to ensure the existence of a partial order < on
C(X, A). Consider the partial orders (a,4) <q (a,1) and (a,2) <4 (a,3) and (b,1) <5 (b,2) and
(b,3) <a (b,4), with alignment columns {(a,), (b,7)} for i = 1,2, 3,4. Clearly (A2), (A3), and
(A4™) holds, but the directed cycle shows that no partial order on the columns exists that is
consistent with both partial orders.

If all (X,, <,) are totally ordered then condition (A4) implies the non-crossing condition
(4) because (b, j) and (b, 1) cannot be incomparable w.r.t. <, and thus the required partial
order < is obtained as the transitive closure of the relative order of any two columns.
Definitions 32 and 33 therefore coincide for totally ordered rows.

Condition (A4) obviously implies the following generalization of (4):

(A4*) (a,i),(b,j) € P and (a, k), (b,1) € Q and (a,i) <, (a,k) implies (b,5) <p (b,1) or
(b,7) and (b,1) are incomparable w.r.t. <, VP,Q € C(X, A).

However, (A4*) is not sufficient to guarantee that the alignment columns form a partially
ordered set. A counterexample is shown in Figure 29. It is therefore necessary to require
the existence of the partial order < on the alignment columns C(X, A) as an extra condition
in Definition 33.

The existence of (non-trivial) alignments of any collection of finite partial orders
(X, <s), s € S, is easy to see: each of the partial orders can be linearly extended to
a total order (X, <;). Any alignment of these total orders is also an alignment of the
underlying partial orders, with a suitable partial order of the columns given by Lemma 6.

Before we proceed we briefly remark that at the level of our discussion we do not
need to concern ourselves with the distinction of global and local alignments. In order to
model a partially local alignment of posets we consider the set A of aligned columns and
a partition of the set of “unaligned columns” into two not necessarily non-empty subsets
P and S such that forall U € P, V € Aand W € S it holds that W AV and V A U,
i.e., no “unaligned” suffix column precedes an aligned column, and no “unaligned” prefix
column succeeds an aligned column. “Unaligned” prefix columns belonging to different
rows (X4, <q) are considered mutually incomparable; the same is assumed for “unaligned”
suffix columns. With the caveat that “unaligned” columns need to be marked as such,
there is again no structural difference between local and global alignments.

The projection of (X, A, <) onto a row a € S is obtained as the set 7,(X) := {(a,i) €
X,|3Q € C(X, A) : (a,i) € Q} endowed with the partial order <7 such that (a,) <7 (a,j)
whenever there are columns P, @ € C(X,A) with P < Q. A potential shortcoming of
Definition 33 is that it does not guarantee that (m,(X), <7) = (X4, <4). It is therefore of
interest to consider a (much) stronger version of axiom (A4):

(A5) P <Q, (a,i) € Pand (a,j) € Q implies (a,i) <, (a,7); VP, Q € C(X, A).

a)
4

76

Chapter 4. Dynamic Programming with Alignments on General Data Structures

AT
RO

Figure 30: Top: Pairwise alignments of partially ordered sets. Thin black edges show the
Hasse diagram, to be read from left to right. Alignment edges are shown in green.

Bottom: The induced partial order of the alignment columns with corresponding points vertically
aligned. The partial order is again shown as a Hasse diagram, with superfluous edges omitted.
Both the Lh.s. and the r.h.s. example satisfy (A4), i.e., none of the order relations <; and <2
is violated in the alignment. The red edges highlight two comparabilities introduced by partial
order of the columns that are absent in the input posets. Red edges therefore imply a violation
of condition (A5). Hence the Lh.s. alignment violates (A5), while the r.h.s. alignment does not.

First we note that (A5) implies (A4). The definition of the projection of (X, A, <) to a
row a € S then immediately implies

Observation 3 Suppose a (X, A, <) satisfies (A1), (A2). Then (A5) is equivalent to
(ma(X), <3) = (Xa; <a)-

Observation 3 furthermore implies that (A4) and (A5) are equivalent if all (X,, <,) are
totally ordered. In general this is not the case, however, as the example in Figure 30
shows.

The following simple, technical result is a generalization of Lemma 6, showing that
condition (A5) is sufficient to guarantee the existence of a partial order on the columns.

Lemma 7 Let (X, A) be a graph with connected components C(X, A) satisfying (A1) and
(A2). Let < denote the transitive closure of the relation < defined by (A3), i.e., P<Q
whenever (a,i) € P, (a,7) € Q and (a,i) <4 (a,j) then P < Q; VP,Q € C(X, A). Finally
assume that axiom (A5) holds. Then < is a partial order on C(X, A).

Proof 9 It suffices to show that < is antisymmetric. It is clear from the construction
that by (A5) we know that < is antisymmetric. If < is not antisymmetric, then there is
a finite sequence of columns P;, 1 = 0,...,k such that Pp<P1< ... <P.<Py and any two
consecutive columns P; and P;y1 have a pair of entries, say (a;, h) € P; and (a;,h') € Piyq,
in the same row. For the transitive closure this would imply both (a;, h) < (a;, h') from
(ai, h)=<(a;, h') and (a;, h') < (a;, h) by going around the cycle, contradicting aziom (A5).

Finite partial orders (X,, <,) are equivalent to finite directed transitive acyclic graphs.
The projection property of Observation 3, can be expressed in graph-theoretical terms in
the following manner:

Chapter 4. Dynamic Programming with Alignments on General Data Structures 77

Observation 4 Let (X, A, <) be an alignment of partial orders (X4, <4), S' C S a subset
of columns, and Q' C C(X, A) such that X, NQ # 0 for alla € S" and Q € Q'. Then the
graph with vertex set Q' and directed edges whenever P < Q is an induced subgraph of
(the graph representation of) (X4, <4)-

Thus the set of alignment columns Q' defines an induced common subgraph of the transitive
acyclic graphs (X,,<,) in a € S’. This is of course also true for pairwise alignments.
In the pairwise case, none of the columns @ € C(X, A) \ @ describe a (mis)match, i.e.
they contain only insertions and deletions, while all @ € Q' describe (mis)matches. A
score-optimal alignment of two partial orders therefore corresponds to a maximum common
induced subgraph (MCIS) of two transitive acyclic graphs. In both specifications of the
problem, the scoring function will of course depend on the labels. We refer to Bunke (1997)
for a discussion of the relationships of edit distances and maximum common subgraph
problems in a more general setting.

4.3 Composition of Alignments

In order to study the composition of alignments it seems natural to first consider the
properties of parts of given alignments. The most natural starting point is to consider
restrictions induced by considering subsets of the input sequences. The following result,
which generalizes Lemma 1 of W. Otto et al. (2011), provides a convenient starting point.

Lemma 8 Let (X, A, <) be an alignment and let Y C X. Then the induced subgraph
(X, A)[Y] with the partial order < restricted to the non-empty intersections Q N'Y VQ €
C(X, A) is again an alignment. Furthermore, if (X, A, <) satisfies (AB), then the restriction
to (X, A)[Y] again satisfies (A5).

Proof 10 Ewvery induced subgraph of a complete graph is again a complete graph, hence
(A1) holds for (X, A)[Y], hence the connected components of (X, A)[Y] are exactly the
non-empty intersections of Y with the components Q of (X, A). Condition (A2) remains
unchanged by the restriction to Y. Finally, the partial order < satisfying (A3) restricted
to the non-empty intersections Q NY for Q € C(X, A) is a partial order that obviously
still satisfies (A4) since the restriction to Y only removes some of the conditions in (A4).

To see that the restriction of (X, A)[Y] again satisfies (A5) it suffices to recall that
the partial order in the column is given by PNY < Q@ NY whenever P < @ and both
PNY #0 and QNY #£ 0. If one of the intersections is empty, axiom (A5) becomes void
since the empty set is not a column in (X, A)[Y]. On the other hand, if the two restricted
columns have entries (a,i) and (a,j) in the same row, then (A5) for (X, A, <) ensures
(a,1) <q (a,7), i-e., the implication (AD) remains true for the restricted alignment.

Note that additional partial orders on connected components of the induced subgraph
(X, A)[Y] may exist that are not obtained as restrictions of the partial order on C(X, A).
The reason is that omitting parts of the columns may allow a relaxation of their mutual
ordering.

Rooted trees can be seen as partially ordered sets, with the natural partial order defined
by = < y if y lies on the unique path connecting x and the root of the tree. This special

78 Chapter 4. Dynamic Programming with Alignments on General Data Structures

case is thus covered in the general framework outlined here. Usually, tree alignments are
defined on rooted oriented trees, however, where the relative order of siblings is preserved
(T. Jiang et al., 1995; Hochsmann et al., 2004; Berkemer et al., 2017b), thus imposing
additional restrictions on valid alignments. We will return to this point in some generality
in the discussion section.

The fact that alignments are again totally or partially ordered sets implies that one can
also meaningfully define alignments of alignments. As before, we start from a collection
of finite partial orders (X,, <), a € S. Let B be a non-trivial partition of the rows, i.e.,
of S, whose classes we will write as S, indexed by a. We write X, := UaeSa X,. By
construction, X, N Xg = 0 for o # f3, i.e., the site sets of the row classes are disjoint. The
row partition 3 thus implies a partition of X.

Lemma 9 Let (X, A, <) be an alignment of the (X4, <a4), a € S, B be a non-trivial
partition of S, Xo := |J,cs. Xa the site set of the row calls o and (X, A, <)[X,] the
corresponding sub-alignment of (X, A, <). Then (X, A, <) is isomorphic to the (vertex)
disjoint union of the (X, A, <)[X4] for all row classes o, augmented by extra edges (z', x')
whenever there is a column Q € C(X, A) with 2’ € QN X, and 2" € QN Xp for classes

a#pB.

Proof 11 By Lemma 8, the alignments (X, A, <)[Xa] are subalignments of (X, A, <) and
thus (X, A)[X,] is an induced subgraph of (X, A). Their disjoint union therefore lacks
exactly all edges that connect pairs of vertices that are in the same connected component of
(X, A) but do not belong to the same class of rows . Since the partial order on the columns
of (X, A)[X;] is the one inherited from (X, A, <), the re-composition of the columns also
recovers the original partial order.

A corresponding example is shown in Figure 31 where the alignment (X, A, <) is
composed out of sub-alignments (X, A, <)[X,] and (X, A, <)[Xp] with @, Q., and Q3 as
examples for connected components of the alignment graphs and their composition by
disjoint union and extra edges (dashed lines) between elements of distinct sub-alignments.

The (X, A, <)[X,] can also be interpreted as partially ordered sets whose points are
the non-empty restrictions @ N X, of the connected components of (X, A) to the row
classes a.

Definition 34 (Quotient Graph)

We denote by (X, A)/PB the quotient graph whose vertices are the columns of the induced
sub-graphs (X, A)[X4], that is, the non-empty sets QNX; where Q is a connected component
of (X, A). Its edges are the pairs (Q N Xqa,Q N Xg) for which both QN X, and QN X,
are non-empty.

The connected components of the graph (X, A)/B are therefore of the form Q' := Q/PB =
{@NX,|QNX, # 0}. Note that @’ is non-empty since the column Q of (X, A) contains
at least one element, which belongs to (X, A)[X,] for at least one of the classes « of B.
Thus there is a 1-1 correspondence between the connected components of (X, A) and
those of (X, A)/9B. The columns of (X, A)/P therefore naturally inherit the partial order
=< of C(X, A). We write (X, A, <)/ for the quotient graph with this partial order on its
connected components.

Chapter 4. Dynamic Programming with Alignments on General Data Structures

79

(Xas A, <a) (X, A)/B

({(:1.4.,?.)-. ? b ::::::: z.a Q(lp -...___.
Il N A<y v T
Q4 < |=felele] 7 |el-)

Figure 31: Example of an alignment (left) being composed out of sub-alignments (middle)
corresponding to the partition of the rows in the two classes S, = {a, b} and Ss = {¢,d}. Columns
marked by dashed lines show how the creation of sub-alignments removes gap columns. Column
Q € C(X, A) (marked in grey) is highlighted as an example. On the right, the two sub-alignments
with the corresponding restrictions of @ are shown: Qa € C(X, A)[Xa] and Qp € C(X, A)[Xg]
are connected components and complete subgraphs of the sub-alignment graphs and can be
composed to @ by applying the disjoint union and adding extra edges between all elements in
Q that are in distinct sub-alignments thus Q. and Qs (dashed lines). Indices at nodes in the
graph refer to the sequence the node is coming from. The alignment (X, A)/9 on the right is the
alignment of the sub-alignments (Xa, A) and (Xg, A). Thus the nodes in the alignment graph
are columns of the sub-alignments. Alignment edges show matched columns. The unmatched
columns correspond to the columns marked by dashed lines in the alignments on the left and
middle.

Lemma 10 (X, A, <)/B is an alignment.

Proof 12 Consider the quotient graph (X, A)/B. By construction, each column Q' is a
complete graph and contains at most one node for each class of B since it is the quotient
of a column of (X, A, <) w.r.t. B. Also by construction, we have P' < Q' for the columns
of (X, A)/B whenever P < Q in (X, A, <). Since there is a 1-1 correspondence between
columns of (X, A, <) and (X, A, <)/B, < also serves as a partial order on the columns
of (X, A)/B, which is by construction consistent with the partial order on (X, A)[X4] for
each of the row classes a.

Theorem 3 Let (X, A, <) be an alignment and let B be an arbitrary row partition. Then
(X, A, <) is isomorphic to the alignment (X, A, <)/PB of its restrictions (X, A, <)[X4] to
the row classes a of B.

Proof 13 Since (X, A, <) /B is well defined by Lemma 10, Lemma 9 shows that expanding
the classes points of (X, A, <)/B into corresponding sets Q. building the union of those
that belong to a column of (X, A, <) /B exactly recovers the columns of (X, A, <) and their
partial order.

We note that the constituent alignments (Xq, An, <o) = (X, 4, <)[X,] have at most
the same number of columns since “all gap” columns, Q' = Q N X; = (), are removed. The
decomposition of Theorem 3 can be applied recursively until each constituent alignment
is one of the input posets (Xg, <q), @ € S. Any such recursive composition is naturally

80 Chapter 4. Dynamic Programming with Alignments on General Data Structures

represented as a rooted tree . The leaves of T are the input posets (X, <), while the
root represents (X, A, <). Each internal node of ¥ corresponds to an alignment of its
children. In particular, one can choose ¥ to be any binary tree.

The reverse of this type of decomposition underlies all progressive alignment schemes.
One starts from a guide tree T whose leaves are the (X,, <,) and for each inner node of ¥
constructs an alignment (or a set of alternative alignments) from the (set of) alignments
attached to its children. It is important to note that a score-optimal alignment (X, 4, <)
in general is not the score-optimal alignment (X, A, <)/B of score-optimal constituents
(Xay A, <a), or, in other words, if (X, A, <) is score-optimal, there is no guarantee that
there is any nontrivial partition of the rows 3 such that all the restrictions (X, A, <)[X;]
are score-optimal subalignments. Progressive alignment methods thus cannot guarantee
an exact solution of the multiple alignment problem. Results in practical applications
depend substantially on the choice of the guide tree T. It has been suggested early (Feng
and R. F. Doolittle, 1987), that T should closely resemble the evolutionary history of the
input sequences. Usually ¥ is constructed from distance or similarity measures between
all pairs of input sequences — and usually pairwise alignments are employed to obtain
these data. A special case of progressive alignment adds a single sequence in each step,
instead of also considering alignments of larger sub-alignments.

4.4 Blockwise Decompositions

On the other hand, we can also decompose alignments into blocks of columns. More
precisely, we consider an alignment (X, A, <) and a partition Q := {Y7,...,Y,} satisfying
the following properties:

(i) If P € C(X, A) then P C Y}, for some class Y}, € Q.

(ii) There is a partial order < on £ such that for any two distinct classes Yy, Y; € Q
such that Yy <Y; whenever there are columns P € Y, and Q € Y; with P < Q.

We call the classes of such a partition blocks. By Lemma 8 each block (X, A, <)[Y],
Yi € Q is again an alignment.

Theorem 4 Given blocks (X, A, <)[Yx] with Yy, € Q, and the partial order < on the blocks,
there is an alignment (X, A, <), where <4 is an an extension of < defined by P <4 Q
if and only if P < Q for P,Q €Y for someY € Q and P <, Q for P €Y} and Q €Y
with Y <Y, and k,1 € (1,q).

Proof 14 Each alignment block consists of the disjoint union of alignment column(s),
thus the disjoint union of complete subgraphs. Given the partial order of alignment columns
P < Q, this order is preserved inside the alignment blocks Y3, € Q as each block is an
alignment, too. Given an alignment block'Y with P < Q for P,Q €Y for some Y € Q,
one can decompose this into two blocks Yy and Y; with at least one column in each block
such that P € Yy, and Q € Y;. Based on the decomposition of Y into Yy and Y; one can
restore the order of the alignment blocks such that Y <Y based on Y. Thus, one gets the
order of P <4 Q that is present for the alignment columns P and Q as well as for the
alignment blocks Yy, and Y.

Chapter 4. Dynamic Programming with Alignments on General Data Structures 81

In the case of totally ordered inputs, the restriction X, NY of a block Y to an input
X, is an interval of X, and the columns in Y form an interval of the columns of (X, 4, <).
Similarly, one can restrict the choice of blocks in such a way that < just “mirrors” the
initial partial order, i.e., Y <Y if and only if P < @ for P in Y} and @ in Y}, in which
case <4 = < and the original alignment is recovered by the concatenation of the blocks.
In particular, this also guarantees that valid block decompositions can be constructed for
alignments satisfying (A5).

Each alignment can thus be recursively decomposed into blocks. This sets the stage for
Divide-and-Conquer algorithms such as DCA (Stoye et al., 1997), which cuts the sequences
to be aligned into subsequences and then concatenates the subalignments so as to optimize
a global score. In order to find the best cut-points, the algorithm recurses on differently cut
subsequences. Algorithms such as dialign (Morgenstern, 1999) work in a conceptually
similar manner but use a bottom-up instead of a top-down approach: they first identify
blocks with high sequence conservation as “anchors” and recurse to construct alignments
for sequences between them.

An extreme case of the block-wise decomposition is to consider the division of an
alignment (X, A, <) into a single maximal (or minimal) alignment column P, and the
rest (X \ P, A, <) of the alignment. In order for X \ A< P to hold, we have to ensure
that p, A4 qo for all p, € P and ¢, € X \ P, i.e., the column P must entirely consist
of suprema of the respective input posets. Under this condition, we obtain a recursive
column-wise decomposition of alignments. As we shall see in the following section, this
recursion can also be used constructively.

4.5 Recursive Construction

Given a poset (Y, <) we say that P C Y is a bottom set if, for all p € P, every p’ < p
satisfies p’ € P. By definition, the empty set, Y itself, as well as the set {p’ € Y|p’' <y}
for each y € Y are bottom sets. Note, however, that P also may contain points that are
incomparable to all other elements of P. Denote by sup P the set of suprema of P, i.e.,
the points such that there is no p’ € P with p < p’. Clearly, if P is a bottom set and
p € sup P then P\ {p} is again a bottom set. The latter observation suggests that there
is a recursive construction for the set of alignments.

For simplicity of exposition, we first consider the pairwise case, i.e., the set of alignments
of two finite posets (X1, <1) and (X3, <2). Denote by 915 the set of all pairwise alignments
on bottom sets P in X7 and @ in X,. An alignment A € ng is necessarily of one of three
types:

(i) A=A'(D) with A’ € AL,
(i) A=A'(?) with A" € A5, or
(iif) A=A/(;) with A" € A,

where P’ := P\ {p} for pesup P, Q' := Q \ {q} for ¢ € sup @, and ng contains only the
empty alignment.

82 Chapter 4. Dynamic Programming with Alignments on General Data Structures

The three cases correspond to (mis)match, insertion, and deletion. It is important to
note that this recursion is in general not unique because the columns extracted from A in
consecutive steps are not necessarily ordered relative to each other whenever |sup P| > 1
or |sup Q| > 1. Tt is, however, a proper generalization of the Needleman-Wunsch recursion
(Needleman and Wunsch, 1970) for the pairwise alignment of ordered sets (strings): If
the <, are total orders, then sup P, always contains a single element, and we recover the
usual Needleman-Wunsch algorithm. In order to have a proper start and end case for the
recursion and thus DP algorithm, it is convenient to introduce “virtual” source and sink
nodes being connected to all start or end nodes of the poset, respectively.

This idea generalizes to alignments of an arbitrary number of partial orders in the
obvious way. Denote by A(Py, Ps, ..., Py) the set of all alignments where the P, are a
bottom set of (X, <,).

Theorem 5 FEvery alignment A € A(Py, Py, ..., Pxn) is of the form A'E where the align-
ment column = is a supremum w.r.t the partial order of < of alignment columns and
A" e A(P[,P;,...,P}). The column = contains in row a either a gap row a, in which
case P, = P,, or p, € sup Py, in which case P, = P, \ {pa}, and does not entirely consist
of gaps. For every column T of A’ we have either Y < = or Y and = are incomparable.

Proof 15 The P, are again bottom sets, hence A’ is an alignment. By assumption, there
is a partial order on the columns < of A’. Since every non-gap entry in Z is a p, € sup P,
it follows that this partial order extends to A if and only if = is a supremum, i.e., it is
either incomparable with or larger than any column in A’. Now suppose that the column
= contains a q, ¢ sup P,, i.e., there is a p, € X, with p, = qo. Consider the column Y
containing p,. Then either no partial order < on the columns exists (contradicting that
A’ is an alignment), or T = Z (contradicting that = is a supremum for the alignment
columns.

The bottom sets are of course uniquely defined by their suprema. Clearly sup P is an
antichain, i.e., its elements are pairwisely incomparable. Conversely, every antichain U
in (X,, <) uniquely defines a bottom set P := {p € X,|p < U}. It is obvious therefore
that for two bottom sets P and @ it holds that P = Q if and only if sup P = sup Q.
Hence there is a 1-1 correspondence between the antichains of a partial order and their
bottom sets. The recursion in the theorem can be written in terms of the antichains of
the (X,, <4). Note that the recursion of Theorem 5 can be transformed into an exact
dynamic programming algorithm for alignment of posets, provided the scoring function is
the sum of column-wise contributions.

In order to capture the more restrictive notion of alignments satisfying (A5) the
recursion has to be modified in a such a way that for every (mis)match between two rows
it can be ensured that all previously formed columns are either comparable in both rows
or incomparable in both rows. This is non-trivial because this information is not purely
local. For ease of discussion, we only consider the case of aligning two posets. There are
at least two strategies to maintain this information.

Attempting to construct a similar recursion as in the (A4) case, one could store with
each pair P € X; and () € X3 also all the set M of all matchings () “to the right” of

P and Q, ie.,p€ X;\ Pand g € X; \ Q. Then every allowed matching/column (Z:)’

Chapter 4. Dynamic Programming with Alignments on General Data Structures 83

p' € sup P and ¢’ € sup Q must satisfy: for all (?) € M holds: either p’ < p and ¢’ < g,
or both p’,p and ¢/, ¢ are incomparable. Every such pair can be appended to M, with
corresponding updates P — P\ {p'} and Q — Q\ {¢'}. Insertions and deletions of course
only require the removal of either p’ from P or ¢’ from @, respectively. Initially, P = X7,
Q = X5, and M = (). Every set of valid partial alignments is characterized by a triple
(P,Q. M),

An alternative approach is to store instead for each p € P and ¢ € @ also the sets
co(p) and cp(q) that can form matches (;’,) ¢’ € cq(p) and (%’), p’ € cp(q), respectively.
Initially, we have P = X7, Q@ = Xo, co(p) = Q for all p € P and cp(q) = P for all ¢ € Q.
Whenever an alignment is continued with a (mis)match (5): p €sup P, g € sup (), we
have to remove all candidates from cp(g') and cq(p’) that are inconsistent with (7). That
is: if ¢ < g, then cp(¢’) + {p' € cp(¢)|p’ < p}. If ¢ and ¢’ and incomparable, then
cp(q") < {p' € cp(¢')|p’, p incomparable}. The co(p’) are updated correspondingly. In
the case of an insertion (), we only need to remove p from fp(q'), ¢ € Q. Similarly,
() implies that ¢ has to be removed from the fq (p') for all p’ € P. We suspect that an
encoding of alignment sets of the form (P, fo : P — 2F;Q, fp : Q — 2F) will be efficient
if the poset has only small antichains. A more detailed analysis of this kind of recursive
construction from the point of view of algorithmic efficiency will be considered elsewhere.

The POA algorithm (C. Lee et al., 2002) computes the alignment of two posets
satisfying (A5), albeit with the restriction that one of the two inputs is totally ordered.
This removes all ambiguities in the totally ordered poset and implies that, given any match
(%) in the alignment, all preceding matches (1;,’) satisfy v’ < v in the totally ordered set
and thus v/ must be a predecessor of . The alignment thus must follow a single path in
the Hasse diagram of the unrestricted input poset.

The recursive formulation of the poset alignments is an extension of the well-known
Needleman-Wunsch alignment algorithm. Beyond many implementations of this algorithm,
the implementation based on ADPfusion (Algebraic Dynamic Programming with compile-
time fusion of grammar and algebra) (Honer zu Siederdissen, 2012) is designed in a way
to be extendable to different scoring functions, problem descriptions, and data structures
(Homer zu Siederdissen et al., 2015a). Future work thus will include the adaptation of the
ADPfusion framework written in a functional language (Haskell) to the data structure of
posets. Earlier adaptations of the Needleman-Wunsch algorithm to trees, forests and sets
already exist (Berkemer et al., 2017b; Honer zu Siederdissen et al., 2015b) as described in
Chapter 3.

4.6 Alignments as Relations

Pairwise alignments have a particularly simple structure. In particular, they are bipartite
(undirected) graphs, and hence can be regarded equivalently as symmetric binary relations
R C X; x X5. More precisely, we can identify a relation R with an undirected graph with
vertex set X;UX5 and (undirected) edges {x1,z2} whenever (x1,z2) € R. We write this
graph as (X;UXo, R).

Relations have a natural composition. For RC X xY and S CY x Z is defined by

(x,z) € SoR iff JyeY st. (z,y) € Rand (y,2) € S (4.4)

84 Chapter 4. Dynamic Programming with Alignments on General Data Structures

In the following we will be interested in the following properties of binary relations:
(M) (z,y) € R and (z,2) € R implies y = z and (z,2) € R and (y, 2) € R implies = = y.
(P’) There is a partial order < on R such that u <1 z or v <2 y implies (u,v) < (z,y).
(P) If (z1,y1) € R and (x2,y2) € R then 7 < x4 if and only if y; < yo.

Lemma 11 The composition of two binary relations satisfying (M) and (P) is again a
binary relation satisfying (M) and (P).

Proof 16 Suppose (z,z) € RoS. Then there isy such that both (x,y) € R and (y,z) € S.
By (M), there is no other y' # y with (x,y") € R and no 2’ # z such that (y',2') € S,
hence in particular there is no z' # z such that (x,2') € Ro S. Analogously, one argues
that there is no &' # x such that (¢',z) € Ro S. Thus Ro S again satisfies (M).

Suppose (21,21), (x2,22) € RoS. By (M) there are unique vertices y; and ya such that
(x1,91), (x2,y2) € R and (y1,21), (y2,22) € S, respectively. Now suppose x1 <1 x2. Then
(P) implies y1 <2 y2, and using (P) again yields zy <3 z2. Starting from z1 <3 z2, the
same arqument yields z1 <1 zo. Conversely, suppose (x1,21),(22,22) € Ro S and x1, zo
are incomparable. By (M) there are unique vertices y1 and yo with (x1,y1), (x2,y2) € R
and (y1,21), (Y2, 22) € S, for which (P) now implies that they are incomparable. Using
the same argument again shows that that z1 and zs also must be incomparable. Hence
concatenation preserves not only the relative order but also comparability, i.e., Ro S again
satisfies (P).

It is easy to see that Axiom (P’) is in general not preserved under concatenation:
Requiring only (P’) allows the intermediate vertices y; and ys to be incomparable. Hence
it is possible in this scenario to have x; <; x3, incomparable vertices y; and ys, and
z9 <3 z1 with (z1,11), (22,y2) € R and (y1,21), (y2,22) € S while the concatenation
violates the (P’).

A relation satisfying (M) and (P’) can easily be extended to an alignment (X; U Xa, R)
considering each edge (z1,y1) and considering all unmatched positions, i.e., every {z'}
such that there is no y € Xa(2',y) and every {y’} such that there is no x € X;(z,y’) as
alignment columns. The relative order of these columns is inherited from the partial order
(Xl, -<1) and (XQ, -<2).

Lemma 12 Every pairwise alignment satisfying (Al), (A2), (A3), and (A4) can be
written as an extension of the a binary relation R C X1 x Xy satisfying (M) and (P”).
Conversely, every binary relation R C X1 x Xo satisfying (M) and (P’) gives rise to an
alignment satisfying (A1), (A2), (A3), and (A4).

Proof 17 By definition, all edges are incident to one vertex in X1 and one vertex in Xo,
thus the graph is a bipartite matching. Condition (M) is therefore equivalent to (Al) and
(A2) for the case of two input posets. Aziom (A3) implies the ordering required by (P’)
as well as its extension to the in/del columns. (A4) and (P’) equivalently guarantee the
existence of the partial order on the columns that satisfy (A3).

Theorem 6 FEvery pairwise alignment satisfying (A5) corresponds to a binary relation
R C X; x X5 satisfying (M) and (P).

Chapter 4. Dynamic Programming with Alignments on General Data Structures 85

Proof 18 Aziom (A5) simplifies to (P) in the case of only two inputs. The existence of
the required partial order on the set of all columns is guaranteed by Lemma 7.

This suggests that the more restrictive condition (A5) may be a more natural condition
for defining alignments of partially ordered sets. As a down-side, however, it seems that
there is no convenient recursive construction of the search space similar to the dynamic
programming approaches for sequence alignment. Instead, it seems more natural to treat
this class of alignment problems as maximum induced subgraph problems.

Composition of binary relations is a powerful tool to construct multiple alignments.
Suppose we are given a set of posets (X,, <,) and a set R of pairwise relations satisfying
(M) and (P) such that the graph representation of R is tree, then there is a unique multiple
alignment satisfying (A5) obtained as the transitive closure of the graph on X with edges
defined by the R € R. However, not every alignment can be represented in this manner.
As a simple counterexample consider the alignment of the three sequences a,b and c:

composition
(a,b,c) (a,b) (b,c) ((a,b), (b,c))
a A-C a A-C a -A-C
b -BC b -BC b -BC b --BC
c AB- c AB- c A-B-

The first column gives an alignment of three input strings a, b, and c. It contains the
pairwise alignments (a,b) and (b,c). Their relational composition (shown in the last
column) contains only the matches BB from (b,c) CC from (a,b). The match AA from
the original alignment is not reconstructed in the composition of the pairwise alignment.
One easily checks that, by symmetry, no composition of pairwise alignments recovers
the original 3-way alignment. Hence not all alignments can be represented as relational
compositions of pairwise alignments. On the other hand the progressive approach, in
which sequence c is aligned to the pairwise alignment of a and b yields the example
alignment. In fact, Lemma 10 implies that in principle every alignment can be obtained
by a progressive alignment scheme. If R contains cycles, then there is no guarantee that
the transitive closure A of (Jz. R is an alignment: In general, both conditions (A1) and
(A2) will be violated. So-called transitive alignment approaches deliberately accept this at
an intermediate stage. Various heuristics can be used to remove superfluous edges from
the graph (X, A), that is they construct a subgraph (X, A), A C A that again satisfies all
conditions of a valid alignment.

4.7 Tree Alignments

Alignments on trees and forests are described in detail in Chapter 3. This section will
shortly summarize the principles from the point of view of generalized alignments and
compositional properties.

A forest T = (V, E) is defined based on a pair of vertex set V and edge set E and two
mutually exclusive order relations on the elements in V: the ancestor order < and the
sibling order < as described in Subsection 2.2.1. Consider a forest 7" with vertex set V
and define T, with vertex set V' \ {v} as follows: (1) if v is the root of a subtree, delete v

86

Chapter 4. Dynamic Programming with Alignments on General Data Structures

(a1,a2,—)

(F17F27F3)

(J1, 72, 73)

(c1,—,¢3)

J3
k3 3

m3 P3 T3

Figure 32: Example of a forest alignment of three forests (bottom). The resulting forest (top)
is the superstructure combining all of the input trees. The nodes labels correspond to alignment
columns and blue nodes indicate matches such that they exist in all the input trees. Original trees
can be recovered from the supertree by only taking nodes without gap symbol in the corresponding
alignment column. A node with gap symbol is then removed and its edges contracted such that
its children will be its parents children afterwards. This can be seen in Fi where node b does not
exist and nodes ¢; and hi1 become children of the root aj.

and replace the tree T'(v) rooted at v by trees rooted at the children of v in sibling order;
(2) if v is not the root of a subtree, contract the edge from the parent of v to v. That is,
the children of v become children of the parent of v. It is not hard to check that both the
ancestor and sibling orders for 7T, is simply the restriction of < and < to V'\ {v}.

A forest alignment is defined as a forest T' such that each vertex v is labeled by
an alignment column @,. The constituent tree T, s € S is obtained from T by first
simplifying the label on T to @, N X, at each vertex v; then all v with Q, N X, = 0
are removed by deletion or contraction of their parent edge as outlined above (T. Jiang
et al., 1995; Hochsmann et al., 2004; Berkemer et al., 2017b). Thus Ty has the vertex set
V' :={v e V|Q, N X # 0} and both its ancestor and sibling orders are the restriction
of < and < to V'. An example for an alignment of three forest structures is shown in
Figure 32. Tree or forest alignments thus fit seamlessly into the mathematical formal
for partial order alignments. We simply have to require that the alignment graph (X, A)
satisfies (A1) and (A2) and that properties (A3) and (A5) hold w.r.t. both partial orders
=< and <. This observation suggest how alignments satisfying an analog of (A5) can be
defined in a meaningful way for a much broader class of discrete structures.

A notion of alignment similar to tree/forest alignments is used in computational biology

Chapter 4. Dynamic Programming with Alignments on General Data Structures 87

for RNA structures (see also Subsection 2.3.2), where base pairs need to be preserved in
addition the total order of the input sequences (Maohl et al., 2010). Here, however, only
consistency similar in flavor to (A4) is enforced, suggesting that it may also be of interest
to relax the requirement that restriction to the columns @ for which Q N X, # () exactly
recovers the input tree (Xg, <a,<q)-

4.8 Alignments of Graphs

In Section 4.2 we have seen that alignments of partially ordered sets can alternatively
be viewed as alignments of graphs from a very restricted class, namely transitive acyclic
digraphs. This begs the question whether the construction can be generalized to arbitrary
(di)graphs. In this section we consider an input set of digraphs G, a € S, with vertex
sets V(G,) = X, and edge sets E(G,), respectively. As before, we write X = [V (G,),
introduce a set of alignment edges A, and denote by C(X, A) the set of connected
components of the (undirected) graph (X, A).

Definition 35 (Graph Alignment)

A triple (X, A, E*), where A is a set of unordered pairs on X and E* is a relation on
C(X,A), is a multiple alignment of the graphs G,, a € S, where A if the following
conditions are satisfied:

(Gl) Q € C(X, A) is complete subgraph of (X, A).
(G2) If (a,i) € Q and (a,j) € Q, then i = j.

(G3) If (a,i) € P, (a,j) € Q for some P,Q € C(X,A) and ((a,i),(a,j)) € E(G,) then
(P,Q) € E*

(G4) If (P,Q) € E* then there is a row a with (a,1) € P, (a,7) € Q and ((a,1),(a,j)) €
E(Ga),

(Gh) If (P,Q) € E*, (a,i) € P, and (a,j) € Q then ((a,1),(a,j)) € E(G,).

Condition (G4) is redundant and is included here only to emphasize the similarity to
the constructions in the previous sections. It may also be interesting to consider graph
alignments that satisfy only (G4) but not (G5).

Lemma 13 (C(X,A), E*) ~ (X,U,cqs E(Ga))/C(X, A).

Proof 19 The vertex set X/C(X, A) has a single representative for each column @Q €
C(X,A). By azioms (G3) and (Gb5), there is an edge (P,Q) € E* if and only there
(a,i) € P and (a,j) € Q with ((a,i),(a,7)) € E(Gy) for some a € S. The edge set on the
r.h.s., amounts to identical condition.

Thus (C(X, A), E*) is obtained from (X, |J,cg E(Ga)) by identifying the vertices within
each alignment column. In particular, therefore, the set Q' of columns () such that
QN X, # 0 for all a in a given subset S’ C S forms an induced subgraph (C(X, A), E*)
that is present in each GG,. Observation 4 thus remains true for graphs in general:

88

Chapter 4. Dynamic Programming with Alignments on General Data Structures

(G1,G2,Gs)

(G1,Ga) (i1, —,13)

(hl, *,h;;)

(1, = 73)

(91,92, 93)

Figure 33: Example for (progressive) graph alignment of G1 and G2 (top) with aligned graph
structure on the r.h.s and alignment of (G1,G2) with G3 and aligned graph structure again on
the r.h.s. Dashed blue lines show matches between nodes of the input graphs. Labels at nodes
correspond to alignment columns, indices refer to input graphs G1, G2 or Gs. The red subgraph
is the maximal common induced subgraph of all three input graphs.

Observation 5 Let (X, A, E*) be an alignment of graphs (X, E,), 8" C S a subset of
columns, and Q' C C(X,A) such that X, N Q # 0 for alla € S" and Q € Q. Then the
graph with vertex set Q' and edge set E* is an induced subgraph of (the graph representation

of) (Xa, Ea).

We note in passing that alignments of ordered and partially ordered sets assuming axiom
(A5) are special cases of the graph alignments satisfying (G5), since total and partial
orders are isomorphic to transitive acyclic digraphs. One easily checks that (G3) and (G5)
indeed reduce to the corresponding statements for the (partial) orders.

Again this is in particular true for pairwise alignments. Given two graphs G; and Ga
and a common induced subgraph H (strictly speaking together with an embedding of H
into G; and G2) the graph defined by identifying the copies of H in G7 and Gj is the
pairwise alignment G ey G of the input graphs. Naturally, an optimization criterion
will be used in practice. The problem of aligning graphs therefore coincides with the
maximum common induced subgraph (MCIS) problem. Finding MCIS is well known to
be a NP-complete problem and closely related to the maximal common edge subgraph
problem (MCES), together often referred to as the maximal common subgraph problem
(MCS) (Ehrlich and Rarey, 2011; Duesbury et al., 2018). However, several approaches
exist to find exact or approximate solutions for connected (¢cMCS) or disconnected (dAMCS)

Chapter 4. Dynamic Programming with Alignments on General Data Structures 89

common subgraphs using different algorithmic strategies such as backtracking algorithms,
dynamic programming, or clique-finding.

It is very easy to check that Lemmas 8, 9 and 10 — and thus also Theorem 3 — remain
true for the graph alignments of Definition 35. Indeed, the alignment of two graphs is
again a graph. Its vertices, corresponding to the columns of the alignment, are labeled by
the content of the columns. Therefore, we can build alignments of alignments for graphs.
In particular, furthermore, progressive alignments of graphs are well-defined. Given a
guide tree 7T, at each inner node of 7 the maximum common induced subgraph of the
graphs at its child-nodes is computed, and the graphs are “glued together” at the common
vertices. An example for the alignment of graphs is shown in Figure 33.

It is important to note that graph alignment in the sense used here — namely requiring
a matching between vertices and notion of structural congruence between the alignment
and its constituent graphs — are more restrictive than some concepts of “graph alignments”
discussed in the literature. In particular, we make a sharp distinction here between “graph
alignments” and various approaches of comparison by means of graph editing, see e.g.
Emmert-Streib et al. (2016) for a recent review.

4.9 Alignments for General Structures

So far, we have considered alignments for sequences (strings), partially ordered sets,
rooted ordered trees, and graphs. How far can we generalize the idea of alignments, and
what are minimal conditions for well-defined alignments? Let us start from a finite space
(X,) with some structure .. We are not really interested in the particular properties
of . Examples for . might be systems of not necessarily binary relations, topologies,
proximities, etc. As a minimum requirement we ask that (X,.”) admits well-defined
subspaces, that is, if Y C X, then there exists a unique subspace (Y,.%y) =: (X,.%)[Y].
Furthermore we require that

(X, 7)2] = (X, /) [Y)[Z] (4.5)

holds for all Z C Y C X, i.e., that induces subspaces that can be formed stepwisely in
a consistent manner. This property is satisfied for the examples we have considered so
far: strings and totally ordered sets in general, partial orders, as well as directed and
undirected graphs. It also holds for ternary relations such as betweenness, as well as
topologies, proximities, and similar constructions.

Now suppose we are given input spaces (X,, %) for all a € S. As in the previous
sections, we set X := (), .g Xa, we introduce a set A of edges connecting the vertices in X
and write C(X, A) for the set of connected components of the graph (X, A). Furthermore,
we define

Co = {Q € C(X, A)|Q N X, # 0}

Endowing C(X, A) with some structure . consider the subspace (X,.#)[C,] obtained
from (X,.7) to the connected components (columns) of (X, A) in which X, is represented.
As in the previous sections we assume

(X1) (X, A)[Q] is a complete graph for all Q € C(X, A), and

90 Chapter 4. Dynamic Programming with Alignments on General Data Structures

(X2) |Xgn@Q|<1lforallaeSand@eC(X,A).

Assumption (X1) implies that there is a 1-1 correspondence between the columns of Q € C,
and the elements ¢ € X, define by @ N X, = {¢}. Denote the corresponding map by
7q : Cqo — X,4. The condition that “projecting” (C(X, A),) down the constituent rows
a € S recovers the input spaces can then be expressed as

(X3) (C(X,A), 7)[Ca) ~ (X4, S) with 7, being an isomorphism.

This construction provides a well-defined notion of an alignment in a very general setting.
Again, the restriction of the alignment to a set C’ of columns that are represented in X,
for all a € 9, ie., (C(X,A),)[C’] is a common subspace of the (X,,.%,) with a € 5’.
This corresponds the poset alignments satisfying (A5).

Properties (X1), (X2), and (X3) are sufficient to ensure that key properties of totally
ordered alignments still hold in this much more general setting. Repeating the simple
arguments leading to Lemmas 8, 9 and 10 above, we observe:

(i) The restriction (X, A,.7)[Y] to Y C X is an alignment for the restricted input
spaces (Xg, %%)[Xa NY].

(ii) If B is a partition of X into groups of rows, the quotient (X, A,.7) /B is an alignment
of alignments: The rows of (X, A4,.7)/P are of the form (€(X, A), S)[C’], where
C={C eC(X,A)ICNX, #0,a € S’} where S’ C S determines a class of
the row-wise partition 3. That is, every row of (X, A,.%) /B is (isomorphic to) a
subspace of (€(X, A), 8).

(iii) For a given class of 3 determined by the row indices, we observe that by construction
the restriction of (X, A,.7)[Y] to Y := J,cg X4 is isomorphic to (€(X, A), &)[C'].
By assumption,
(C(X,A), A)Ca] = ((C(X,A), A)C'])|Cs] for all a € S’. Therefore we can construct
(X, A,.7) as the alignment (X, A,.7) /9 of the alignments (X, A,.7)[Y] of the rows
in each class of the partition .

We conclude therefore, that alignments defined by (X1), (X2), and (X3) can be decom-
posed recursively into alignments of alignments on all spaces with subspaces satisfying
Equation 4.5. In particular, these properties are sufficient to guarantee that progressive
alignments are well defined.

A natural question that arises at this abstract level is whether for any collection
(Xa,7), a € S, there exists an alignment. To answer this question we consider trivial
alignments for which A = (). Then every alignment column contains an element from
exactly one of the X,. Thus there is a 1-1 correspondence between C(X,0) and X,
ensuring that (X,0,S) and (X,S) are isomorphic. By (X3), (X,0,S) is an alignment of
the (X,,.%,) whenever (X, .7*)[X,] ~ (X,,) for all a € S. The existence of such a
“disjoint union” (X,.*) is thus a sufficient condition for the existence of alignments. All
the examples discussed in this section allow such “disjoint unions” and hence support
alignments of arbitrary input data.

Chapter 4. Dynamic Programming with Alignments on General Data Structures 91

4.10 Concluding Remarks

In this chapter, the compositional properties of sequence alignments have been analyzed
and explored up to the generalization to much more general structures. It has been
shown that meaningful concepts of alignments are not restricted to ordered sets as
inputs, but can be extended to very general relational or topological structures that
need not bear any resemblance with order relations. The key property of the generalized
alignments considered here is that the restriction of the alignment to a row recovers
the input row. While this property is a simple consequence for the familiar sequence
alignments, it becomes an important defining property of alignments in general. It suffices
under very mild conditions of the structure of input spaces to ensure that alignments of
alignments and recursive, row-wise decompositions of alignments are well-defined. We
have observed, furthermore, that some well-studied examples of alignment problems, such
as tree alignment and the alignment of totally ordered sets to a poset seamlessly fit into
the framework developed here.

92 Chapter 4. Dynamic Programming with Alignments on General Data Structures

Part ITI. Bioinformatics Applications of Dynamic Programming

93

Part 111

Bioinformatics Applications of
Dynamic Programming

Chapter 5. On Popular Input Data to DP Algorithms 95

CHAPTER

On Popular Input Data to
Dynamic Programming
Algorithms

Contents
5.1 Biological Sequences Lo o 96
51.1 DNA . . . 96
51.2 RNA . . . o 98
5.1.3 Proteins L 99
5.2 The Phylogenetic Tree of Life 99
5.2.1 Archaea, Bacteria and Eukarya 101
5.2.2 Evolutionary Aspects towards LUCA 101
5.3 Genetic Evolutionary Relationships 102
5.3.1 Events in the Phylogenetic Tree 103
5.3.2 Gene Families 0. 105
5.3.3 Homology Relations 106
5.4 Algorithms & Methods 107
5.4.1 Alignments 108
5.4.2 Sequencing & Mapping 108
5.4.3 RNAfolding 109
5.4.4 Homology Search 110

5.4.5 Reconstructing Phylogenetic History 111

96

Chapter 5. On Popular Input Data to DP Algorithms

One area where dynamic programming (DP) algorithms are often used is bioinformatics.
This chapter gives a short overview of basic principles in molecular biology conceptionalized
to the main underlying assumptions in bioinformatics research. Even though DP algorithms
are applied in other areas such as computer science and linguistics (Wagner and Fischer,
1974; Levenshtein, 1966; Kondrak, 2000; Cysouw and Jung, 2007; Steiner et al., 2011),
this chapter focuses on applications in bioinformatics and corresponding data analysis.

While DP algorithms are widely used in bioinformatics applications, not every problem
can be solved using dynamic programming. Thus, the analysis is usually composed out
of a set of algorithms and self-implemented scripts and programs. Towards the end of
the chapter, popular algorithms and methods used in bioinformatics are shortly described
(Section 5.4). For more detailed explanations and descriptions, see for example Alberts
et al. (2008) concerning the biological background, and Zvelebil and Baum (2007) and
Lemey et al. (2009) regarding the area of bioinformatics.

Analyzing biological data usually includes several distinct DP algorithms where each
of them requires input in a certain format. Even though various data formats are known
and widely used in bioinformatics, there are still slight differences and preferences to be
considered. Thus, setting up appropriate data structures and formats is an important
step before starting the analysis. Here, necessary information has to be stored in a way to
provide easy access and reformatting possibilities when needed during the analysis. This
requires a basic knowledge of the data and its origins.

5.1 Biological Sequences

Genetic information is encoded and transmitted via sequences in the cell. The following
subsections will describe the structure of DNA and RNA sequences as well as proteins,
i.e., amino acid sequences.

5.1.1 DNA

The deoxyribonucleic acid (DNA) molecule is a directed polymer which is composed of four
different nucleobases that are connected via a sugar(Deoxyribose)-phosphate backbone.
Nucleobases connected to the sugar-phosphate backbone are called nucleotides. The four
different bases are: adenine (A), cytosine (C), guanine (G) and thymine (T) as shown in
Figure 34. Always two bases are complementary to each other and can form base pairs
using hydrogen bonds. Base pairs are formed out of A and T or C and G, where G-C
pairs are connected by three and A-T pairs by two hydrogen bonds. Two antiparallel
strands of DNA form a double helix by base pairs build out of complementary bases. As
strands are running in opposite directions, they are usually called sense and antisense
or forward and backward strand. Stacking interactions of nucleotides in distinct strands
stabilize the double helix, see Figure 35. Deoxyribose molecules are connected to each
other via the 3’C atom of one molecule to the 5’C atom of the subsequent molecule. Thus,
the DNA strand has a 5’end and a 3’end and is used to indicate directions. The forward
strand is directed from 5’end to 3’end.

The DNA double helix is well protected and efficiently packed into chromosomes. In
archaea and eukarya, DNA is additionally wrapped around histones (see Figure 34). The

Chapter 5. On Popular Input Data to DP Algorithms

97

A v B a Nucleotides Chromosomes
CGTU

Sense strand (5' to 3')

.\’"V[’Hi;tones]
[A&E]

Gene order

DNA double helix 4 Genes

i s Transcription
[RNA P oo [Nucleus in E, cytosol in A&B]

5'UTR]."

/,:ntisense strand (3'to 5')

;RNA processing RNA polymerase Loaded tRNA
i [e.g. transport,

splicing, folding] Ribosomal complex

NcRNA *MRNA

* e o,
ino ac;\t/:list Translation
[e.g. tRNA] le.g. Me [Cytosol]

Arg, Gly, Ser]

soud

Figure 34: Schema showing the principles of transcription and translation. Additional informa-
tion are shown in squared brackets including details about occurrences in archaea (A), bacteria
(B) or eukarya (E).

Amino acid sequence

Protein o000

[Folding

complex formed by histone molecules and the DNA is called nucleosome. During cell
division, the complete genetic material of a cell is duplicated and distributed into the
daughter cells. The process of DNA duplication by DNA polymerases is called replication.
As it is only possible to copy DNA from a single strand, the double helix is partially opened
such that the DNA polymerase can attach to a single strand and add a complementary
version. Single pieces of copied DNA are ligated together in order to retrieve a completely
copied genome (Alberts et al., 2008).

Another way of reading the DNA sequence is called transcription. Here, RNA poly-
merases attach to one strand of the DNA and transcribe the DNA sequence into a
complementary RNA sequence (see next subsection for more details on RNA). The DNA is
transcribed using RNA polymerases and transcription is initiated by a transcription start
site (T'SS) located in the promotor region and terminated by usually at least one tran-
scription termination site (TTS). Chapter 8 will go into more detail about transcription
termination in archaea.

98

Chapter 5. On Popular Input Data to DP Algorithms

hydrogen

o 4
-0 \O\ﬂ o

Phosphate é

H 3'end 5'end
backbone

Figure 35: Schematic figure showing the structure of DNA. The backbone consists of phosphate-
deoxyribose chains where nucleobases are connected. The double helix is stabilized due to stacking
of aromatic rings in the nucleobases and hydrogen bonds formed in between complementary
bases.

Regions on the DNA strands that are functional entities are called genes where the
order of genes, called synteny, can have effects on gene regulation and expression. More
about syntenic relations of genes will be explained in Chapter 6.

5.1.2 RNA

Transcription (see Figure 34) is done similar to DNA replication as the double helix
is opened and RNA polymerase is attached to the single strand. After transcription
initiation, the RNA polymerase creates a nucleotide sequence complementary to the
current DNA strand. However, instead of thymine (T) Uracil (U) is used, a nucleotide
similar to thymine differing by one methyl group. The product is a ribonucleic acid (RNA)
sequence, a single strand molecule consisting of the bases A, C, G and U. The production
of the RNA molecule is called elongation phase. The last phase is called termination
phase where RNA polymerase is detached from the DNA template and RNA sequence
and transcription stops (Alberts et al., 2008).

The resulting RNA sequence is processed further in order to stabilize it against
digestion. As eukaryotic cells contain a nucleus, RNA sequences need to be transported
into the cytosol. In opposite, prokaryotic cells do not contain a nucleus and transcription
and translation both take place in the cytosol. Further processes on the RNA include
splicing of introns or folding of sequences into certain structures.

The complete set of RNA in a cell is called transcriptome. RNA sequences are divided
into two main groups: coding RNAs (messenger RNA (mRNA)) that encode for proteins
(see the following subsection for more details on proteins) and the group of non-coding
RNA (ncRNA) molecules that are not translated into proteins but form certain structures
and fulfill different tasks in the cell (Mattick and Makunin, 2006).

Chapter 5. On Popular Input Data to DP Algorithms

99

A well-known example are tRNAs that are part of the ribosomal complex and translate
between nucleotide codons and amino acids (see also Figure 34 and the section about
tRNAs below). Also rRNAs are part of the ribosomal complex during translation. The
ncRNAs that are responsible for nucleotide modifications such as methylations are called
small nucleolar RNA (snoRNA). Other ncRNAs are part of gene regulating processes such
as micro RNA (miRNA) and long non-coding RNA (IncRNA). Further RNA processing
steps involve small nuclear RNA (snRNA) and Y RNA molecules (Santosh et al., 2014)
which are described below. While some ncRNAs exist in all organisms, most types of
ncRNAs are restricted to subsets of the tree of life.

5.1.3 Proteins

The translation process from the mRNA into a protein is initiated by ribosomal proteins
and ribosomal RNA (rRNA) molecules forming the ribosomal complex (Alberts et al.,
2008). Based on the mRNA sequence, a corresponding amino acid sequence is synthesized.

Specific transfer RNA (tRNA) molecules have a binding site, called anticodon, where
three adjacent bases of the tRNA bind to three adjacent bases in the mRNA, called codon.
The loaded tRNA additionally carries an amino acid corresponding to its (anti)codon
which is then transferred to the amino acid chain currently synthesized in the ribosomal
complex as depicted in Figure 34. Amino acids are composed out of different side groups
that can form bonds such that the sequence of amino acids folds into a certain structure.
The structure is essential for the function and stability of the protein (Alberts et al., 2008).

There are 22 different amino acids in biological systems, even though many more
exist. Proteins are the product of the translation from an mRNA sequence (see also
Figure 34). The set of all proteins in a cell is called proteome. Similar to RNA sequences,
proteins fold in certain structures that are essential for their function and stability. Special
cases are enzymes that interact with other proteins, RNAs or further molecules using
principles of the ’lock and key’ model as only certain molecules match an enzyme’s binding
sites or pockets in order to initiate a reaction. Like RNAs, proteins play an important
role in maintaining a cell’s function. As depicted in Figure 34, proteins are part of
the transcription and translation processes as polymerases as well as ribosomal proteins
forming the ribosomal complex are proteins interacting with RNAs (Alberts et al., 2008).

Genes will be transcribed into RNA and some of them translated to proteins. Regions
in the DNA that are translated are called coding regions. All other regions are referred
to as intergenic regions. Transcription and translation processes are highly regulated by
various mechanisms in the cell including small RNA molecules that can act as enhancer or
inhibitor. Binding sites for them exist, e.g., in intergenic regions or the regions directly in
front (upstream) or behind (downstream) of a gene. These regions are called untranslated
region (UTR), thus 5> UTR (upstream region) and 3’ UTR (downstream region) of the
gene (Alberts et al., 2008).

5.2 The Phylogenetic Tree of Life

Evolution is the way of how life on earth emerged and evolved. Darwin (1859) mainly
coined the concept of species evolution due to reproduction allowing errors and mutations

100

Chapter 5. On Popular Input Data to DP Algorithms

Gl'een o 47 éj‘?‘/é
HSU/fUr . 2, @(‘,29/) S 5y, Animals
o Cley, S (o) O,O/WGS Ciliates Green Plants
3
Np,) Fungi
Flagellates

Microsporidia

Thermotogales

LUCA

Bacteria Archaea

Figure 36: Phylogenetic tree of life as proposed by C. R. Woese et al. (1990) after discovering
that prokaryotes evolutionary form two groups, archaea and bacteria. LUCA is the last universal
common ancestor of Archaea, Bacteria and Eukarya, however, it is assumed that cells with
genetic material have existed already before and origins of life occurred much earlier (Forterre
and Gribaldo, 2007).

such that the offspring is significantly different from its parents. This leads to the possibility
of adaptation to environmental changes or advantages towards organisms of the same or
distinct species regarding reproductive fitness or acquisition of food and living space.

Evolutionary processes are usually depicted by the shape of a tree similarly to a family
tree showing relatives of a family. In both cases, the root of the tree usually depicts
the oldest member of the family and time passes towards the leaves of the tree. In
case of evolutionary relationships between species, this tree is called phylogenetic tree.
The following subsections will explain structure and events in phylogenetic trees used in
bioinformatics research.

The current structure of the phylogenetic tree of life (TOL) includes three main groups
of organisms, i.e. domains, bacteria, archaea and eukarya as depicted in Figure 36. Before
the discovery of archaea (C. R. Woese et al., 1990), the tree consisted of only two groups,
prokarya and eukarya. Archaea and bacteria still form the group of prokarya, however,
despite many ongoing debates of the structure of the tree of life, they are now considered
to form two evolutionary distinct domains inside the tree (Eme et al., 2017; Gribaldo
et al., 2010). It is possible to find common traits between all three domains of life as well
as clear differences. It is assumed that genes having orthologs in species spread all over
the tree are well conserved and ancient and might have been part of the genome of the
last universal common ancestor. However, horizontal gene transfer (HGT) events and
incomplete data sets make it more difficult to infer phylogenetic relationships. The lowest
universal common ancestor (LUCA) is assumed to be the last common ancestor of archaea,
bacteria and eukarya. However, cells with genetic content might have existed before and

Chapter 5. On Popular Input Data to DP Algorithms

101

evidence exists that origins of life occurred much earlier (Forterre and Gribaldo, 2007).

This subsection shortly describes relationships between archaea, bacteria and eukarya
including differences and commonalities. The focus is based on the transcription process
as it will be described and analyzed further in Chapter 8. A short summary about
current assumptions on LUCA and inference methods is given, introducing further results
described in Chapter 7.

5.2.1 Archaea, Bacteria and Eukarya

Based on comparisons of 165 rRNA, C. R. Woese et al. (1990) discovered that prokaryotes
can be grouped into two evolutionary distinct domains, archaea and bacteria. After the
discovery, archaeal, bacterial and eukaryotic cells were target to comparative studies in
order to find differences and commonalities and infer evolutionary relationships. Baumann
et al. (1995) describe a few early considerations on archaea, bacteria and eukarya. Mor-
phology and size are more similar for archaea and bacteria and they both lack a nuclei.
Most of the prokaryotes have one circular chromosome, however, there is a large number
of prokaryotic cells including additional plasmids varying in size and number (Baumann
et al., 1995). Prokaryotic genomes are compact and many regulatory mechanisms are
shared among archaea and bacteria.

However, processes related to transcription and translation seem to be more similar
between archaea and eukarya (Baumann et al., 1995; Gribaldo et al., 2010), i.e. they
share a significant amount of ribosomal proteins and structural characteristics of RNA
polymerases. RNA modification processes such as splicing occur in all three domains,
however in distinct versions. Self-splicing introns are shared among archaea and bacteria
(Nawrocki et al., 2018) but enzymatic splicing occurs in archaea and eukarya (Watanabe
and Yoshinari, 2013).

Since the archaeal clade was discovered after the distinction between eukaryotes and
bacteria (C. R. Woese et al., 1990), most of archaeal traits are still unknown and research is
based on comparative approaches to eukaryotic or bacterial counterparts. As stated above,
archaeal RNA synthesis is generally considered to be more closely related to transcription
in eukaryotes than to bacterial transcription. The archaeal RNA polymerase is similar to
the eukaryotic RNA polymerase II, and the basal promoter elements in archaea are similar
to their eukaryotic pendants (TATA box and BRE); general transcription factors TBP
(TATA binding protein), TFB (transcription factor B) and TFE (transcription factor E)
resemble the eukaryotic proteins TBP, TFIIB and TFEII, respectively (for a review see:
Fouqueau et al. (2018)). Transcriptional regulators, however, seem to be more similar to
those in bacteria (Bell, 2005). Thus, the archaeal transcription machinery consists of a
mixture of bacterial-like and eukaryotic-like components. Transcription termination in
archaea will be discussed in more detail in Chapter 8.

5.2.2 Evolutionary Aspects towards LUCA

A longstanding goal of evolutionary biology is to infer the traits of the most ancient
organisms. Several criteria can be used to assess whether or not a particular gene sequence
may have been in the lowest common ancestor (LCA). Conserved presence of a gene in
a large number of archaea and bacteria can provide evidence of presence prior to the

102

Chapter 5. On Popular Input Data to DP Algorithms

R

e
B/ \C
NN

Figure 37: Example of a phylogenetic tree with inner nodes A, B and C, root node R colored
blue and leaves 1,2,3,4 and 5 shown in green.

formation of taxonomically distinct bacteria and archaea, and if the phylogeny of the
gene separates the domains as occurs with many ribosomal proteins and rRNA sequences,
presence in the LCA - also called LUCA in this context - is predicted with greater
confidence. Although molecular markers such as the 16s ribosomal DNA gene (C. R.
Woese et al., 1990), some ribosomal proteins (Hug et al., 2016), and some nucleotide
polymerase subunits such as RpoB (Case et al., 2007) have indicated overall species
relationships upon phylogenetic analysis, molecular comparison of these molecules does
not give insight into the metabolisms which power these polymerases.

A major challenge of reconstructing the physiology of the LUCA from gene phylogeny
is derived from the metabolic diversity of life today; since very few genes - especially
those coding for metabolic functions - are present in all organisms, it is difficult to assess
which metabolic traits may have been early from the simple view point of conservation
(Charlebois and W. F. Doolittle, 2004). Given the existence of HGT, phylogenetic scenarios
cannot be reconstructed without further information, as also described in Subsection 5.3.1.

5.3 Genetic Evolutionary Relationships

Evolutionary relationships between genes are based on a common ancestral gene that
evolved over time and was distributed into distinct species. Genetic evolutionary rela-
tionships were mainly coined by Fitch (1970), but also other works highly influenced the
field (Ohno, 1970; Kimura et al., 1968; Nei, 1987; Zuckerkandl and Pauling, 1965). The
set of evolutionary relationships between species or genes is called phylogeny and it can
be displayed in a phylogenetic tree (Durbin et al., 1998) as explained in the following
subsections.

As explained in Subsection 2.2.1, a tree structure is usually represented as a directed
acyclic graph (DAG) where the edges are directed from the root towards the leaves. In a
phylogenetic tree, this direction corresponds to time, thus the root node is the ancestor
of all other nodes in the tree, and every inner node represents the ancestor of species or
genes that are depicted at nodes below towards the leaves of the tree. This is depicted in
Figure 37, where blue nodes are inner nodes and green nodes are the leaves.

Chapter 5. On Popular Input Data to DP Algorithms

103

Regarding evolutionary history, ancestral genes or species might be unknown. To trace
back the history of a certain gene or species, one therefore depicts evolutionary events at
the inner nodes of the phylogenetic tree which might have caused the genes or species to
evolve into to distinguishable entities, displayed at the children nodes of the inner node.

The lowest common ancestor (LCA) of two or more nodes in the tree is the lowest
inner node of the tree (closest to the leaves) that lies on the intersection of the leaves’
paths to the root node. The LCA of nodes 1 and C in Figure 37 is node A and the LCA
of nodes 1,2 and 5 is R.

5.3.1 Events in the Phylogenetic Tree

A phylogenetic tree displays evolutionary history of species (species tree) or genes (gene
tree). Genes and genomes undergo editing processes called mutations caused either by
replicating the genome during meiosis or mitosis or due to environmental influences acting
on the cell or genome (Durbin et al., 1998; Lemey et al., 2009). Mutations introduce
changes into the genetics of an organism and are the basic principle of evolution. Even
though many changes might lead to lethal conditions, others may lead to abilities that
help the organism gain advantages over its competitors (Darwin, 1859).

There are various events that can occur. If only a single element in the nucleotide
sequence is affected, the mutation is called point mutation. As depicted in Figure 38 (left),
this mutation can be the exchange of a base (substitution), its deletion or an insertion of
an additional nucleotide. Point mutations can affect the folding of RNA molecules, binding
sites or the translation process (Lemey et al., 2009). Point mutations in transfer RNA
(tRNA)s are discussed in Chapter 6. Deletion and insertion events are summarized under
the term indel, see also Chapter 2. During translation, a missing or inserted base affects
the triplet code, shifting the open reading frame (ORF) which results in a different amino
acid sequence. A nucleotide exchange might only change the amino acid corresponding to
the given triplet. However, the genetic code is designed in a way that the exchange of
nucleotides at the third position in a codon (wobble position) mostly encodes for the same
kind of amino acid (Lemey et al., 2009). Point mutations that still encode for the same
amino acid are called synonymous, otherwise they are called non-synonymous mutations
(Lemey et al., 2009). A change in an amino acid can cause a change in the structure
of the protein or its active binding site such that binding its target molecules becomes
impossible but other molecules might be able to bind the altered binding site.

Not only single nucleotides are target to mutations but also complete genes or sections
of the genome, alleles and even complete genomes. Figure 38 (right) shows mutations
occurring on gene level.

Dugplication events occur frequently (Koonin, 2005) and in different variations. Not
only single genes are duplicated but also whole genomes or alleles. It is assumed that
duplicated genes are prone to change of function (Ohno, 1970; Koonin, 2005). An example
for duplicated genes are tRNAs, that are assumed to have evolved from one gene (Eigen
et al., 1989) where a high sequence similarity was maintained over a long time span
(Velandia-Huerto et al., 2016; Berkemer et al., 2017a). This is called concerted evolution
and will be discussed in Chapter 6.

The loss or deletion of a gene is mostly a fluent process. Thus, a gene’s sequence is
modified step by step until it first looses its functionality and at some point, cannot be

104

Chapter 5. On Popular Input Data to DP Algorithms

Point mutation Global mutation
a b c d e a b c d e
Substitution Inversiom
GGCTACA
. a b ¢ d Deletion a b c d e
Deletion > > —» - e Sy € — >«
GGCT_CA Substituti
ubstitution l Duplication
Y /
GGCT CTA a b c f e a b c c d e

Figure 38: Point mutations (left) occur on single nucleotides whereas global mutations (right)
can affect genes, sections of the genome, alleles or complete genomes. Arrows indicate genes
located on the forward or reverse strand.

identified as the original gene anymore. An important pathway to gene loss is pseudog-
enization, which can in many cases be detected by means of sequence similarity to the
target elements.

Remolding refers to an evolutionary event that changes the type or subtype of a
molecule. The best-known examples are changes of the anticodons in tRNAs such that
the tRNA now refers to a different amino acid (Rawlings et al., 2003; Sahyoun et al.,
2015). Hence, given two tRNAs with distinct types but a high sequence similarity, the
pair of tRNAs is reported as remolding event. By definition, remolding events can only
be associated with duplication events.

The insertion of a (new) gene usually happens due to a remote duplication event,
thus a gene being copied and inserted at a location further away from the original gene
(transposition) or the substitution or inversion of genes as depicted in Figure 38.

Transposons are elements that are copied between remote positions in the genome and
thus, often also appear as repetitive elements (McClintock, 1950) and remote duplication
events.

Another way of duplicating genes is called tandem duplication which happens when
neighboring gene(s) are duplicated resulting in several adjacent genes appearing twice.

The above mentioned evolutionary events all describe events during lateral gene transfer
(LGT). However, especially in prokaryotes and in interaction with viruses, horizontal gene
transfer can be found in many phylogenetic scenarios (Ochman et al., 2000). The event of
HGT happens when genetic material is exchanged in other ways than through vertical
reproduction, thus LGT, such as Retrotransposition which is the effect of copying a gene
from a different genome, e.g. a virus, that is then inserted in the host cell’s genomes
(Bennett et al., 2008).

High numbers of mutations can cause the appearance of new species, thus parts of an
existing species evolving in distinct directions. Then, the newly evolved species may still
contain a similar set of genes, however, genes might have undergone mutational changes.
This is called a speciation event.

Chapter 5. On Popular Input Data to DP Algorithms

105

Events and corresponding evolutionary relationships are depicted in Figure 39 and
explained in more detail in Subsection 5.3.3.

5.3.2 Gene Families

Gene families are derived from common ancestral genes. Members of a gene family can
occur as single genes or gene clusters and can be divided into multi-gene families or
superfamilies (Ohta, 2001). Genes in a multi-gene family are derived from an ancestral
gene that evolved due to a high amount of duplications. Duplicated genes that originated
from the same gene keep a similar function but accumulate mutations such that different
versions of the gene can be distinguished. However, their regulation is controlled by
common mechanisms. Examples are tRNAs or rRNAs (Ohta, 2001).

A gene superfamily can contain single genes, gene clusters or multi-gene families whose
regulatory controls might differ between subfamilies. An example is the globin superfamily
with three subfamilies: the a-like cluster, the S-like cluster and the single gene myoglobin
(Ohta, 2001).

Repetitive Elements

Repetitive elements are regions of the deoxyribonucleic acid (DNA) that occur in high
frequencies throughout the genome. There exist various kinds of repetitive elements and
functional purposes are often not known (Liao, 1999; Nei and Rooney, 2005; Sun et al.,
2007; Nishihara et al., 2006). It is assumed that repetitive elements evolved by a high
number of duplication events with occasional transpositions to other locations in the
genome. This is called concerted evolution. There exist repetitive elements with important
functions such as tRNA and Y RNA genes. As their distribution and evolutionary
development is further discussed in Chapter 6, a short overview of these elements is given
here. The development of repetitive elements is closely related to evolutionary events
which will be explained in more detail in Subsection 5.3.1.

tRNAs. Transfer RNAs (tRNAs) originated before the separation of the three Domains
of Life. There is clear evidence, furthermore, that all tRNA genes are homologs, deriving
from an ancestral “proto-tRNA” (Eigen et al., 1989), which in turn may have emerged from
even smaller components (Eigen and Winkler-Oswatitsch, 1981). They are indispensable
in all organisms. In addition to their ancestral role as mediators of the genetic code
(see e.g. Florentz et al. (2012)), tRNAs have secondarily acquired additional functions,
reviewed e.g. in McFarlane and Whitehall (2009) and Soares and Santos (2017). Beyond
bona fide tRNAs there is a rich universe of tRNA-derived repetitive elements (SINEs) (Sun
et al., 2007) and of small RNAs that either directly derive from tRNAs (Rozhdestvensky
et al., 2001; Tacoangeli et al., 2008) or arose indirectly as exapted SINEs (Nishihara et al.,
2006).

Y RNAs. Like tRNAs, mammalian Y RNAs are pol III transcripts (O’Brien et al., 1993).

They form the RNA component of Ro ribonucleoprotein (RoRNP) particles (Lerner et al.,
1981; Hendrick et al., 1981). The molecules exhibit a characteristic structure that has
been extensively studied in the past (Farris et al., 1999; Teunissen et al., 2000). They are
essential for the initiation of chromosomal DNA replication in vertebrates (Christov et al.,
2006), probably in conjunction with the Origin Recognition Complex (Kheir and Krude,

106

Chapter 5. On Popular Input Data to DP Algorithms

Events Genes
— G
. Duplication GB
‘ Speciation — GA
GAl
X Loss GA2

ST

/ [GAl \ /IGAIGAL
Species W X Y Z

Figure 39: Schema showing a species tree (gray area) and evolution of gene G inside the species
tree. Phylogenetic events on the tree are duplication (square), speciation (circle), loss (cross) and
horizontal gene transfer (HGT, triangle). The tree contains four species W, X,Y and Z that have
different sets of descendants of gene G. Phylogenetic relationships between genes inside species
are explained in the text.

2017). As part of the RoRNP they are involved in RNA stability and cellular responses to
stress (A. Hall et al., 2013). In addition, small Y RNA fragments are enriched in apoptotic
cells (Rutjes et al., 1999).

5.3.3 Homology Relations

Evolutionary relationships between genes are usually defined based on the LCA of referred
genes. If genes have a common ancestor, they are called homologous. Most important
relationships will be summarized in the following, for a detailed review, see, e.g. Koonin
(2005).

Paralogous genes can be found in the same species and appeared due to a duplication
event at their LCA. Genes GAl and GA2 in species Y shown in Figure 39 are paralogs
due to the duplication event D2.

Chapter 5. On Popular Input Data to DP Algorithms

107

Two genes in distinct species whose LCA is a speciation event are called orthologous.
Given the tree in Figure 39, genes GA in W and GA in X are orthologous with S3 as
their LCA.

The event H in Figure 39 is an HGT event whose descendants are called zenologs,
here gene GA1l in X and GAl in Y.

Depending on the relative locations of speciation and duplication events, the term
co-paralog is used to describe the relation between GAl and GB in Y as well as GA2 and
GB in Y. Analogously, genes GA1 in Y and GA in W are co-orthologs as well as GA2 in
Y and GA in W.

Evolutionary relationships can be inferred based on the genetic sequences at the leaves
of the tree. Thus, it is quite difficult to infer gene losses or HGT events without further
information. Therefore, one might assume that genes GA1 and GA in X are paralogs even

though their LCA is S1, a speciation event. In this case, they are called pseudo-paralogs.

A similar situation exists for genes GA in W and GB in Z. Here, one might assume that
they are orthologous, however, their LCA is duplication event D1. Thus, they are called
pseudo-orthologs (Koonin, 2005).

Inferring Orthology Relations

A precise record of the history of a gene family, i.e., an accurate reconstruction of a
phylogenetic gene tree, is an indispensable prerequisite for a detailed description of the
functional evolution of its members and the assessment of innovations (Capra et al., 2013;
Holland, 2013). The exact placement of gene duplication and gene loss events relative
to a species tree is also of key importance in the context of forward genomics (Hiller
et al., 2012). The first crucial step towards elucidating the history of a gene family is
to distinguish orthologs, i.e., gene pairs that originated from a speciation event, from
paralogs, which arose by gene duplication (Fitch, 1970) as described in Subsection 5.3.1.

As depicted in the phylogenetic tree in Figure 39, it is not always clear how genes
evolved only considering sequences and mutual comparisons thereof. The number of
tools to reconstruct evolutionary history from sequence data is growing, and inferring
orthology relations between genes is done in various ways. A basic assumption about
homologous genes is that they show a relatively high sequence similarity in comparison
to other non-homologous genes (Lemey et al., 2009). However, distinguishing between
orthologs and paralogs is still a problem and has large influences on the resulting topology
of the phylogenetic tree. A short summary on existing methods to infer orthology relations
and reconstruct phylogenetic scenarios is given in Subsection 5.4.5.

5.4 Algorithms & Methods

The sections above gave an introduction to biological data and corresponding backgrounds

that frequently appear in data sets to be analyzed and explored in bioinformatics research.

This sections shortly describes well-known algorithms in bioinformatics used to analyze
biological data. The basic principles of sequence alignment and structure prediction have
been described in Section 2.3 and will only be explained from the data perspective.

108

Chapter 5. On Popular Input Data to DP Algorithms

5.4.1 Alignments

As described in Subsection 2.3.1, sequence alignments are used to compare (biological)
sequences. Adapted to various problems of sequence matching, there exist many extensions
and variations. The extension to compare more than two sequences, called multiple
sequence alignment (MSA) is described in Subsection 2.3.1 and Chapter 4. However, exact
and optimal solutions to string matching problems might not give biologically relevant
solutions or reflect true biological processes. Comparing only two sequences of very
different length, one might want to create a local alignment such that the shorter sequence
is a part of the longer one but long sequences of gaps around the shorter sequence are
scored with a neutral score in order not to get an overall negative score. This algorithm is
called Smith- Waterman algorithm (Smith and Waterman, 1981a; Smith and Waterman,
1981b).

A further adaptation of the alignment algorithm deals with the structure of gaps. Since
a long connected stretch of inserted or deleted nucleotides is biologically more realistic
than the same number of singleton gaps, sequence alignments with affine gap costs are
frequently used in bioinformatics, called Gotoh algorithm (Gotoh, 1982). As described in
Chapter 3, the algorithm is based on different scores for gap openings and gap extensions
such that the algorithm prefers long connected gaps instead of many singletons.

Gaps display insertions and deletions that happened during evolutionary development of
sequences. Another frequently occurring event is the duplication (see also Subsection 5.3.1).
In order to reconstruct duplication events one can adapt the alignment algorithm to be
able to detect longer stretches of matching positions, also called duplication alignments
(Berkemer et al., 2017a; Velandia-Huerto et al., 2016), described in more detail in Chapter 6.

A popular tool to search for similar (homologous) sequences in large sequence data
bases is called basic local alignment search tool (BLAST) (Altschul et al., 1990). The
program and its various extensions are based on the dynamic programming (DP) algorithm
of pairwise alignments. However, BLAST is equipped with various heuristics in order to
efficiently find matching target sequences in a large set of sequence data.

5.4.2 Sequencing & Mapping

After the discovery of the first sequencing process (Sanger et al., 1977), sequencing
methods and technologies started to quickly evolve. Sequencing DNA made it possible
to compare genomic data of distinct organisms and get deeper insights into molecular
processes. By now, it is also possible to sequence RNA (RNAseq), such that the current
transcriptome of a cell can be explored and compared to other transcriptome data sets.
With high-throughput sequencing methods (also Next Generation Sequencing (NGS)),
it is possible to sequence large numbers of sequences at the same time leading to an
increase of the amount of sequencing data. However, a drawback of early and current NGS
sequencing is the increase of error rates with sequence length. Thus, sequence lengths are
usually restricted to around 100 or 150 nucleotides. Such short sequences are fragments
of DNA or ribonucleic acid (RNA) and are called reads. Sequencing a genome at first
is called de novo sequencing, and is followed by assembling a puzzle of reads based on
overlapping sequences (Myers et al., 2000) in order to retrieve the complete genome or
transcriptome. However, after the successful assembly of an organism’s genome, further

Chapter 5. On Popular Input Data to DP Algorithms

109

sequencing data of this organism can be assembled using the existing reference genome.

This process is called mapping which simplifies the assembly of reads.

By mapping the reads to the reference genome, the number of reads matching a
position in the genome, called coverage, can be determined. Using RNAseq data, the
coverage of certain transcripts gives insights into transcription regulation and current
processes of the cell (Z. Wang et al., 2009; Limbach and Paulines, 2017). Thus, next to
various ways of library preparation for transcriptome sequencing, the in-silico analysis of
reads is an important step. In most cases, reads are first cleaned from low quality reads
and sequencing adapters and then mapped to a reference genome. As RNA molecules are
usually further processed after transcription, such reads may not match the DNA directly
which needs to be taken into account during mapping (Z. Wang et al., 2009; Costa-Silva
et al., 2017; Canzar and Salzberg, 2017). Mapping procedures use dynamic programming
approaches together with heuristics to reduce the search space.

Problems can be caused by repetitive transcripts mapping to several locations of the
DNA (multi-mappers) or spliced transcripts where intron sequences are missing. This can
be improved using paired-end data, which consists of pairs of reads that originate from the
same transcript. This information is stored in the read data set and is used by the mapper
to confirm placement of reads. Short MSAs or local alignments are further methods
to gain more information about the reads and possible mapping positions (Canzar and
Salzberg, 2017). The analysis of a specialized RNAseq data set and its implications for
transcription termination is described in Chapter 8.

5.4.3 RNA folding

Structures of RNA molecules are an essential part of their functionality (Alberts et al.,
2008). In order to be able to display an RNA structure, one defines the nucleotide
sequence as the primary structure (one dimension, see Figure 40, top line), the base
pairing pattern as the secondary structure (two dimensions, Figure 41a) and the structure
in three-dimensional space as tertiary structure (see Figure 41b). Molecule complexes
based on interactions of several RNA molecules, proteins or other elements, are called
quaternary structure. RNA secondary structures are a common tool to work with. A
frequently used visualization is the dot-bracket notation, where base pairs are notated as
parentheses ’(’ and ’)’ and unpaired bases as dots ’, as depicted in Figure 40 (bottom
line). For basic algorithmic principles of RNA structure prediction, see Subsection 2.3.2.
RNA folding is based on the stabilizing interaction of the nucleobases stacking onto
each other when base pairs are formed, similarly to the stacking in the DNA double
helix. The energy of structural features such as stacked base pairs, hairpin loops or multi
loops is supposed to be independent of context and can be measured or computed. The
minimization of these energies allows to calculate for the stability of an RNA molecule
and probable folding conformations (Hofacker et al., 1994; Zuker and Stiegler, 1981).

. GCCCGGAUAGCUCAGUCGGUAGAGCAGGGGAUUGAAAAUCCCCGUGUCCUUGGUUCGAUUCCGAGUCCGGGCACCA
CCCCCCC . 00 e 1)) CCCCCCC)) e (CCCC v NN ...

Figure 40: Primary structure (sequence) and secondary structure in dot-bracket notation of
tRNAP"®. Further structures are depicted in Figures 41a and 41b.

110

Chapter 5. On Popular Input Data to DP Algorithms

(a) Secondary structure of tRNAPRe, (b) Tertiary structure of tRNAPhe.

Figure 41: Structures of a tRNAT"®. Figure 41a describes its secondary structure, created
using RNAalifold, a program of the ViennaRNApackage (Bernhart et al., 2008; Lorenz et al.,
2011b). Figure 41b depicts the tertiary structure, taken from the PDB with PDB ID 3BBV (http:
//www.rcsb.org/structure/3BBV) (L. Jiang et al., 2009; Berman et al., 2000). Corresponding
sequence in Figure 40.

Figures 40, 41a and 41b show sequence, secondary structure and tertiary structure
of a transfer RNA (tRNA). The tRNA in Figure 40 and its structures in Figures 41a
and 41b is a tRNAP"¢ thus encoding for the amino acid phenylalanine. A more detailed
description of tRNA genes is given in Section 5.3.2.

Evolution of molecules can affect mutations in sequence while retaining the functional
structure, thus one wants to compare sequences as well as corresponding regions of the
secondary structure. Approaches to this problem use combinations of alignment and
folding, DP algorithms based on the Sankoff algorithm (Sankoff, 1972).

As described in Subsection 2.3.2, RNA structure prediction is a major task in bioinfor-
matics and there exist several programs calculating putative secondary structures for a
given sequence. The first algorithm of this kind is the Nussinov algorithm, a DP algorithm
described in Subsection 2.3.2. Until now, various energy parameter sets and structure
prediction algorithms exist (Lorenz et al., 2016), trying to predict structures based on
sequence data. Further methods include experimental data or try to extend the predictions
to 3-D structures (Lorenz et al., 2016; Thiel et al., 2017). Extended structure prediction
algorithms are based on various parameters such as energy, structure or environmental
constraints. The ViennaRNApackage includes several programs to fold and visualize RNA
structures based on different parameter settings. The protein data bank (PDB) (Berman
et al., 2000) is a database listing tertiary structures of RNAs and proteins that have been
experimentally verified.

5.4.4 Homology Search

Homologous sequences are assumed to have a high sequence and/or structure similarity.
Statistical models such as hidden Markov models (HMMs) and covariance models (CMs)
are frequently used to infer similarities and conservation of sequences and structures. They

http://www.rcsb.org/structure/3BBV
http://www.rcsb.org/structure/3BBV

Chapter 5. On Popular Input Data to DP Algorithms

111

use DP algorithms such as the forward-backward or Viterbi algorithm in order to estimate
probabilities or find the most probable path through the search space (Durbin et al.,
1998) (see Chapter 2). CMs are used to build models of RNA families based on MSA
and predicted consensus structure. The program suite Infernal (Nawrocki and Eddy,
2013) includes programs to create CMs from a MSA (cmbuild) and further programs to
scan a genome for sequences homologous to the model (cmscan or cmsearch). The tool
tRNAscan-SE is specialized to detect tRNA sequences in genomes, based on various CMs
of tRNAs (Lowe and Eddy, 1997). If Infernal is used to retrieve a set of target elements,
the user can specify a threshold for the Infernal score that will mark an element as a
pseudogene. In case of tRNA detection, tRNAscan-SE is used to retrieve a set of target
tRNAs and is trained to detect tRNA types and pseudogenes.

The search for homologous protein sequences can be done using the tool HMMer (Eddy,
1998; Eddy, 2011). Here, models include consensus secondary structures as well as amino
acid sequences. Thus, detecting homologous proteins is done using HMMs which can be
created based on a MSA (hmmbuild) and used to scan genomes (hmmscan), analogous to
its counterpart for non-coding RNA (ncRNA) sequences. Further detailed explanations
on the basics are given in Durbin et al. (1998). HMMs and CMs were used in Chapter 6,
Chapter 7 and Chapter 8 as a useful tool to analyze biological data and find homologous
counterparts.

5.4.5 Reconstructing Phylogenetic History

A large arsenal of computational methods has become available to determine orthology
that can be separated into three groups: (i) sequence based tools, (ii) tree based tools
and (iii) graph or cluster based tools (Lechner et al., 2014). These methods can be
separated again into character based or distance based methods. Most algorithms first
require scored pairwise or multiple sequence alignments. Hereby, scores are either based
on direct distances between sequences or character substitution models, assuming certain
probabilities for the exchange (mutation) of single characters (nucleotides or amino acids).

Character based methods try to infer the optimal tree topology based on an optimality
search criterion, e.g. maximum likelihood (ML) such as RAxML (Stamatakis, 2006),
maximum parsimony (MP) such as Paup* (Swofford, 2004) or Bayesian methods, e.g.
MRBAYES (Huelsenbeck and Ronquist, 2001).

A distance based method using an optimality criterion is the Fitch-Margoliash algorithm
(Fitch and Margoliash, 1967; Fitch, 1970). This DP algorithm uses the MP approach
to find a tree topology that includes all input sequences in a way that the number of
mutations is minimized. A description of the Fitch algorithm based on algebraic dynamic
programming (ADP) is given in Chapter 3 and the application of a modified version is
described in Chapter 7.

Sequence based methods rely solely on sequence comparisons and use a “reciprocal
best match” rule (Tatusov et al., 1997; Lechner et al., 2011). Here, it is assumed that
orthologous sequences are more similar than paralogous or non-homologous sequences.
There exist approaches including function annotation of genes to confirm composition of
groups of orthologous genes which will be further described in Chapter 7 (Tatusov et al.,
1997; Koonin, 2005; Galperin et al., 2014).

112

Chapter 5. On Popular Input Data to DP Algorithms

((((((Chimpanzee, Human) Hominini, Root
Gorilla) Homininae, Catarrhini
Orangutan) Hominidae,

Gibbon) Hominoidae, lHominoidae

Rhesus macaque) Catarrhini
) Root;

Hominidae

Homininae

Hominini

([J o [J
Chimpanzee Human Gorilla Orangutan Gibbon Rhesus macaque

Figure 42: Phylogenetic tree of the order of Catarrhini (Old World Monkeys) with a selected
set of species at the leaves of the tree (black nodes). Inner nodes (blue) show subgroups. The
line on the top left displays the same tree in Newick format whereas labels of inner nodes are
written in blue and leaf labels in black. Sibling nodes are written inside parentheses with their
parent directly following the closing parenthesis starting from the most inner subtree on the left
going towards the root.

Tree reconstruction based on pairwise distances between sequences uses hierarchical
clustering to infer a best fitting tree (e.g. neighbor-joining (NJ) (Saitou and Nei, 1987)).

A further approach is to create orthology graphs where nodes represent genes and
edges represent orthology relations between pairs of genes. It has been shown that the
graph has to have a cograph structure in order to represent a true orthology relation
(Hellmuth et al., 2013). Based on (reciprocal) best matches of sequences, it is possible to
infer distance metrics when comparing sequences and create clusters of orthologous genes
(Geif et al., 2019).

Various extending models and heuristics exist such that the user has the choice between
many possibilities on how to reconstruct a phylogenetic tree based on a set of sequences
(Lemey et al., 2009). Reviews of the topic and benchmarks of the most commonly used
tools can be found in Altenhoff and Dessimoz (2009), Kristensen et al. (2011), Salichos
and Rokas (2011), Dalquen et al. (2013), and Ward and Moreno-Hagelsieb (2014). Most
approaches assume that genes evolve essentially independently so that sequence divergence
is a faithful measure of evolutionary distance.

There exist specified models for certain evolutionary processes describing the evolution
of genes. In case of frequent unequal crossing over it is possible to detect genomic
rearrangements using circular-split systems (Prohaska et al., 2018). In case of concerted
evolution, syntenic information based on orthologous anchors in the genome can be
taken as additional references to infer orthologous relations (Velandia-Huerto et al., 2016;
Berkemer et al., 2017a) (see Chapter 6).

Including co-orthologous and co-paralogous genes, the orthology relation is a non-

Chapter 5. On Popular Input Data to DP Algorithms

113

transitive relation which makes sequence based methods error prone to overestimating
orthologous relations and heavily rely on already annotated data. Tree based methods
are more accurate, however, they are computationally expensive and not applicable for
large sequence data. Graph and cluster based methods are less resource-intensive than
tree-based methods, however, they start with estimating orthology relations and then

edit the set of relations in order to retain consistent sets of mutually orthologous genes.

Methods are described in more detail in Nichio et al. (2017), Kristensen et al. (2011),
Koonin (2005), and Lechner et al. (2014).

A popular format to encode phylogenetic trees is called Newick format (Felsenstein,
1999). As displayed in Figure 42, it maps the tree structure to a string containing node
identifiers separated by parentheses to distinguish subtrees. The root of the tree is usually
displayed on the r.h.s. of the Newick string. A node’s children are written in parentheses
on the Lh.s. of the parent node separated by ’,. This results in an expression of nested
parentheses. In a Newick tree, it is also possible to encode branch lengths of the tree by
adding the length behind the corresponding node identifier showing the distance to its
parent, e.g. Gorilla:0.5.

114 Chapter 5. On Popular Input Data to DP Algorithms

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History 115

CHAPTER

Duplication Alignments to
Reconstruct Evolutionary
History

Contents
6.1 Concerted Evolution 0oL 116
6.2 Creation of Gene Clusters 118
6.3 Quantitative Analysis of Evolutionary Events 119
6.3.1 Filtering Candidates with a Generalized List Alignment . . . 120
6.3.2 Counting Evolutionary Events 122
6.4 Results L 124
6.4.1 tRNAs 124
6.42 Y RNAs 125
6.5 Benchmarking and Application to Artificial Data 125
6.6 Implementation oL 128

6.7 Concluding Remarks. oL 130

116

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

Repetitive elements evolved due to a high number of duplication events in the genome as
described in Section 5.3.2. Hereby, functional genes only show a low number of mutations
and are highly similar. This process is called concerted evolution. In order to trace
back the evolutionary history for these genes, it is not possible to only look at sequence
similarity but also include information based on the order of genes, called synteny.

This chapter is mainly based on Berkemer et al. (2017a) titled SMORE: Synteny
Modulator Of Repetitive Elements and on Velandia-Huerto et al. (2016) titled Orthologs,
turn-over, and remolding of tRNAs in primates and fruit flies. It describes a systematic
conceptual workflow for the evolutionary analysis of multicopy genes. As an input, it
uses genome-wide multiple sequence alignments (MSAs), many of which are already
publicly available, as source of synteny information. The underlying theory is developed
in Velandia-Huerto et al. (2016) and a fully automated pipeline that serves as a convenient
tool for this purpose together with applications to two classes of ncRNAs, namely tRNAs
and Y RNAs is given in Berkemer et al. (2017a). A central part of the workflow and
pipeline is a dynamic programming (DP) algorithm used to compute optimal solutions
for duplication alignments, hence, alignments that allow matches of the form 1:n or n:1,
respectively. The underlying theory is described in Section 6.3. Further information and
underlying data can be found in the supplemental files of Velandia-Huerto et al. (2016)
and Berkemer et al. (2017a).

6.1 Concerted Evolution

Concerted evolution (Liao, 1999; Nei and Rooney, 2005) may cause paralogous genes to
maintain essentially identical sequences over long evolutionary time scales. The underlying
mechanism is primarily homologous recombination, which leads to gene conversion where
a piece of sequence from one copy of the gene effectively overwrites a homologous region
in another copy. Unequal crossover between repeating units and gene amplification are
also important contributors, see e.g. Liao et al. (1997). Gene conversion is responsible
for preventing the divergence of the individual copies of tRNA (Amstutz et al., 1985),
snRNAs (Liao et al., 1997), the ribosomal RNA cistron (Naidoo et al., 2013), and the
histone genes (Scienski et al., 2015). Paralogous genes can escape from concerted evolution
(Teshima and Innan, 2004) and then rapidly accumulate mutations typically leading to
loss of function and hence eradication from the genomic record. Together, these processes
can result in a rapid net turn-over of gene copies and sometimes large differences in the
number of copies in closely related genomes. This effect has been studied in much detail
in particular in the case of tRNAs (Bermudez-Santana et al., 2010; Rogers et al., 2010;
P. P. Wang and Ruvinsky, 2012; Rogers and Griffiths-Jones, 2014).

Since paralogous sequences are essentially identical, it is not possible to identify
orthologs of genetic elements that are subject to concerted evolution by means of sequence
comparison. Synteny, however, provides a potentially powerful means of discriminating
orthologous loci. Reliable information of synteny can be obtained whenever there are unique
sequence regions in close genomic proximity of the locus of interest. Here, orthology can
be established with high confidence among related species. The conservation of proximity
to such independently evolving regions can then be used to distinguish orthologous from
paralogous copies of the ambiguous sequence element. This idea has been exploited in the

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

117

Input Workflow Output

Newick

Tree Visualisation
|VI|U|tiZ |) cograph eve?.t v
; cleaning _[fAnchor _clustering = Gene editing _ Candidate _counting Evolutionary
—> _ —
Multiz T Map¢ Cluster "> Graphs duplication ™ Event Countf
select lone option alignments
P Genetic
Annotated Elements
Genes
—> tRNAscan » Singletons
Genomes ¢

Covariance = Infernal¢
Models

Data preparation Cluster analysis

Figure 43: Summary of the computational workflow implemented in the SMORE pipeline for
analyzing the evolution of multicopy genes. The compilation of orthology estimates (data
preparation) and the quantitative analysis (cluster analysis) are logically separated and can also
be used independently of each other. See text for details. The blue box describes options for
input data. Black arrows pointing towards the next step of the pipeline (to the right) show an
uninterrupted workflow. Black arrows pointing downwards indicate output files that are always
part of the output whereas gray arrows pointing downwards indicate the creation of temporary
files and of optional output for the user, respectively.

past in particular as means of tracing the evolution of tRNAs (Bermudez-Santana et al.,
2010; Rogers et al., 2010; P. P. Wang and Ruvinsky, 2012; Rogers and Griffiths-Jones,
2014).

In this chapter, creation of gene clusters for repetitive elements is described to explore
the concepts of concerted evolution at the example of two classes of ncRNAs. Multiple
identical copies, often large numbers of pseudogenes, and rapid, lineage-specific expansions
of particular families are typical for tRNA evolution at least in eukarya (Frenkel et al.,
2004; Bermudez-Santana et al., 2010). Among the elements under concerted evolution,
tRNA genes are the best studied elements. They show a rapid turnover as the consequence
of frequent seeding of new loci compensated by high rates of pseudogenization (Bermidez-
Santana et al., 2010; Rogers et al., 2010; P. P. Wang and Ruvinsky, 2012; Rogers and
Griffiths-Jones, 2014). While gain and loss events can be estimated from changes in
the total number of paralogs with often acceptable precision for low-copy-number gene
families such as microRNAs (Hertel and Stadler, 2015), this is not the case for tRNAs
since the number of conserved tRNA loci very quickly decreases with phylogenetic distance
(Bermudez-Santana et al., 2010; Velandia-Huerto et al., 2016).

The evolution of Y RNAs has been studied in some detail in Mosig et al. (2007),
indicating a single, evolutionary conserved genomic cluster comprising four paralog groups
designated Y1, Y3, Y4, and Y5. With the notable exception of mammals, which harbor
on the order 1,000 Y RNA derived retro-pseudogene sequences (Perreault et al., 2005),

118

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

A——<—2 »u—att<>x u | e
B —<—|mim <+i= Ia—l—l}r
C —<¢ N <+« u
D - - = < 1 1
<«x Xy mm <« X m x n
< .E <4 =N <« B N EHq Xx
N « N X <4 <« [| N
< N [| D X N

Figure 44: Example of syntenic gene clusters before post-processing. Top: Horizontal lines A, B,
C and D show genomic regions of four distinct species. Black vertical lines show genomic anchors
that possibly have orthologous counterparts in other genomes. They represent the syntenic
anchors and define the borders of gene clusters. Distinct genetic elements are depicted by colored
shapes. Bottom: clusters are separately shown as framed entities.

most other vertebrates show only a few Y RNA derived pseudogenes. Homologs of Y
RNA in nematodes are called sbRNAs (stem-bulge RNAs) (Boria et al., 2010).

The pipeline is composed of two modular parts: (i) the inference of the orthology
relation from the data and (ii) the quantitative analysis of the orthology relation and
thus, evolutionary events, see Figure 43. The first component identifies a map of genomic
anchor points that are used to partition the annotated elements of interest into an initial
set of candidate clusters. These are then processed to account for the most common
artefacts in the input data and refined using information that is provided by analyzing
related but distinguishable sequence elements together. The second part of the pipeline is
largely independent of the first and can also be employed using input data generated by
other, third-party methods. With our pipeline, we provide an uninterrupted workflow that
returns results based on input files and user-defined parameters. With the exception of
breaks between subcommands indicated in Figure 43 and where output data is provided
for the user, UNIX pipes are utilized to transfer data between software components.

6.2 Creation of Gene Clusters

The basic assumption for the creation of gene clusters is the existence of syntenic anchors
within related genomes. These anchors are (mostly) protein coding genes for which there
exists an orthologous counterpart in genomes of related species. Here, orthologous genes
are identified based on sequence similarity (see Subsection 5.3.3 for further details).
Given a pair of genes g4 and gp in species X and orthologous counterparts ¢/, and gz
in species Y, we can say that the genomic regions rx and ry between the protein pairs in
X and Y are orthologous. Thus, the syntenic order of orthologous proteins in distinct
genomes defines orthologous genomic regions. Genes inside these regions are summarized
to gene clusters which are then used to refine assignment of orthologous sets of genes.

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

119

D Gene A .
Q Gene B ‘- N .
AN \, i
\. H

A Gene C ll \'\. N
i \'\ p
Mmmmmw Species S ‘ . . ‘
< Species T

Figure 45: Right: Example of the graph G for a cluster consisting of two groups of orthologous
elements in two species S (green) and T (blue). Thick edges indicate above-threshold sequence
similarity. The dashed edge, which was included initially must be inserted to correct G: otherwise
T5-S4-T3-S1 would form a Ps. Modified Needleman-Wunsch alignment for graph G (Left). The
inserted edge to correct for a cograph is now part of the thick edges showing the orthology relation.
The alignment will remove crossing edges of the orthology graph (grey) and detect duplications
(dashed edges). Node Ti is not aligned to any node in S which indicates a deletion in species S.

With this assumption, one can create anchor maps based on genomic multiple sequence
alignments (MSAs) for several species. As not every protein has an orthologous counterpart
in all species included in the MSA, a reference species is chosen to define a basic set of
genomic anchors. Additionally, gene clusters can be divided or joined in between a fixed
set of genomic anchors. A schematic example for the definition of gene clusters is shown
in Figure 44. The creation of genomic anchor maps is explained in detail in A. Hoffmann
(2020).

6.3 Quantitative Analysis of Evolutionary Events

The resulting partition of genes, thus, the gene clusters resulting from the anchor map may
still contain non-orthologous elements. In the case of tRNAs, for instance the annotation
generated by tRNAscan-SE only distinguishes anti-codon classes. These still may comprise
multiple, discernible families. We therefore construct, for each cluster, a graph G = (V, E)
whose vertices are the annotated elements that belong to the cluster. An edge is drawn
between two elements v and w if their sequences are more similar than a certain threshold.
In the case of tRNAs, values of 80% to 90% sequence identity have proved useful (Velandia-
Huerto et al., 2016). This value needs to be set specifically dependent on the typical
sequence conservation of the elements under consideration and the phylogenetic range
of interest. The graph G represents the orthology relation within a given cluster, see
Figure 45 for an example.

As shown in Hellmuth et al. (2013) the graph G should be a cograph, i.e., it must
not include a path Py on four vertices as an induced subgraph (for a definition, see
Subsection 2.2.1). As G is constructed from the sequence data using fixed thresholds
for sequence similarity, it will sometimes violate the cograph property. Nevertheless, it
provides a good approximation. The initial graph G can be corrected by inserting or
deleting a minimal number of edges that is required to restore the cograph property.
Although cograph editing is known to be a difficult problem (the corresponding decision
problem is NP-hard (Y. Liu et al., 2012)) it remains tractable for sizes of candidate graphs

120

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

we typically encounter.

The possibly edited graph G’ may still overpredict orthology in cases where a cluster
contains multiple types of elements that are distinguished by similarity. In such cases
the order relative to dissimilar elements may subdivide the ortholog clusters of G’. To
utilize this order information we consider an alignment of the element that (i) preserves
their genomic order and (ii) allows matches only between elements that are connected
by edges in G’. This variation of the alignment problem is solved by a variation on
the well-known Needleman-Wunsch alignment algorithm (Needleman and Wunsch, 1970)
that also allows duplications of elements, see Figure 45 for an example. As explained in
Figure 45, the modified Needleman-Wunsch algorithm removes crossing edges and allows
duplications. The exclusion of crossing edges is an intrinsic property of alignments and
the reason for choosing this type of approach here. More precisely, alignment algorithms
compute maximum weight matchings that preserve the prescribed order in both sets, when
presented with two linearly ordered sets of objects (see also Chapter 4) and a weighted
bipartite graph of allowed matches of pairs of objects from different sets. The modified
version of the Needleman-Wunsch algorithm employed here extends the match case in
such a way that one element in one set may also be matched with one or more consecutive
objects in the other set.

6.3.1 Filtering Candidates with a Generalized List Alignment

The edited graph G’ as described in the previous section is not sufficient to completely
solve the orthology problem because we have no guarantee that any two tRNAs are
separated by anchors. The available anchors in fact may enclose entire tRNA clusters, see
Fig. 46. For tRNAs, however, we can clearly distinguish subgroups by sequence similarity.
In particular, tRNAs of different isoacceptor families (i.e., those that are loaded with
different aminoacids) and within these, most subgroups with distinct anticodons, exhibit
clearly separate sequences. Members of these subgroups may serve as additional synteny
anchors. However, they cannot be employed directly, because we only know that they
preserve relative order, but due to their multi-copy nature, we cannot identify unique
correspondences from sequence information alone.

Again, we rely on the approximation of strict order preservation. In the context
of tRNA clusters, this amounts to the assumption that tRNAs within a gene cluster
proliferate by means of single gene tandem duplications or by retroposition-like insertions.
There might also be tandem duplications of subclusters. Well-established methods for
resolving such scenarios (Elemento and Gascuel, 2005) are not applicable, because the
tRNA genes of the same family have nearly identical sequences as a consequence of their
concerted evolution, thus gene trees cannot be reconstructed.

The relationship between clustered tRNAs in two species corresponds to a generalized
version of an alignment problem. To see this, we consider each tRNA cluster as an ordered
list of tRNAs and tRNA pseudogenes ¢¢ and t? in the two genomes a and b. For the sake
of the argument let us first neglect gene duplications and consider insertion, deletion,
and remolding only. In this case the correspondences between tRNAs in the two clusters
must be an order-preserving matching, i.e., an alignment, between the ordered sets {¢¢}
and {t?}. There are stringent restrictions on which tRNAs can actually be matched. In

essence we have to require that the genetic distance dg(t¢, t;’-) < g, where the threshold ¢

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

121

t
a ®

p(t) q(t)

Figure 46: Tight anchors for ¢ into species b. The tight anchors are the anchors closest to ¢ that
connect species a and b. By synteny, the only possible orthologs of ¢ are the three loci indicated
by white circles.

is chosen as an upper bound on divergence of genes in phylogenetic range of interest. If
dg(t¢,t5) > € no match of t{ and t} is allowed. This amounts to removing edges from G’
that connect tRNAs for which we know that they cannot be orthologs based on sequence
similarity.

In addition to regular insertions, deletions and 1 : 1 (mis)matches, we also allow 1: ¢
and ¢ : 1 mismatches to accommodate duplications. Since the scoring in list alignments is
dominated by excluding significantly different items from matching at all, we settled for a
simple scoring model of the form

A B) = 580, 15_) + 6(12, 1) 4+ (6.1)
for 1 : 2 matches, where 77 > 0 is an extra penalty for the duplication and the two copies
are otherwise scored independently like substitutions. 1 : ¢ matches for ¢ > 2 are treated
analogously. For two tRNAs we use the dissimilarity score §(¢',¢”) = 20, if Hamming
distance between ¢ and t” is below a threshold value, and 6(¢', ") = oo for more different

tRNAs. Whereas 20 is a fixed value for the first scoring, later % = 0.9 was

used such that the differences between two tRNAs are 10% of their length. Since tRNA
sequences have similar length overall the results are robust against such changes in the
scoring function.

In order to account for local, i.e., order-preserving duplications we simply have to

extend the alignment model: in the simplest case, we only allow 1:2 and 2:1 matches.

This leads to the following simple modification of the Needleman-Wunsch (Needleman
and Wunsch, 1970) algorithm:

D11+ 6(t¢,t5) M
Di—1,;+6(tf,) I(a)
Dij =min ¢ D; j_q + 6(—, %) 1(b) (6.2)
Di—1 o+ A(t&5t5_ 1,1 D(a)
Di g1+ (¢, t5t%) D(b)

122

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

with the usual initialization score Dyg = 0 for the empty alignment; The values D;y =
> i< 05, —) and Doj =37, 6(—, t?,) correspond to the insertion of prefixes. Here M,
I(a), I(b), D(a), and D(b) refer to (mis)matches between a and b, insertions in a and b,
and duplications in @ and b, respectively. An analogous algorithm can be devised by more
complex p : ¢ duplication operations. Several variants of the simple Needleman-Wunsch
alignment scheme to accommodate p : ¢ matches beyond simple 1 : 1 correspondences
have been proposed and applied to natural language data, see e.g. (Kondrak, 2000; Eger,
2013). A variant of list alignment has also been used in (Fried et al., 2004) to extract
co-linear clusters of phylogenetic footprints.

The alignment edges predicted by the pairwise generalized list alignments serve our
best estimates for the orthology relation. For 1:2 duplications, an edge is inserted from
the “original” to both “copies”; in the more general case of p-to-¢ duplications, we
accept all edges of the complete bipartite graph corresponding to the p-to-¢ duplication.
Superimposing all pairwise alignments by construction again results in a subgraph of
G'. We call this graph G,. It contains only edges between tRNAs that can be orthologs
according to their sequence similarity, and all connected components of GG, are order
preserving since their edges result from the order-preserving alignment step, see Fig. 44.
In general, it will consist of many small connected components, each consisting only of
members of a single tRNA family that locally has expanded and contracted by duplication
and loss events. An example of a more complex cluster is shown in Figure 47. Of the
cographs, 327 were cliques and thus did not contain duplication events. The remaining 206
include duplication events that increased the total number of tRNAs by 66. In addition,
60 duplications were detected in the connected components containing only tRNAs of the
same species.

6.3.2 Counting Evolutionary Events

Taken together, the construction of the orthology relation outlined above provides, for each
final orthology graph, information on (i) the first appearance of the ortholog group, (ii)
duplication events, and thus (iii) on the losses. This follows from the theory developed in
Hellmuth et al. (2013) and Hellmuth et al. (2015) establishing the correspondence between
orthology relations and event-labeled gene trees. Usually, one is primarily interested in
placing duplication and loss events relative to a known gene phylogeny. Although it is not
always possible to reconcile event labeled gene trees with species trees (Hernandez-Rosales
et al., 2012), we found that our data are almost always “clean” enough to cause little
problems in this respect because the final ortholog groups contain only very small number
of locally occurring paralogs. We can therefore use a simple heuristic that corrects the
graph structure by deleting or adding edges in such a way that they can be reconciled into
a phylogeny. The heuristic iteratively deletes or adds edges in order to edit the structure.
At the same time, the number of edges to be edited is kept minimal.

Given a species tree S and cluster C' of orthologous genes, let o(x) € S be the species
in which element = € C resides. Thus o(C) is the set of species in which members of
the cluster are attested. The appearance or insertion of C' into S occurs within the edge
ancestral to the least common ancestor £ of ¢(C) in S. As a consequence, every cluster
that is present ancestrally is viewed as an “insertion before the root”. Using the same
parsimony assumption, we assume that deletions of C' appear in the edge ancestral to

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

123

Hsa - - - --V~V~R~
Ptr - ----V~V-~R-~
Ggo -----V~V~R~
Pab FFKKLVVVVRR
Nle - ----V~V-~R-~
Mmu FFKKLV~V~R-~
(a)
+ lArgl
Hsa - { Val } { Val }
+ {Arg !
Ptr { Val | { Val |
+ |Arg|
Ggo - { Val } { Val }
Pab + = Phe= LyS i« Phe} { Val = Val = Val = Val
- { Lys} {Leu {Arg " Arg |
+ {Arg |
Nle - { Val } { Val }
Mmu F “{Phe} Lys {Phe} { Val | { Val |
) ilys! Leu! {Arg!

(b)

Figure 47: A more complex tRNA cluster in primates. Panel (a) summarizes the situation as
list alignment. For simplicity, tRNAs from both strands are included. Gaps in the alignment are
indicated by —, duplication events are shown by ~. Panel (b) shows a more detailed, strand-
specific genomic map. It highlights the reversal of the orientation of a tRNA Arg (R) in Mmu
and the two copies of tRNA Lys (K) on opposite strands. The tRNAs isoacceptor classes are
indicated by their 1-letter codes in panel (a): Phe (F), Lys (K), Leu (L), Val (V), Arg(R). Species
abbreviations are Hsa: Homo sapiens, Ptr: Pan troglodytes, Ggo: Gorilla gorilla, Pab: Pongo
abelii, Nle: Nomascus leucogenys, Mmu: Macaca mulatta. Common species names are listed in
Table 3.

maximal subtrees S’ of S below ¢ that do not contain species from o(C'). If the species
tree is fully resolved, then deletions are never inferred at an edge leading to a child of /.

If a cluster contains multiple paralogs, duplication events are associated with changes
in copy number. Since clusters are by construction local in the genome, such duplication
events corresponds to tandem duplications. In contrast, the proliferation of the elements
by insertion at different loci is accounted by the insertion events. A detailed mapping of
tandem duplications to the species trees is non-trivial since the event-labeled gene trees
obtained from cographs are usually not fully resolved. The pipeline therefore counts only
the duplication events that occurred along the lineage leading from the root to a given leaf.
This information can be extracted directly from the pairwise alignment of the element

124

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

rheMac3
+e1|Catarrhini +e3 nomLeu3 el:rM, nL, pA, hg, pT
+e4|Hominoidae &e5 e2: gG, hg, pT
— ponAbe2 - nL
+e5|Hominidae -e1 orGora e3:n
+€2[Homininae g e4: nL, pA, gG

_-%Ehfﬁs e5: pA, pA, gG, hg
€9 panTro4

Figure 48: Example for counting genetic events. (el) - (e5) are five groups of orthologous
elements. '+’ and ’-’ signs show where insertions and deletions are counted in the tree based on
the groups. '&’ depicts a duplication. Deletions can possibly be reported as missing data, too.
rM, nL, pA, gG, hg and pT are abbreviations for species identifier rheMac3, nomLeu3, ponAbe2,
gorGor3, hg38 and panTro4. Species names and corresponding abbreviations are listed in Table 3.

orders within each cluster. An example is shown in Figure 48.

6.4 Results

This chapter describes a fully automatized pipeline that implements an improved version
of the conceptual workflow of Velandia-Huerto et al. (2016) for the detailed quantitative
analysis of genetic elements that are subject to concerted evolution. It uses synteny
information provided by uniquely aligned sequences adjacent to the multi-copy elements
of interest as the key information to disentangle their evolutionary relationships. The
mathematical properties of orthology relations and their equivalent to event-labeled gene
trees guides the post-processing of the data. This makes it possible to obtain an accurate
and very well resolved picture of the history of multi-copy families. The pipeline is
publicly available and not only greatly facilitates the analysis in practise but also ensures
a high degree of reproducibility. For convenience, the pipeline also includes options to
automatically generate input annotation data using tRNAscan-SE and Infernal. The
output of the pipeline includes files to easily visualize the resulting phylogenetic tree using
iTOL (Letunic and Bork, 2016), thus facilitating the interpretation of the results.

The functionalities of the pipeline were tested with two sets of repetitive elements and
data sets for six and ten mammalian species. tRNAs and Y RNAs were detected using
tRNAscan-SE and Infernal and anchor maps were created for each data set and gene
family. The data set with six species consists of six primates including human. The larger
data set with ten species is an extension thereof and additionally includes the outgroups
dog and mouse. Table 3 gives a summary of species included in the reconstruction of
tRNA and Y RNA phylogenetics.

6.4.1 tRNAs

The comparison of the six species and the ten species data shows an interesting effect:
lineage specific deletions of tRNAs seem to be very frequent in mammals, see Figure 49.
Including three additional outgroups substantially increases the number of tRNA loci that
predate the ancestor of the Catarrhini. While in the six species data set 206 of the 731
human tRNAs are placed at the ancestral branch, the number increases to 328 in the ten
species set. This is compensated by a correspondingly larger number of lineage-specific

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

125

abbreviation species common name
canFams3 Canis lupus familiaris Dog
gorGor3 Gorilla gorilla gorilla Gorilla
hg38 Homo sapiens Human
rheMac3 Macaca mulatta Rhesus macaque
mmI10 Mus musculus Mouse
nomLeud Nomascus leucogenys Gibbon
panTro/ Pan troglodytes Chimpanzee
papAnu2 Papio anubis Baboon
ponAbe2 Pongo abelii Orangutan

Table 3: List of species and corresponding abbreviations used in the study.

losses in the outgroup species and a reduction of predicted insertion events in the human
lineage.

Remolding of tRNAs was analyzed for the ten mammalian data. Although the exact
numbers depend on the choice of the similarity threshold and the details of the cluster-
joining procedure, we recovered most of the remolding events previously described in
Velandia-Huerto et al. (2016) and Rogers and Griffiths-Jones (2014). As in previous
reports, the overwhelming majority of remolding events concern pseudogenes and/or are
lineage specific and most likely are the first steps in tRNA pseudogenization.

6.4.2 Y RNAs

Our data suggest that the spread of Y RNA sequences is an on-going process in mammals.
Of the 990 loci identified, 190 date back to the ancestor of the Catarrhini, while on the
order of a hundred loci have been inserted in both human and the chimpanzee lineage after
their divergence, see Figure 50. The six and ten species data sets are largely consistent,
although the inclusion of an additional member of the Cercopithecinae places many
insertions that are estimated to be specific to Hominoidae and Catarrhini. Only a very
moderate number of Y RNA loci was populated already in the ancestor of Simiiformes.

The copy numbers of the Y RNA families are comparable with the data reported in
Perreault et al. (2007). Within Catarrhini there are consistently more Y1 and Y3 genes
than Y4 loci. The number of Y5 copies remains small throughout the clade. Consistent
with Perreault et al. (2007), our data show an appreciably level of syntenic conservation
of Y RNA loci also beyond the Y RNA cluster that typical harbors on functional copies
of each of the four families (Mosig et al., 2007).

6.5 Benchmarking and Application to Artificial Data

In order to test the functionality and performance of the pipeline, we constructed artificial
data sets comprising six species with artificial “genomes” that are initially linked by 10.000
genetic anchors. 100 simulated “genetic elements” subdivided into three distinct types
were randomly placed between the anchors. We considered both a random placement of

126

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

Element Counts !| B O B B E @
_ ¢ ¢ 7 2 8 2% %
B Insertions g 8 e e 2 2Tz o
m Deletions 4]) g 9 8 § lcg
) 7 w g 8
(7] -+
Q
rheMac3 461 172(60) 00) 1 12(7)
Catarrhini (115)
20&(01)2) nomLeugfﬁle) 249(76) 118(9) 2 22(13)
sg((g)) Hominoidae ponAbe2 ?14136) 207(62) 61(6) 6 5(3)
71(18 ini
sGpHominidae o oo e 10723) a9(8) 6 1(0)
87(33) - 87
4(5) TZOZT ininae hg38 (713216) 246(47) 25(10) 5 0(0)
A 33 panTro4 530 87(29) 85(16) 6 52(8)
(108)
canFam3(17150) (1(?71355) 0(0) 0 117(713)
: 71292
%Boreoeuthena . I (32229591) (21257572) 22000 1 16(180)
18(0) |[EUarchontoglires _ callac3 417 178 740) 2 38(15)
0(0) Cercopithecinae (131) (30)
7&(0(;) Simiiformes 32(20) [_PapAnu2 ?g;s (7179) 41(3) 3 30(1)
45(0) I—rheMac(s’ 461 99 47(1) 1 12(7)
185(12) Catarrhini (115) (2g)
0(0) nomLeu3441 195 199(7) 2 22(13)
32(4) |[Hominoidea (116) (41
300) —————ponAbe2 543 153 106(7) 6 5(3)
43(;8)H0m|n|dae gorGor3 215116) (46) o 4 10
. . 7
© 63&-2)1 Hommmat}a7 8 (78371) ?262) @ ©
32(10
B B @
panTro4 530 79 96(15) 4 52(8)
(108) (23)

Figure 49: Summary of the evolutionary events inferred for tRNAs in an evaluation with six
(A) and ten (B) species. Insertions and deletions that occur for groups of orthologous elements
are inserted at their lowest common ancestor and possible deletions are added below the interior
branches to which they refer. Other events such as singletons and duplications are added directly
at the leaves for each species separately. Orthology relations are based on a similarity threshold
of 80 % sequence similarity and clusters were joined using the relaxed adjacency constraints.
Numbers in parentheses are numbers of pseudogenes. Full species names and corresponding
abbreviations are listed in Table 3.

elements and the insertion of elements into homologous positions of all or a subset of the
species. In order to model tandem duplication, furthermore, a fraction of elements was
added twice. In order to simulate noise in the genome-wide alignments, a fraction of the
anchor blocks was deleted randomly. We considered perfect data as well as a loss of 20%
and 40% of the anchor blocks, respectively. For each setting, we executed our pipeline and
compared the reconstructed orthology assignments and gain/loss statistics to the known
ground truth.

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History 127

Element Counts HE B 0B BEER O
wn = 5 O U O m
. g 2 2 38 285
B Insertions o & 2 @ g T = o
- D = 0 o 9 o >
W Deletions) S 8 5 2 o @
2 3 2§20
= ®
@ 3
rheMac3 855 503 0 0 16
%Catarrhml nomLeu3 857 416 122 0 15
16: Hominoidae ponAbe2 940 385 124 4 5
211 ini
7 Hominidae ;56or3 881 140 116 10 2
283 |Homininae

(3]

22 101 hg38 990 159 84 1 0
A {panTro4 976 178 157 34

. canFam340 10 0 0 o0

o |Boreoeutheria mmi0 82 9 N
0 o |Euarchontoglires - callac3 1225 884 o o 28
’ 13 SimiiformesC erzczoepltheuﬁ papAnu2 869 264 38 1 9

0 L7 L rheMac3 855 246 35 1 16

23()2 Catarrhini nomLeu3 857 375 160 0 15

— Hominoidea ponAbe2 940 367 149 3 5

193 Hominidae _ gorGors ss1 146 122 9 2

2263 Hg’g“'”'”aehggg 990 163 86 1 0

B TE panTrod 976 195 161 5 34

Figure 50: Summary of the evolutionary events inferred for Y RNAs in an evaluation with six
(A) and ten (B) species. See the caption of Figure 49 for a detailed legend. The main difference
between the two data sets is that the inclusion of an additional member of the Cercopithecinae
moves a substantial number of the insertion events from Hominoidae to Catarrhini.

As described in above, artificial data sets were created using distinct levels of noise,
hence perfect data, 20% loss and 40% loss of genomic anchors. Using perfect data,
i.e., no deleted blocks, the pipeline exactly reconstructed the ortholog groups. With
increasing noise level, the number of singletons decreased and the number of inferred
local duplications increased since loci are joined upon loss of intervening anchors. With
increasing noise level, an increasing fraction of deletion events is classified as missing data.
At the same time, we observe an increase of inferred insertions at interior nodes of the
tree, owing to a failure to correctly assign an ortholog from an outgroup. This is also
depicted in Figure 51. Both effects are expected and cannot be addressed at the level of
synteny data. In order to counteract this issue, more accurate and complete genome-wide
alignments would be necessary.

128

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

~ o
m reference
20% +
20% -
© — B 40% +
o -
—_ <
[]
c
]
o
O
=
£ 4 —
- |] Il I:H
o
ins ins(N) sin del del(IN) dup mis

Figure 51: Summary of results for simulated data. The final counts (counted as natural
logarithm In(counts), y-axis) for evolutionary events, i.e., insertions (ins) and deletions (del) at
the leaves, insertions (ins(IN)) and deletions (del(IN)) at the interior nodes, singletons (sin) and
potentially missing data (mis) are compared between the reference ground truth and alignment
with 20% (orange and grey) and 40% (red) of missing anchors. For 20% noise level we also
compare the results with (+, orange) and without (-, grey) the segment joining step. High levels
of noise mostly lead to a reduction in the inferred number of deletion and a corresponding increase
in the reporting of missing data. Employing the joining strategy in general yields much more
accurate results. Omitting the joining step in particular leads to smaller numbers of insertions
inferred for interior nodes.

6.6 Implementation

The pipeline, which is written in Python and Perl, is available from https://github.
com/AnneHof fmann/Smore. It requires Infernal and tRNAscan-SE if the user decides to
use these tools for the genome annotation step. A user manual provides detailed usage
instructions. We additionally include a small example in the repository giving instructions
on how to apply the pipeline to data. Input data and output files for all subcommands
applied on the small test set are available, respectively. The repository also provides the
covariance models and the gene lists used in this contribution. As show-case examples
we investigated the evolution of several multi-copy ncRNAs families. First we reanalyzed
the evolution of tRNAs in two different mammalian data sets, comprising six and ten
species respectively. Then we consider the much less studied Y RNAs for mammals and
nematodes.

Both parts of the pipeline run fully automatized based on the given input and parameters.

https://github.com/AnneHoffmann/Smore
https://github.com/AnneHoffmann/Smore

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

129

Hence, the second part is available in two different versions, a fast version with as few
output files as possible and a slower, verbose version that will print intermediary files such
that the user can have a deeper and more detailed look into the data. This includes the
formation of clusters and graphs created thereof as well as derived duplication alignments
used for counting phylogenetic events.

The current version of the pipeline requires the following input data:

i) A multiple sequence alignment of the genomes under consideration is required to
extract the synteny anchor points. Currently only Multiz format is supported.

ii) The corresponding genomic sequences are required for the annotation of the loci
of interest. The pipeline expects fasta format. Since there is no guarantee that
genome-wide MSAs represent the complete genome, both MSA and genomes must
be provided.

iii) Target elements can be specified either as user-supplied annotation files, or as one
or more covariance models for annotation with Infernal or tRNAscan-SE. The
modular organization of the pipeline makes it straightforward to add, in future
releases, further means of generating annotation information, such as Hidden Markov
Models of proteins.

iv) A phylogenetic tree of the species of interest is necessary as a background to which
evolutionary events are mapped.

The first three data items are required for the construction of the orthology relation. The
phylogenetic tree is required only for the second part of the pipeline.

There are several parameters that can be adjusted by the user. The most important
one is the similarity threshold for true orthology candidates. For the show-case examples
reported here we used the same threshold value of 80 %. The threshold for low scoring MAF
blocks that are to be discarded from the analysis can also be determined by the user. In
addition, the pipeline offers several command line parameters to only run on subsections
of the workflow and to omit some of the intermediate processing steps. For details we
refer to the user manual.

The pipeline produces both machine-readable text files containing details of the
analysis and condensed representations. The pipeline can also store detailed information
on intermediate results that may be useful in particular also as a starting point to
explore alternative analysis strategies. The final results include (i) the main results file, a
phylogenetic tree displaying the evolutionary events in newick format as well as auxiliary
files for the visualization of the tree and event information using iTOL (Letunic and Bork,
2016), (ii) a file listing all gene clusters retrieved from the input data, (iii) a list of all
genetic events sorted by event and species, (iv) a list containing the numbers of genetic
elements sorted by species and type, and (v) a list containing remolding events. We also
used iTOL (Letunic and Bork, 2016), an interactive online visualization tool to generate
the results tree. Optional intermediate files include (i) the edge-weighted graph of each
initial cluster, (ii) a file for each of the clusters specifying which elements are contained
in the cluster including all available annotation information for each element, (iii) the
element-wise alignments of each cluster, (iv) information on the cograph structure or
deviations thereof.

130

Chapter 6. Duplication Alignments to Reconstruct Evolutionary History

6.7 Concluding Remarks

The methods of molecular phylogenetics require a strong correlation between sequence
similarity and evolutionary divergence times. Since the mechanisms of concerted evolution
obliterate this correlation, molecular phylogenetics is not applicable to the analysis of
multi-copy gene families including tRNAs and many other ancient ncRNA families. This
limitation can be overcome in a systematic manner by using synteny, that is, conservation
of relative gene orders, to identify orthologous elements. The fully automated pipeline
presented here faciliates such an analysis of gene families that evolved due to concerted
evolution.

Chapter 7. Dynamic Programming on Phylogenetic Trees 131

CHAPTER

Dynamic Programming on
Phylogenetic Trees:

Towards the Last Common Ancestor

Contents
7.1 Orthologous Proteins, 132
7.2 Topology of Phylogenetic Trees 134
7.2.1 Reconstructing Phylogenetic Trees 134
7.2.2 Calculating Splits Lo 135
7.2.3 Comparison of Phylogenetic Trees 136
7.3 Interdomain vs Intradomain Distances 137
7.3.1 Calculating Tree Distances 138
7.3.2 Classification of Phylogenetic Trees 140
7.4 Permutation Analysis oL 142

7.5 Concluding Remarks. L L. 144

132

Chapter 7. Dynamic Programming on Phylogenetic Trees

Comparative genomics and molecular phylogenetics are foundational for understanding
biological evolution (C. R. Woese and Fox, 1977; Goldenfeld et al., 2017). Genes that
are resistant to lateral gene transfer and non-orthologous replacement form a basis for
historical inferences, and have been found to be mostly associated with transcription,
translation and DNA replication. Phylogenetic domain separation is a classic way of
inferring presence in the common ancestor (C. R. Woese, 1987; C. R. Woese et al., 1990),
and conserved presence analyses indicate genetic traits of the last common ancestor of
archaea and bacteria (Koonin, 2003; Harris et al., 2003; Mirkin et al., 2003; Charlebois
and W. F. Doolittle, 2004; Becerra et al., 2007; Glansdorff et al., 2008). The processes of
horizontal gene transfer, variable rates of gene loss and gain over time, and non-orthologous
displacement, however, all blur the lines of vertical descent.

This chapter lists various approaches for the inference of genetic traits that might
have existed in a common ancestor of archaea an bacteria. Phylogenetic trees of protein
families reconstructed from an established reference set (Tatusov et al., 1997; Koonin,
2005; Galperin et al., 2014) are used to gain insights into the conflicting nature of literature
reports which aimed to identify proteins in the lowest universal common ancestor (LUCA).
One can calculate a comparative measure for phylogenetic trees using branch lengths and
evolutionary distances between genes. There are a number of existing data sets which
have given insights into the protein repertoire of LUCA (reviewed in Becerra et al. (2007)).
The current chapter includes some examples for well-known groups of proteins such as
ribosomal proteins, oxygen related genes and subunits of the CODH/ACS enzyme complex.
A difference between small and larger ribosomal subunits can be observed whereas proteins
related to oxygen metabolism and CODH/ACS enzymes are grouped together.

This chapter is based on Berkemer and McGlynn (2020) titled Phylogenetic domain
separation of protein families constrains functional inference of LUCA. There exist various
analyses based on groups of orthologous proteins in archaea and bacteria. The comparison
of those data sets is the central part of this chapter and based on the reconstruction
of phylogenetic trees from multiple sequence alignments (MSAs). A modified version
of the Fitch algorithm (Fitch, 1971), a dynamic programming (DP) algorithm (see also
Chapter 3), is used to calculate the minimum number of splits needed to separate archaeal
and bacterial genes in the trees. This is combined with a measure for pairwise distances in
the tree. Further information can be found in the supplemental tables in Appendix B and
the supplemental files corresponding to Berkemer and McGlynn (2020). The programs
used in this chapter are available online (github.com/bsarah/treeSplits).

7.1 Orthologous Proteins

Previous works that aimed at identifying protein families associated with LUCA, differ in
methodology and conclusions. Harris et al. (2003) worked with fully sequenced genomes
and used the conserved orthologous groups (COGs) (Tatusov et al., 1997; Koonin, 2005;
Galperin et al., 2014) as a basis set. They found 80 COGs were conserved in presence
in the genomes available at the time (Harris et al., 2003). 50 of these separated the
archaea, bacteria, and eukaryotic domains upon phylogenetic analysis. A recent study
in 2016 (Weiss et al., 2016) constructed clusters of orthologs de novo, and focused on
protein families which phylogenetically separated the archaeal and bacterial taxa, in line

github.com/bsarah/treeSplits

Chapter 7. Dynamic Programming on Phylogenetic Trees

133

Tree scale: 1— Archaea Tree scale: 1 —
Bacteria
Tree scale: 0.1~

COG1110, s=2,D=0.85

COG0048, s=1,D=0.15 COG1846, s=74,D= 0.97

Figure 52: Reconstructed trees for COG0048 (Ribosomal protein S12), COG1110 (Reverse
gyrase) and COG1846 LDNA-binding transcriptional regulator, MarR) with corresponding inter-
domain splits (s) and D values, explained in Section 7.3.

with recent data that eukarya are derived from archaea (Raymann et al., 2015; Zaremba-
Niedzwiedzka et al., 2017). There, 355 orthologous groups were reported to separate the
two domains and inferred to be present in LUCA.

There are various methods to estimate orthology relations between genes as shortly
described in Subsection 5.4.5. The set of conserved orthologous groups of proteins (COGs),
developed and described in Tatusov et al. (1997) and Galperin et al. (2014), is created
based on archaeal and bacterial proteins. The set of COGs consists of 4631 groups of
archaeal and bacterial proteins where a second version additionally includes eukaryotic
proteins (Galperin et al., 2014). The COGs are labeled by unique IDs as shown in
Figure 52. Pairwise sequence alignments of those amino acid sequences are used to
retrieve comparison scores and thus, best matching proteins between any pair of species.
The proteins are then grouped together, even though not all proteins in a group are
considered to be a best match. The creation of COGs additionally considers functional
categories of the proteins as a measure such that proteins in the same group have similar
functions. Data for each COG can be downloaded as multiple sequence alignments or the
corresponding HMM which can be used to find further homologous proteins that might
belong to the same group of proteins (https://www.ncbi.nlm.nih.gov/C0G/).

The set of COGs are an established and known data set and the basis of various origins
of life studies (Harris et al., 2003; Puigbo et al., 2009; Goldman et al., 2012; Charlebois
and W. F. Doolittle, 2004; S. Liu et al., 2018; O’Malley and Koonin, 2011). However, the
definition of orthology based on sequence comparison and function annotation might be
subject for debate and is termed the orthology conjecture (Forslund et al., 2017). Especially
protein annotation and corresponding functions is prone to various interpretations and
errors (D. Lee et al., 2007). An approach to improve prediction of orthologs for sets of
proteins could be to split proteins into their domains and only predict orthology of single
protein domains. This accounts for recombination and losses within protein sequences,
however, perfect detection of protein domains is not possible yet and even lacks a clear

https://www.ncbi.nlm.nih.gov/COG/

134

Chapter 7. Dynamic Programming on Phylogenetic Trees

Name Total Domain Sep. Underlying Data Set

SsC 286514 355 cluster created by Weiss et al. (2016)
S5CCoC 335 44 SSC populated w. corresp. COG sequ.
Conserved COGs 80 50 COG, Harris et al. (2003)

mixed COGs 2886 665 COG, Tatusov et al. (1997)

Table 4: Table listing various data sets, their total number of gene groups, the number of domain
separating groups of genes and how the groups were created. Number of domain separating
groups are based on claims by Weiss et al. (2016) and Harris et al. (2003), whereas numbers for
mixed COGs and SSCYCF are based on our own analyses as explained in the main text.

definition of a protein domain (Forslund et al., 2017).

In Weiss et al. (2016), protein clusters were created based on pairwise comparison of
protein sequences. If the resulting score was higher than a previously set threshold, protein
sequences were clustered together. The clusters are independent of function annotation,
however, many of them have been assigned to a corresponding COG by the authors.

Catchpole and Forterre (2019) analyzed 3 groups of proteins and extended the corre-
sponding COGs by homologous sequences from different organisms detected using HMMs.
In this way they show for 3 well conserved groups of genes and one showing string indica-
tions for horizontal gene transfer which will be explained in more detail in subsequent
sections.

Table 4 gives an overview over data sets mentioned in this chapter. The data sets
consist of groups or clusters of orthologous archaeal and bacterial proteins. Corresponding
phylogenetic trees reflect ancestral relations between archaeal and bacterial proteins. It is
assumed that proteins that show a clear separation of sequences in archaea and bacteria
are well conserved and might have existed in LUCA, see e.g. Weiss et al. (2016) and
Harris et al. (2003).

7.2 Topology of Phylogenetic Trees

The data sets listed in Table 4 were used as a basis to reconstruct phylogenetic trees,
which is described in more details in the following subsections.

7.2.1 Reconstructing Phylogenetic Trees

Our reconstruction of phylogenetic trees is based on three different data sets: COGs by
Tatusov et al. (1997), conserved domain separating COGs by Harris et al. (2003) (which
we call ’conserved COGs’ in the following), and single split clusters (which we denote
by SSC) created by Weiss et al. (2016). In their data sets, Harris et al. (2003) list 80
COGs with 50 having a single split topology and Weiss et al. (2016) discovered a set of
355 clusters that separated archaeal and bacterial species. We extracted the COGs that
consist of bacterial as well as archaeal proteins and took the best matching proteins in
case several paralogous sequences were found.

Chapter 7. Dynamic Programming on Phylogenetic Trees

135

Figure 53: An example for the bottom-up phase of the modified Fitch algorithm. Leaves of
the tree are labeled only by A and B. Inner nodes of the tree show sets of labels based on their
leaves. Dashed lines indicate union operations during the bottom-up phase, thus this tree would
need two splits to separate archaeal and bacterial genes. The red arrow indicates the postorder
traversal of the tree.

In order to compare different approaches, we downloaded multiple sequence alignments
(MSAs) for COGs (Tatusov et al., 1997) (https://www.ncbi.nlm.nih.gov/C0G/) and
collected corresponding COGs given in Harris et al. (2003) and Catchpole and Forterre
(2019). Data supporting the conclusions reported in Weiss et al. (2016) were not included
in the publication and were instead obtained from author contact on the now defunct
pubmedcommons site (ftp://ftp.ncbi.nlm.nih.gov/pubmed/pubmedcommons/).

We used FastTree (Price et al., 2010) to reconstruct trees. The study of Weiss et al.

(2016) used RaxML (Stamatakis, 2014) to build phylogenetic trees. However, we obtained
almost the same results and thus, we used FastTree (Price et al., 2010) for all tree
reconstructions. Thus, we obtain sets of trees for the set of COGs, SSC and conserved
COGs.

7.2.2 Calculating Splits

A modified version of the Fitch algorithm (Fitch, 1971) was used to calculate the minimum
number of splits s needed to separate archaeal and bacterial genes in the phylogenetic
tree. The algorithm is a DP algorithm and its input is a single binary phylogenetic tree
given in Newick format (see also Subsection 5.4.5). As described in Subsection 2.1.1, a
memoization table is needed. Here, the memoization consists of a simple list which stores
the labels at the nodes of the tree as depicted in Figure 53. Labels at the leaves of the tree
correspond to species identifiers for archaeal and bacterial species. Labels at the inner
nodes of the tree are sets of species identifiers from the leaves, thus the list is initialized
with a neutral value, e.g. () for the inner nodes and the species identifiers as labels of the
leaves {label(l;)} for each leaf I; € L. The bottom-up traversal of the tree is done based

on the postorder, thus the children ¢,d € children(p) are visited before their parent p.

https://www.ncbi.nlm.nih.gov/COG/
ftp://ftp.ncbi.nlm.nih.gov/pubmed/pubmedcommons/

136

Chapter 7. Dynamic Programming on Phylogenetic Trees

Then the label of p is determined in the following way:

if

Label(p) = label(c) Nlabel(d) i label'(c) U label(d) # 0, (7.1)
label(c) U label(d) otherwise.

The number of union operations is then the minimum number of 'mutations’, thus a
simple scoring would be to just sum up the union operations for the input tree. In order
to know where the mutations happen, one needs to calculate the top-down phase, this
time in preorder as the parent node p is visited before its child ¢, starting with the root of
the tree.

label(p) if label(p) € label(c),

7.2
arbitrary label from label(c) otherwise. (7.2)

label(c) = {

For this project, the set of labels of the phylogenetic tree only consists of labels A and
B as the goal is to find the minimum number of splits between archaeal (A) and bacterial
(B) genes. Thus, if the modified Fitch algorithm counts only one union operation, archaeal
and bacterial proteins can be split by cutting a single branch in the tree. Additionally,
only the number is recorded such that only the bottom-up phase is used, as depicted in
Figure 53.

7.2.3 Comparison of Phylogenetic Trees

The reconstruction of phylogenetic trees based on the multiple sequence alignments
obtained from Weiss et al. (2016) (SSC) resulted in 318 trees with a single split, 32 with
two splits and 5 trees where three splits are needed to separate archaea and bacteria. The
underlying clusters of proteins consists of on average 230 genes (minimum 9 genes, median
80 genes).

332 SSC were labeled with a corresponding COG, thus, we took the 332 COGs and
reconstructed trees obtaining the set SSCCCF. However, SSC were significantly smaller
as groups of genes in SSCYOC consisted on average out of 568 genes (minimum 8 genes,
median 431 genes, also depicted in Table 5 and Figure 54 (right)). 35 SSC were assigned
to more than one COG which results in a set of 293 distinct COGs. We reconstructed
phylogenetic trees corresponding to these 293 COGs, as well as the groups of Harris
et al. (2003) which consisted of 80 COGs, however, one of them consists of only bacterial
sequences which was omitted in our analysis and we used 79 COGs when reconstructing

total single split numbers of genes

SSCCoC 293 44 min 8, mean 568, median 431
Conserved COGs 50 47 min 238, mean 685, median 707
mixed COGs 2886 665 min 3, mean 348, median 241

Table 5: Sets of reconstructed trees based on different subsets of COGs. Values for the total
number of trees, trees with a single split topology and numbers of genes are given.

Chapter 7. Dynamic Programming on Phylogenetic Trees

137

Conserved COGs (79) SSC (318) g o |
a [l
3
o o
g @
22 264 £ .
B ol
3T
15 25 o |
8"
32 29 S o
S 9 -
g}'v
589 o]
8
IS 0 |
=1 o
=2 T T T T
single split COGs (665) coGs ssc ssc°°¢ Copserved

Figure 54: Venn diagram (left) showing overlapping COGs between the complete data sets of
conserved COGs by Harris et al. (2003) (blue), the set of SSC by Weiss et al. (2016) (red) and
the mixed COGs (yellow). For each group, there is a corresponding phylogenetic tree used to
count the splits needed to separate archaeal and bacterial genes. Trees showing a single split are
counted and overlaps are calculated based on the COG data set. Groups of Harris et al. (2003)
and Weiss et al. (2016) claim to have a single split. The data set of mixed COGs is obtained by
considering COGs which include genes from archaeal as well as bacterial genes and no paralogous
sequences per group. Violin plot (right) depicting the number of sequences per group in COG's,
SSC, SSCCCC | and the conserved COGs identified by Harris et al. (2003).

the tree for Harris et al. (2003). The single split COGs in SSCYC% are listed in Table 9
in Appendix B. A comparison of group sizes is also shown in Figure 55.

After analysis of the phylogenies for (SSCYP%), it was found that only 44 trees (or
~ 15% of SSC) show a single split topology when more orthologs are included, (Figure 55,
Table 9 in Appendix B). Here, around 41% of protein clusters belong to the functional

category of information which is represented by only 15% regarding the set of COGs.

Including COGs which exhibit up to 3 splits in their topology, 107 trees (or ~ 28% of SSC)

match with the reported tree topology of archaea bacteria separation reported previously.

Only 25 protein families are common between the two previous studies, Harris et al. (2003)
and Weiss et al. (2016), see Figure 54 (left). Phylogenetic trees drawn from the most
recent version of the COGs showed overlaps with these previous study and also showed
many more trees which split the bacterial and archaeal domains (in total 665 single split
trees), as depicted in Figure 54 (right).

7.3 Interdomain vs Intradomain Distances

Phylogenetic analysis of the 50 single split trees obtained in Harris et al. (2003) with the
most recent protein families from the COG database reveals that 47 of them show a single
split given the current set of COGs (see Figure 57 and Table 5). This is remarkable, as

138

Chapter 7. Dynamic Programming on Phylogenetic Trees

5000
|
3.5
|
o

4000

o
3 S
e o
e [S)
%]
=1 g N
g g 2
-
3 N + 5 Tii T
o P g oo
-‘E s n | B Ag aB Dnuuﬁgﬁﬂﬂ% oo
ol 5] AB a2 B BAHTE B

© g o __ =l g Ao 5 B0 00y
« S -) g AE =i)
g ° ° L35] a 8 o rftg Hea o
2 o o 23 o |fo LI E g 188
0 o PR IRS 8
(0] o Q o g A g E =
O 8 [——1 Py o
c 8 c 9 3] A I
5 a ° g3k & 1 COGs
o o _— COGs o~ - g o
a o0mg %o © b o 4 SSC
5 €4 g o %0 “55C 5.) COG
5 - % 2 5506 5 b o SSC
2 g0 + Conserved £ + Conserved
S o+ COGs 5 o COGs
=2 T T T = T T T T T

20 40 60 80 0.0 05 1.0 15 2.0

Number of splits Number of splits (Loglo scale)

Figure 55: The number of sequences per group plotted against the number of interdomain splits
found when the sequences are subjected to phylogenetic analysis in normal (left) and logio scale
(right). Single split clusters (SSC) from the previous study are in red, and the corresponding
COG sequence populated families are in blue (S’SC'COG)7 the complete set of COGs is shown in
gray and the set of conserved COGs by Harris et al. (2003) is shown in black.

the study was conducted over 15 years ago, and made use of only 34 genomes. They used
in total 80 COGs and found 50 to be well conserved. We reconstructed 79 of the 80 trees
based on the current set of COGs and noticed that 15 of the 79 conserved COGs overlap
with single split clusters of Weiss et al. (2016).

The number of interdomain splits observed in phylogenies is related to the number
of sequences within a protein family (Figure 55), and we sought to develop a metric
which would be less sensitive to incomplete protein family identification and which would
also capture evolutionary qualities thought to be associated with LUCA derived protein
families. Long interdomain branches may be indicative of a protein family having been
in the LUCA, when the tempo of evolution was rapid, whereas newer families may have
shorter branches separating the domains (Forterre, 2006; C. Woese, 1998). In line with
this, we developed a metric D which describes the ratio of intra-domain to inter-domain

phylogenetic distances found in a tree and applied it to phylogenetic trees derived from
the COGs.

7.3.1 Calculating Tree Distances

In our own analyses we calculated the following values for each tree: the number of
splits (s) needed to separate archaeal (A) and bacterial (B) genes and values for D based
on pairwise distances between leaves in the tree. Distances between sequences can be
calculated by summing up branch lengths on the path between pairs of leaves of the
tree. We assume a tree to show a single split when genes of at least one of the domains
are closely connected, thus average pairwise distances are relatively small inside this
domain. Therefore, we calculated mean phylogenetic pairwise distances between leaves for

Chapter 7. Dynamic Programming on Phylogenetic Trees

139

" o o 50 S0Bo8 % Loo " a B
° E EDDEEEDEEDS MDEDDD ’ Baf 6
P AN - I R :
S A& INERSNERE 499geE% . g B g &]
g, Rz ClEIRe T Stk
&°0 QAEEQDDEDDDD © gé g oo
c 8 E g gi B DDE B 1 g B
D g & e ° @ e
< 4B o S B E
o o A
E 48 °
fe COGs | « COGs
° & SSC e
COG
2|5 5 55Cc°9¢ | 3 ° §5C
T T T T T
o(o 0.!5 1.!0 .15 2‘.0 0.0 0.5 1.0 18 2.0
Number of splits Number of splits
(Log10 scale) (Logm scale)

Figure 56: Left: D plotted against number of splits in logl0 scale, for the data sets of COG
(gray), SSC (red) and SSC?Y (blue). Right: D plotted against number of splits in logl0 scale,
for the data sets of COG (gray), SSC (red) and SSCCY (blue).

intra-domain genes (between only archaeal or only bacterial sequences) and inter-domain
distances, that is, the distances between archaeal and bacterial species. The following
formulas show how calculations were conducted. Here, A is the set of archaeal and B the
set of bacterial genes in a tree, with sizes n and m, respectively. The function d;(a;, a;)
calculates the distance in the tree ¢ between archaeal genes a; and a; and analogously for
di(bi,b;), for all a;,a; € A and b;,b; € B. Then, daa(t) (dpp(t)) is the mean pairwise
distance between archaeal (bacterial) species in tree t.

i delai,aj) — i di(bi, by)
ey 0= Ty

The same can be done in order to calculate distances between genes from different groups,
thus dap(t) gives the mean pairwise distance between inter-group genes for tree ¢.

dap(t) = Lozt 2y e)

EAA(t) =

n-m
For each tree t, there is a set of genes for archaea and a set of genes for bacteria. We
calculate the distance between each archaeal gene a and each bacterial gene b by summing
up over all archaeal and bacterial genes in order to get every possible pair. Thus, the first
sum takes all the archaeal genes in total n genes, and the second sum takes all bacterial
genes of size m. As the value is dependent on the tree ¢, we indicate this by writing d;.
These distances can now be used to calculate the ratio of how closely related genes in one

group (intra-group) are in comparison to inter-group distances, expressed by the value of
D.

1/2-(daa +dpp)
dap

b:

140

Chapter 7. Dynamic Programming on Phylogenetic Trees

A further possibility is to only consider the group of genes that has closer mutual
relationships replacing the mean value by the minimum:

min(aAA, EBB)

dap

D =

Values for D are always larger than the corresponding D value.

Values for D are plotted in Figure 57, and comparisons for D and D values are shown
in Figure 56 and Figure 58. In Figure 57, we highlighted COGs that were used in Harris
et al. (2003) and Catchpole and Forterre (2019). We additionally calculated split and D
values for trees obtained from MSAs of Weiss et al. (2016), depicted in Figure 56. Trees
as depicted in Figure 52 were visualized using iTOL (Letunic and Bork, 2016). Values for
D and D are also denoted as Dmin and Dav in the supplemental tables, respectively.

7.3.2 Classification of Phylogenetic Trees

The 3 groups of genes analyzed by Catchpole and Forterre (2019) illustrate the utility
of this metric (depicted in Figure 57 by labeled dark green symbols). They analyzed
the RNA polymerase beta subunit (RpoB) (COG0085, D = 0.27), elongation factor G
(COG0480, D = 0.44) and reverse gyrase (COG1110, D = 0.85) families (listed in Table 10
in Appendix B). COG1110 depicts only a portion of the tree reconstructed in Catchpole
and Forterre (2019) and shows only two branches separating the archaea and bacteria
domains (Figure 52). However, the calculated D value is relatively high, inconsistent with
the family having been in the LUCA and suggesting a more modern protein family. Thus,
D values appear to supplement phylogenetic inferences based on the analysis of domain
separation, even in the case of incomplete phylogenetic sampling.

Applied to phylogenetic trees drawn from all the COGs, the most domain separated
trees (low D values) contain a single split between archaea and bacteria groups (Figure 57).
Protein families which display one split and low D values include some familiar proteins, for
example: ribosomal protein S12 (COG0048, D = 0.15, Figure 52), translation elongation
factor Efp (COG0231, D = 0.24), DNA-RNA polymerase RpoB and C (COGO0086,
D = 0.25 and COG0085, D = 0.27). Consistent with the finding of variable ages of
ribosomal protein components (Kovacs et al., 2017), the ribosomal proteins do not have
a coherent D value associated between them. However the small ribosomal subunits 12
(COG0048), 15 (COGO0184), 2 (COG0052), 4 (COGO522), and 11 (COGO100) all have
lower D values than any large subunit protein, listed in Table 8 in Appendix B. The
protein families with low D values also overlap significantly with the nearly universal trees
(NUTSs) (Puigbo et al., 2009), indicating that conservation, domain separation, and long
interdomain branches all coincide (Figure 58). In Puigbo et al. (2009) a subset of COGs
was analyzed after reconstruction of corresponding phylogenetic trees and comparison
of tree topologies. Here, Puigho et al. (2009) develop a separation score indicating how
well archaeal and bacterial genes are separated in the tree. A score of one shows perfect
separation, thus, only one split would be needed to separate domains. Scores lower than
one indicate horizontal gene transfer (HGT) events in the tree. The plot in Figure 58
shows data for 57 NUTs with a separation score of one (darkgreen) and 45 NUTs with a
separation score between 0.62 and 0.92 (purple).

Chapter 7. Dynamic Programming on Phylogenetic Trees

141

0O 20 40 60 80 100

N .
- Number of splits
o |
- *
B % X ®
ot
(g' B i;(e*
—_ N
D | %
©
S T ek
A
2 o |
— *)
< | !. * % i" * COG1846
S *. * %
t COG1110 ¥k XF
b ¥ oy 3
1 © |8 o *
o s g FARET
o — o
[} ©
* <
D Sk A
[=]
S © *
A
ol
Kx&cocoaso
U | »
o C0G0468 all COGs
A A 3-domain ribosomal
oo gobHooes
o i m 3-domain transcriptional
o 7 non-3-domain universal
oA * oxygen-related COGs
coco0as %X Catchpole & Forterre
o further examples
T T T T T
0.0 0.5 1.0 1.5 2.0

Number of splits (Log10 scale)

Figure 57: Interdomain split values for each COG plotted against D. For visualization, the
logarithm was used to display split values where the inset shows distribution in normal scale.
Symbols are slightly shifted to avoid overlays, and the colored symbols indicate subgroups as
defined by Harris et al. (2003), Catchpole and Forterre (2019), oxygen related COGs, CODH/ACS
COGs and other examples discussed in the text.

COGs associated with oxygen metabolism (S. Liu et al., 2018) all appear to have
similar inter:intra-domain phylogenetic distance ratios (D ~ 0.5), and similar results were
obtained for COGs comprising the four subunits of the CODH/ACS enzyme complex,
which are thought to be associated with the LUCA or ancient interdomain LGT events
(Adam et al., 2018; Inoue et al., 2019), as depicted in Figure 57. Indeed, protein families
involved in metabolic processes seem to not only be susceptible to lateral gene transfers,
but they also do not display long domain separating branches, e.g. COG0636 (the Na+

binding ¢ subunits of the ATP synthases (s = 10, D = 0.82), COG1740 (the [Ni-Fe]

142

Chapter 7. Dynamic Programming on Phylogenetic Trees

© ¥ vvvv & v Vvvv ivs
S vi & o9 vvv . ; gvvgvg Vv
o oAVt FYRSisteis S v v
¥ vy o o Vo o
o | g Vgl gy
(=} o v 9 o g ofy
D ° © v ~E1° g, Viv
v D o o v

@ 8 v v 8 o o
g ¥l v v v
3 g| vl COGs | v COGs

- v NUTs ° ° v NUTs

o lo R separation 6. © separation
Sqe ° score < 1 o |8 score < 1

° o oNUTs R S oNUTs
o separation separation
S score =1 score =1

T T T T T T T T T T

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0

Number of splits Number of splits
(Log10 scale) (Log10 scale)

Figure 58: Plots comparing number of splits in logl0 scale to D (left) and D (right) for the set
of COGs (gray), the set of NUTs with a separation score equals 1 (darkgreen) and a separation
score below 1 (purple) indicating HGT (Puigbo et al., 2009).

hydrogenase small subunit s = 3, D = 0.78) and COG1229 (the Formylmethanofuran
dehydrogenase subunit s = 2, D = 0.63) (see Table 8 in Appendix B). It appears that
the amount of within domain evolution is about the same as between domain evolution
in these cases, which is clearly different than in the case of the single split, low D value
proteins.

7.4 Permutation Analysis

During reconstruction of phylogenetic trees, leaves were labeled by taxon identifiers and
marked A or B to indicate the species belonging to the domain of archaea or bacteria.
In order to create a randomized reference set of trees, domain identifiers were shuffled
such that tree topology and size were kept and for each leaf, we randomly chose to set the
label to A or B. This resulted in three data sets with the following percentages of A and
B labels: (i) 30% A and 70% B, (ii) 50% A and 50% B, (iii) 90% A and 10% B. For each
of the trees in the randomized data sets, the number of splits and values for D and D
were calculated. Figure 59 shows distribution of the number of splits, values for D and
size of groups for the three randomized data sets in comparison to the set of COGs.
Permutation analysis reveals that trees drawn from biological datasets are significantly
different from random sampling iterations: for trees made from multiple proportions of
simulated archaea and bacteria, only small (less than 10 genes per group) trees showed a
single split, and D values do not decrease below 0.51 for these single split trees (see also
Figure 59). The distribution of D values for the COGs shows that intra-group distances
are mostly smaller than inter-group distances which is not the case for the randomized

Chapter 7. Dynamic Programming on Phylogenetic Trees

143

COGs random random random
30%A, 70%B 50%A, 50%B 90%A, 10%B

00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 3.0
L I I I I I I L L L L L L I L I I I I Ll I I L L L I

I
Number of splits

Number of splits Number of splits ul . Number of splits
3 4 (Log, scale) - (Log, scale) B (Log, scale) - : B (Log, scale) L2
4 4 R 1, ¢ o L
R X3 °
o
— 1 1. - T I B
B
D _1 1 G| i ! [
) l— 1 i—— - P
—) —He 338 * =4 . . - o7 Ve L
b4 .
e m 4 | =
= o
<+ B B - <
Number of ., | 4 4 n Lo
sequences
per group «~ - Bl B B o
(Log, ; scale) | | | | |
o - — B Lo
T T
00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 3.0
Number of splits Number of splits Number of splits Number of splits
(Logwscale) (Logwsca\e) (Logmscale) (Logm scale)
(o) 0, [¢) (o) 0, [0)
30%A, 70%B 50%A, 50%B 90%A, 10%B
00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 3.0
L Il Il Il Il Il Il Il Il 1 L Il Il Il Il Il 1 L Il Il 1
B Number of splits T Number of splits T Number of splits 7 Number of splits r
< (Log, scale) B (Log, scale) - (Log, scale) — (Log, scale) 3
o - 4 - . -2
— O . N . o
-~
D - 7] * 7 e 7 . -
. *
Jj (e RO]] : -
.
e 4 - - - L2
S S
<+ o - B - <
Number of B B i | o
sequences
per group , | J 4 i L«
(L(:ngm scale)
o 4 - - - Lo

T T
00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 3.0 00 05 10 15 20 25 30
Number of splits Number of splits Number of splits Number of splits
(Logmscale) (Logwscale) (Logmscale) (Logwscale)

Figure 59: Plots comparing number of splits in logl0 scale to D (blue) and the number of
sequences per group in logl0 scale (gray) for the set of COGs and randomized trees including all
trees (top) and trees with at least 10 leaves of each label, a and b (bottom).

trees. It can be seen that D values are mainly distributed between 0 and 1 for COGs
whereas the distribution is significantly shifted upwards for the randomized trees.

The plots also underline the importance of the correlation between the number of
genes per domain and the number of splits. The shuffled trees suggest that it is more
probable to get randomized tree topologies with low number of splits if the trees are small

144

Chapter 7. Dynamic Programming on Phylogenetic Trees

or the proportion of the amount of genes within each domain is unbalanced. This leads
to the assumption that COGs with a higher number of genes (in both domains) provide
more reliable data than smaller gene clusters. Of course, a well-distributed set of genes
over the tree of life is fundamental.

As depicted in Figure 59 (bottom), there are no trees with less than 5 splits for the
randomized trees. For trees with at least 10 genes per group, the minimal number of
splits is 5 which stands in contrast to the set of COGs where 128 single split trees can be
found. This clearly shows that a low number of splits highly correlates with a low number
of sequences per group. For the COGs with at least 10 genes in each domain, we get a
median of 7 splits. For the randomized trees, median values of splits are 29 (90% A, 10%
B), 55 (50% A, 50% B) and 47 (30% A, 70% B).

7.5 Concluding Remarks

We have presented several ways of reconstruction evolutionary history based on sets of
orthologous genes for archaeal and bacterial species. Despite an agreed upon definition of
orthology, methods of creating both sets of orthologous genes and for the reconstruction of
phylogenetic trees differ significantly. We discuss and compare results of different studies
with our own adapted measure in order to gain insights into advantages and disadvantages
of different methods. While Harris et al. (2003) applied strict parameters within their
study (those COGs conserved in the 34 genomes analyzed at the time), their results
include a relatively small set of only 80 sequences assumed to be conserved since lowest
universal common ancestor (LUCA). In contrast, Weiss et al. (2016) did not include
conservation selection criterion and as such that their set of LUCA genes has a larger size
(355).

As a criterion of gauging whether or not a protein family was in the LCA, conserved
presence in a genomic "core" present in all taxa provides limited insight into the traits of
the LUCA, because so few protein families are conserved (Koonin, 2003; Charlebois and
W. F. Doolittle, 2004; Puigbo et al., 2009). Relaxing the requirement of conservation allows
collection of more LUCA candidates which can then be assessed by their phylogenetic
character (Harris et al., 2003; Puigbo et al., 2009). Further work is needed to identify
the functional attributes of proteins found within diverse families. For example, the
phosphate acetyltransferase (Pta) found by Weiss et al. (2016) corresponds to a non-
catalytic (C-terminal domain lacking) paralog of the full protein, meaning that the protein
cannot function as imagined in that report. It will be beneficial to include structural
information to better estimate phylogenetic distances and what constrains these distances.
Geochemical data can give further clues about the environmental conditions on early
Earth, allowing for phylogenetic-geochemical calibrations to be made (e.g. Wolfe and
Fournier (2018) and Shih et al. (2017)).

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii 145

CHAPTER

Unbiased Map of Transcription
Termination Sites in Haloferax
volcanit

Contents

8.1 Transcription Termination in Archaea 146
8.2 Dar-Sorek Method o 148
8.3 Internal Enrichment-Peak Calling 148
84 IE-PCresults. 151
8.4.1 Comparison DSM and IE-PC 153
8.4.2 Secondary structures can act as termination signals 155
8.4.3 Experimental confirmation of selected termination signals . . 156

8.4.4 3 UTR length for primary TTS and identification of unanno-
tated genes Lo 157
8.4.5 Interaction of identified sSRNAs and long 3 UTRs 157

8.5 Concluding Remarks. 158

146

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

Detailed analysis of cellular processes and corresponding genes will give new insights into
early evolution, development of new species and environmental conditions on early earth.
This chapter describes the transcription termination sites of the halophilic model archaeon
Haloferax volcanii. H. volcanii has been used for a plethora of biological studies (Leigh
et al., 2011; Pohlschroder and Schulze, 2019), including the determination of nucleosome
coverage (Ammar et al., 2012) and a genome-wide identification of transcription start
sites (TSS) (Babski et al., 2016). H. volcanii requires high salt concentrations for optimal
growth, and due to the high intracellular salt concentrations, RNA-protein interactions
-including modes of transcription termination- may differ from those in mesophilic archaea.

This chapter is based on Berkemer et al. (2020), titled Identification of RNA 3’ ends
and termination sites in Haloferax volcanii. For further details, see the full publication, the
corresponding supplemental files and Appendix C. The code of the pipeline together with
explanations and examples is available at Bioinformatics Leipzig (http://www.bioinf.
uni-leipzig.de/publications/supplements/18-059).

In contrast to earlier chapters, the project described here is based on pure application
of dynamic programming (DP) algorithms combined with self-implemented scripts to
prepare and analyze the data. The analysis for transcription termination sites is based
on transcriptome sequencing data that was mapped to the reference genome (see Sub-
section 5.4.2 for background on sequencing and mapping and Appendix C for details of
mapping the data set for TTS). Resulting genomic positions were checked for flanking
sequence or secondary structure motifs (see also Chapter 5). This was done by sequential
application of various algorithms and pipelines.

An example for a transcription termination site is shown in Figure 60. This transcription
termination site (T'TS) is based on the DSM analysis (Dar et al., 2016a) and shortly
described in Section 8.2. The TTS has also been detected with the IE-PC approach which
is described in detail in this chapter and in Berkemer et al. (2020). A comparison of both
approaches will be given in Subsection 8.4.1. Figure 60 nicely shows the peak in read
end coverage just downstream of the annotated gene pilA2 indicating the transcription
termination site.

8.1 Transcription Termination in Archaea

Whereas some data have been reported on transcription initiation and elongation in
archaea, very little is known about transcription termination (Maier and Marchfelder,
2019). Controlled transcription termination is important to avoid aberrant RNA molecules
and to help with RNA polymerase recycling. Generally, the genes in archaeal chromosomes
are densely packed, so that proper termination is also important to prevent transcription
from continuing into downstream genes. The process of transcription termination is not
trivial because the very stable transcription elongation complex must be destabilized and
dissociated during termination. In bacteria, two major classes of termination signals have
been described: intrinsic termination and factor-dependent termination (Ray-Soni et al.,
2016; Porrua et al., 2016). Intrinsic termination occurs either at a stretch of Ts or at
hairpin structures that fold in the newly synthesized RNA; both trigger dissociation of the
elongation complex. Factor-dependent termination occurs upon interaction with a specific
protein such as the bacterial termination factor Rho (Peters et al., 2011). Protein factor-

http://www.bioinf.uni-leipzig.de/publications/supplements/18-059
http://www.bioinf.uni-leipzig.de/publications/supplements/18-059

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

147

annotation /i HVO_2062
[DSM

1.9114mb 1.9115mb 1.9116mb

15000
read-end

10000 counts
5000
Y . e

Figure 60: Termination site downstream of the pilA2 gene (HVO__2062). The termination site
is indicated by an orange rectangle in the middle panel. The annotated gene is shown in the
upper panel, and the genomic location is indicated below the annotation and above the coverage
as a blue line with coordinates given in Mb. The read end counts are shown in the lower panel
(read counts per position), and DSM data are reported as binary signals; thus, either a signal is
present or not. The Figure was created using the R package Gviz (Hahne and Ivanek, 2016).

assisted termination is especially important in regions where strong selective pressure on
the DNA sequence does not allow encoding of intrinsic termination signals. This may

be the case when termination must occur in the coding region of the downstream gene.

In eukaryotes, several RNA polymerases synthesize the different RNA classes, and each
polymerase has different modes of termination, including protein factors (Németh et al.,
2013), poly-T stretches (Arimbasseri et al., 2013) or further additional factors (Kuehner et
al., 2011). Whereas archaeal transcription initiation resembles eukaryotic RNA polymerase
IT initiation (Fouqueau et al., 2017), transcription elongation and termination seem to be
more similar to the eukaryotic RNA polymerase I1I pathway, which is independent of RNA
secondary structures and protein co-factors (Santangelo and Reeve, 2006). Compared
to the determination of transcription start sites, the identification of termination sites is
more complex. Termination is often leaky and encompasses several consecutive sites, and
degradation by exonucleases renders the 3’ ends heterogeneous and less clear.

Archaeal genomes are densely packed, thus, correct transcription termination is an
important factor for orchestrated gene expression, since faulty termination, for instance,
can result in aberrant transcription of downstream genes. Data reported on archaeal
termination so far show that intrinsic termination occurs with a run of Ts (Santangelo and
Reeve, 2006; Hirtreiter et al., 2010; Santangelo et al., 2009; Spitalny and Thomm, 2008;
Thomm et al., 1993) and is potentially also influenced by secondary structure elements
(Santangelo and Reeve, 2006; Thomm et al., 1993). Factor-dependent termination was
predicted based on the results of an in vivo reporter assay in the archaeon Thermococcus
kodakarensis (Santangelo et al., 2008). A recent study confirmed this hypothesis, reporting
the discovery of the first archaeal termination factor (Walker et al., 2017). Recently, the
termination sites for two archaeal organisms (Sulfolobus solfataricus and Methanosarcina
mazei) were investigated systematically using RNAseq data (Dar et al., 2016a) .

148

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

Read pair 3 ¢

(not used)
selected downstream region ?::e(fj?air —_— ¢
' 3'UTR ' Insert > 4
cDs - Trs rer.
L FLL-) eference genome
= = = => ff:“ww:wwquwwe_ and annotation
—_— . —_—
S, =
—! ¢ :
T > |
< ¢ ' Mapped
T —— 1 reads
—|+I + 1
> 1 _6_ :
+ + 1
—> < !
2 n I. 1 |C0verage of read ends

Figure 61: Principle of the Dar-Sorek-Method. As a first step in DSM, read pairs with an insert
overlapping an annotated region are selected (red and blue lines)(Dar et al., 2016a). Inserts that
do not overlap or have a length of more than 500 nucleotides are discarded (red read pairs in
the Figure). From the selected read pairs (blue), the average length over all inserts is calculated
as described in Dar et al. (2016a). This value is used to determine the length of the selected
downstream region (green white region in the Figure). The coverage of all read ends in this region
is retrieved (bottom line), and the position with the highest coverage is identified as the TTS.

8.2 Dar-Sorek Method

Mapped reads were initially analyzed using a self-implemented version of the method
described by Dar et al. (2016a), which will be referred to as the Dar-Sorek-Method (DSM).
This method identifies TTS in a defined region downstream of annotated genes at the
position with the highest coverage of mapped read ends. The length of the downstream
region is determined by the average insert lengths of corresponding paired-end reads
(Figure 61). Numbers of detected TTS are shown in Table 12 in Appendix C. In our
dataset, the median length of the analyzed region was 126 bp long. The resulting 3° UTRs
were mostly shorter than 100 nucleotides, with a median length of 58 nucleotides. The
length restriction given in the DSM approach might be too strict for genes with long 3’
UTRs. In addition, the method cannot determine TTS independent of an annotation.
Using DSM, we identified 3,155 termination sites for the complete Haloferax genome of
which 85% were in intergenic and the remainder in coding regions (see Table 12). A
typical termination site is shown in Figure 60 for the pilA2 gene (HVO_2062).

8.3 Internal Enrichment-Peak Calling
The length restriction given in the DSM approach might be too strict for genes with long

3’ UTRs. In addition, DSM analysis only includes sequences downstream of annotated
genes and, thus, only a fraction of the genome (Dar et al., 2016a). To overcome this

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

149

restriction, we developed a novel approach to interpret the RNAseq data obtained that
we termed Internal Enrichment-Peak Calling (IE-PC).

To determine TTS, the DSM approach used reads from a total cellular RNA fraction
that contains RNA 3’ ends derived from transcription termination as well as 3’ ends derived
from processing. Thus the 3’ ends identified by DSM are not all TTS but also processing
sites (PS). A similar problem exists for the determination of original transcription 5’ ends,
where a well established method for the reliable identification of transcription start sites
(TSS) has been developed, termed differential RNAseq (dARNAseq). Here, data derived
from an RNA sample treated with terminator exonuclease (+TEX) are compared with
data obtained from an untreated sample (-TEX). TEX treatment of an RNA sample
enriches primary transcripts containing the original 5’ triphosphate end. Comparison of
data from the +TEX sample with the -TEX sample helps to identify TSS (Babski et al.,
2016). We used the dRNAseq approach to determine original termination ends. RNA still
containing their original 5’ end have a higher probability to also still contain their original
3’ end. Therefore, we isolated -in addition to the total RNA fraction already obtained- a
second fraction that was treated with 5’ terminator exonuclease (TEX) to enrich primary
transcripts and thereby original termination ends. After cDNA library generation from
the TEX treated RNA, NGS was performed, resulting in an average of 40 million reads
for each of the three libraries. Details on the numbers of mapped reads can be found in
Table 11 in Appendix C.

Internal Enrichment requires mate pair sequencing data, from which a set of read
pairs is selected that contains the same original first-strand ¢cDNA 5’ ends (Figure 62).
The corresponding 3’ ends of the mate pair reads are then evaluated. Sequencing the
cDNAs generated from these first-strand cDNA fragments in paired-end mode preserved
information about fragment ends. After mapping the read pairs to the reference genome,
the hallmark of an original RNA 3’ end was its high coverage of read ends, with its
associated mate ends originating from a multitude of genomic sites. It is highly unlikely
that independent clones end at an identical position (Figure 62). Multiple fragments with

a heterogeneous 5’ end but a common 3’ end thus are indicative of likely TTS candidates.

However, this method cannot distinguish between primary termination sites and RNA
processing sites. Therefore, a peak calling (PC) step was added. The two methods (IE and
PC) were sequentially run on the data, and only sites that were found by both approaches,
IE as well as PC, were considered to be bona-fide TTS. Both methods will be explained
in the subsequent subsections. We allowed a maximal distance of 10 nucleotides when
computing overlapping sites for IE and PC. The advantage of this algorithm is that it
is independent of genome annotation and thus analyses the complete genome sequence
rather than a restricted region allowing the identification of all TTS of a genome. This
resulted in a set of putative primary TTS detected based on +TEX data and a second
and larger set resulting from IE-PC applied on the -TEX data.

Internal Enrichment

Due to the library preparation, native 3’ ends of transcripts should be enriched in the
sequenced +TEX RNAseq library similar to the enrichment of primary transcript 5’ ends
(Figure 62). To detect sites with a significant enrichment of sequenced and mapped
fragment ends, a sound background without enrichment is desired. In the current setting,

150

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

RNA isolated from the samples N
5 3 ligation of adapters
. to cDNA 3' ends
ligation of adapters
to RNA 3' ends 3 5
5+ BNA 3 sequencing of cDNA
using both adapter primers
reverse transcription using 33— 5
adapter primers 5 e — 1
3I— 5
3 first-strand cDNA 5 5 3
 — 5!
5' ~—3'

chNA fragmentation
lbioinformatics analysis

fragmented first-strand cDNA 5
3

%enriched reads
| 5 ;

Figure 62: Principle of internal enrichment. After RNA isolation, adapter primers were ligated
to the RNA 3’ end and the RNA was reverse transcribed. First-strand single-stranded cDNA
was fragmented prior to the addition of the adapter primer at the cDNA 3’ end. The break
points were considered to be random, leading to an enrichment of original RNA 3’ ends over 5’
fragmentation ends. Sequencing the cDNAs generated from these first-strand cDNA fragments in
paired-end mode preserved information about fragment ends, even if they were longer than the
read length. After mapping the read pairs to the reference genome, the hallmark of an original 3’
end was its high coverage of read ends, with its associated mate ends originating from a multitude
of genomic sites.

we used the intrinsic properties of a paired end sequencing run to directly deduce the
following information. Since each fragment which results from an individual fragmentation
event (in contrast to PCR duplicated fragments) is very unlikely to have the exact same
length, truly enriched sites can be expected to be associated with sequenced fragments
all ending at the respective site but starting at different positions. Therefore, the more
different mates (mapping to different positions) are associated with the different reads
ending at a particular site the higher the enrichment of read end signal at that particular
position can be considered. To capture this, we calculate for each position i a score S as

C;

Si = =7
(L= C)/m

¥j3R(i o j)

Thereby, C; denotes the number of fragment ends at position ¢, C; the number of fragment
starts at position j, and R(i o j) all positions ¢, j which are associated via at least one
read-mate pair R. To get an expected background distribution of these scores, we again
use the nature of paired-end reads. Since we expect only fragment ends, in contrast to
fragment starts, to be enriched, we can use the distribution of the reciprocally defined
scores for the fragment start S; as a background distribution.

Chapter 8 Unbiased Map of Transcription Termination Sites in H. volcanii 151

I total expression

B read ends

yes no no

Figure 63: Principle of the applied peak calling procedure. In a sliding window approach,
positions where the number of read stops (red) exceeded the mean number of read stops over the
whole window by a z-score above the threshold 2 were treated as potential endings (left), while
potential peaks of the same height but below a z-score of 2 were discarded (right). In addition, if
the number of read stops was below a 10% threshold relative to the total coverage (grey), the
peak was discarded (center).

Peak Calling

A complementary approach to find transcription termination sites is identifying peaks in
read stops (Figure 63). In order to find these peaks, we first computed the strand specific
read coverage at every position in the genome, which we used as a background. We then
used a sliding window approach with a window size of 150 nt and an overlap of 50 nt
to find positions in the respective windows with a significantly higher number of read
stops than the rest of the window. This was done by computing the mean number of
stops as well as the standard deviation by window and then calculating the z-score for
the number of read ends at every position of the window. Subsequently, we required a
minimum number of 5 reads stopping, at least 10% of all reads covering position ¢ — 1
must end at position i as well as a minimum z-score of +2 at a site to report it as a
putative TTS. As a consequence of the overlapping of the windows, a site is evaluated
multiple times and must fulfil the criteria in at least one contexts evaluated.

8.4 IE-PC results

Application of the IE-PC algorithm to the data from the TEX treated sample consisting
of enriched original transcription termination sites identifies 1,543 TTS (Table 6), whereas
6,284 RNA 3’ ends are identified when using the -TEX data set. 1,220 TTS are found in
both data sets. The following results are based on the small, conservative analysis from
the + TEX data set, that contains enriched TTS.

Inspection of the TTS obtained revealed very closely spaced TTS, that were less than
10 nucleotides apart. In addition, we found a relatively high fraction of closely spaced
TTS, that were 11 to 150 nucleotides apart. The closely spaced T'TS were subclassified
into primary TTS and non-primary TTS, a primary TTS is located directly downstream
of a 3’ gene end on the same strand (Figure 64 A & B). A non-primary TTS is located

152

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

Data sets | TTS (+TEX) TTS & PS (-TEX) TTS (both)

intergenic 807 2,856 670
coding 736 3,428 550
total 1,543 6,284 1,220

Table 6: TTS and PS identified with IE-PC. The IE-PC algorithm was run on two data sets:
data from a TEX treated sample (column +TEX) as well as on data from an untreated RNA
fraction (column -TEX). Most of the original TTS identified in the +TEX data are also present
in the data set from the untreated RNA fraction (column TTS found in both fractions).

downstream of another TTS, with no other features (like TSS or 3’ gene end) in between,
as shown in Figure 64 C. Very closely spaced TTS in a region of up to 10 nucleotides were
assumed to reflect stuttering of the RNA polymerase. Thus, this was reported as only a
single TTS (the one with the highest coverage). It should be noted that stuttering may
happen several times, so that the overall length covered by such a termination region may
significantly exceed 10 nucleotides. The TTS in the "stuttering region" were grouped into
multiplets and termed termination regions. For the +TEX sample we found in total 1,056
primary TTS and 487 non-primary TTS, for the -TEX sample, we detected 1,944 primary
and 2,486 non-primary TTS.

As expected, the IE-PC algorithm employed on the + TEX data set identified less TTS
than with the -TEX data set and less than DSM, that was also run with a -TEX data set.
Altogether, 1,543 transcription termination sites were found (Table 1). Slightly more than
half of the sites were found in intergenic regions (807 TTS, 52%) and the remainder in
coding regions (736 TTS, 48%). Detailed information for each TTS can be found in the
corresponding supplementary data of Berkemer et al. (2020). Analysis of the regions up-
and downstream of the TTS were performed separately for TTS located in coding and
intergenic regions (Figures 65a and 65b), and in both an increase in hybridization energy
at the TTS similar to the increase identified in the TTS set obtained with DSM was found.
The pattern of nucleotide enrichment for sites located in intergenic regions showed that Ts
were prevalent at the TTS (Figure 65a). To calculate hybridization energies, RNAplfold
(Lorenz et al., 2012) (Vienna RNApackage 2.0, Lorenz et al. (2011b)) was used.

We next analyzed sequences 15 nucleotides up- and five nucleotides downstream of

3' UTR

3'UTR 3'UTR | |

A ; TTS B ; 'g'.i c i TIS TTS TTS
5'mm LB' 5'mm - =3’ 5'mm : 3
3 5' 3! 5' 3! 5'

Figure 64: Location of TTS. A. TTS is located in an intergenic region. B. Location of the TTS
in an annotated gene. C. A primary (red) and two non-primary TTS (orange) are shown. The
length of the UTR was in all cases measured as the distance between the TTS and the 3’ end of
the upstream annotated gene on the same strand.

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

153

“é-fao.5~.A “3}0.5~.A
I3 m C o = C
S 04 - -9.0 S 04 /\/v\ L o0
5 5
+E +E
g 034 % L L -100 =8 03 9% \.\ b -100 =
N 29 — “~ S
] \J“_‘/__// N g e VA A M el e SN 3
2 o2 F-110 U2 02 /_ o F-110 ¥
K S8 71 {bv,]
2 gL ol e g
E 01 nlel F120 52 01 'f u \\/‘ .,-/,/\ SN, F-120 §
.
E ﬁ' ﬂ'grf..'-u! o \3“& "/\ "“°~’ T Ey: .a"p‘u '-fhu‘.“.ﬂﬂ M L4 & .n :: e .H ﬁ.m\"]r e
5 00 P e R T 2l e 13 § 00 TGS i e Mte e Sy - 13
£ \”- : H 5 .\ <r i e m| 'I 1;,"_’ L Ve r
® loe] LR
8 -0.1 o | - -14 8 -0.1 | - -14
8 . g]
S -02 o n - -15 S -02 4 - - -15
z T T T T =z T T T T
-40 -20 0 20 40 -40 -20 0 20 40
Relative Position around TTS(0) Relative Position around TTS(0)
(a) Nucleotide enrichment in intergenic regions. (b) Nucleotide enrichment in coding regions.

Figure 65: Analysis of up- and downstream regions for T'TS identified with IE-PC. Intergenic
(Figure 65a) and coding (Figure 65b) regions were investigated. Forty-five nucleotides up- and
downstream of the termination site were analyzed for (1) nucleotide enrichment at each position
(left y-axis) and (2) the hybridization energy (right y-axis). x-axis: nucleotide position (upstream
-, downstream +). The color scheme for the four nucleotides is shown at the upper left, and the
energy data are shown with a black line. Hybridization energies were calculated based on the
binding energies between the DNA template and RNA in the area behind the RNA polymerase.

the 807 intergenic termination sites for common sequence motifs. For 748 sites, we found
similarities in the sequences, such as a conserved dinucleotide TC as part of the motif
as well as a stretch of T’s of variable length upstream of the termination site (Figure
66a). Sequences 15 nucleotides up- and five nucleotides downstream of the 736 TTS in
coding regions were likewise investigated for common sequence motifs (Figure 66b). The
prominent C residue at every third position is typical for coding regions in Haloferaz. The
third codon position combines an enrichment for GC (due to the GC-rich genome) and
pyrimidines. For 456 TTS in coding regions, we found the downstream motif AGATC
(Figure 6B). Taken together, we could identify distinct termination motifs that were
specific for intergenic and for coding regions. Motifs detection was conducted using
MEME (Bailey et al., 2009) (version 5.0.1). Taken together, we could identify distinct
termination motifs that were specific for intergenic and for coding regions. The same
motifs could be found for TTS in the -TEX data set. See supplemental data of Berkemer
et al. (2020) for more details.

8.4.1 Comparison DSM and IE-PC

Our newly established tool IE-PC is able to determine T'TS covering the complete genome
and thus can identify all TTS of an organism. Consequently our tool identifies more TTS
than the DSM tool. Comparison of signals obtained with both methods can only be done
with the regions that are included in the DSM analysis. The original DSM analysis was
based on regions with a median length of 126 nucleotides downstream of an annotated 3’
end, with the TTS located at the position with the highest coverage. We further compared
individual TTS found with DSM and/or IE-PC in downstream regions defined by the
DSM analysis in more detail. Examples are shown in Figure 67, and Table 7 lists the

154

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

——c
< =
e r

MEME (no SSC) 21.05.2019 0822

%TT;Q
]

(a) Area around TTS in intergenic regions. (b) Area around TTS in intergenic regions.

Figure 66: Enriched sequence motifs around the TTS identified with IE-PC. (a) Sequence motif
close to TTS located in intergenic regions. The TTS is located at position 13 (red arrow). (b)
Sequence motif close to TTS located in coding regions. The T'TS is located at position 11 (red
arrow). Motifs were detected using MEME (Bailey et al., 2009).

number of TTS that were identified by both methods (allowing for discrepancy of up to
10 nucleotides) as well as TTS that appeared in only one of the data sets. Altogether, we
found 1,664 TTS being present in both data sets (Table 7).

For the genes trmY and tRNAP™, both methods identified one identical TTS position
and two different TTS positions (Figure 67). Here, the lower panel (DSM) shows the
results obtained with DSM, coverage is shown as the 3’ end coverage of corresponding
reads, the T'TS position for the transcript is also shown. The upper panel (IE-PC) shows
IE-PC results, with TTS location and read coverage of the -TEX data set above. The drop
in coverage values is clearly visible, matching the TTS location as identified by IE-PC.
Corresponding read end coverage of the DSM data set was present at the same position.
Figure 67 shows two genes on the forward strand, trmY (HVO_1989) and tRNA'™
(HVO_1990). The IE-PC analysis identified two TTS downstream of the tRNA-Pro gene
(upper panel). The corresponding coverage values for DSM (lower panel) showed similar
signals, but due to its specific algorithm, DSM assigned one TTS downstream of the trmY

chromosome | IE-PC only overlapping DSM only
CHR 3,184 1,296 1,128
pHV1 231 53 39
pHV3 394 97 125
pHV4 811 218 199
total 4,620 1,664 1,491

Table 7: Comparison of TTS found with DSM and IE-PC in downstream regions covered by
DSM. The column "IE-PC only’ lists all TTS identified by IE-PC but not with those identified
by DSM method. TTS identified with IE-PC that were also found with DSM are listed in the
column ’overlapping’. Sites that were detected in the defined region only by DSM and that did
not overlap with IE-PC sites are listed in the column 'DSM only’. The IE-PC data shown here
are the ones calculated on the basis of the -TEX data set, since the DSM data are also based on
the -TEX data.

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

155

3000

2000

1000

coverage ¢

——

1.8367mb 1.8368mb

IE-PC

1.8369mb 1.837mb

i

[tRNAPrO \\/

annotation

DSM |

80000
60000

1.8367mb 1.8368mb
read-end
counts

1.8369mb 1.837mb

40000
20000

|
L s Ll -

Figure 67: TTS comparison of DSM and IE-PC for the tRNAT™ gene. In the lower panel,
termination sites and corresponding read end coverages from the DSM data set are shown,
assigning a TTS downstream of the trmY gene and another one downstream of the tRNA”™ gene
(shown as orange rectangles). The upper panel shows the TTS location determined by IE-PC
and the total coverages, corresponding to the -TEX data set, identifying two TTS downstream of
the tRNAT™ gene. Since sequencing starts at the 3’ end, coverage starts at the 3’ end and runs
continuously for 75 bp due to the read length. The secondary TTS of the tRNAT™ gene was not
reported by the DSM algorithm as this algorithm systematically reports only a single TTS for
each annotated gene.

gene (HVO_1989) and one downstream of the tRNA-Pro gene (lower panel). Since in
the DSM analysis, every gene had a downstream region with an individual length, by
calculating for each gene the average insert length of the corresponding reads. Using
DSM, the length for the downstream region of HVO__ 1989, was calculated with only 110
nucleotides, for HVO__1990 the result was 145 nucleotides. Therefore, the high read end
coverage in the right part of the figure was beyond the region selected for analysis.

8.4.2 Secondary structures can act as termination signals

To identify potential secondary structure motifs, we conducted a search for accessible
and inaccessible regions around the TTS using RNAplfold (Lorenz et al., 2012) (Vienna
RNApackage 2.0, Lorenz et al. (2011b)). We plotted accessibilities against a background
distribution of shuffled dinucleotides. However, no clear signals were found to indicate
significantly increased or decreased accessibility.

In a second attempt to identify secondary structures, we applied Graphclust 2.0
(Miladi et al., 2017; Miladi et al., 2019) within Galaxy (Afgan et al., 2018) to sequences
100 nucleotides upstream of all TTS. Graphclust is a tool that clusters input sequences
based on their secondary structure(s). It will cut the sequences based on a window size

156

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

Types of pairs
123456

Incompatible 0
pairs

Figure 68: Hairpin structure found upstream of TTS. The secondary structure was plotted with
RNAalifold, and it’s 5’ end is denoted by a small dot at the end of the line. The color coding is
at the top right; whereas darker colors show compatible pairs, and the number of types of pairs

shows how many types are found at this position. Dark red colors indicate base pairs that are
compatible and conserved.

parameter and align and fold the sequences into secondary structures using RNAalifold
of the ViennaRNA package (Bernhart et al., 2008; Lorenz et al., 2011b). Graphclust
was used with default parameters and additionally a window size of 110 (such that our
sequences fit in one window to avoid duplicated sequences), a bitscore of 15 for the results
of cmscan, an upper threshold of 50 clusters and 20 top sequences in each alignment for
the visualization.

Graphclust provides covariance models (CMs) for all resulting structures (see also
Subsection 5.4.4). These CMs were used to scan the remaining sequences upstream of
TTS and additionally on all the transcripts in order to get a background model. Using this
approach we found hairpin structures upstream of 503 of the TTS (up to 10 nucleotides
distance) (Figure 68). However, no further significant secondary structures specific to
occur close to TTS were found. Thus, in some cases secondary structures are present that
might influence transcription termination which should be investigated in more detail in
further research.

8.4.3 Experimental confirmation of selected termination signals

We selected four TTS identified with our new IE-PC approach in intergenic and coding
regions to test their termination activity with an in vivo reporter gene assay. All tested
TTS caused the transcription to terminate, however results show that the tested TTS
with a T stretch as sequence motif terminated transcription more efficiently than the two
tested TTS with AGATC motif. The fourth tested TTS includes the detected hairpin
motif where 57% of the transcripts are terminated at the structural motif. For more
details on the experimental verification, see Berkemer et al. (2020) and corresponding
supplemental data.

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

157

8.4.4 3’ UTR length for primary TTS and identification of
unannotated genes

To determine 3’ UTR lengths, the distance between the primary TTS and the 3’ end of
the preceding annotated gene was determined. The primary TTS had a median 3’ UTR
length of 97 nucleotides and the median 3’ UTR length for all TTS is 189nt (Figure 69).
To confirm that the 3’ UTR regions were part of the same transcripts as the upstream
coding region ends, we wanted to obtain RNAseq data to investigate whether the 3> UTR
regions were part of the same transcripts as the upstream coding regions. To that end,
we performed next-generation sequencing of a cDNA library generated from total RNA
for RNAseq. An average of 42 million reads were obtained for three independent cDNA
libraries, and with these data, we confirmed that the 3’ UTR regions were part of the same
transcripts as the upstream coding regions, since we found continuous RNAseq reads over
the complete putative 3’ UTRs. We confirmed 3’ UTR regions by checking if coding region
and 3’ UTR are completely covered by RNAseq reads. If so, this would be indicative
of uninterrupted transcription until the assigned TTS. Out of 2,631 3’ UTR sequences,
2,518 show a continuous coverage within RNAseq reads (95.7%). In order to get an
impression of continuously covered sequences throughout intergenic regions in the genome,
we create a randomized set of sequences with similar length distribution as our set of 3’
UTR sequences. Randomized 3’ UTR sequences were created using bedtools shuffle
(Quinlan and I. M. Hall, 2010). This results in 75.9% of the randomized sequences being
continuously covered by RNAseq reads.

Figure 69 shows that there were also several high values for 3> UTRs with lengths of 1
kb and longer. A possible explanation for this observation is that there may be some as-yet
unannotated genes between the next upstream gene end and the TTS. We performed a
detailed analysis of these UTR sequences, revealing that in 356 cases a transcription start
site is located in the 3’ UTR, between the 3’ end of the annotated gene and the TTS.
Thus, 18 potential new genes are located in these 3° UTRs defined by the presence of a
TSS and a TTS for the +TEX sample. The same analysis for the -TEX TTS resulted in
356 TSS-TTS pairs and thus 356 potential new genes.

8.4.5 Interaction of identified sRNAs and long 3’ UTRs

The observed long 3’ UTRs would allow for interactions with regulatory molecules such as
proteins and RNA. Small RNAs that can potentially act as regulatory RNAs have been
detected in Haloferax (R. Heyer et al., 2012; Straub et al., 2009) , and we analyzed whether
they have the potential to interact with 3> UTRs. Twenty-one previously detected sSRNAs
(R. Heyer et al., 2012) were investigated for potential interactions with long 3° UTR
regions using RNAplex, version 2.4.9 (Tafer and Hofacker, 2008) (Vienna RNApackage
2.0, Lorenz et al. (2011b)). RNAplex allows users to check for interactions of short RNA
sequences with longer target sequences, and we first analyzed the 3’ UTRs belonging to
the TTS identified from the +TEX data set. In addition, we used the 2,631 3’ UTR
sequences discovered with the -TEX data set as target sequences. If several UTRs were
detected for one gene, we used the longest UTR for the analysis. RNAplex was applied
to each sSRNA sequence against the long 3” UTR sequences. To have comparable values,
we additionally applied RNAplex to each sSRNA against a set of random sequences with a

158

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

80
|

+ median = 97.0
+ mean = 552.8

60
|

Frequency

e Hhemnalldllha

[T T 1
0 5000 10000 15000

3'UTR length (nt)

Figure 69: Histogram of 3’ UTR lengths. The 3’ UTR lengths for all primary T'TS as calculated
from the IE-PC data. Without any restriction on the length of the 3> UTR (left), we found a
high number of 3’ UTRs with lengths below 1,000 nucleotides and very few 3’ UTRs that were
longer than 1,000 nucleotides. The histogram in the inset (right) shows the frequency of 3’ UTR
lengths for the region up to 800 nucleotides in length.

similar length distribution as the set of 3> UTRs. Only sRNA interactions with 3° UTRs
that showed more favorable binding energies than those with random sequences were
taken into account. While we did not find any interactions of SRNA with the +TEX
derived 3’ UTRs we found clear signals for potential interactions of sSRNAs with 3° UTR
sequences of the -TEX data set: six different sSRNAs and nine different interactions.

8.5 Concluding Remarks

The new IE-PC approach allows comprehensive, genome-wide identification of transcription
termination sites. Using the new IE-PC algorithm, we were able to determine the TTS
genome-wide for the archaeon H. volcanii. Altogether, 1,543 TTS were found with our new
algorithm, representing the first unbiased, truly genome-wide approach. The dRNAseq
method (+TEX) was originally established for the identification of TSS but the enrichment
of primary transcripts also allows enrichment of original 3’ ends as shown here. The
number of TTS identified with the dRNAseq approach is clearly lower than the one
identified with -TEX but is enriched for transcription termination sites and depleted
for processing sites. Additional TTS might be present in the -TEX data set but more
experiments are required to differentiate between the TTS and the PS in the -TEX data

Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

159

set.

Among all TTS, two general sequence motifs for termination were identified, each
being used in about half of the termination events. One was specific for intergenic regions,
and the other one for coding regions. Both types of termination motifs (T stretch and
AGATC) were confirmed using in vivo assays. Motifs in intergenic regions consisted of a
stretch of Ts, while termination occurred at a C residue. This motif is similar to those
found by in vitro studies in other archaea (Santangelo and Reeve, 2006; Santangelo et al.,
2009; Spitalny and Thomm, 2008; Thomm et al., 1993; J. W. Brown et al., 1989) and
for S. solfataricus and M. mazei using DSM (Dar et al., 2016a). The presence of TTS in
coding regions has previously been observed in archaea (Dar et al., 2016a; Koide et al.,
2009) and the prevailing motif we have found in coding regions was AGATC, located
downstream of the termination site. The DNA sequence downstream of the TTS has
been shown to influence termination efficiency in bacteria and eukaryotes (Spitalny and
Thomm, 2008). Furthermore, it has been reported that the archaeal RNA polymerase
interacts with downstream duplex DNA (J. W. Brown et al., 1989). Thus, it is entirely
possible that a downstream termination motif exists.

With our genome-wide TTS determination approach, we can present the first compre-
hensive determination of 3’ UTR lengths in H. volcanii. The median 3’ UTR length for
primary TTS was 97 nucleotides, which is longer than the median 3° UTR length recently
reported for two archaea (with 55 nucleotides for S. solfataricus and 85 nucleotides for M.
mazei) and the bacterium B. subtilis (40 nucleotides) (Dar et al., 2016a). The presence of
transcripts with long UTRs was confirmed by RNAseq data. One explanation for these
long UTRs could be that as yet undetected genes are located between the 3’ ends of the
upstream genes and the TTS. In particular, non-coding genes are very difficult to identify,
and might not yet have been detected. Our detailed analysis of 3° UTR sequences indeed
found 356 potential new genes between the 3’ end of an annotated gene and a TTS. These
new genes could encode non-coding RNAs. Further biological studies are required to
confirm this hypothesis.

If a gene is located on the opposite strand of a TTS, an antisense RNA against this
oppositely encoded gene is generated. Of the 1,543 TTS detected, 14.4% (222 TTS) of
them were located in a gene on the opposite strand, thus resulting in antisense RNAs. Up
to 75% of all genes were found to be associated with antisense RNAs in bacteria (Georg
and Hess, 2011; Amman et al., 2018; Thomason and Storz, 2010). Studies with archaea
painted a similar picture (Cohen et al., 2016; Babski et al., 2016).

The published TSS data revealed that the transcription start site for a gene can be
located in an upstream gene in an operon (Babski et al., 2016). Similarly, the TTS data
reported here show that transcription can be terminated in a downstream gene in an
operon. Together, this allows fine-tuning of the expression of individual genes in an operon
and thus challenges the simplistic view that all genes of an operon are co-transcribed under
all conditions. Nucleosome coverage for Haloferax was determined previously (Ammar
et al., 2012), and together with our TTS data, we showed that nucleosome coverage at
termination sites was strongly reduced. For more details on operon detection and analysis
of nucleosome coverage as well as further details of the study, see Berkemer et al. (2020)
and corresponding supplemental files.

160 Chapter 8. Unbiased Map of Transcription Termination Sites in H. volcanii

Part IV. Conclusion & Future Work 161

Part IV

Conclusion & Future Work

Chapter 9. Dynamic Programming in Theory and Applications

163

CHAPTER

Dynamic Programming in
Theory and Applications

Contents
9.1 Theoretical Aspects of Dynamic Programming Algorithms 164
9.2 Application of Dynamic Programming Algorithms in Bioinformatics . 165
9.3 Discussion & Future Work oL 166

164

Chapter 9. Dynamic Programming in Theory and Applications

The thesis describes theoretical backgrounds and applications of dynamic programming
(DP) in bioinformatics. The first and theoretical part is based on the generalization of
input structures to DP algorithms whereas the second part describes applications with
extensions and adaptations of existing DP algorithms to biological data.

Chapter 3 and Chapter 4 give insights into the development of DP algorithms based
on algebraic dynamic programming (ADP). The extension to general data structures is
an important step for further research and is not yet fully understood. While Chapter 3
describes the development of DP algorithms on tree and forest structures within the ADP
framework, Chapter 4 focuses on the structure of possible input structures to alignment
algorithms and further generalizes the concept to graphs, partial orders and general
structures. The second part of this thesis gives an overview of possible applications of DP
algorithms to biological data. Distinct input data structures as well as special applications
require extended and adapted versions of DP algorithms. There are obviously many more
applications and algorithms for the analysis of biological data in bioinformatics research.
Projects consist of a mixture of self-implemented and/or designed algorithms together
with a set of already existing algorithms. Many popular and widely-used algorithms in
bioinformatics include DP techniques. All of the projects described in Chapter 6, Chapter 7
and Chapter 8 use (multiple) sequence alignments (MSAs) and covariance models (CMs)
or hidden Markov models (HMMs), thus programs such as Infernal or HMMer. Structure
prediction algorithms are applied in Chapter 6 in order to detect homologous tRNA and
Y RNA sequences and in Chapter 8 where the data is scanned for common sequence and
secondary structure motifs around the TTS. In this thesis, two modified versions of DP
algorithms have been developed and implemented. Chapter 7 relies on tree structures
to explore the phylogenetic relationships between archaea and bacteria using a modified
Fitch algorithm to count minimal splits. Chapter 6 makes use of a modified well-known
DP algorithm, too, when creating duplication alignments in order to count evolutionary
duplication events among gene clusters in primates.

9.1 Theoretical Aspects of Dynamic Programming Algorithms

Chapter 3 shows that it is possible to extend DP algorithms to trees and forests as input
structures and describes formal grammars for alignment and editing on tree and forest
structures. The grammars only slightly differ even though the algorithms can be clearly
distinguished by their output. While alignment algorithms create a smallest common
superstructure of the input structures, editing algorithms output the largest common
substructure. Using ADP, it is possible to independently develop and edit individual
building blocks of DP algorithms such that overlapping parts can easily be reused. The
difference between the algorithmic descriptions in ADP also lies in the underlying index
structures, which is the preorder on trees for tree alignment and the postorder for tree
editing. This shows that the definition of the index structure is essential to set the way
of how the input is traversed. Therefore, a set of decomposition operators on tree and
forests structures has been defined in Chapter 3 that decompose the input stepwise in
an order-preserving way. Chapter 3 also includes various examples for DP algorithms
on trees and forests described by formal grammars including a description of the Fitch
algorithm. A modified version of this algorithm is used later in Chapter 7. The description

Chapter 9. Dynamic Programming in Theory and Applications

165

of DP algorithms by formal grammars gives a further advantage: In order to calculate
probabilities, one can rewrite the formal grammar into its outside version and apply the
inside-outside algorithm. For the alignment of two forests, probabilities for the direct
match of pairs of nodes of the input are shown that result from the application of the
inside-outside algorithm on the input forests.

Chapter 4 gives definitions for alignments on totally ordered sets such as strings.
Based on the definition of alignment graphs, this notion is generalized to alignments
of partially ordered sets and further extended to general structures. Examples for the
alignment of trees and graphs are given. In the case of graph alignments, alignment
columns corresponding to (mis)matches form common induced subgraphs. The pairwise
alignment problem for two input graphs G; and G2 therefore boils down to the problem
of finding a maximum common induced subgraph (MCIS). The MCIS is a well-known
NP-hard problem which can be reduced to clique finding (Barrow and Burstall, 1976).
Nevertheless it is of substantial practical importance, in particular in chemoinformatics,
since molecules are conveniently represented as graphs. A variety of practically applicable
algorithms are therefore available (Raymond and Willett, 2002; Ehrlich and Rarey, 2011;
Duesbury et al., 2018). In addition to clique-finding, DP algorithms have been explored
in particular for restricted classes of graphs (Akutsu, 1993; Fomin et al., 2011). In the
setting of graph alignments, it may be interesting not only to score the matches, i.e.,
the common induced subgraph, but also the insertions and deletions, possibly requiring
modified algorithmic approaches. In the context of poset alignments, notions of alignments
were explored that require less stringent conditions than the exact recovery of the structure
of each input row: it also seems to be of interest to require only that the restriction to a
row is an extension of the input order. In the case of graphs, a similarly relaxed condition
would only require that the input is a subgraph of the restriction. RNA structures may
be considered as totally ordered sets that in addition carry a graph structure defined by
the base pairs. Structure annotated alignments, then, have to recover the sequence order
upon restriction to the input order, while the restriction of consensus base pairing on the
alignment columns only needs to be a subgraph of the input base pairings.

9.2 Application of Dynamic Programming Algorithms in
Bioinformatics

The SMORE pipeline presented in Chapter 6 sets the state for large-scale quantitative
investigations into evolution of multi-copy gene families. In particular, it provides the data
required to estimate gain and loss rates and the relative effects of e.g. unequal crossover
(which governs local gain and loss), retroposition (leading to insertions at novel loci), and
pseudogenization (leading to loss of function and subsequent gradual disappearance of the
element under consideration). This quantitative view is in particular of importance for
even larger families of repetitive elements. The approach assumes perfect conservation of
gene order in the vicinity to the elements of interest. While this is a very good approxi-
mation at smaller evolutionary scales, say among primate genomes, there are noticeable
violations at larger scales. Fewer synteny anchors are available for more distant genomes
because large fractions of the genome are diverged beyond the limits of reliable alignments.
As a consequence, anchors are on average separated by larger genomic distances and thus

166

Chapter 9. Dynamic Programming in Theory and Applications

more likely to be separated by genome rearrangements.

Molecular phylogenetics and comparative genomics form the basis of understanding evo-
lutionary relationships. In addition, these techniques allow inference into the most ancient
types of life on Earth (e.g. Mirkin et al. (2003), Glansdorff et al. (2008), and Fournier et al.
(2015)). Chapter 7 presents several existing ways of reconstructing evolutionary history
based on sets of orthologous genes for archaeal and bacterial proteins. Despite an agreed
upon definition of orthology, methods of creating both, sets of orthologous genes and for
the reconstruction of phylogenetic trees differ significantly. The comparative analysis in
Chapter 7 also includes a permutation analysis. The comparison clearly shows that the
probability of seeing a single split topology in trees with relatively small numbers of genes
increases significantly. Thus, the analysis suggests that groups of proteins with a higher
number of genes in all domains provide more reliable data regarding their evolutionary
history. Additionally, it will be beneficial to use interdisciplinary methods, e.g. including
structural data to better estimate phylogenetic distances. Geochemical data can give
further clues about the environmental conditions on early Earth, allowing for phylogenetic-
geochemical calibrations to be made (e.g. Wolfe and Fournier (2018) and Shih et al. (2017)).

Transcription termination is not yet well understood even though it is assumed to
have strong implications on regulation of transcription and translation of genes. Taken
together, Chapter 8 showed that the new IE-PC approach is well-suited to identifying the
complete set of TTS for a genome without any a priori limitations on the search space
due to genome annotation. In comparison to the already existing approach which is based
on genomic annotation (DSM), the genome-wide approach (IE-PC) leads to the detection
of further TTS as well as more refined genomic locations. The T stretch termination
motif detected 30 years ago was confirmed, but further additional primary and secondary
structure motifs for termination were as well identified. The presence of multiple 3° UTRs
for a gene provides a platform for regulatory mechanisms similar to those described in
eukaryotic systems.

9.3 Discussion & Future Work

Using ADP for the development of DP algorithms has been a significant step towards
further explorations of properties of DP algorithms and the extension to generalized
input structures. There exist frameworks implementing ADP-style DP algorithms such as
Bellman’s GAP (Sauthoff et al., 2013) and ADPfusion (Honer zu Siederdissen, 2012) which
allow to independently develop recursion equations, scoring algebra and memoization
structures.

Limitations to DP algorithms and the ADP framework have been formulated recently
in Miklds (2019). Next to the problem of sparsification and more efficient implementations
of DP algorithms, the extension to generalized input structures and formulations of DP
problems is an important task. Formulations of DP algorithms on trees and forests provide
examples of further data structures (Chapter 3) and the detailed analysis of alignment on
generalized data structures given in Chapter 4 shows that DP algorithms still bear various
possible extensions. It will certainly be interesting to study such relaxed requirements

Chapter 9. Dynamic Programming in Theory and Applications

167

on structure preservation more systematically in future work. The fact that (multiple)
alignments can be defined for very general structures, in essence for finite spaces with
reasonably well-behaved notions of subspaces, suggests that alignments may be of interest
as mathematical objects also for infinite spaces.

However, formal grammars seem to be only one step in further generalized formulations
of DP algorithms. An extension of such tools to an easily applicable and user-friendly
framework is desirable for applications in bioinformatics analysis. Possible extensions
would be approaches to translate between formal grammars and easier, more intuitive
problem formulations usable by non-experts. Here, further investigations could be done
on the relations of weighted grammars with weighted finite automata and make use of the
extensive literature and theoretical background of automata theory to gain insights into
the development of DP algorithms and agree on common definitions and usage of formal
grammars. Specific questions occur when dealing with the description of algorithms by
regular and context-free grammars. Expressive power of formal grammars changes based
on the weight structures which increases the number of possibilities for the description of
DP algorithms by weighted formal grammars.

The definition of dynamic programming is based on the lookup of already calculated
subsolutions, thus a specified order on the elements of the input is an essential requirement
(Tendeau, 1998). Given the definition of basic data structures, the order of elements is
similarly essential. Therefore, the concrete structure of the input is not important for
the DP algorithm as long as every element has a clear predecessor and successor, except
the first (initial) and last (terminal) elements. This is well defined for strings as their
elements are a total order. Trees and forests are uniquely defined by the combination
of preorder and postorder on their nodes (see Subsection 2.2.1) (Gértner and Stadler,
2019). Thus, each element (except the first element) has a predecessor in at least one of
the partial orders. Here, the question arises if index structures should be implicitly or
explicitly defined as part of the ADP framework. This leads to the question of how to
correctly concatenate the index structure with the building blocks of the DP algorithm,
thus the grammar, scoring algebra and memoization.

This thesis contributes to the generalization of input structures, however, Chapter 4
shows limitations of the application of DP algorithms for the calculation of graph alignments
which could be calculated more efficiently using algorithms to compute MCIS. Here,
development of more efficient DP algorithms will be beneficial including the exploration
of aspects of scoring graph alignments and the computation of pairwise and multiple
alignments of graphs.

An interesting fact is the relation of DP algorithms to divide-and-conquer algorithms
and greedy algorithms (Cormen et al., 2009). Divide-and-conquer algorithms recursively
divide the input into disjoint substructures until the instances are small enough to reach
a solution. In this way, the size of the search space is reduced and an optimal solution
can be found in the case of solving an optimization problem. As the substructures
are not overlapping, the algorithm can only be applied if such a division of the input
into meaningful base cases is possible and leads to the optimal solution of the problem
(Cormen et al., 2009). In contrast, greedy algorithms solve the optimization problem
on the complete input. In each step, the algorithm chooses the currently best solution
and recurses on the remaining input. DP algorithms greedily choose the best solution
in each step, too, however, the currently optimal solution depends on the previous step

168

Chapter 9. Dynamic Programming in Theory and Applications

and cannot be derived from the global structure. Greedy algorithms can be applied if the
input matches the structure of a greedoid or matroid (Korte et al., 1991; Bjorner and
Ziegler, 1992), however, the inverse is not true as there exist algorithms without such an
underlying structure that can still be solved by a greedy algorithm, such as the fractional
knapsack problem (Cormen et al., 2009). Graph search algorithms are a further interesting
case as breadth-first-search (BFS) can be solved by a greedy algorithm, depth-first-search
(DFS), however, cannot be solved by a greedy algorithm but by a DP approach. Hence, a
further goal is to find a way of defining which algorithms are able to be computed using
dynamic programming and possibly find structural properties on the input similar to the
greedoid structure. Characteristics of DP algorithms are known, however, no complete
definition exists that can tell if a certain problem can be solved by a DP algorithm.

The applications in the second part of this thesis show that modifications of existing
algorithms as well as their pure application occur frequently in various areas of bioinfor-
matics research. Despite the wide range of applications and data sets, DP algorithms are
a popular method for bioinformatics analyses. Here, a major challenge is the adaptation
of existing DP algorithms to general data structures and applicability to given data sets.

The three quite distinct projects presented in the second part show that there exist
various challenges when applying DP algorithms - but also algorithms in general - to
biological data. Especially the size and complexity of data sets increase quickly and
require adaptations of the algorithms to new constraints. Hence, clear and extendable
frameworks and programs are desirable. However, requirements by the input might lead
to the development of other algorithmic techniques, depending on their purpose and goals
as DP algorithms are based on the memoization of intermediate results. Irrespective of
the kind of input data, a further goal would be to automatize the identification of input
structures and adaptation of the DP algorithms, thus a modular framework consisting of
algorithmic building blocks that can be put together based on requirements of input and
output data.

The results of Chapter 4 raise the question of resource efficient calculations as the
example of alignments shows that solutions based on common induced subgraphs might
result in more efficient programs. This is clearly as well dependent on the input data which
occurs in many distinct sizes and shapes. Already bioinformatics applications require
various kinds of input structures and sizes. Chapter 6, Chapter 7 and Chapter 8 gave an
overview of possible applications and algorithm requirements. However, such data sets are
imaginable to exists in further disciplines such as linguistics, computer science, medicine,
chemistry and physics. Thus, one might want to apply such algorithms in interdisciplinary
projects as data sets can be of very similar format and structure despite their very distinct
contents. There exist various methods that can be applied outside of the borders of the
own discipline such as alignments of words or parse trees of natural languages instead of
biological sequences and secondary structures. Therefore, a future goal would be to do
interdisciplinary projects and not only generalize DP algorithms towards bioinformatics
data sets and applications.

Chapter 9. Dynamic Programming in Theory and Applications 169

Appendices

Appendix A. Dynamic Programming on Trees and Forests

171

APPENDIX

Dynamic Programming on
Trees and Forests

A.1 Affine Gap Costs for Tree and Forest Alignment

A.1.1 Original grammar for affine gap costs

The following grammer expresses the seven rules for affine gap costs in forests (Schirmer,
2011; Schirmer and Giegerich, 2011). Here, different modes of scoring are applied: no-gap
mode, parent-gap mode and sibling-gap mode. Parent and sibling mode indicate that the
preceding node (either parent or sibling node) was considered a deletion. Correspondingly,
the non-terminal symbol F' denotes a no-gap state, P denotes a parent gap, and G denotes
a sibling gap. This means that in P mode a gap was introduced in a node further toward
the root, while in G mode a gap was introduced in a sibling. In both modes, an unbroken
chain of deletions then follows on that tape.

This grammar supports different scoring functions for parent and sibling gaps. Gap
opening and gap extension can be distinguished explicitly by including the two additional
rules given in Equation A.2). They are useful in particular to produce a more expressive
output in the backtracking step.

172

Appendix A. Dynamic Programming on Trees and Forests

)= @@ L @@ | B | Q)
By = @@ L G | (23|
() = Fre® 1 (5B [B (D
(@ = @@ @@ | (2) Q)
& = G @ (5)® 1 G @) (A1)
& = G L (E) @ | (2)3
(@) = Ee@ (5B | (2)(%
(F) = ()
(5) = () (§)
(%) = G+ (§)
LY — vy (g
(f) (")+(5) "
(2) = (P

A.1.2 Intermediary version of grammar for affine gap costs

As, in most applications, there is little reason to distinguish the parent and sibling mode
gaps in the scoring function. Omitting also the explicit rules for gap extension, the grammar
can be simplified considerably, see also Schirmer (2011) and Schirmer and Giegerich (2011).
Here, (£) denotes the non-gap mode, whereas the gap-mode is represented by mixed
terms. In particular, (7) and (Z) open gaps, while the remaining mixed terms refer to
gap extensions.

The rules for (), (&), and (&) produce the same cases on their right-hand sides. The
difference are the Lh.s. cases, which distinguish between no-gap mode and gap mode, thus
between affine extension cost and gap opening cost. Additionally, the rules expressing
parent gap modes (F) and (L) are recursively calling themselves. Some rules of the
grammar can be condensed as they model equivalent cases. The fully compressed version

is described in Subsection 3.4.2.

Appendix A. Dynamic Programming on Trees and Forests

173

o

v R e B e B e e L B R R

[e]

Q" QY Th v QN
o

[e]
(o)
[¢]

[e]

e e

NN NN NS NS NS

S~ N N N
o [e]

NN SN SN BN SN
o

o

— — — ~— ~—

[e]

— — ~— ~— ~—
[e]
~ o~ o~ —~

[e]

0 TR vw T =a
A~ o~~~
RS PNL P HLHL AH
— — — ~— ~—

I3 33 99 898 89 "398
-

[e]
~ o~ T N~~~

NN NN BN Qh Qv bt Y
«

~ A~ o~
A~ N~ /N
—_— — — Y — ~— — —

3|
«

A.2 Inside-Outside for Alignment and Editing

Inside grammars can be used to calculate two kinds of results. As we have seen above, a
globally optimal solution for optimization problems, say the alignment distance between
two trees, can be obtained. Alternatively, the partition function Z =3 es@)/T can be
computed. Here, the sum runs over all configurations w, s(w) is the score of w and T is a
scaling parameter. For T'— 0, Z just counts the number of optimal solutions, for T — oo,
all conformations are treated equally. The partition function Z thus provides access to a
probabilistic model. This view plays a key role in practical applications. The inside or
forward part calculates the probability for a possible (sub)solution whereas the outside
part calculates all possible solutions while keeping one (sub)solution fixed. In this way, it
is possible to calculate the overall probability of, e.g., two nodes being aligned to each
other in an alignment of two trees. To this end, one calculates the partition function Z’
that gives a value for two nodes being matched and the partition function Z for all possible
cases of the complete alignment where those two nodes match. The desired probability is
then the ratio Z’/Z of the constrained and the unconstrained partition functions.

174 Appendix A. Dynamic Programming on Trees and Forests

Appendix B. Dynamic Programming on Phylogenetic Trees 175

APPENDIX

Dynamic Programming on
Phylogenetic Trees:

Towards the Last Common Ancestor

B.1 Additional Tables

COG s arc bac cat D annotation

COGO048 1 82 625 J 0.15 Ribosomal protein S12

COG1846 74 111 2349 K 0.97 DNA-bind. transcript. regulator, MarR fam.
COGO052 1 8 605 J 0.32 Ribosomal protein S2

COG0184 4 81 626 G 0.56 Enolase

COG0522 1 8 637 J 0.33 Ribosomal protein S4 or related protein
COGO0636 10 56 198 C 0.82 FoF1-type ATP synthase

COG1229 2 29 32 C 0.63 Formylmethanofuran dehydrogenase subunit A
COG1740 3 13 181 C 0.78 Ni,Fe-hydrogenase I small subunit

COGOoo6 15 87 838 E 0.93 Xaa-Pro aminopeptidase

COG0037 4 8 667 J 0.59 tRNA(Ile)-lysidine synthase TilS/MesJ
CcOGoo73 5 35 605 J 0.36 tRNA-binding EMAP/Myf domain
COGO112 5 80 650 E 0.74 Glycine/serine hydroxymethyltransferase
COG0113 4 69 523 H 0.83 Delta-aminolevulinic acid dehydratase
COG0468 4 94 616 L 0.41 RecA/RadA recombinase

COGO0526 32 83 1554 O 0.91 Thiol-disulfide isomerase or thioredoxin

Table 8: Data for COGs listed as examples or shown as phylogenetic trees in the main text and
supplement. s:number of splits, cat:functional category.

176 Appendix B. Dynamic Programming on Phylogenetic Trees
CcOG arc bac Cat D annotation
COGoO012* 85 617 J 0.38 Ribosome-binding ATPase YchF, GTP1/OBG family
COGO0051* 84 621 J 0.41 Ribosomal protein S10
COGO0080* 83 632 J 0.48 Ribosomal protein L11
COGO0081* 83 626 J 0.45 Ribosomal protein L1
COG0090* 83 624 J 0.46 Ribosomal protein L2
COG0093* 83 625 J 0.36 Ribosomal protein L14
COG0094* 83 625 J 0.39 Ribosomal protein L5
COG0096* 83 625 J 0.47 Ribosomal protein S8
COGO0098* 83 626 J 0.46 Ribosomal protein S5
COGO0100* 83 620 J 0.34 Ribosomal protein S11
COGO0103* 83 626 J 0.46 Ribosomal protein S9
COGO0150 72 568 F 0.68 Phosphoribosylaminoimidazole (AIR) synthetase
COGO0315 74 437 H 0.59 Molybdenum cofactor biosynthesis enzyme
COGO0466 9 534 O 0.59 ATP-dependent Lon protease, bacterial type
COG0480* 81 761 J 0.44 Translation elongation factor EF-G, a GTPase
COGO0533* 42 617 J 0.54 tRNA A37 threonylcarbamoyltransferase TsaD
COGO0541* 82 605 U 0.61 Signal recognition particle GTPase
COGO0552* 79 58 U 0.66 Signal recognition particle GTPase
COGO565 74 281 J 0.72 tRNA C32,U32 (ribose-2’-O)-methylase TrmJ
COG0643 1 38 NT 0.75 Chemotaxis protein histidine kinase CheA
COGo709 14 239 E 0.52 Selenophosphate synthase
COoG1027 7 215 E 0.68 Aspartate ammonia-lyase
COG1035 20 69 C 0.54 Coenzyme F420-reducing hydrogenase, beta subunit
COG1163 83 10 J 0.65 Ribosome-interacting GTPase 1
COG1379 27 67 R 0.71 PHP family phosphoesterase with a Zn ribbon
COG1415 37 31 S 0.71 Uncharacterized protein
COG1777 47 2 K 0.67 Predicted transcriptional regulator
COG1859 36 81 J 0.63 RNA:NAD 2’-phosphotransf., TPT1/KptA fam.
COG1883 6 146 C 0.70 Na+-transp. methylmalonyl-CoA /oxaloacetate decarboxylase
COG2032 2 187 P 0.76 Cu/Zn superoxide dismutase
CcOG2037 29 30 C 0.58 formyltransferase
COG2069 24 34 C 0.62 CO dehydrogenase/acetyl-CoA synthase delta subunit
COG2262 60 556 J 0.68 50S ribosomal subunit-associated GTPase HIX
COG2382 5 235 P 0.61 Enterochelin esterase or related enzyme
COG2920 5 139 P 0.59 Sulfur relay (sulfurtransferase) protein
COG3252 45 34 H 0.66 Methenyltetrahydromethanopterin cyclohydrolase
COG3376 7 72 P 0.67 High-affinity nickel permease
COG3508 3 173 Q 0.67 Homogentisate 1,2-dioxygenase
COG3885 9 53 Q 0.57 Aromatic ring-opening dioxygenase, LigB subunit
COG4021 27 15 J 0.69 tRNA(His) 5-end guanylyltransferase
COG427r 17 125 R 0.65 Predicted DNA-binding protein
COG4732 5 36 S 0.64 Predicted membrane protein
COG4754 22 67 S 0.62 Uncharacterized protein
COG4866 9 64 S 0.70 Uncharacterized protein

Table 9: Data set of SSCYC showing a single split. (*) indicates COGs that are in the set of

single 3-domain split groups of Harris et al.

Appendix B. Dynamic Programming on Phylogenetic Trees 177

COG s arc bac cat D annotation

COGO0109 4 30 402 HI 0.81 Polyprenyltransf.(heme O synthase)

COGo0316 6 32 55 O 0.83 Fe-S cluster assembly iron-bind. prot. IscA

COG0400 5 18 385 R 0.84 Predicted esterase

CcOoGo412 7 14 521 Q 0.93 Dienelactone hydrolase

COGO431 9 25 585 C 0.89 NAD(P)H-dependent FMN reductase

COGO0569 19 76 661 P 0.93 Trk K+ transp. sys., NAD-bind. comp.

COGo604 13 39 1317 CR 0.95 NADPH:quinone or rel. Zn-dep. oxido reduct.
COG0654 6 9 1189 HC 0.94 2-polyprenyl-6-methoxyphenol hydroxylase

COG0665 14 47 984 E 0.92 Glycine/D-amino acid oxidase (deaminating)

COG0843 8 32 495 C 0.81 Heme/copper-type cytochrome/quinol oxidase, subunit 1
COG1012 29 76 1937 C 0.98 Acyl-CoA reduct. or other NAD-dep. dehyd.

COG1018 10 31 709 C 0.91 Ferredoxin-NADP reductase

COG1064 17 42 468 G 0.90 D-arabinose 1-dehydrogenase

COG1290 6 31 350 C 0.77 Cytochrome b subunit of the bc complex

CcOoG1622 7 34 37 C 0.87 Heme/copper-type cytochrome/quinol oxidase, subunit 2
COG1764 4 12 420 V 0.78 Organic hydroperoxide reductase OsmC/OhrA
COG1845 5 24 496 C 0.88 Heme/copper-type cytochrome/quinol oxidase, subunit 3
COG2010 4 10 838 C 0.59 Cytochrome ¢, mono- and diheme variants

COG2128 6 18 601 P 0.85 Alkylhydroperoxidase family enzyme

COG2132 9 21 423 DPM 0.92 Multicopper oxidase with three cupredoxin domains
COG2133 12 28 581 G 0.94 Glucose/arabinose dehydrogenase, beta-propeller fold
COG2154 8 30 35 H 0.88 Pterin-4a-carbinolamine dehydratase

COG2259 8 20 530 S 0.95 Uncharact. membrane prot. YphA, DoxX/SURF4 fam.
COG2346 2 14 350 P 0.66 Truncated hemoglobin Yjbl

COG2353 1 2 548 R 0.70 Polyisoprenoid-binding periplasmic protein Ycel
COG4221 12 30 1124 C 0.97 NADP-dep. 3-hydroxy acid dehydrogenase YdfG
COG1152 4 23 18 C 0.39 CO dehydrogenase/acetyl-CoA synthase alpha subunit
COG1456 5 27 42 C 0.74 CO dehydrogenase/acetyl-CoA synthase gamma subunit
CcOG1614 2 24 36 C 0.55 CO dehydrogenase/acetyl-CoA synthase beta subunit
COG2069 1 24 34 C 0.59 CO dehydrogenase/acetyl-CoA synthase delta subunit
COGOo08s 1 87 619 K 0.27 DNA-directed RNA polymerase, beta/140 kD subunit
COGOo0o86 1 82 537 K 0.25 DNA-directed RNA polymerase, beta’/160 kD subunit
COG0231 1 82 636 J 0.24 Transl. elong. f. P(EF-P)/transl. init. f. 5A(elF-5A)
COGI1110 2 35 20 L 0.85 Reverse gyrase

Table 10: Data for COGs appearing in the following data sets: 26 oxygen related COGs,
4 CODH COGs, 4 COGs mentioned by Catchpole and Forterre (2019). s:number of splits,
cat:functional category.

178 Appendix B. Dynamic Programming on Phylogenetic Trees

Appendix C. Unbiased Map of Transcription Termination Sites in Haloferax volcaniil79

APPENDIX

Unbiased Map of Transcription
Termination Sites in Haloferax
volcanit

C.1 Mapping RNAsequencing data

To determine TTS, RNA was isolated from H. volcanii cells (from three biological replicates)
and cDNA libraries were generated to allow RNA 3’ end determination. Libraries were
subjected to paired-end next-generation sequencing (NGS), resulting in 22 million read
pairs for each library on average. Raw reads were clipped and trimmed using cutadapt
version 1.10 (Martin, 2011) based on fastqc version 0.11.4 (Andrews et al., 2010) quality
control reports. Reads were then mapped with segemehl (version 0.2.0) (S. Hoffmann et al.,
2009; C. Otto et al., 2014), see Table 11. We used -A 94 to require higher accuracy in
order to account for prokaryote mapping instead of mapping eukaryotic genomes. Mapped
reads were processed using samtools version 1.3 (Li et al., 2009). The bedtools suite
(bedtools v2.26.0) (Quinlan and I. M. Hall, 2010) was used to calculate genome coverage
and intersection of data sets.

C.2 Dar-Sorek-Method

Based on the Dar-Sorek-Method (DSM) (Dar et al., 2016a; Dar et al., 2016b), putative
TTS were retrieved from the mapping data. We only used read pairs and at least a
coverage of 4 for every valid position. For each annotated region in the genome, all inserts
overlapping with the annotated region were collected. Then, for each position downstream
of a gene, all collected reads that end at this position were summarised, excluding inserts
longer than 500 bp. The average insert length of all the corresponding read pairs was
defined as the length of the target downstream region. For all read pairs where the insert

180Appendix C. Unbiased Map of Transcription Termination Sites in Haloferax volcanii

sample replika mapped uniquely mapped | unmapped | % mapped
S1 54,339,610 40,848,267 1,966,445 95
TEX- S2 45,672,059 34,466,376 1,638,848 95
S3 60,258,543 45,649,822 1,638,848 97
S1 59,993,014 46,773,468 5,737,678 89
TEX+ S2 38,462,663 29,191,284 2,931,762 91
S3 44,117,608 34,786,898 2,825,896 92
S1 54,684,129 42,626,326 1,934,439 96
Wildtype S2 50,210,254 40,447,008 1,566,743 96
S3 42,503,303 38,733,269 810,822 98

Table 11: Numbers of mapped reads, uniquely mapped reads and unmapped reads for RNASeq
data. TEX+ includes enriched primary (unprocessed) 3’ ends, thus transcription termination
sites and sequences starting from the transcript fragments’ 3’ ends. TEX- is sequenced starting
from the transcript fragments’ 3’ ends without enrichment and the wildtype is sequenced starting
from the transcripts 5’ends.

overlapped an annotated region, the position with highest read-end coverage inside the
target downstream region of an annotated 3’ end was reported as a TTS (Table 12 and
Figure 61).

C.3 Internal Enrichment

The software, Internal-Enrichment (IE), was implemented in perl and is available at Bioin-
formatics Leipzig (http://www.bioinf.uni-leipzig.de/publications/supplements/
18-059). Based on the distributions, native fragment end scores can be assigned an
empirical p-value, evaluating its likelihood to occur by change alone. We ran IE using
all position showing signals for starts and ends (-mr 1), we omitted read fragments with
length more than 100 nt (-mf 100), and the geometric mean as a method to calculate
a score for the given signals (-mode GeomMean). We only included signals that were
present in all three replica such that each showed a maximal empirical p-value of 0.05.
The geometric mean of all empirical p-values for one position is used as the final score.

chromosome chr. length (kb) | intergenic coding total
CHR 2,848 2,046 378 2,424
pHV1 85 70 22 92
pHV3 438 204 18 222
pHV4 636 353 64 417
total - 2,673 482 3,155

Table 12: Number of TTS determined using DSM for distinct parts of the genome (main
chromosome and chromosomal plasmids pHV1, pHV3 and pHV4) and for coding and intergenic
regions.

http://www.bioinf.uni-leipzig.de/publications/supplements/18-059
http://www.bioinf.uni-leipzig.de/publications/supplements/18-059

List of Abbreviations

181

List of Abbreviations

ADP algebraic dynamic programming.
BLAST basic local alignment search tool.

CFG context-free grammar.

CMs covariance models.

COGs conserved orthologous groups of proteins.

DAG directed acyclic graph.
DNA deoxyribonucleic acid.

DP dynamic programming.
ER equivalence relation.

HGT horizontal gene transfer.

HMMs hidden Markov models.

LCA lowest common ancestor.
LGT lateral gene transfer.
IncRNA long non-coding RNA.

LUCA lowest universal common ancestor.

MCIS maximum common induced subgraph.
miRNA micro RNA.
ML maximum likelihood.

MP maximum parsimony.

182

List of Abbreviations

mRNA messenger RNA.

MSA multiple sequence alignment.

ncRNA non-coding RNA.
NGS Next Generation Sequencing.
NJ neighbor-joining.

NUTs nearly universal trees.
ORF open reading frame.

PDB protein data bank.
PO partial order.

PS processing sites.

RNA ribonucleic acid.
rRINA ribosomal RNA.

snoRINA small nucleolar RNA.
snRNA small nuclear RNA.

TO total order.
TOL tree of life.
tRINA transfer RNA.

TSS transcription start site.

TTS transcription termination site.

UTR untranslated region.

Bibliography 183

Bibliography

Adam, P. S., G. Borrel, and S. Gribaldo (2018). “Evolutionary history of carbon monoxide
dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes”. In:
Proceedings of the National Academy of Sciences 115.6, E1166—-E1173. DOI: 10.1073/
pnas.1716667115.

Afgan, E., D. Baker, B. Batut, M. Van Den Beek, D. Bouvier, M. Cech, J. Chilton, D.
Clements, N. Coraor, B. A. Griining, et al. (2018). “The Galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2018 update”. In: Nucleic acids
research 46.W1, W537-Wb544. por: 10.1093/nar/gky379.

Akutsu, T. (1993). “A polynomial time algorithm for finding a largest common subgraph of
almost trees of bounded degree”. In: IFICFE transactions on fundamentals of electronics,
communications and computer sciences 76.9, pp. 1488-1493. DOI: 10.3390/26010119.

Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter (2008). Molecular
biology of the cell: 5th edition. Garland Science. DOI: 10.1201/9780203833445.

Altenhoff, A. M. and C. Dessimoz (2009). “Phylogenetic and functional assessment of
orthologs inference projects and methods”. In: PLoS Comput Biol. 5, €1000262. DOI:
10.1371/journal.pcbi.1000262.

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (1990). “Basic
local alignment search tool”. In: Journal of molecular biology 215.3, pp. 403—410. DOT:
10.1006/jmbi.1990.9999.

Altschul, S. F., T. L. Madden, A. A. Schéffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman (1997). “Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs”. In: Nucleic Acids Res. 25, pp. 3389-3402. por: 10.1093/
nar/25.17.3389.

Amman, F., A. D’Halluin, R. Antoine, L. Huot, I. Bibova, K. Keidel, S. Slupek, P.
Bouquet, L. Coutte, S. Caboche, et al. (2018). “Primary transcriptome analysis reveals
importance of IS elements for the shaping of the transcriptional landscape of Bordetella
pertussis”. In: RNA biology 15.7, pp. 967-975. DOT: 10.1080/15476286.2018.1462655.

Ammar, R., D. Torti, K. Tsui, M. Gebbia, T. Durbic, G. D. Bader, G. Giaever, and
C. Nislow (2012). “Chromatin is an ancient innovation conserved between Archaea
and Eukarya”. In: Elife 1, e00078. DOI: 10.7554/elife.00078.

Amstutz, H., P. Munz, W. D. Heyer, U. Leupoid, and J. Kohli (1985). “Concerted evolution
of tRNA genes: intergenic conversion among three unlinked serine tRNA genes in S.
pombe”. In: Cell 40, pp. 879-886. DOI: 10.1016/0092-8674(85)90347-2.

Andrews, S. et al. (2010). FastQC: a quality control tool for high throughput sequence data.

https://doi.org/10.1073/pnas.1716667115
https://doi.org/10.1073/pnas.1716667115
https://doi.org/10.1093/nar/gky379
https://doi.org/10.3390/a6010119
https://doi.org/10.1201/9780203833445
https://doi.org/10.1371/journal.pcbi.1000262
https://doi.org/10.1006/jmbi.1990.9999
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1080/15476286.2018.1462655
https://doi.org/10.7554/elife.00078
https://doi.org/10.1016/0092-8674(85)90347-2

184

Bibliography

Arimbasseri, A. G., K. Rijal, and R. J. Maraia (2013). “Transcription termination by
the eukaryotic RNA polymerase II1”. In: Biochimica et Biophysica Acta (BBA)-Gene
Regulatory Mechanisms 1829.3-4, pp. 318-330. DOI: 10.1126/science.1237934.

Arnold, C. and C. L. Nunn (2010). “Phylogenetic Targeting of Research Effort in Evolu-
tionary Biology”. In: Amer. Nat. 176, pp. 601-612. DOI: 10.1086/656490.

Arnold, C. and P. F. Stadler (2010). “Polynomial algorithms for the Maximal Pairing
Problem: efficient phylogenetic targeting on arbitrary trees”. In: Alg. Mol. Biol. 5,
p- 25. DOI: 10.1186/1748-7188-5-25.

Babski, J., K. A. Haas, D. Néather-Schindler, F. Pfeiffer, K. U. Forstner, M. Hammelmann,
R. Hilker, A. Becker, C. M. Sharma, A. Marchfelder, et al. (2016). “Genome-wide
identification of transcriptional start sites in the haloarchaeon Haloferax volcanii
based on differential RNA-Seq (dARNA-Seq)”. In: BMC' genomics 17.1, p. 629. DOI:
10.1186/512864-016-2920-y.

Baichoo, S. and C. A. Ouzounis (2017). “Computational complexity of algorithms for
sequence comparison, short-read assembly and genome alignment”. In: Biosystems
156/157, pp. 72-85. DOIL: 10.1016/j.biosystems.2017.03.003.

Bailey, T. L., M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W.
Li, and W. S. Noble (2009). “MEME SUITE: tools for motif discovery and searching”.
In: Nucleic acids research 37.suppl_2, W202-W208. pDoI: 10.1093/nar/gkp335.

Barrow, H. G. and R. M. Burstall (1976). “Subgraph isomorphism, matching relational
structures and maximal cliques”. In: Information Processing Letters 4, pp. 83-84. DOL:
10.1016/0020-0190(76)90049-1.

Baumann, P.; S. A. Qureshi, and S. P. Jackson (1995). “Transcription: new insights from
studies on Archaea”. In: Trends in Genetics 11.7, pp. 279-283. DOI: 10.1016/s0168-
9525(00)89075-7.

Becerra, A., L. Delaye, S. Islas, and A. Lazcano (2007). “The Very Early Stages of
Biological Evolution and the Nature of the Last Common Ancestor of the Three
Major Cell Domains”. In: Annual Review of Ecology, Evolution, and Systematics 38.1,
pp. 361-379. DOI: 10.1146/annurev.ecolsys.38.091206.095825.

Bell, S. D. (2005). “Archaeal transcriptional regulation—variation on a bacterial theme?”
In: Trends in microbiology 13.6, pp. 262-265. DOI: 10.1016/j.tim.2005.03.015.
Bellman, R. (1952). “On the theory of dynamic programming”. In: Proceedings of the

National Academy of Sciences 38.8, pp. 716-719.

Bellman, R. et al. (1954). “The theory of dynamic programming”. In: Bulletin of the
American Mathematical Society 60.6, pp. 503-515. DOI: 10.1090/s0002-9904-1954~
09848-8.

Bennett, E. A., H. Keller, R. E. Mills, S. Schmidt, J. V. Moran, O. Weichenrieder, and
S. E. Devine (2008). “Active Alu retrotransposons in the human genome”. In: Genome
research 18.12, pp. 1875-1883. DOI: 10.1101/gr.081737.108.

Bergeron, F., G. Labelle, and P. Leroux (1998). Combinatorial species and tree-like
structures. Vol. 67. Cambridge University Press. DOI: 10.1017/cbo9781107325913.
Berkemer, S. J., L.-K. Maier, F. Amman, S. H. Bernhart, J. Wortz, P. Mérkle, F. Pfeiffer,
P. F. Stadler, and A. Marchfelder (2020). “Identification of RNA 3’ ends and termination
sites in Haloferax volcanii”. In: RNA Biology 0.0, pp. 1-14. DOI: 10.1080/15476286.

2020.1723328.

https://doi.org/10.1126/science.1237934
https://doi.org/10.1086/656490
https://doi.org/10.1186/1748-7188-5-25
https://doi.org/10.1186/s12864-016-2920-y
https://doi.org/10.1016/j.biosystems.2017.03.003
https://doi.org/10.1093/nar/gkp335
https://doi.org/10.1016/0020-0190(76)90049-1
https://doi.org/10.1016/s0168-9525(00)89075-7
https://doi.org/10.1016/s0168-9525(00)89075-7
https://doi.org/10.1146/annurev.ecolsys.38.091206.095825
https://doi.org/10.1016/j.tim.2005.03.015
https://doi.org/10.1090/s0002-9904-1954-09848-8
https://doi.org/10.1090/s0002-9904-1954-09848-8
https://doi.org/10.1101/gr.081737.108
https://doi.org/10.1017/cbo9781107325913
https://doi.org/10.1080/15476286.2020.1723328
https://doi.org/10.1080/15476286.2020.1723328

Bibliography

185

Berkemer, S. J., R. R. Chaves, A. Fritz, M. Hellmuth, M. Hernandez-Rosales, and P. F.
Stadler (2015). “Spiders can be recognized by counting their legs”. In: Mathematics in
Computer Science 9.4, pp. 437-441. DOI: 10.1007/s11786-015-0233-1.

Berkemer, S. J., A. Hoffmann, C. R. Murray, and P. F. Stadler (2017a). “SMORE: Synteny
Modulator of Repetitive Elements”. In: Life 7.4, p. 42. DOI: 10.3390/11fe7040042.

Berkemer, S. J., C. Honer zu Siederdissen, and P. F. Stadler (2017b). “Algebraic dynamic
programming on trees”. In: Algorithms 10, p. 135. DOI: 10.3390/a10040135.

Berkemer, S. J., C. Honer zu Siederdissen, and P. F. Stadler (2019). “Compositional
Properties of Alignments”. In: Mathematics in Computer Science, submitted.

Berkemer, S. J. and S. E. McGlynn (2020). “Phylogenetic domain separation of protein
families constrains functional inference of LUCA”. In: Molecular Biology and Evolution,
under review.

Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne (2000). “The protein data bank”. In: Nucleic acids
research 28.1, pp. 235-242.

Bermudez-Santana, C., C. Stephan-Otto Attolini, T. Kirsten, J. Engelhardt, S. J. Prohaska,
S. Steigele, and P. F. Stadler (2010). “Genomic Organization of Eukaryotic tRNAs”.
In: BMC Genomics 11, p. 270. DOI: 10.1186/1471-2164-11-270.

Bernhart, S. H., I. L. Hofacker, S. Will, A. R. Gruber, and P. F. Stadler (2008). “RNAalifold:
improved consensus structure prediction for RNA alignments”. In: BMC bioinformatics
9.1, p. 474. DOI: 10.1186/1471-2105-9-474.

Bhattacharya, T. et al. (2018). “Studying Language Evolution in the Age of Big Data”.
In: J. Language Evol. 3, pp. 94-129. DOI: 10.1093/jole/1zy004.

Bille, P. (2005). “A survey on tree edit distance and related problems”. In: Theor. Comput.
Sci. 337, pp. 217-239. DOI: 10.1016/j.tcs.2004.12.030.

Bird, R. and O. De Moor (1993). “From dynamic programming to greedy algorithms”. In:
Formal program development. Springer, pp. 43-61. DOI: 10.1007/3-540-57499-9_16.

Bjorner, A. and G. M. Ziegler (1992). “Introduction to Greedoids”. In: Matroid Appli-
cations. Ed. by N. White. Cambridge University Press, pp. 284-357. DOI: 10.1017/
cbo9780511662041.009.

Bompfiinewerer, A. F., R. Backofen, S. H. Bernhart, J. Hertel, I. L. Hofacker, P. F. Stadler,
and S. Will (2008). “Variations on RNA folding and alignment: lessons from Benasque”.
In: Journal of mathematical biology 56.1-2, pp. 129-144. DOI: 10.1007/s00285-007~
0107-5.

Bonizzoni, P. and G. Della Vedova (2001). “The complexity of multiple sequence alignment
with SP-score that is a metric”. In: Theor. Comp. Sci. 259, pp. 63-79. DOI: 10.1016/
50304-3975(99)00324-2.

Boria, 1., A. R. Gruber, A. Tanzer, S. Bernhart, R. Lorenze, M. M. Mueller, I. L. Hofacker,
and P. F. Stadler (2010). “Nematode sbRNAs: homologs of vertebrate Y RNAs”. In: J.
Mol. Evol. 70, pp. 346—-358. DOI: 10.1007/s00239-010-9332-4.

Bringmann, K., P. Gawrychowski, S. Mozes, and O. Weimann (2018). “Tree Edit Distance
Cannot be Computed in Strongly Subcubic Time (unless APSP can)”. In: SODA 2018.
DOI: 10.1137/1.9781611975031.77.

Brown, J. W., C. J. Daniels, J. N. Reeve, and J. Konisky (1989). “Gene Structure, Organi-
zation, And Expression In Archaebacteria”. In: CRC Critical Reviews in Microbiology
16.4, pp. 287-337. DOI: 10.3109/10408418909105479.

https://doi.org/10.1007/s11786-015-0233-1
https://doi.org/10.3390/life7040042
https://doi.org/10.3390/a10040135
https://doi.org/10.1186/1471-2164-11-270
https://doi.org/10.1186/1471-2105-9-474
https://doi.org/10.1093/jole/lzy004
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1007/3-540-57499-9_16
https://doi.org/10.1017/cbo9780511662041.009
https://doi.org/10.1017/cbo9780511662041.009
https://doi.org/10.1007/s00285-007-0107-5
https://doi.org/10.1007/s00285-007-0107-5
https://doi.org/10.1016/S0304-3975(99)00324-2
https://doi.org/10.1016/S0304-3975(99)00324-2
https://doi.org/10.1007/s00239-010-9332-4
https://doi.org/10.1137/1.9781611975031.77
https://doi.org/10.3109/10408418909105479

186

Bibliography

Bunke, H. (1997). “On a relation between graph edit distance and maximum common
subgraph”. In: Pattern Recognition Letters 18, pp. 689—694. DO1: 10.1016/S0167~
8655(97)00060-3.

Canzar, S. and S. L. Salzberg (2017). “Short read mapping: An algorithmic tour”. In:
Proceedings of the IEEE 105.3, pp. 436-458. DOI: 10.1109/jproc.2015.2455551.
Capra, J. A., M. Stolzer, D. Durand, and K. S. Pollard (2013). “How old is my gene?” In:

Trends Genet 29, pp. 659-668. DOI: 10.1016/j.tig.2013.07.001.

Carrillo, H. and D. J. Lipman (1988). “The multiple sequence alignment problem in
biology”. In: SIAM J. Appl. Math. 48, pp. 1073-1082. pOI1: 10.1137/0148063.

Case, R. J., Y. Boucher, I. Dahllof, C. Holmstrom, W. F. Doolittle, and S. Kjelleberg
(2007). “Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology
studies”. In: Appl. Environ. Microbiol. 73.1, pp. 278-288. DOI: 10.1128/aem.01177-06.

Catchpole, R. and P. Forterre (2019). “Positively twisted: The complex evolutionary
history of Reverse Gyrase suggests a non-hyperthermophilic Last Universal Common
Ancestor”. In: bioRziv, p. 524215. DOT: 10.1101/524215.

Charlebois, R. L. and W. F. Doolittle (2004). “Computing prokaryotic gene ubiquity:
rescuing the core from extinction”. In: Genome research 14.12, pp. 2469-2477. DOTI:
10.1101/gr.3024704.

Chauve, C., J. Courtiel, and Y. Ponty (2016). “Counting, generating and sampling tree
alignments”. In: International Conference on Algorithms for Computational Biology.
Springer, pp. 53-64. DOIL: 10.1007/978-3-319-38827-4_5.

Chen, W. (2001). “New algorithm for ordered tree-to-tree correction problem”. In: Journal
of Algorithms 40.2, pp. 135-158. DOI: 10.1006/jagm.2001.1170.

Chomsky, N. (1959). “On certain formal properties of grammars”. In: Information and
control 2.2, pp. 137-167. DOI: 10.1016/s0019-9958(59)90362-6.

Chomsky, N. and M. P. Schiitzenberger (1963). “The algebraic theory of context-free
languages”. In: Studies in Logic and the Foundations of Mathematics 35, pp. 118-161.
DOI: 10.1016/s0049-237x(09)70104~-1.

Christov, C. P., T. J. Gardiner, D. Sziits, and T. Krude (2006). “Functional Requirement
of Noncoding Y RNAs for Human Chromosomal DNA Replication”. In: Mol. Cell.
Biol. 26, pp. 6993-7004. DOL: 10.1128/mcb.01060-06.

Cohen, O., S. Doron, O. Wurtzel, D. Dar, S. Edelheit, I. Karunker, E. Mick, and R. Sorek
(2016). “Comparative transcriptomics across the prokaryotic tree of life”. In: Nucleic
acids research 44.W1, W46-W53. DOI: 10.1093/nar/gkw394.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2009). Introduction to
Algorithms. third edition. DOI: 10.2307/2583667.

Costa-Silva, J., D. Domingues, and F. M. Lopes (2017). “RNA-Seq differential expression
analysis: An extended review and a software tool”. In: PloS one 12.12, e0190152. DOT:
10.1371/journal.pone.0190152.

Cysouw, M. and H. Jung (2007). “Cognate Identification and Alignment Using Practical
Orthographies”. In: Proceedings of Ninth Meeting of the ACL Special Interest Group in
Computational Morphology and Phonology. Association for Computational Linguistics,
pp. 109-116. URL: https://www.aclweb.org/anthology/W/W07/WO7-1314.pdf.

Dalquen, D. A.; A. M. Altenhoff, G. H. Gonnet, and C. Dessimoz (2013). “The Impact of
Gene Duplication, Insertion, Deletion, Lateral Gene Transfer and Sequencing Error on

https://doi.org/10.1016/S0167-8655(97)00060-3
https://doi.org/10.1016/S0167-8655(97)00060-3
https://doi.org/10.1109/jproc.2015.2455551
https://doi.org/10.1016/j.tig.2013.07.001
https://doi.org/10.1137/0148063
https://doi.org/10.1128/aem.01177-06
https://doi.org/10.1101/524215
https://doi.org/10.1101/gr.3024704
https://doi.org/10.1007/978-3-319-38827-4_5
https://doi.org/10.1006/jagm.2001.1170
https://doi.org/10.1016/s0019-9958(59)90362-6
https://doi.org/10.1016/s0049-237x(09)70104-1
https://doi.org/10.1128/mcb.01060-06
https://doi.org/10.1093/nar/gkw394
https://doi.org/10.2307/2583667
https://doi.org/10.1371/journal.pone.0190152
https://www.aclweb.org/anthology/W/W07/W07-1314.pdf

Bibliography

187

Orthology Inference: A Simulation Study”. In: PLoS ONE 8, €56925. DOI: 10.1371/
journal .pone.0056925.

Dar, D., D. Prasse, R. A. Schmitz, and R. Sorek (2016a). “Widespread formation of
alternative 3’ UTR isoforms via transcription termination in archaea”. In: Nature
microbiology 1.10, p. 16143. DOIL: 10.1038/nmicrobiol.2016.143.

Dar, D., M. Shamir, J. Mellin, M. Koutero, N. Stern-Ginossar, P. Cossart, and R. Sorek
(2016Db). “Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacte-
ria”. In: Science 352.6282, aad9822. DOI: 10.1126/science.aad9822.

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life (1st ed.)

De Moor, O. (1994). “Categories, relations and dynamic programming”. In: Mathematical
Structures in Computer Science 4.1, pp. 33—69. DOI: 10.1017/s0960129500000360.

Do, C. B., M. S. Mahabhashyam, M. Brudno, and S. Batzoglou (2005). “ProbCons:
Probabilistic consistency-based multiple sequence alignment”. In: Genome Res. 15,
pp. 330-340. por: 10.1101/gr.2821705.

Dong, S. and D. B. Searls (1994). “Gene structure prediction by linguistic methods”. In:
Genomics 23.3, pp. 540-551. DOI: 10.1006/geno.1994.1541.

Droste, M. and W. Kuich (2009). “Semirings and formal power series”. In: Handbook of
Weighted Automata. Springer, pp. 3—28. DOI: 10.1007/978-3-642-01492-5_1.

Duesbury, E., J. Holliday, and P. Willett (2018). “Comparison of Maximum Common
Subgraph Isomorphism Algorithms for the Alignment of 2D Chemical Structures”. In:
ChemMedChem 13, pp. 588-598. DOI: 10.1002/cmdc.201700482.

Dulucq, S. and L. Tichit (2003). “RNA secondary structure comparison: exact analysis
of the Zhang-Shasha tree edit algorithm”. In: Theoretical Computer Science 306.1,
pp- 471-484. DOI: 10.1016/s0304-3975(03)00323-2.

Durbin, R., S. R. Eddy, A. Krogh, and G. Mitchison (1998). Biological sequence anal-
ysts: probabilistic models of proteins and nucleic acids. Cambridge, UK: Cambridge
University Press. DOI: 10.1017/cbo9780511790492.002.

Eddy, S. R. (2011). “Accelerated profile HMM searches”. In: PLoS computational biology
7.10, €1002195. DOI: 10.1371/journal.pcbi.1002195.

Eddy, S. R. (1998). “Profile hidden Markov models.” In: Bioinformatics (Ozford, England)
14.9, pp. 755-763. DOI: 10.1093/bioinformatics/14.9.755.

Edgar, R. C. and S. Batzoglou (2006). “Multiple sequence alignment”. In: Curr Opin
Struct Biol 16, pp. 368-373. DOI: 10.1016/j.sbi.2006.04.004.

Edgar, R. C. (2004). “MUSCLE: multiple sequence alignment with high accuracy and high
throughput”. In: Nucleic Acids Res. 32, pp. 1792-1797. DO1: 10.1093/nar/gkh340.

Eger, S. (2013). “Sequence alignment with arbitrary steps and further generalizations,

with applications to alignments in linguistics”. In: Information Sci. 237, pp. 287-304.

DOI: 10.1016/j.ins.2013.02.031.

Ehrlich, H.-C. and M. Rarey (2011). “Maximum common subgraph isomorphism algorithms
and their applications in molecular science: a review”. In: Wiley Interdisciplinary
Reviews: Computational Molecular Science 1, pp. 68-79. DOI: 10.1002/wcms . 5.

Figen, M., B. F. Lindemann, M. Tietze, R. Winkler-Oswatitsch, A. W. M. Dress, and
A. von Haeseler (1989). “How old is the genetic code? Statistical geometry of tRNA
provides an answer”. In: Science 244, pp. 673—679. DOI: 10.1126/science.2497522.

https://doi.org/10.1371/journal.pone.0056925
https://doi.org/10.1371/journal.pone.0056925
https://doi.org/10.1038/nmicrobiol.2016.143
https://doi.org/10.1126/science.aad9822
https://doi.org/10.1017/s0960129500000360
https://doi.org/10.1101/gr.2821705
https://doi.org/10.1006/geno.1994.1541
https://doi.org/10.1007/978-3-642-01492-5_1
https://doi.org/10.1002/cmdc.201700482
https://doi.org/10.1016/s0304-3975(03)00323-2
https://doi.org/10.1017/cbo9780511790492.002
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1093/bioinformatics/14.9.755
https://doi.org/10.1016/j.sbi.2006.04.004
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1016/j.ins.2013.02.031
https://doi.org/10.1002/wcms.5
https://doi.org/10.1126/science.2497522

188

Bibliography

Eigen, M. and R. Winkler-Oswatitsch (1981). “Transfer-RNA, an early gene?” In: Natur-
wissenschaften 68, pp. 282-292. DOI: 10.1007/b£f01047470.

Elemento, O. and O. Gascuel (2005). “An exact and polynomial distance-based algorithm
to reconstruct single copy tandem duplication trees”. In: J. Discr. Algo. 3, pp. 362-374.
DOI: 10.1016/j.jda.2004.08.013.

Elias, I. (2006). “Settling the Intractability of Multiple Alignment”. In: J. Comp. Biol. 13,
pp- 1323-1339. poI: 10.1089/cmb.2006.13.1323.

Eme, L., A. Spang, J. Lombard, C. W. Stairs, and T. J. Ettema (2017). “Archaea
and the origin of eukaryotes”. In: Nature Reviews Microbiology 15.12, p. 711. DOI:
10.1038/nrmicro.2017.133.

Emmert-Streib, F., M. Dehmer, and Y. Shi (2016). “Fifty years of graph matching, network
alignment and network comparison”. In: Information Sci. 346/347, pp. 180-197. por:
10.1016/j.ins.2016.01.074.

Fagin, R., R. Kumar, and D. Sivakumar (2003). “Comparing Top-k Lists”. In: STAM J.
Discr. Math. 17, pp. 134-160. DOI: 10.1137/S0895480102412856.

Farris, A. D., G. Koelsch, G. J. Pruijn, W. J. van Venrooij, and J. B. Harley (1999).
“Conserved features of Y RNAs revealed by automated phylogenetic secondary structure
analysis”. In: Nucl. Ac. Res. 27, pp. 1070-8. DOI: 10.1093/nar/27.4.1070.

Felsenstein, J. (1999). “PHYLIP (Phylogeny Inference Package) and manual”. In: URL:
http://evolution.%20genetics.%20washington.%20edu/phylip.%20html.

Felsenstein, J. (1981). “Evolutionary trees from DNA sequences: a maximum likelihood
approach”. In: Journal of molecular evolution 17.6, pp. 368-376. DOI: 10 .1007/
bf01734359.

Feng, D.-F. and R. F. Doolittle (1987). “Progressive sequence alignment as a prerequisite
to correct phylogenetic trees”. In: J. Mol. Evol. 25, pp. 351-360. DOI: 10. 1007/
BF02603120.

Fitch, W. M. (1971). “Towards defining the course of evolution: minimum change for a
specific tree topology”. In: Syst Zool 20, pp. 406-416. DOI: 10.2307/2412116.

Fitch, W. M. (1970). “Distinguishing Homologous from Analogous Proteins”. In: Syst.
Biol. 19, pp. 99-113. DOI: 10.2307/2412448.

Fitch, W. M. and E. Margoliash (1967). “Construction of phylogenetic trees”. In: Science
155.3760, pp. 279-284. DOI: 10.1126/science.155.3760.279.

Flajolet, P. and R. Sedgewick (2009). Analytic combinatorics. cambridge University press.
DOI: 10.1017/cbo9780511801655.

Florentz, C., F. Jiihling, J. Piitz, C. Sauter, P. F. Stadler, and R. Giegé (2012). “Structure
of transfer RNAs: a function-driven refined view”. In: Wiley Interdiscip Rev RNA 3,
pp. 37-61. DOT: 10.1002/wrna.103.

Fomin, F. V., I. Todinca, and Y. Villanger (2011). “Exact algorithm for the maximum
induced planar subgraph problem”. In: Proceedings of the 19th European conference on
Algorithms. Ed. by C. Demetrescu and M. M. Halldérsson. Vol. 6942. Lecture Notes
Comp. Sci. Berlin, Heidelberg: Springer-Verlag, pp. 287-298. DoI: 10.1007/978-3-
642-23719-5_25.

Forslund, K. et al. (2017). “Gearing up to handle the mosaic nature of life in the quest
for orthologs”. In: Bioinformatics 34.2. Ed. by J. Kelso, pp. 323-329. por: 10.1093/
bioinformatics/btx542.

https://doi.org/10.1007/bf01047470
https://doi.org/10.1016/j.jda.2004.08.013
https://doi.org/10.1089/cmb.2006.13.1323
https://doi.org/10.1038/nrmicro.2017.133
https://doi.org/10.1016/j.ins.2016.01.074
https://doi.org/10.1137/S0895480102412856
https://doi.org/10.1093/nar/27.4.1070
http://evolution.%20genetics.%20washington.%20edu/phylip.%20html
https://doi.org/10.1007/bf01734359
https://doi.org/10.1007/bf01734359
https://doi.org/10.1007/BF02603120
https://doi.org/10.1007/BF02603120
https://doi.org/10.2307/2412116
https://doi.org/10.2307/2412448
https://doi.org/10.1126/science.155.3760.279
https://doi.org/10.1017/cbo9780511801655
https://doi.org/10.1002/wrna.103
https://doi.org/10.1007/978-3-642-23719-5_25
https://doi.org/10.1007/978-3-642-23719-5_25
https://doi.org/10.1093/bioinformatics/btx542
https://doi.org/10.1093/bioinformatics/btx542

Bibliography

189

Forterre, P. (2006). “Three RNA cells for ribosomal lineages and three DNA viruses to
replicate their genomes: A hypothesis for the origin of cellular domain”. In: Proceedings
of the National Academy of Sciences 103.10, pp. 3669-3674. DOI: 10.1073/pnas .
0510333103.

Forterre, P. and S. Gribaldo (2007). “The origin of modern terrestrial life”. In: HF'SP
journal 1.3, pp. 156-168. DOI: 10.2976/1.2759103.

Fouqueau, T., F. Blombach, G. Cackett, A. E. Carty, D. M. Matelska, S. Ofer, S. Pilotto,
D. K. Phung, and F. Werner (2018). “The cutting edge of archaeal transcription”. In:
Emerging Topics in Life Sciences 2.4, pp. 517-533. DOIL: 10.1042/et1s20180014.

Fouqueau, T., F. Blombach, and F. Werner (2017). “Evolutionary origins of two-barrel
RNA polymerases and site-specific transcription initiation”. In: Annual review of
microbiology 71, pp. 331-348. DOI: 10.1146/annurev-micro-091014-104145.

Fournier, G. P., C. P. Andam, and J. P. Gogarten (2015). “Ancient horizontal gene
transfer and the last common ancestors”. In: BMC' evolutionary biology 15.1, p. 70.
DOI: 10.1186/s12862-015-0350-0.

Frenkel, F. E., M. B. Chaley, E. V. Korotkov, and K. G. Skryabin (2004). “Evolution of
tRNA-like sequences and genome variability”. In: Gene 335, pp. 57-71. DOI: 10.1016/
j-gene.2004.03.005.

Fried, C., W. Hordijk, S. J. Prohaska, C. R. Stadler, and P. F. Stadler (2004). “The
Footprint Sorting Problem”. In: J. Chem. Inf. Comput. Sci. 44, pp. 332-338. DOI:
10.1021/¢ci030411+.

Galperin, M. Y., K. S. Makarova, Y. I. Wolf, and E. V. Koonin (2014). “Expanded microbial
genome coverage and improved protein family annotation in the COG database”. In:
Nucleic acids research 43.D1, pp. D261-D269. DOI: 10.1093/nar/gkul223.

Géartner, F. and P. F. Stadler (2019). “Direct Superbubble Detection”. In: Algorithms
12.4, p. 81. DOT: 10.3390/a12040081.

Gei3, M., P. F. Stadler, and M. Hellmuth (2019). “Reciprocal Best Match Graphs”. In:
arXiv preprint arXiv:1903.07920.

Georg, J. and W. R. Hess (2011). “cis-antisense RNA, another level of gene regulation in
bacteria”. In: Microbiol. Mol. Biol. Rev. 75.2, pp. 286-300. DOI: 10.1128/mmbr . 00032~
10.

Giegerich, R. (2000). “A systematic approach to dynamic programming in bioinformatics”.
In: Bioinformatics 16.8, pp. 665—677. DOI: 10.1093/bioinformatics/16.8.665.
Giegerich, R. and C. Meyer (2002). “Algebraic Dynamic Programming”. In: Algebraic
Methodology And Software Technology. Vol. 2422. Springer, pp. 243-257. DOI: 10.1007/

3-540-45719-4_24.

Giegerich, R. and H. Touzet (2014). “Modeling Dynamic Programming Problems over
Sequences and Trees with Inverse Coupled Rewrite Systems”. In: Algorithms, pp. 62—
144. port: 10.3390/a7010062.

Glansdorff, N., Y. Xu, and B. Labedan (2008). “The last universal common ancestor:
emergence, constitution and genetic legacy of an elusive forerunner”. In: Biology direct
3.1, p. 29. DOI: 10.1186/1745-6150-3-29.

Glantz, H. T. (1956). “On the recognition of information with a digital computer”.
In: Proceedings of the 1956 11th ACM national meeting. ACM, pp. 126-129. poI:
10.1145/320868.320878.

https://doi.org/10.1073/pnas.0510333103
https://doi.org/10.1073/pnas.0510333103
https://doi.org/10.2976/1.2759103
https://doi.org/10.1042/etls20180014
https://doi.org/10.1146/annurev-micro-091014-104145
https://doi.org/10.1186/s12862-015-0350-0
https://doi.org/10.1016/j.gene.2004.03.005
https://doi.org/10.1016/j.gene.2004.03.005
https://doi.org/10.1021/ci030411+
https://doi.org/10.1093/nar/gku1223
https://doi.org/10.3390/a12040081
https://doi.org/10.1128/mmbr.00032-10
https://doi.org/10.1128/mmbr.00032-10
https://doi.org/10.1093/bioinformatics/16.8.665
https://doi.org/10.1007/3-540-45719-4_24
https://doi.org/10.1007/3-540-45719-4_24
https://doi.org/10.3390/a7010062
https://doi.org/10.1186/1745-6150-3-29
https://doi.org/10.1145/320868.320878

190

Bibliography

Goldenfeld, N., T. Biancalani, and F. Jafarpour (2017). “Universal biology and the
statistical mechanics of early life”. In: Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 375.2109, p. 20160341. DOI:
10.1098/rsta.2016.0341.

Goldman, A. D., T. M. Bernhard, E. Dolzhenko, and L. F. Landweber (2012). “LUCApedia:
a database for the study of ancient life”. In: Nucleic acids research 41.D1, pp. D1079-
D1082. por: 10.1093/nar/gks1217.

Goodman, J. (1998). “Parsing inside-out”. In: arXiv preprint cmp-lg/9805007.

Goodman, J. (1999). “Semiring parsing”. In: Computational Linguistics 25.4, pp. 573-605.

Gotoh, O. (1982). “An improved algorithm for matching biological sequences”. In: J. Mol.
Biol. 162, pp. 705-708. DOI: 10.1016/0022-2836 (82) 90398-9.

Gotoh, O. (1986). “Alignment of three biological sequences with an efficient traceback
procedure”. In: J. theor. Biol. 121, pp. 327-337. DOI: 10.1016/S0022-5193(86)80112-
6.

Grabherr, M. G., P. Russell, M. Meyer, E. Mauceli, J. Alfoldi, F. Di Palma, and K. Lindblad-
Toh (2010). “Genome-wide synteny through highly sensitive sequence alignment:
Satsuma”. In: Bioinformatics 26, pp. 1145-1151. pDOI: 10.1093/bioinformatics/
btq102.

Grasso, C. and C. Lee (2004). “Combining partial order alignment and progressive multiple
sequence alignment increases alignment speed and scalability to very large alignment
problems”. In: Bioinformatics 20, pp. 1546-1556. DOI: 10.1093/bioinformatics/
bth126.

Gribaldo, S., A. M. Poole, V. Daubin, P. Forterre, and C. Brochier-Armanet (2010). “The
origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic
impasse?” In: Nature Reviews Microbiology 8.10, p. 743. DOI: 10.1038/nrmicro2426.

Hahne, F. and R. Ivanek (2016). “Visualizing genomic data using Gviz and bioconductor”.
In: Statistical Genomics. Springer, pp. 335—-351. DOI: 10.1007/978-1-4939-3578-
9_16.

Hall, A., C. Turnbull, and T. Dalmay (2013). “Y RNAs: recent developments”. In: Biomol.
Concepts 4, pp. 103-110. DOI: 10.1515/bmc-2012-0050.

Hamming, R. W. (1950). “Error Detecting and Error Correcting Codes”. In: Bell System
Technical Journal 29.2, pp. 147-160. DOI: 10.1002/j.1538-7305.1950.tb00463.x.

Harris, J. K., S. T. Kelley, G. B. Spiegelman, and N. R. Pace (2003). “The genetic core of the
universal ancestor”. In: Genome research 13.3, pp. 407-412. po1: 10.1101/gr.652803.

Hartigan, J. A. (1973). “Minimum mutation fits to a given tree”. In: Biometrics 29,
pp. 53-65. DOIL: 10.2307/2529676.

Hasse, H. (1985). Uber die Klassenzahl abelscher Zahlkérper. Springer Berlin Heidelberg.
DOI: 10.1007/978-3-642-69886-6.

Hellmuth, M., M. Herndndez Rosales, K. T. Huber, V. Moulton, P. F. Stadler, and N.
Wieseke (2013). “Orthology relations, symbolic ultrametrics, and cographs”. In: Journal
of mathematical biology 66.1-2, pp. 399-420. DOI: 10.1007/s00285-012-0525-x.

Hellmuth, M. and N. Wieseke (2015). “On symbolic ultrametrics, cotree representations,
and cograph edge decompositions and partitions”. In: International Computing and
Combinatorics Conference. Springer, pp. 609-623. DOI: 10.1007/978-3-319-21398-
9_48.

https://doi.org/10.1098/rsta.2016.0341
https://doi.org/10.1093/nar/gks1217
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1016/S0022-5193(86)80112-6
https://doi.org/10.1016/S0022-5193(86)80112-6
https://doi.org/10.1093/bioinformatics/btq102
https://doi.org/10.1093/bioinformatics/btq102
https://doi.org/10.1093/bioinformatics/bth126
https://doi.org/10.1093/bioinformatics/bth126
https://doi.org/10.1038/nrmicro2426
https://doi.org/10.1007/978-1-4939-3578-9_16
https://doi.org/10.1007/978-1-4939-3578-9_16
https://doi.org/10.1515/bmc-2012-0050
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1101/gr.652803
https://doi.org/10.2307/2529676
https://doi.org/10.1007/978-3-642-69886-6
https://doi.org/10.1007/s00285-012-0525-x
https://doi.org/10.1007/978-3-319-21398-9_48
https://doi.org/10.1007/978-3-319-21398-9_48

Bibliography

191

Hellmuth, M., N. Wieseke, M. Lechner, H.-P. Lenhof, M. Middendorf, and P. F. Stadler
(2015). “Phylogenomics with Paralogs”. In: Proc. Natl. Acad. Sci. USA 112. 10.1073/p-
nas.1412770112, pp. 2058-2063. DOI: 10.1073/pnas.1412770112.

Hendrick, J. P., S. L. Wolin, J. Rinke, M. R. Lerner, and J. A. Steitz (1981). “Ro
small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further
characterization of the Ro and La small ribonucleoproteins from uninfected mammalian
cells”. In: Mol. Cell. Biol. 1, pp. 1138-1149. po1: 10.1128/MCB.1.12.1138.

Hernandez-Rosales, M., M. Hellmuth, N. Wieseke, K. T. Huber, V. Moulton, and P. F.
Stadler (2012). “From Event-Labeled Gene Trees to Species Trees”. In: BMC' Bioinfor-
matics 13.Suppl. 19, S6. DOI: 10.1186/1471-2105-13-s19-s6.

Hertel, J. and P. F. Stadler (2015). “The Expansion of Animal MicroRNA Families
Revisited”. In: Life 5, pp. 905-920. DO1: 10.3390/11fe5010905.

Heyer, R., M. Dorr, A. Jellen-Ritter, B. Spéth, J. Babski, K. Jaschinski, J. Soppa, and
A. Marchfelder (2012). “High throughput sequencing reveals a plethora of small RNAs
including tRNA derived fragments in Haloferax volcanii”. In: RNA biology 9.7, pp. 1011-
1018. DOI: 10.4161/rna.20826.

Hiller, M., B. T. Schaar, V. B. Indjeian, D. M. Kingsley, L. R. Hagey, and G. Bejerano
(2012). “A "forward genomics" approach links genotype to phenotype using independent
phenotypic losses among related species”. In: Cell Rep. 2, pp. 817-823. DOI: 10.1016/
j.celrep.2012.08.032.

Hirtreiter, A., G. E. Damsma, A. C. Cheung, D. Klose, D. Grohmann, E. Vojnic, A. C.
Martin, P. Cramer, and F. Werner (2010). “Spt4/5 stimulates transcription elongation
through the RNA polymerase clamp coiled-coil motif”. In: Nucleic acids research 38.12,
pp. 4040-4051. por: 10.1093/nar/gkq135.

Hoéchsmann, M. (2005). “The tree alignment model: algorithms, implementations and
applications for the analysis of RNA secondary structures”. PhD thesis. Technische
Fakultédt, Universitit Bielefeld.

Hochsmann, M., B. Voss, and R. Giegerich (2004). “Pure multiple RNA secondary structure
alignments: a progressive profile approach”. In: IEEE/ACM Trans. Comp. Biol. Bioinf.
1, pp. 53-62. DOL: 10.1109/TCBB.2004.11.

Hofacker, I. L., W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and P. Schuster
(1994). “Fast folding and comparison of RNA secondary structures”. In: Monatshefte
fiir Chemie/Chemical Monthly 125.2, pp. 167—-188. DOI: 10.1007/bf00818163.

Hoffmann, A. (2020). “The Marvellous World of tRNAs”. PhD thesis. University Leipzig.

Hoffmann, S., C. Otto, S. Kurtz, C. M. Sharma, P. Khaitovich, J. Vogel, P. F. Stadler, and
J. Hackermiiller (2009). “Fast mapping of short sequences with mismatches, insertions
and deletions using index structures”. In: PLoS computational biology 5.9, e1000502.
DOI: 10.1371/journal.pcbi.1000502.

Holland, P. W. (2013). “Evolution of homeobox genes”. In: Wiley Interdiscip Rev Dev
Biol 2, pp. 31-45. DOI: 10.1002/wdev.78.

Honer zu Siederdissen, C. (2012). “Sneaking Around concatMap: Efficient Combinators
for Dynamic Programming”. In: Proceedings of the 17th ACM SIGPLAN international
conference on Functional programming. ICFP 2012. Copenhagen, Denmark: ACM,
pp- 215-226. 1SBN: 978-1-4503-1054-3. DOI: 10.1145/2364527 .2364559. URL: http:
//www.bioinf .uni-leipzig.de/Software/gADP/.

https://doi.org/10.1073/pnas.1412770112
https://doi.org/10.1128/MCB.1.12.1138
https://doi.org/10.1186/1471-2105-13-s19-s6
https://doi.org/10.3390/life5010905
https://doi.org/10.4161/rna.20826
https://doi.org/10.1016/j.celrep.2012.08.032
https://doi.org/10.1016/j.celrep.2012.08.032
https://doi.org/10.1093/nar/gkq135
https://doi.org/10.1109/TCBB.2004.11
https://doi.org/10.1007/bf00818163
https://doi.org/10.1371/journal.pcbi.1000502
https://doi.org/10.1002/wdev.78
https://doi.org/10.1145/2364527.2364559
http://www.bioinf.uni-leipzig.de/Software/gADP/
http://www.bioinf.uni-leipzig.de/Software/gADP/

192

Bibliography

Hoéner zu Siederdissen, C., I. L. Hofacker, and P. F. Stadler (2015a). “Product Grammars for
Alignment and Folding”. In: IEEE/ACM Transactions on Computational Biology and
Bioinformatics 12.3, pp. 507-519. 1SSN: 1545-5963. DOI: 10.1109/TCBB.2014.2326155.
URL: http://www.bioinf.uni-leipzig.de/Software/gADP/.

Hoéner zu Siederdissen, C., S. J. Prohaska, and P. F. Stadler (2015b). “Algebraic Dynamic
Programming over General Data Structures”. In: BMC' Bioinformatics 16 Suppl 19.
DOI: 10.1186/1471-2105-16-S19-S2.

Hopcroft, J. E. and J. D. Ullman (1979). Introduction to Automata Theory, Languages,
and Computation. 1st. Addison-Wesley Publishing Company. DOI: 10.1016/0096-
0551(80)90011-9.

Huelsenbeck, J. P. and F. Ronquist (2001). “MRBAYES: Bayesian inference of phylogenetic
trees”. In: Bioinformatics 17.8, pp. 754—755. DOI: 10.1093/bioinformatics/17.8.
754.

Hug, L. A., B. J. Baker, K. Anantharaman, C. T. Brown, A. J. Probst, C. J. Castelle, C. N.
Butterfield, A. W. Hernsdorf, Y. Amano, K. Ise, et al. (2016). “A new view of the tree
of life”. In: Nature microbiology 1.5, p. 16048. DOI: 10.1038/nmicrobiol.2016.48.

Iacoangeli, A., T. S. Rozhdestvensky, N. Dolzhanskaya, B. Tournier, J. Schutt, J. Brosius,
R. B. Denman, E. W. Khandjian, S. Kindler, and H. Tiedge (2008). “On BC1 RNA
and the fragile X mental retardation protein”. In: Proc. Natl. Acad. Sci. USA 105,
pp. 734-739. DOL: 10.1073/pnas.0801034105.

Inoue, M., I. Nakamoto, K. Omae, T. Oguro, H. Ogata, T. Yoshida, and Y. Sako (2019).
“Structural and Phylogenetic Diversity of Anaerobic Carbon-Monoxide Dehydroge-
nases”. In: Frontiers in Microbiology 9. DOI: 10.3389/fmicb.2018.03353.

Jacox, E., C. Chauve, G. J. Szollési, Y. Ponty, and C. Scornavacca (2016). “ecceTERA:
comprehensive gene tree-species tree reconciliation using parsimony”. In: Bioinformatics
32.13, pp. 2056-2058. DOT: 10.1093/bioinformatics/btwl05.

Jiang, L., C. Schaffitzel, R. Bingel-Erlenmeyer, N. Ban, P. Korber, R. I. Koning, D. C. de
Geus, J. R. Plaisier, and J. P. Abrahams (2009). “Recycling of aborted ribosomal 50S
subunit-nascent chain-tRNA complexes by the heat shock protein Hspl15”. In: Journal
of molecular biology 386.5, pp. 1357-1367. DOI: 10.1016/j.jmb.2008.10.079.

Jiang, T., L. Wang, and K. Zhang (1995). “Alignment of trees — an alternative to tree
edit”. In: Theor. Comp. Sci. 143, pp. 137-148. DOI: 10.1016/0304-3975(95)80029-9.

Jost, J. (2015). Mathematical concepts. Springer. DOI: 10.1007/978-3-319-20436-9.

Joyal, A. (1981). “Une théorie combinatoire des séries formelles”. In: Advances in mathe-
matics 42.1, pp. 1-82. DOI: 10.1016/0001-8708(81)90052-9.

Just, W. (2001). “Computational Complexity of Multiple Sequence Alignment with SP-
Score”. In: J. Comp. Biol. 8, pp. 615-623. DOI: 10.1089/106652701753307511.

Kan, T., S. Higuchi, and K. Hirata (2014). “Segmental mapping and distance for rooted
labeled ordered trees”. In: Fundamenta Informaticae 132.4, pp. 461-483. pDo1: 10.1007/
978-3-642-35261-4_51.

Katoh, K., K.-i. Kuma, H. Toh, and T. Miyata (2005). “MAFFT version 5: improvement
in accuracy of multiple sequence alignment”. In: Nucleic Acids Res. 33, pp. 511-518.
DOI: 10.1093/nar/gki198.

Kececioglu, J. D. (1993). “The maximum weight trace problem in multiple sequence
alignment”. In: Proceedings of the 4th Symposium on Combinatorial Pattern Matching.

https://doi.org/10.1109/TCBB.2014.2326155
http://www.bioinf.uni-leipzig.de/Software/gADP/
https://doi.org/10.1186/1471-2105-16-S19-S2
https://doi.org/10.1016/0096-0551(80)90011-9
https://doi.org/10.1016/0096-0551(80)90011-9
https://doi.org/10.1093/bioinformatics/17.8.754
https://doi.org/10.1093/bioinformatics/17.8.754
https://doi.org/10.1038/nmicrobiol.2016.48
https://doi.org/10.1073/pnas.0801034105
https://doi.org/10.3389/fmicb.2018.03353
https://doi.org/10.1093/bioinformatics/btw105
https://doi.org/10.1016/j.jmb.2008.10.079
https://doi.org/10.1016/0304-3975(95)80029-9
https://doi.org/10.1007/978-3-319-20436-9
https://doi.org/10.1016/0001-8708(81)90052-9
https://doi.org/10.1089/106652701753307511
https://doi.org/10.1007/978-3-642-35261-4_51
https://doi.org/10.1007/978-3-642-35261-4_51
https://doi.org/10.1093/nar/gki198

Bibliography

193

Vol. 684. Lecture Notes Comp. Sci. Berlin: Springer, pp. 106-119. po1: 10. 1007/
bfb0029800.

Kececioglu, J. and D. Starrett (2004). “Aligning alignments exactly”. In: Proceedings of
the 8th ACM Conference on Research in Computational Molecular Biology (RECOMB).
Ed. by P. E. Bourne and D. Gusfield. New York, NY: ACM, pp. 85-96. po1: 10.1145/
974614 .974626.

Kheir, E. and T. Krude (2017). “Non-coding Y RNAs associate with early replicating
euchromatin in concordance with the origin recognition complex”. In: J Cell Sci. 130,
pp. 1239-1250. DOIL: 10.1242/jcs . 197566.

Kimura, M. et al. (1968). “Evolutionary rate at the molecular level”. In: Nature 217.5129,
pp. 624-626. DOL: 10.1038/217624a0.

Koide, T., D. J. Reiss, J. C. Bare, W. L. Pang, M. T. Facciotti, A. K. Schmid, M. Pan,
B. Marzolf, P. T. Van, F.-Y. Lo, et al. (2009). “Prevalence of transcription promoters
within archaeal operons and coding sequences”. In: Molecular systems biology 5.1,
p- 285. DOI: 10.1038/msb.2009.42.

Konagurthu, A. S., J. Whisstock, and P. J. Stuckey (2004). “Progressive multiple alignment
using sequence triplet optimization and three-residue exchange costs”. In: J. Bioinf.
and Comp. Biol. 2, pp. 719-745. DOI: 10.1142/50219720004000831.

Kondrak, G. (2000). “A New Algorithm for the Alignment of Phonetic Sequences”.
In: Proceedings of NAACL 2000 1st Meeting of the North American Chapter of
the Association for Computational Linguistics. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., pp. 288-295. DOI: 10.1.1.19.9698. URL: http://aclueb.
org/anthology/A00-2038.

Koonin, E. V. (2003). “Comparative genomics, minimal gene-sets and the last universal
common ancestor”. In: Nature Reviews Microbiology 1.2, p. 127. pOoI: 10 . 1038/
nrmicro751.

Koonin, E. V. (2005). “Orthologs, paralogs, and evolutionary genomics”. In: Annu. Rev.
Genet. 39, pp. 309-338. DOI: 10.1146/annurev.genet.39.073003.114725.

Korte, B., R. Schrader, and L. Lovasz (1991). Greedoids. Springer Berlin Heidelberg. DOT:
10.1007/978-3-642-58191-5.

Kovacs, N. A, A. S. Petrov, K. A. Lanier, and L. D. Williams (2017). “Frozen in Time:
The History of Proteins”. In: Molecular Biology and Evolution 34.5, pp. 1252-1260.
DOI: 10.1093/molbev/msx086.

Kristensen, D. M., Y. I. Wolf, A. R. Mushegian, and E. V. Koonin (2011). “Computational
methods for Gene Orthology inference”. In: Briefings in bioinformatics 12.5, pp. 379—
391. pOI: 10.1093/bib/bbr030.

Kruskal, J. B. (1983). “An overview of sequence comparison: Time warps, string edits,
and macromolecules”. In: STAM review 25.2, pp. 201-237. DOI: 10.1137/1025045.
Kruspe, M. and P. F. Stadler (2007). “Progressive Multiple Sequence Alignments from

Triplets”. In: BMC Bioinformatics 8, p. 254. DOI: 10.1186/1471-2105-8-254.

Kuboyama, T. (2007). “Matching and learning in trees”. PhD thesis.

Kuehner, J. N., E. L. Pearson, and C. Moore (2011). “Unravelling the means to an end:
RNA polymerase II transcription termination”. In: Nature reviews Molecular cell
biology 12.5, p. 283. DOI: 10.1038/nrm3098.

https://doi.org/10.1007/bfb0029800
https://doi.org/10.1007/bfb0029800
https://doi.org/10.1145/974614.974626
https://doi.org/10.1145/974614.974626
https://doi.org/10.1242/jcs.197566
https://doi.org/10.1038/217624a0
https://doi.org/10.1038/msb.2009.42
https://doi.org/10.1142/S0219720004000831
https://doi.org/10.1.1.19.9698
http://aclweb.org/anthology/A00-2038
http://aclweb.org/anthology/A00-2038
https://doi.org/10.1038/nrmicro751
https://doi.org/10.1038/nrmicro751
https://doi.org/10.1146/annurev.genet.39.073003.114725
https://doi.org/10.1007/978-3-642-58191-5
https://doi.org/10.1093/molbev/msx086
https://doi.org/10.1093/bib/bbr030
https://doi.org/10.1137/1025045
https://doi.org/10.1186/1471-2105-8-254
https://doi.org/10.1038/nrm3098

194

Bibliography

Kuich, W. (1997). “Semirings and formal power series: Their relevance to formal languages
and automata”. In: Handbook of formal languages. Springer, pp. 609-677. DOI: 10.
1007/978-3-642-59136-5_9.

Larkin, M. A. et al. (2007). “Clustal W and Clustal X version 2.0”. In: Bioinformatics 23,
pp. 2947-2948. DOI: 10.1093/bioinformatics/btm404.

Lechner, M., S. Findeif, L. Steiner, M. Marz, P. F. Stadler, and S. J. Prohaska (2011).
“Proteinortho: Detection of (Co-)Orthologs in Large-Scale Analysis”. In: BMC Bioin-
formatics 12.1, p. 124. DOI: 10.1186/1471-2105-12-124.

Lechner, M., M. Herndndez Rosales, D. Doerr, N. Wieseke, A. Thévenin, J. Stoye, R. K.
Hartmann, S. J. Prohaska, and P. F. Stadler (2014). “Orthology detection combining
clustering and synteny for very large datasets”. In: PLoS One 9.8, €105015. DOTI:
10.1371/journal.pone.0105015.

Lee, C. (2003). “Generating consensus sequences from partial order multiple sequence align-
ment graphs”. In: Bioinformatics 19, pp. 999-1008. DOI: 10.1093/bioinformatics/
btgl109.

Lee, C., C. Grasso, and M. F. Sharlow (2002). “Multiple sequence alignment using partial
order graphs”. In: Bioinformatics 18, pp. 452—464. DOI: 10.1093/bioinformatics/
18.3.452.

Lee, D., O. Redfern, and C. Orengo (2007). “Predicting protein function from sequence
and structure”. In: Nature Reviews Molecular Cell Biology 8.12, pp. 995-1005. DOI:
10.1038/nrm2281.

Leigh, J. A., S.-V. Albers, H. Atomi, and T. Allers (2011). “Model organisms for genetics
in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales”.
In: FEMS microbiology reviews 35.4, pp. 577-608. DOI: 10.1111/3j.1574-6976.2011.
00265.x.

Lemey, P., M. Salemi, and A.-M. Vandamme (2009). The phylogenetic handbook: a practical
approach to phylogenetic analysis and hypothesis testing. Cambridge University Press.
DOI: 10.1017/cbo9780511819049.

Lerner, M. R., J. A. Boyle, J. A. Hardin, and J. A. Steitz (1981). “Two novel classes of
small ribonucleoproteins detected by antibodies associated with lupus erythematosus”.
In: Science 211, pp. 400-402. DOI: 10.1126/science.6164096.

Letunic, I. and P. Bork (2016). “Interactive tree of life (iTOL) v3: an online tool for the
display and annotation of phylogenetic and other trees”. In: Nucleic acids research
44. W1, W242-W245. por: 10.1093/nar/gkw290.

Levenshtein, V. 1. (1966). “Binary codes capable of correcting deletions, insertions, and
reversals”. In: Soviet physics doklady. Vol. 10. 8, pp. 707-710.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
and R. Durbin (2009). “The sequence alignment/map format and SAMtools”. In:
Bioinformatics 25.16, pp. 2078-2079. DOI: 10.1093/bioinformatics/btp352.

Liao, D., T. Pavelitz, J. R. Kidd, K. K. Kidd, and A. M. Weiner (1997). “Concerted
evolution of the tandemly repeated genes encoding human U2 snRNA (the RNU2
locus) involves rapid intrachromosomal homogenization and rare interchromosomal
gene conversion”. In: EMBO J. 16, pp. 588-598. DOI: 10.1006/geno.1995.1280.

Liao, D. (1999). “Concerted Evolution: Molecular Mechanisms and Biological Implications”.
In: Am. J. Hum. Genet. 64, pp. 24-30. DOI: 10.1086/302221.

https://doi.org/10.1007/978-3-642-59136-5_9
https://doi.org/10.1007/978-3-642-59136-5_9
https://doi.org/10.1093/bioinformatics/btm404
https://doi.org/10.1186/1471-2105-12-124
https://doi.org/10.1371/journal.pone.0105015
https://doi.org/10.1093/bioinformatics/btg109
https://doi.org/10.1093/bioinformatics/btg109
https://doi.org/10.1093/bioinformatics/18.3.452
https://doi.org/10.1093/bioinformatics/18.3.452
https://doi.org/10.1038/nrm2281
https://doi.org/10.1111/j.1574-6976.2011.00265.x
https://doi.org/10.1111/j.1574-6976.2011.00265.x
https://doi.org/10.1017/cbo9780511819049
https://doi.org/10.1126/science.6164096
https://doi.org/10.1093/nar/gkw290
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1006/geno.1995.1280
https://doi.org/10.1086/302221

Bibliography

195

Limbach, P. A. and M. J. Paulines (2017). “Going global: the new era of mapping
modifications in RNA”. In: Wiley Interdisciplinary Reviews: RNA 8.1, e1367. DOI:
10.1002/wrna. 1367.

Lipman, D. J.; S. F. Altschul, and J. D. Kececioglu (1989). “A tool for multiple sequence

alignment”. In: Proc. Natl. Acad. Sci. USA 86, pp. 4412—4415. por: 10.1073/pnas.

86.12.4412.

Liu, S., M.-Z. Du, Q.-F. Wen, J. Kang, C. Dong, L. Xiong, J. Huang, and F.-B. Guo (2018).

“Comprehensive exploration of the enzymes catalysing oxygen-involved reactions and
COGs relevant to bacterial oxygen utilization”. In: Environmental Microbiology 20.10,
pp- 3836-3850. DOI: 10.1111/1462-2920.14399.

Liu, Y., J. Wang, J. Guo, and J. Chen (2012). “Complexity and parameterized algorithms

for Cograph Editing”. In: Theor. Comp. Sci. 461, pp. 45-54. DOI: 10.1016/j.tcs.

2011.11.040.

Lorenz, R., S. H. Bernhart, C. Honer zu Siederdissen, H. Tafer, C. Flamm, P. F. Stadler,
and I. L. Hofacker (2011a). “ViennaRNA Package 2.0”. In: Algorithms for Molecular
Biology 6.26. DOI: 10.1186/1748-7188-6-26.

Lorenz, R., S. H. Bernhart, C. H. Zu Siederdissen, H. Tafer, C. Flamm, P. F. Stadler,
and I. L. Hofacker (2011b). “ViennaRNA Package 2.0”. In: Algorithms for Molecular
Biology 6.1, p. 26. DOI: 10.1186/1748-7188-6-26.

Lorenz, R., I. L. Hofacker, and S. H. Bernhart (2012). “Folding RNA/DNA hybrid
duplexes”. In: Bioinformatics 28.19, pp. 2530-2531. DOIL: 10.1093/bioinformatics/
bts466.

Lorenz, R., M. T. Wolfinger, A. Tanzer, and 1. L. Hofacker (2016). “Predicting RNA
secondary structures from sequence and probing data”. In: Methods 103, pp. 86-98.
DOI: 10.1016/j.ymeth.2016.04.004.

Lowe, T. M. and S. R. Eddy (1997). “tRNAscan-SE: A Program for Improved Detection
of TransferRNA Genes in Genomic Sequence”. In: Nucleic Acids Res. 25, pp. 955-964.
DOI: 10.1093/nar/25.5.0955.

Maddison, W. P. (2000). “Testing Character Correlation using Pairwise Comparisons on a
Phylogeny”. In: J. Theor. Biol. 202, pp. 195-204. DOI: 10.1006/jtbi.1999.1050.
Maier, L.-K. and A. Marchfelder (2019). “It’s all about the T: transcription termination
in archaea”. In: Biochemical Society Transactions 47.1, pp. 461-468. DOI: 10.1042/

bst20180557.

Malde, K. and T. Furmanek (2013). “Increasing sequence search sensitivity with transitive
alignments”. In: PloS one 8, €54422. DOI: 10.1371/journal .pone.0054422.

Manthey, B. (2003). “Non-approximability of weighted multiple sequence alignment”. In:
Theor. Comp. Sci. 296, pp. 179-192. DOI: 10.1007/3-540-44679-6_9.

Martin, M. (2011). “Cutadapt removes adapter sequences from high-throughput sequencing
reads”. In: EMBnet. journal 17.1, pp. 10-12. DOI: 10.14806/ej.17.1.200.

Mattick, J. S. and I. V. Makunin (2006). “Non-coding RNA”. In: Human molecular
genetics 15.suppl__1, R17-R29. por: 10.1093/hmg/dd1046.

McBride, C. (2008). “Clowns to the left of me, jokers to the right (pearl): dissecting
data structures”. In: ACM SIGPLAN Notices. Vol. 43. 1. ACM, pp. 287-295. DOI:
10.1145/1328897.1328474.

McClintock, B. (1950). “The origin and behavior of mutable loci in maize”. In: Proceedings
of the National Academy of Sciences 36.6, pp. 344-355. DOI: 10.1073/pnas.36.6.344.

https://doi.org/10.1002/wrna.1367
https://doi.org/10.1073/pnas.86.12.4412
https://doi.org/10.1073/pnas.86.12.4412
https://doi.org/10.1111/1462-2920.14399
https://doi.org/10.1016/j.tcs.2011.11.040
https://doi.org/10.1016/j.tcs.2011.11.040
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1093/bioinformatics/bts466
https://doi.org/10.1093/bioinformatics/bts466
https://doi.org/10.1016/j.ymeth.2016.04.004
https://doi.org/10.1093/nar/25.5.0955
https://doi.org/10.1006/jtbi.1999.1050
https://doi.org/10.1042/bst20180557
https://doi.org/10.1042/bst20180557
https://doi.org/10.1371/journal.pone.0054422
https://doi.org/10.1007/3-540-44679-6_9
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1093/hmg/ddl046
https://doi.org/10.1145/1328897.1328474
https://doi.org/10.1073/pnas.36.6.344

196

Bibliography

McFarlane, R. J. and S. K. Whitehall (2009). “¢RNA genes in eukaryotic genome organiza-
tion and reorganization”. In: Cell Cycle 8, pp. 3102-3106. DOI: 10.4161/cc.8.19.9625.

Miklés, 1. (2019). Computational Complexity of Counting and Sampling. Chapman and
Hall/CRC. DOI: 10.1201/b22024.

Miladi, M., A. Junge, F. Costa, S. E. Seemann, J. H. Havgaard, J. Gorodkin, and R.
Backofen (2017). “RNAscClust: clustering RNA sequences using structure conservation
and graph based motifs”. In: Bioinformatics 33.14, pp. 2089-2096. DOI: 10.1093/
bioinformatics/btx114.

Miladi, M., E. Sokhoyan, T. Houwaart, S. Heyne, F. Costa, B. Gruening, and R. Backofen
(2019). “Empowering the annotation and discovery of structured RNAs with scalable
and accessible integrative clustering”. In: bioRziv. DOI: 10.1101/550335. eprint:
https://www.biorxiv.org/content/early/2019/02/20/550335.full.pdf. URL:
https://www.biorxiv.org/content/early/2019/02/20/550335.

Mirkin, B. G., T. L. Fenner, M. Y. Galperin, and E. V. Koonin (2003). “Algorithms
for computing parsimonious evolutionary scenarios for genome evolution, the last
universal common ancestor and dominance of horizontal gene transfer in the evolution
of prokaryotes”. In: BMC' evolutionary biology 3.1, p. 2. DOI: 10.1186/1471-2148-3-2.

Mohl, M., S. Will, and R. Backofen (2010). “Lifting prediction to alignment of RNA
pseudoknots”. In: J Comput Biol. 17, pp. 429-442. DOI: 10.1089/cmb.2009.0168.

Morgan, H. L. (1970). “Spelling correction in systems programs”. In: Communications of
the ACM 13.2, pp. 90-94. DOI: 10.1145/362007 . 362033.

Morgenstern, B. (1999). “DIALIGN 2: improvement of the segment-to-segment approach
to multiple sequence alignment”. In: Bioinformatics 15, pp. 211-218. bo1: 10.1093/
bioinformatics/15.3.211.

Morgenstern, B., A. Dress, and T. Werner (1996). “Multiple DNA and protein sequence
alignment based on segment-to-segment comparison”. In: Proc. Natl. Acad. Sci. USA
93, pp. 12098-12103. DOI: 10.1073/pnas.93.22.12098.

Morgenstern, B., J. Stoye, and A. W. M. Dress (1999). Consistent Equivalence Relations:
a Set-Theoretical Framework for Multiple Sequence Alignments. Tech. rep. University
of Bielefeld, FSPM. por: 10.1.1.37.7862.

Mosig, A., M. Guofeng, B. M. R. Stadler, and P. F. Stadler (2007). “Evolution of the
Vertebrate Y RNA Cluster”. In: Th. Biosci. 126, pp. 9-14. DOI: 10.1007 /512064~
007-0003-y.

Myers, E. W., G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J. Flanigan,
S. A. Kravitz, C. M. Mobarry, K. H. Reinert, K. A. Remington, et al. (2000). “A
whole-genome assembly of Drosophila”. In: Science 287.5461, pp. 2196-2204. DOI:
10.1126/science.287.5461.2196.

Naidoo, K., E. Steenkamp, M. P. Coetzee, M. J. Wingfield, and B. D. Wingfield (2013).
“Concerted evolution in the ribosomal RNA cistron”. In: PLoS One 8, €59355. DOI:
10.1371/journal.pone.0059355.

Navarro, G. (2001). “A guided tour to approximate string matching”. In: ACM computing
surveys (CSUR) 33.1, pp. 31-88. DOI: 10.1145/375360.375365.

Nawrocki, E. P. and S. R. Eddy (2013). “Infernal 1.1: 100-fold faster RNA homology
searches”. In: Bioinformatics 29.22, pp. 2933-2935. DOI: 10.1093/bioinformatics/
btt509.

https://doi.org/10.4161/cc.8.19.9625
https://doi.org/10.1201/b22024
https://doi.org/10.1093/bioinformatics/btx114
https://doi.org/10.1093/bioinformatics/btx114
https://doi.org/10.1101/550335
https://www.biorxiv.org/content/early/2019/02/20/550335.full.pdf
https://www.biorxiv.org/content/early/2019/02/20/550335
https://doi.org/10.1186/1471-2148-3-2
https://doi.org/10.1089/cmb.2009.0168
https://doi.org/10.1145/362007.362033
https://doi.org/10.1093/bioinformatics/15.3.211
https://doi.org/10.1093/bioinformatics/15.3.211
https://doi.org/10.1073/pnas.93.22.12098
https://doi.org/10.1.1.37.7862
https://doi.org/10.1007/s12064-007-0003-y
https://doi.org/10.1007/s12064-007-0003-y
https://doi.org/10.1126/science.287.5461.2196
https://doi.org/10.1371/journal.pone.0059355
https://doi.org/10.1145/375360.375365
https://doi.org/10.1093/bioinformatics/btt509
https://doi.org/10.1093/bioinformatics/btt509

Bibliography

197

Nawrocki, E. P., T. A. Jones, and S. R. Eddy (2018). “Group I introns are widespread in
archaea”. In: Nucleic acids research 46.15, pp. 7970-7976. DOI: 10.1093/nar/gky414.

Needleman, S. B. and C. D. Wunsch (1970). “A general method applicable to the search
for similarities in the amino acid sequence of two proteins”. In: J. Mol. Biol. 48,
pp- 443-453. DOIL: 10.1016/0022-2836(70)90057-4.

Nei, M. (1987). Molecular evolutionary genetics. Columbia university press. DOI: 10.7312/
nei-92038.

Nei, M. and A. P. Rooney (2005). “Concerted and Birth-and-Death Evolution of Multigene
Families”. In: Annu Rev Genet 39, pp. 121-152. DOI: 10.1146/annurev.genet.39.
073003.112240.

Németh, A., J. Perez-Fernandez, P. Merkl, S. Hamperl, J. Gerber, J. Griesenbeck, and H.
Tschochner (2013). “RNA polymerase I termination: Where is the end?” In: Biochimica
et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1829.3-4, pp. 306-317. DOI:
10.1016/j.bbagrm.2012.10.007.

Newman, M. (2010). Networks: an introduction. Oxford university press. DoI: 10.1093/
acprof :0s0/9780199206650.001.0001.

Nichio, B. T., J. N. Marchaukoski, and R. T. Raittz (2017). “New tools in orthology
analysis: A brief review of promising perspectives”. In: Frontiers in genetics 8, p. 165.
DOI: 10.3389/fgene.2017.00165.

Nishihara, H., A. F. Smit, and N. Okada (2006). “Functional noncoding sequences derived
from SINEs in the mammalian genome”. In: Genome Res 16, pp. 864-874. DOI:
10.1101/gr.5255506.

Notredame, C., D. G. Higgins, and J. Heringa (2000). “T-coffee: a novel method for
fast and accurate multiple sequence alignment”. In: Journal of molecular biology 302,
pp. 205-217. DOI: 10.1006/jmbi .2000.4042.

Nussinov, R. and A. B. Jacobson (1980). “Fast algorithm for predicting the secondary
structure of single-stranded RNA”. In: Proceedings of the National Academy of Sciences
77.11, pp. 6309-6313. DOI: 10.1073/pnas.77.11.6309.

Nussinov, R., G. Pieczenik, J. R. Griggs, and D. J. Kleitman (1978). “Algorithms for
loop matchings”. In: SIAM Journal on Applied mathematics 35.1, pp. 68-82. DOI:
10.1137/0135006.

O’Brien, C. A., K. Margelot, and S. L. Wolin (1993). “Xenopus Ro ribonucleoproteins:
Members of an evolutionarily conserved class of cytoplasmic ribonucleoproteins”. In:
Proc. Natl. Acad. Sci. USA 90, pp. 7250-7254. DOI: 10.1073/pnas.90.15.7250.

O’Malley, M. A. and E. V. Koonin (2011). “How stands the Tree of Life a century and a
half after The Origin?” In: Biology Direct 6.1, p. 32. DOI: 10.1186/1745-6150-6-32.

Ochman, H., J. G. Lawrence, and E. A. Groisman (2000). “Lateral gene transfer and the
nature of bacterial innovation”. In: nature 405.6784, p. 299. poI: 10.1038/35012500.

Ohno, S. (1970). Evolution by gene duplication. Springer. DOI: 10.1007/978-3-642-
86659-3.

Ohta, T. (2001). “Gene families: multigene families and superfamilies”. In: e LS. DOI:
10.1038/npg.els.0005126.

Otto, C., P. F. Stadler, and S. Hoffmann (2014). “Lacking alignments? The next-generation
sequencing mapper segemehl revisited”. In: Bioinformatics 30.13, pp. 1837-1843. DOT:
10.1093/bioinformatics/btul4s.

https://doi.org/10.1093/nar/gky414
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.7312/nei-92038
https://doi.org/10.7312/nei-92038
https://doi.org/10.1146/annurev.genet.39.073003.112240
https://doi.org/10.1146/annurev.genet.39.073003.112240
https://doi.org/10.1016/j.bbagrm.2012.10.007
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.3389/fgene.2017.00165
https://doi.org/10.1101/gr.5255506
https://doi.org/10.1006/jmbi.2000.4042
https://doi.org/10.1073/pnas.77.11.6309
https://doi.org/10.1137/0135006
https://doi.org/10.1073/pnas.90.15.7250
https://doi.org/10.1186/1745-6150-6-32
https://doi.org/10.1038/35012500
https://doi.org/10.1007/978-3-642-86659-3
https://doi.org/10.1007/978-3-642-86659-3
https://doi.org/10.1038/npg.els.0005126
https://doi.org/10.1093/bioinformatics/btu146

198

Bibliography

Otto, W., P. F. Stadler, and S. J. Prohaska (2011). “Phylogenetic Footprinting and
Consistent Sets of Local Aligments”. In: CPM 2011. Ed. by R. Giancarlo and G. Manzini.
Vol. 6661. Lecture Notes in Computer Science. Heidelberg, Germany: Springer-Verlag,
pp. 118-131. DOI: 10.1007/978-3-642-21458-5_12.

Pawlik, M. and N. Augsten (2016). “Tree edit distance: Robust and memory-efficient”. In:
Information Systems 56, pp. 157-173. DOI: 10.1016/j.1s.2015.08.004.

Perreault, J., J. P. Perreault, and G. Boire (2007). “Ro-associated Y RNAs in metazoans:
evolution and diversification”. In: Mol Biol Evol 24, pp. 1678-1689. DOI: 10.1093/
molbev/msm084.

Perreault, J., J.-F. Noél, F. Briere, B. Cousineau, J.-F. Lucier, J.-P. Perreault, and G.
Boire (2005). “Retropeudogenes derived from human Ro/SS-A autoantigen-associated
hY RNAs”. In: Nucl. Acids Res. 33, pp. 2032—2041. pot: 10.1093/nar/gki504.

Peters, J. M., A. D. Vangeloff, and R. Landick (2011). “Bacterial transcription terminators:
the RNA 3’-end chronicles”. In: Journal of molecular biology 412.5, pp. 793-813. DOT:
10.1016/j . jmb.2011.03.036.

Petre, I. and A. Salomaa (2009). “Algebraic Systems and Pushdown Automata”. In:
Handbook of Weighted Automata, Chapter 7. Ed. by M. Droste, W. Kuich, and H. Vogler.
Springer Berlin Heidelberg, pp. 257-289. 1SBN: 978-3-642-01492-5. DOI: 10.1007/978-
3-642-01492-5_7.

Pohlschroder, M. and S. Schulze (2019). “Haloferax volcanii”. In: Trends in microbiology
27.1, pp. 86-87. DOL: 10.1016/j.tim.2018.10.004.

Porrua, O., M. Boudvillain, and D. Libri (2016). “Transcription termination: variations
on common themes”. In: Trends in Genetics 32.8, pp. 508-522. DOI: 10.1016/j.tig.
2016.05.007.

Price, M. N., P. S. Dehal, and A. P. Arkin (2010). “FastTree 2-approximately maximum-
likelihood trees for large alignments”. In: PloS one 5.3, €9490. DOI: 10.1371/journal.
pone.0009490.

Prohaska, S. J., S. J. Berkemer, F. Géartner, T. Gatter, N. Retzlaff, C. H. zu Siederdissen,
P. F. Stadler, et al. (2018). “Expansion of gene clusters, circular orders, and the shortest
Hamiltonian path problem”. In: Journal of mathematical biology 77.2, pp. 313-341.
DOI: 10.1007/s00285-017-1197-3.

Puigbo, P., Y. I. Wolf, and E. V. Koonin (2009). “Search for a’Tree of Life’in the
thicket of the phylogenetic forest”. In: Journal of biology 8.6, p. 59. DOI: https:
//doi.org/10.1186/3biol159.

Quinlan, A. R. and I. M. Hall (2010). “BEDTools: a flexible suite of utilities for com-
paring genomic features”. In: Bioinformatics 26.6, pp. 841-842. por: 10 . 1093/
bioinformatics/btq033.

Rautiainen, M. and T. Marschall (2017). Aligning sequences to general graphs in O(V+mE)
time. Tech. rep. bioRxiv. DOI: 10.1101/216127.

Rawlings, T. A., T. M. Collins, and R. Bieler (2003). “Changing identities: tRNA duplica-
tion and remolding within animal mitochondrial genomes”. In: Proc. Natl. Acad. Sci.
USA 100, pp. 15700-15705. DOIL: 10.1073/pnas.2535036100.

Ray-Soni, A., M. J. Bellecourt, and R. Landick (2016). “Mechanisms of bacterial tran-
scription termination: all good things must end”. In: Annual review of biochemistry
85, pp- 319-347. DOI: 10.1146/annurev-biochem-060815-014844.

https://doi.org/10.1007/978-3-642-21458-5_12
https://doi.org/10.1016/j.is.2015.08.004
https://doi.org/10.1093/molbev/msm084
https://doi.org/10.1093/molbev/msm084
https://doi.org/10.1093/nar/gki504
https://doi.org/10.1016/j.jmb.2011.03.036
https://doi.org/10.1007/978-3-642-01492-5_7
https://doi.org/10.1007/978-3-642-01492-5_7
https://doi.org/10.1016/j.tim.2018.10.004
https://doi.org/10.1016/j.tig.2016.05.007
https://doi.org/10.1016/j.tig.2016.05.007
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1007/s00285-017-1197-3
https://doi.org/https://doi.org/10.1186/jbiol159
https://doi.org/https://doi.org/10.1186/jbiol159
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1101/216127
https://doi.org/10.1073/pnas.2535036100
https://doi.org/10.1146/annurev-biochem-060815-014844

Bibliography

199

Raymann, K., C. Brochier-Armanet, and S. Gribaldo (2015). “The two-domain tree of life
is linked to a new root for the Archaea”. In: Proceedings of the National Academy of
Sciences 112.21, pp. 6670-6675. DOI: 10.1073/pnas.1420858112.

Raymond, J. and P. Willett (2002). “Maximum common subgraph isomorphism algorithms
for the matching of chemical structures”. In: J. Computer-Aided Mol. Design 16,
pp- 521-533. DOI: 10.1023/A:1021271615909.

Riechert, M., C. Héner zu Siederdissen, and P. F. Stadler (2016). “Algebraic Dynamic
Programming for Multiple Context-Free Languages”. In: Theoretical Computer Science.
DOI: 10.1016/j.tcs.2016.05.032.

Rinaudo, P., Y. Ponty, D. Barth, and A. Denise (2012). “Tree decomposition and parame-
terized algorithms for RNA structure-sequence alignment including tertiary interactions
and pseudoknots”. In: WABI. Springer, pp. 149-164. DOI: 10.1007/978-3-642-33122-
0_12.

Rogers, H. H., C. M. Bergman, and S. Griffiths-Jones (2010). “The evolution of tRNA
genes in Drosophila”. In: Genome Biol Evol 2, pp. 467-477. DOI: 10.1093/gbe/evq034.

Rogers, H. H. and S. Griffiths-Jones (2014). “¢tRNA anticodon shifts in eukaryotic genomes”.
In: RNA 20, pp. 269-281. DOI: 10.1261/rna.041681.113.

Rozhdestvensky, T. S.,; A. M. Kopylov, J. Brosius, and A. Hiittenhofer (2001). “Neuronal
BC1 RNA structure: evolutionary conversion of a tRNA(Ala) domain into an extended
stem-loop structure”. In: RNA 7, pp. 722-730. DOI: 10.1017/51355838201002485.

Rutjes, S. A., A. van der Heijden, P. H. Utz, W. J. van Venrooij, and G. J. Pruijn (1999).
“Rapid nucleolytic degradation of the small cytoplasmic Y RNAs during apoptosis”.
In: J. Biol. Chem. 274, pp. 24799-24807. DOI: 10.1074/jbc.274.35.24799.

Sahyoun, A. H., M. Hélzer, F. Jihling, C. Honer zu Siederdissen, M. Al-Arab, K. Tout, M.
Marz, M. Middendorf, P. F. Stadler, and M. Bernt (2015). “Towards a Comprehensive
Picture of Alloacceptor tRNA Remolding in Metazoan Mitochondrial Genomes”. In:
Nucleic Acids Res. 43, pp. 8044-8056. DO1: 10.1093/nar/gkv746.

Saitou, N. and M. Nei (1987). “The neighbor-joining method: a new method for recon-
structing phylogenetic trees.” In: Molecular biology and evolution 4.4, pp. 406—425.
DOI: 10.1093/0oxfordjournals.molbev.a040454.

Salichos, L. and A. Rokas (2011). “Evaluating Ortholog Prediction Algorithms in a Yeast
Model Clade”. In: PLoS ONE 6, e18755. DOI: 10.1371/journal.pone.0018755.
Sanger, F., S. Nicklen, and A. R. Coulson (1977). “DNA sequencing with chain-terminating
inhibitors”. In: Proceedings of the national academy of sciences 74.12, pp. 5463—-5467.

DOI: 10.1073/pnas.74.12.5463.

Sankoff, D. (1972). “Matching sequences under deletion/insertion constraints”. In: Proceed-
ings of the National Academy of Sciences 69.1, pp. 4-6. DOI: 10.1073/pnas.69.1.4.

Sankoff, D. (1975). “Minimal mutation trees of sequences”. In: SIAM J. Appl Math. 28,
pp. 35-42. DOI: 10.1137/0128004.

Sankoff, D. and J. B. Kruskal, eds. (1983). Time warps, string edits, and macromolecules:
The theory and practice of sequence comparison. Reading, MA, Don Mills, Ontario:
Addison-Wesley. DOI: 10.1137/1025045.

Santangelo, T. J., R. Matsumi, H. Atomi, T. Imanaka, J. N. Reeve, et al. (2008). “Polarity
in archaeal operon transcription in Thermococcus kodakaraensis”. In: Journal of
bacteriology 190.6, pp. 2244-2248. por: 10.1128/jb.01811-07.

https://doi.org/10.1073/pnas.1420858112
https://doi.org/10.1023/A:1021271615909
https://doi.org/10.1016/j.tcs.2016.05.032
https://doi.org/10.1007/978-3-642-33122-0_12
https://doi.org/10.1007/978-3-642-33122-0_12
https://doi.org/10.1093/gbe/evq034
https://doi.org/10.1261/rna.041681.113
https://doi.org/10.1017/s1355838201002485
https://doi.org/10.1074/jbc.274.35.24799
https://doi.org/10.1093/nar/gkv746
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1371/journal.pone.0018755
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1073/pnas.69.1.4
https://doi.org/10.1137/0128004
https://doi.org/10.1137/1025045
https://doi.org/10.1128/jb.01811-07

200

Bibliography

Santangelo, T. J. and J. N. Reeve (2006). “Archaeal RNA polymerase is sensitive to
intrinsic termination directed by transcribed and remote sequences”. In: Journal of
molecular biology 355.2, pp. 196-210. DOI: 10.1016/j. jmb.2005.10.062.

Santangelo, T. J., K. M. Skinner, J. N. Reeve, et al. (2009). “Archaeal intrinsic transcription
termination in vivo”. In: Journal of bacteriology 191.22, pp. 7102-7108. poI: 10.1128/
jb.00982-09.

Santosh, B., A. Varshney, and P. K. Yadava (2014). “Non-coding RNAs: biological
functions and applications”. In: Cell Biochemistry and Function 33.1, pp. 14-22. DOI:
10.1002/cbf.3079.

Sauthoff, G., S. Janssen, and R. Giegerich (2011). “Bellman’s GAP - A Declarative
Language for Dynamic Programming”. In: ACM, pp. 29-40. po1: 10.1145/2003476.
2003484.

Sauthoff, G., M. Mohl, S. Janssen, and R. Giegerich (2013). “Bellman’s GAP — a Language
and Compiler for Dynamic Programming in Sequence Analysis”. In: Bioinformatics.
DOI: 10.1093/bioinformatics/btt022.

Schirmer, S. (2011). “Comparing forests”. PhD thesis. Bielefeld University.

Schirmer, S. and R. Giegerich (2011). “Forest alignment with affine gaps and anchors”. In:
Combinatorial Pattern Matching. Springer, pp. 104—117. DOI: 10.1007/978-3-642-
21458-5_11.

Schirmer, S., Y. Ponty, and R. Giegerich (2014). “Introduction to RNA secondary struc-
ture comparison”. In: RNA Sequence, Structure, and Function: Computational and
Bioinformatic Methods, pp. 247-273. DOI: 10.1007/978-1-62703-709-9_12.

Schwarz, S., M. Pawlik, and N. Augsten (2017). “A New Perspective on the Tree Edit
Distance”. In: International Conference on Similarity Search and Applications. Springer,
pp- 156-170. DOI: 10.1007/978-3-319-68474-1_11.

Scienski, K., J. C. F. Fay, and G. C. Conant (2015). “Patterns of Gene Conversion in
Duplicated Yeast Histones Suggest Strong Selection on a Coadapted Macromolecular
Complex”. In: Genome Biol Evol 7, pp. 3249-3258. DOI: 10.1093/gbe/evv216.

Searls, D. B. (1992). “The linguistics of DNA”. In: American Scientist 80.6, pp. 579-591.

Selkow, S. M. (1977). “The tree-to-tree editing problem”. In: Inf. Processing Let. 6,
pp- 184-186. DOI: 10.1016/0020-0190(77) 90064~ 3.

Sellers, P. H. (1974). “An algorithm for the distance between two finite sequences”. In:
Journal of Combinatorial Theory, Series A 16.2, pp. 253-258. DOI: 10.1016/0097-
3165(74)90050-8.

Shih, P. M., L. M. Ward, and W. W. Fischer (2017). “Evolution of the 3-hydroxypropionate
bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi”. In:
Proceedings of the National Academy of Sciences 114.40, pp. 10749-10754. DOT: 10.
1073/pnas.1710798114.

Smith, T. F. and M. S. Waterman (1981a). “Identification of common molecular subse-
quences”. In: Journal of Molecular Biology 147.1, pp. 195-197. DOI: 10.1016/0022-
2836(81)90087-5.

Smith, T. F. and M. S. Waterman (1981b). “Comparison of biosequences”. In: Adv. Appl.
Math. 2, pp. 482-489. DOL: 10.1016/0196-8858(81) 90046-4.

Soares, A. R. and M. Santos (2017). “Discovery and function of transfer RNA-derived
fragments and their role in disease”. In: Wiley Interdiscip Rev RNA 8, p. 5. DOI:
10.1002/wrna. 1423.

https://doi.org/10.1016/j.jmb.2005.10.062
https://doi.org/10.1128/jb.00982-09
https://doi.org/10.1128/jb.00982-09
https://doi.org/10.1002/cbf.3079
https://doi.org/10.1145/2003476.2003484
https://doi.org/10.1145/2003476.2003484
https://doi.org/10.1093/bioinformatics/btt022
https://doi.org/10.1007/978-3-642-21458-5_11
https://doi.org/10.1007/978-3-642-21458-5_11
https://doi.org/10.1007/978-1-62703-709-9_12
https://doi.org/10.1007/978-3-319-68474-1_11
https://doi.org/10.1093/gbe/evv216
https://doi.org/10.1016/0020-0190(77)90064-3
https://doi.org/10.1016/0097-3165(74)90050-8
https://doi.org/10.1016/0097-3165(74)90050-8
https://doi.org/10.1073/pnas.1710798114
https://doi.org/10.1073/pnas.1710798114
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0196-8858(81)90046-4
https://doi.org/10.1002/wrna.1423

Bibliography

201

Spitalny, P. and M. Thomm (2008). “A polymerase III-like reinitiation mechanism is
operating in regulation of histone expression in archaea”. In: Molecular microbiology
67.5, pp. 958-970. DOI: 10.1111/7.1365-2958.2007 .06084 . x.

Stamatakis, A. (2006). “RAxML-VI-HPC: maximum likelihood-based phylogenetic analy-
ses with thousands of taxa and mixed models”. In: Bioinformatics 22.21, pp. 2688-2690.
DOI: 10.1093/bioinformatics/bt1446.

Stamatakis, A. (2014). “RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies”. In: Bioinformatics 30.9, pp. 1312-1313. por: 10.1093/
bioinformatics/btu033.

Steiner, L., P. F. Stadler, and M. Cysouw (2011). “A Pipeline for Computational His-
torical Linguistics”. In: Language Dynamics & Change 1, pp. 89-127. porL: 10.1163/
221058211X570358.

Stoye, J., V. Moulton, and A. W. M. Dress (1997). “DCA: an efficient implementation of
the divide-and-conquer approach to simultaneous multiple sequence alignment”. In:
Comput. Appl. Biosci. 13, pp. 625-626. DOI: 10.1093/bioinformatics/13.6.625.

Straub, J., M. Brenneis, A. Jellen-Ritter, R. Heyer, J. Soppa, and A. Marchfelder (2009).
“Small RNAs in haloarchaea: identification, differential expression and biological func-
tion”. In: RNA biology 6.3, pp. 281-292. DOI: 10.4161/rna.6.3.8357.

Sun, F. J., S. Fleurdépine, C. Bousquet-Antonelli, G. Caetano-Anolles, and J. M. Deragon
(2007). “Common evolutionary trends for SINE RNA structures”. In: Trends Genet.
23, pp. 26-33. DOI: 10.1016/7j.tig.2006.11.005.

Swofford, D. L. (2004). “Paup*: Phylogenetic analysis using parsimony (and other meth-
ods)”. In: Dictionary of Bioinformatics and Computational Biology. DOI: 10.1002/
0471650129.dob0522.

Tafer, H. and I. L. Hofacker (2008). “RNAplex: a fast tool for RNA-RNA interaction
search”. In: Bioinformatics 24.22, pp. 2657-2663. DOI: 10.1093/bioinformatics/
btn193.

Tai, K.-C. (1979). “The tree-to-tree correction problem”. In: Journal of the ACM (JACM)
26.3, pp. 422-433. DOIL: 10.1145/322139.322143.

Tatusov, R. L., E. V. Koonin, and D. J. Lipman (1997). “A genomic perspective on protein
families”. In: Science 278, pp. 631-637. DOI: 10.1126/science.278.5338.631.

Tendeau, F. (1998). “Computing abstract decorations of parse forests using dynamic
programming and algebraic power series”. In: Theoretical computer science 199.1-2,
pp. 145-166. DOI: 10.1016/s0304-3975(97)00271-5.

Teshima, K. M. and H. Innan (2004). “The Effect of Gene Conversion on the Divergence

Between Duplicated Genes”. In: Genetics 166, pp. 1553-1560. DOI: 10.1534/genetics.

166.3.1553.

Teunissen, S. W. M., M. J. M. Kruithof, A. D. Farris, J. B. Harley, W. J. van Venrooij, and
G. J. M. Pruijn (2000). “Conserved features of Y RNAs: a comparison of experimentally
derived secondary structures”. In: Nucl. Acids Res. 28, pp. 610-619. DOI: 10.1093/
nar/28.2.610.

Thiel, B. C., C. Flamm, and I. L. Hofacker (2017). “RNA structure prediction: from
2D to 3D”. In: Emerging Topics in Life Sciences 1.3, pp. 275-285. DOI: 10.1042/
et1s20160027.

https://doi.org/10.1111/j.1365-2958.2007.06084.x
https://doi.org/10.1093/bioinformatics/btl446
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1163/221058211X570358
https://doi.org/10.1163/221058211X570358
https://doi.org/10.1093/bioinformatics/13.6.625
https://doi.org/10.4161/rna.6.3.8357
https://doi.org/10.1016/j.tig.2006.11.005
https://doi.org/10.1002/0471650129.dob0522
https://doi.org/10.1002/0471650129.dob0522
https://doi.org/10.1093/bioinformatics/btn193
https://doi.org/10.1093/bioinformatics/btn193
https://doi.org/10.1145/322139.322143
https://doi.org/10.1126/science.278.5338.631
https://doi.org/10.1016/s0304-3975(97)00271-5
https://doi.org/10.1534/genetics.166.3.1553
https://doi.org/10.1534/genetics.166.3.1553
https://doi.org/10.1093/nar/28.2.610
https://doi.org/10.1093/nar/28.2.610
https://doi.org/10.1042/etls20160027
https://doi.org/10.1042/etls20160027

202

Bibliography

Thomason, M. K. and G. Storz (2010). “Bacterial antisense RNAs: how many are there,
and what are they doing?” In: Annual review of genetics 44, pp. 167-188. DOI: 10.
1146/annurev-genet-102209-163523.

Thomm, M., W. Hausner, and C. Hethke (1993). “Transcription factors and termination
of transcription in Methanococcus”. In: Systematic and applied microbiology 16.4,
pp. 648-655. DOI: 10.1016/s0723-2020(11)80336-x.

Tiepmar, J. and G. Heyer (2017). “An Overview of Canonical Text Services”. In: Linguistics
Literature Studies 5, pp. 132-148. poI: 10.13189/11s.2017.050209.

Vaddadi, K., N. Sivadasan, K. Tayal, and R. Srinivasan (2017). Sequence Alignment on
Directed Graphs. Tech. rep. bioRxiv. DOI: 10.1101/124941.

Velandia-Huerto, C. A., S. J. Berkemer, A. Hoffmann, N. Retzlaff, L. C. Romero Marroquin,
M. Hernandez Rosales, P. F. Stadler, and C. I. Bermidez-Santana (2016). “Orthologs,
turn-over, and remolding of tRNAs in primates and fruit flies”. In: BMC Genomics 17,
p- 617. DOI: 10.1186/512864-016-2927-4.

Viterbi, A. (1967). “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm”. In: IEEE Transactions on Information Theory 13.2, pp. 260-269.
DOI: 10.1109/TIT.1967.1054010.

Wagner, R. A. and M. J. Fischer (1974). “The string-to-string correction problem”. In:
Journal of the ACM (JACM) 21.1, pp. 168-173. DOI: 10.1145/321796.321811.

Walker, J. E., O. Luyties, and T. J. Santangelo (2017). “Factor-dependent archaeal
transcription termination”. In: Proceedings of the National Academy of Sciences 114.33,
E6767-E6773. DOI: 10.1073/pnas.1704028114.

Wang, L. and T. Jiang (1994). “On the complexity of multiple sequence alignment”. In: J
Comput Biol 1, pp. 337-348. DOI: 10.1089/cmb.1994.1.337.

Wang, P. P. and I. Ruvinsky (2012). “Family size and turnover rates among several classes
of small non-protein-coding RNA genes in Caenorhabditis nematodes”. In: Genome
Biol Fvol 4, pp. 565-574. DOI: 10.1093/gbe/evs034.

Wang, Z., M. Gerstein, and M. Snyder (2009). “RNA-Seq: a revolutionary tool for
transcriptomics”. In: Nature reviews genetics 10.1, p. 57. DOI: 10.1038/nrg2484.
Ward, N. and G. Moreno-Hagelsieb (2014). “Quickly Finding Orthologs as Reciprocal
Best Hits with BLAT, LAST, and UBLAST: How Much Do We Miss?” In: PLoS ONE

9, €101850. pOI: 10.1371/journal.pone.0101850.

Wareham, H. T. (1995). “A simplified proof of the NP- and MAX SNP-hardness of multiple
sequence tree alignment”. In: J Comput Biol. 2, pp. 509-514. DOI: 10.1089/cmb.1995.
2.509.

Watanabe, Y.-i. and S. Yoshinari (2013). “Intron and RNA splicing in Archaea”. In: Viva
Orig 41.1213, p. 18.

Weiss, M. C., F. L. Sousa, N. Mrnjavac, S. Neukirchen, M. Roettger, S. Nelson-Sathi,
and W. F. Martin (2016). “The physiology and habitat of the last universal common
ancestor”. In: Nature Microbiology 1.9, p. 16116. DOI: 10.1038/nmicrobiol.2016.116.

Woese, C. (1998). “The universal ancestor”. In: Proceedings of the National Academy of
Sciences 95.12, pp. 6854-6859. DOI: 10.1073/pnas.95.12.6854.

Woese, C. R. (1987). “Bacterial evolution.” In: Microbiological reviews 51.2; p. 221.

Woese, C. R. and G. E. Fox (1977). “The concept of cellular evolution”. In: Journal of
Molecular Evolution 10.1, pp. 1-6. DOI: 10.1007/b£01796132.

https://doi.org/10.1146/annurev-genet-102209-163523
https://doi.org/10.1146/annurev-genet-102209-163523
https://doi.org/10.1016/s0723-2020(11)80336-x
https://doi.org/10.13189/lls.2017.050209
https://doi.org/10.1101/124941
https://doi.org/10.1186/s12864-016-2927-4
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1145/321796.321811
https://doi.org/10.1073/pnas.1704028114
https://doi.org/10.1089/cmb.1994.1.337
https://doi.org/10.1093/gbe/evs034
https://doi.org/10.1038/nrg2484
https://doi.org/10.1371/journal.pone.0101850
https://doi.org/10.1089/cmb.1995.2.509
https://doi.org/10.1089/cmb.1995.2.509
https://doi.org/10.1038/nmicrobiol.2016.116
https://doi.org/10.1073/pnas.95.12.6854
https://doi.org/10.1007/bf01796132

Bibliography

203

Woese, C. R., O. Kandler, and M. L. Wheelis (1990). “Towards a natural system of
organisms: proposal for the domains Archaea, Bacteria, and Eucarya.” In: Proceedings
of the National Academy of Sciences 87.12, pp. 4576-4579. DOI: 10.1073/pnas.87.12.
4576.

Wolfe, J. M. and G. P. Fournier (2018). “Horizontal gene transfer constrains the timing
of methanogen evolution”. In: Nature Ecology & FEvolution 2.5, pp. 897-903. DOI:
10.1038/s41559-018-0513-7.

Wolff, J. G. (2000). “Syntax, parsing and production of natural language in a framework
of information compression by multiple alignment, unification and search”. In: J.
Universal Comp. Sci. 6.8, pp. 781-829. DOI: 10.3217/jucs-006-08-0781.

Yorgey, B. A. (2010). “Species and functors and types, oh my!” In: ACM Sigplan Notices.
Vol. 45. 11. ACM, pp. 147-158. DOI: 10.1145/1863523.1863542.

Yorgey, B. A., S. Weirich, and J. Carette (2014). “Labelled structures and combinatorial
species”. In:

Yorgey, B. A. (2014). Combinatorial species and labelled structures. University of Pennsyl-
vania.

Zaremba-Niedzwiedzka, K. et al. (2017). “Asgard archaea illuminate the origin of eukaryotic
cellular complexity”. In: Nature 541.7637, pp. 353-358. DOI: 10.1038/nature21031.

Zhang, K. and D. Shasha (1989). “Simple fast algorithms for the editing distance between
trees and related problems”. In: SIAM J Computing 18, pp. 1245-1262. DO1: 10.1137/
0218082.

Zuckerkandl, E. and L. Pauling (1965). “Molecules as documents of evolutionary history”.
In: Journal of theoretical biology 8.2, pp. 357-366. DOI: 10.1016/0022-5193(65) 90083~
4.

Zuker, M. and P. Stiegler (1981). “Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information”. In: Nucleic acids research 9.1,
pp. 133-148. po1: 10.1093/nar/9.1.133.

Zvelebil, M. J. and J. O. Baum (2007). Understanding bioinformatics. Garland Science.
DOI: 10.1201/9780203852507.

https://doi.org/10.1073/pnas.87.12.4576
https://doi.org/10.1073/pnas.87.12.4576
https://doi.org/10.1038/s41559-018-0513-7
https://doi.org/10.3217/jucs-006-08-0781
https://doi.org/10.1145/1863523.1863542
https://doi.org/10.1038/nature21031
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://doi.org/10.1016/0022-5193(65)90083-4
https://doi.org/10.1016/0022-5193(65)90083-4
https://doi.org/10.1093/nar/9.1.133
https://doi.org/10.1201/9780203852507

204 Bibliography

Curriculum Scientiae 205

Curriculum Scientiae

Personal Information

Name Sarah J. Berkemer

Birthday March 23, 1990

Birthplace Speyer, Germany

Institutions e Bioinformatics Group, Department of Computer Science, Leipzig
University, Hartelstr. 16-18, 04107 Leipzig, Germany
e Max Planck Institute for Mathematics in the Sciences (MPI MIS),
Inselstrafe. 22, 04103 Leipzig, Germany

E-mail bsarah@bioinf.uni-leipzig.de
Webpage www.bioinf.uni-leipzig.de/~bsarah
Education

04/2015 - 06/2019 PhD Student
e International Max Planck Research School (IMPRS) at MPI
MIS Leipzig and
e Bioinformatics Group, Department of Computer Science,
Leipzig University

06/2018 - 07/2018 Complex Systems Summer School 2018
e Santa Fe Institute for Complex Systems (SFI), Santa Fe, NM,
USA

06/2017 - 09/2017 JSPS Summer Program 2017
e Earth-Life-Science Institute (ELSI), Tokyo Institute of Tech-
nology, Tokyo, Japan

206

Curriculum Scientiae

Education (continued)

04/2013 - 03/2015

05/2014 - 08/2014

08/2012 - 01/2013

10/2009 - 08,/2012

2009

Teaching

Master of Science, Bioinformatics

e Universitat Leipzig, Leipzig, Germany

e Thesis: Processed Small RNAs in Archaea and BHB Elements.
Google Summer of Code 2014

e Project: Transalign: Open Source high-performance Biohaskell.
Convert a program used to find transitive alignments to high-
performance Haskell code.

Semester abroad (Erasmus Program)

e Link6ping University, Linkoping, Sweden

Bachelor of Science, Bioinformatics

e Saarland University, Saarbriicken, Germany

e Thesis: Cograph Editing: An Approach to Adjust the Orthol-
ogy Relation for the Reconstruction of Phylogenetic Trees
German-French highschool diploma (Abi-Bac)

e Ludwigshafen am Rhein, Germany

09/2016 Teaching
Introductory bioinformatics course for biologists, Jakarta, Indonesia
03/2015 Teaching Assistant

Spring school Programming for evolutionary biology, Leipzig, Germany
since 10/2015 Teaching Assistant

Bachelor and Master courses for Computer Science and Bioinformatics,

Universitit Leipzig

Languages

German: native speaker

English: fluent

French: good working knowledge

Selbstiandigkeitserklarung

207

Selbstiandigkeitserklarung

Hiermit erklére ich, die vorliegende Dissertation selbsténdig und ohne unzuléssige fremde
Hilfe angefertigt zu haben. Ich habe keine anderen als die angefiithrten Quellen und
Hilfsmittel benutzt und sédmtliche Textstellen, die wortlich oder sinngeméfl aus verof-
fentlichten oder unveroffentlichten Schriften entnommen wurden, und alle Angaben, die
auf miindlichen Auskiinften beruhen, als solche kenntlich gemacht. Ebenfalls sind alle von
anderen Personen bereitgestellten Materialen oder erbrachten Dienstleistungen als solche
gekennzeichnet.

(Ort, Datum)

(Unterschrift)

	 Introduction
	Dynamic Programming in Bioinformatics
	The Structure of Data Structures
	Traversing Data Structures
	Dynamic Programming
	Applied Dynamic Programming in Bioinformatics
	Structure of the Thesis

	 Theoretical Aspects of Dynamic Programming
	Introduction to Dynamic Programming
	String-to-String Correction
	Dynamic Programming
	Dynamic Programming Algorithms in Bioinformatics

	Dynamic Programming on Trees and Forests
	Trees and Forests as Data Structures
	Single-tape DP on Trees and Forests
	Two-tape and Multi-Tape DP on Trees and Forests
	Tree Alignment
	Tree Editing
	Benchmarking against RNAforester
	Software Availability
	Conclusion

	Dynamic Programming with Alignments on General Data Structures
	Formal Definitions of Sequence Alignments
	Alignments of Partially Ordered Sets
	Composition of Alignments
	Blockwise Decompositions
	Recursive Construction
	Alignments as Relations
	Tree Alignments
	Alignments of Graphs
	Alignments for General Structures
	Concluding Remarks

	 Bioinformatics Applications of Dynamic Programming
	On Popular Input Data to Dynamic Programming Algorithms
	Biological Sequences
	The Phylogenetic Tree of Life
	Genetic Evolutionary Relationships
	Algorithms & Methods

	Duplication Alignments to Reconstruct Evolutionary History
	Concerted Evolution
	Creation of Gene Clusters
	Quantitative Analysis of Evolutionary Events
	Results
	Benchmarking and Application to Artificial Data
	Implementation
	Concluding Remarks

	Dynamic Programming on Phylogenetic Trees: Towards the Last Common Ancestor
	Orthologous Proteins
	Topology of Phylogenetic Trees
	Interdomain vs Intradomain Distances
	Permutation Analysis
	Concluding Remarks

	Unbiased Map of Transcription Termination Sites in Haloferax volcanii
	Transcription Termination in Archaea
	Dar-Sorek Method
	Internal Enrichment-Peak Calling
	IE-PC results
	Concluding Remarks

	 Conclusion & Future Work
	Dynamic Programming in Theory and Applications
	Theoretical Aspects of Dynamic Programming Algorithms
	Application of Dynamic Programming Algorithms in Bioinformatics
	Discussion & Future Work
	Appendices
	Dynamic Programming on Trees and Forests
	Affine Gap Costs for Tree and Forest Alignment
	Inside-Outside for Alignment and Editing

	Dynamic Programming on Phylogenetic Trees: Towards the Last Common Ancestor
	Additional Tables

	Unbiased Map of Transcription Termination Sites in Haloferax volcanii
	Mapping RNAsequencing data
	Dar-Sorek-Method
	Internal Enrichment

	List of Abbreviations
	Bibliography
	Curriculum Scientiae

