Untersuchungen zur Perfusion des Uterus im Zyklus von Jungsauen mittels transabdominaler Dopplersonographie

Inaugural-Dissertation
zur Erlangung des Grades eines
Doctor medicinae veterinariae (Dr. med. vet.)
durch die Veterinärmedizinische Fakultät
der Universität Leipzig

eingereicht von
Catherine Herlt
(geb. Poser)
aus Zeitz

Leipzig, 2020
Mit Genehmigung der Veterinärmedizinischen Fakultät der Universität Leipzig

Dekan: Prof. Dr. Dr. Thomas Vahlenkamp

Betreuer: Prof. Dr. Johannes Kauffold

Gutachter: Prof. Dr. Johannes Kauffold, Klinik für Klauentiere, Veterinärmedizinischen Fakultät, Universität Leipzig

Prof. Dr. Axel Wehrend, Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere mit Tierärztlicher Ambulanz, Justus-Liebig-Universität Gießen

Tag der Verteidigung: 17. Dezember 2019
Für Sau Nr. 6

Wo ein Wille ist, da ist auch ein Weg.
Inhaltsverzeichnis

1 Einleitung ...1

2 Literaturübersicht ..4

2.1 Sexualzyklus der Sau ...4

2.2 Gefäßversorgung des Uterus ..6

2.3 Dopplersonographie ..8

2.3.1 Physikalische Grundlagen ...8

2.3.2 Dopplermodi ..9

2.3.3 Insonationswinkel ...11

2.3.4 Artefakte ...12

2.3.5 Auswertung von Doppleruntersuchungen ..13

2.3.5.1 Qualitative Analyse ...13

2.3.5.2 Semiquantitative Analyse ...14

2.3.5.3 Quantitative Analyse ...15

2.3.5.4 Pixelanalytische Methode ..16

2.3.5.4.1 Vergleich pixelanalytischer Programme ...17

2.3.6 Dopplersonographie am ingraviden Uterus in der Humanmedizin18

2.3.7 Dopplersonographie am ingraviden Uterus in der Veterinärmedizin19

3 Publikation ...21

4 Diskussion ...22

4.1 Immobilisation der Jungsaue ...23

4.2 Insonationswinkel ..24

4.3 Uterusgefäße. ..25

4.4 Analysen von Einzelbildern bzw. Videos. ...27

5 Zusammenfassung ...29

6 Summary ...31

7 Literaturverzeichnis ...
Inhaltsverzeichnis

Anhang ...

Danksagung ...
Abkürzungsverzeichnis

α Winkel zwischen Schallwelle und Bewegungsrichtung der Reflektoren
A Gefäßquerschnittsfläche
A. Arteria
Amix perfundierte Fläche unabhängig von der Blutflussrichtung
A-Mode Amplituden-Mode
B-Mode Brightness-Mode
bzw. beziehungsweise
c Schallgeschwindigkeit im Gewebe
CH Corpora haemorrhagica
CL Corpora lutea
D enddiastolische Geschwindigkeit
d_m mittlerer Gefäßdurchmesser
eCG equines Choriongonadotropin
e.g. exempli gratia, zum Beispiel
Δf Dopplersondenhift
f_0 Frequenz der ausgesendeten Ultraschallwelle
FSH Follikelstimulierendes Hormon
GnRH Gonadotropin-Releasing-Hormon
hCG humanes Choriongonadotropin
i.e. id est, das heißt
Imix Blutflussintensität unabhängig von der Blutflussrichtung
LH Luteinisierendes Hormon
MDV minimale diastolische Geschwindigkeit
MPSV maximale systolische Blutflussgeschwindigkeit
PGF2α Prostaglandin F2α
PI Pulsatilitätsindex
Plvmix Pulsatilitätsindex bezogen auf die Blutflussgeschwindigkeit, unabhängig von der Blutflussrichtung
PRF Pulsrepetitionsfrequenz
PSV maximale systolische Blutflussgeschwindigkeit
RI Resistenzindex
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLvMix</td>
<td>Resistenzindex bezogen auf die Blutflussgeschwindigkeit, unabhängig von der Blutflussrichtung</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>S</td>
<td>maximale systolische Blutflussgeschwindigkeit</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean, Standardfehler</td>
</tr>
<tr>
<td>TAMP</td>
<td>die über einen Herzzyklus gemittelte maximale Geschwindigkeit</td>
</tr>
<tr>
<td>TAMV</td>
<td>die über einen Herzzyklus gemittelte maximale Geschwindigkeit</td>
</tr>
<tr>
<td>TAMX</td>
<td>die über einen Herzzyklus gemittelte maximale Geschwindigkeit</td>
</tr>
<tr>
<td>u.a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>V.</td>
<td>Vena</td>
</tr>
<tr>
<td>v</td>
<td>Geschwindigkeit der Reflektoren im Verhältnis zum Schallkopf</td>
</tr>
<tr>
<td>v_mean_mitt</td>
<td>über einen Herzzyklus gemittelte mittlere Blutflussgeschwindigkeit</td>
</tr>
<tr>
<td>vmix</td>
<td>Blutflussgeschwindigkeit unabhängig von der Blutflussrichtung</td>
</tr>
<tr>
<td>Vol</td>
<td>Blutflussvolumen</td>
</tr>
<tr>
<td>X</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
Einleitung

1 Einleitung

Einleitung

die Grundlage für weiterführende Studien zur Charakterisierung uteriner Pathologien wie der oben erwähnten bisher konventionell nicht zu diagnostizierenden chronischen Endometritis beim Schwein.

2 Literaturübersicht

2.1 Sexualzyklus der Sau

Literaturübersicht

Literaturübersicht

2.2 Gefäßversorgung des Uterus

Kenntnisse über die den Uterus versorgenden Blutgefäße sind eine wichtige Voraussetzung für Perfusionsanalysen und sollen im Folgenden genauer erläutert werden. Die arterielle Versorgung des Uterus erfolgt durch die A. ovarica, die A. uterina, sowie die A. vaginalis (LANGE 1959) (Abbildung 0). Alle drei Gefäße sind bilateral angelegt. Nachfolgend soll die Gefäßaufzweigung einer Körperseite beschrieben werden:

Der Uterus wird einerseits über mehrere Rami uterini der A. ovarica, die sich mit dem kranialsten Ramus uterinus der A. uterina verbinden, versorgt (LANGE 1959; OXENREIDER et al. 1965).

2.3 Dopplersonographie

2.3.1 Physikalische Grundlagen
1842 legte Christian Doppler mit seiner Untersuchung „Über das farbige Licht der Dopplersterne“ den Grundstein für die Dopplersonographie (DOPPLER 1842). Bei der Dopplersonographie wird der Effekt einer Frequenzverschiebung zwischen einer gesendeten \(f_0 \) und empfangenen Ultraschallwelle bei Reflexion an einem sich bewegenden Körper (Reflektor) genutzt (DICKEY 1997; HERZOG und BOLLWEIN 2007). Diese Frequenzverschiebung nennt man Dopplershift \(\Delta f \) oder Dopplershiftfrequenz (HERZOG und BOLLWEIN 2007; STEINER und SCHNEIDER 2008). Sie ist abhängig von der Frequenz der ausgesendeten Ultraschallwelle \(f_0 \), der Geschwindigkeit der Reflektoren im Verhältnis zum Schallkopf \(v \), dem Cosinus des Winkels \(\alpha \) zwischen Schallwelle und Bewegungsrichtung der Reflektoren sowie der Schallgeschwindigkeit im Gewebe \(c \) (Formel 1). Bewegt sich der Reflektor auf den Empfänger zu, misst dieser eine höhere reflektierte Frequenz als die ausgesendete Frequenz (HERZOG und BOLLWEIN 2007; STEINER und SCHNEIDER 2008). Der Dopplershift ist demzufolge positiv. Entfernt sich der
Literaturübersicht

Reflektor vom Empfänger, ist die Frequenz der reflektierten Welle niedriger als die der ausgesendeten; der Dopplershift ist negativ (Formel 1). In Blutgefäßen wird die Ultraschallwelle von den sich bewegenden Erythrozyten reflektiert. Da sich die Frequenzverschiebung (Dopplershiftfrequenz) proportional zur Geschwindigkeit des Reflektors verhält, kann auf die Blutflussgeschwindigkeit zurückgeschlossen werden (STEINER und SCHNEIDER 2008) (Formel 1). Dabei muss allerdings beachtet werden, dass sich die Blutflussgeschwindigkeit innerhalb eines Herzzyklus verändert. Während der Systole steigt die Blutflussgeschwindigkeit aufgrund der kardialen Kontraktskraft. In der Diastole fließt das Blut passiv ab. Die niedrige Blutflussgeschwindigkeit wird durch den peripheren Gefäßwiderstand bestimmt (SOHN et al. 1993).

\[\Delta f = 2 \cdot f_0 \cdot \frac{v \cdot \cos \alpha}{c} \]

\(\Delta f\): Dopplershift
\(f_0\): Frequenz der ausgesendeten Ultraschallwelle
\(v\): Geschwindigkeit der Reflektoren im Verhältnis zum Schallkopf
\(\alpha\): Winkel zwischen Schallwelle und Bewegungsrichtung der Reflektoren
\(c\): Schallgeschwindigkeit im Gewebe
Formel aus HERZOG und BOLLWEIN 2007

2.3.2 Dopplermodi
Es gibt verschiedene Dopplermodi, die in der Praxis Anwendung finden. Auf die wichtigsten Modi (Color-, Power- und Pulse Wave-Doppler) soll im Folgenden genauer eingegangen werden.

Beim Color-Doppler werden die empfangenen Dopplershiftfrequenzen farbcodiert. Strömt der Blutfluss auf den Schallkopf zu, kommt es zu einer Erhöhung der Dopplershiftfrequenz; der perfundierte Bereich wird rot dargestellt. Fließt der Blutstrom vom Schallkopf weg, sinkt die Dopplershiftfrequenz und die perfundierte Region wird blau abgebildet. Je heller die Pixel in rot oder blau angezeigt werden, desto höher ist die Blutflussgeschwindigkeit. Durch die Verwendung vieler
Literaturübersicht

Echofenster werden Blutflussgeschwindigkeiten im Messbereich flächenhaft dargestellt (STEINER und SCHNEIDER 2008). Die Visualisierung der Blutflussgeschwindigkeit ist dabei vom Winkel zwischen Schallwelle und Gefäßlängsachse (Insonationswinkel; siehe Kapitel 2.3.3 & Tabelle 1; YORK und KIM 1999) abhängig.

Tabelle 0: Vergleich der Charakteristika von Color-, Power- und Pulse Wave- Doppler

<table>
<thead>
<tr>
<th>messbare Parameter</th>
<th>Color-Doppler</th>
<th>Power-Doppler</th>
<th>Pulse Wave-Doppler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blutflussgeschwindigkeit, perfundierte Fläche, Blutflussrichtung</td>
<td>perfundierte Fläche, Blutflussintensität</td>
<td>Blutflussgeschwindigkeit, perfundierte Fläche, Blutflussrichtung, Resistenzindex, Pulsatilitätsindex</td>
<td></td>
</tr>
<tr>
<td>Codierung</td>
<td>farbcodiert (rot/blau)</td>
<td>amplitudencodiert (gelb/orange)</td>
<td>farbcodiert (rot/blau), graphisch</td>
</tr>
<tr>
<td>Darstellung der Blutflussgeschwindigkeit bzw. -intensität</td>
<td>Blutflussgeschwindigkeit über Farbhelligkeit definiert</td>
<td>Blutflussintensität über Farbhelligkeit definiert</td>
<td>Blutflussgeschwindigkeit über Farbhelligkeit und graphischen Verlauf definiert</td>
</tr>
<tr>
<td>Einfluss des Insonationswinkels</td>
<td>ja</td>
<td>nein</td>
<td>ja</td>
</tr>
</tbody>
</table>

2.3.3 Insonationswinkel
Für die Berechnung der Blutflussgeschwindigkeit aus der Dopplershiftfrequenz muss der Winkel zwischen Schallwelle und Gefäßlängsachse (Insonationswinkel) bestimmt

2.3.4 Artefakte

2.3.5 Auswertung von Doppleruntersuchungen
Doppleruntersuchungen erlauben nach qualitativer, quantitativer, semiquantitativer oder pixelanalytischer Auswertung Rückschlüsse auf die Perfusion. Auf die einzelnen Auswertungsformen soll im Folgenden genauer eingegangen werden.

2.3.5.1 Qualitative Analyse
2.3.5.2 Semiquantitative Analyse

Der zweite Index, der Pulsatilitätsindex (PI), berechnet sich aus dem Quotienten der Differenz zwischen maximaler systolischer Blutflussgeschwindigkeit und enddiastolischer Geschwindigkeit, und der über einen Herzzyklus gemittelten maximalen Geschwindigkeit (TAMV) (Formel 3). PI kann Werte zwischen null und unendlich annehmen und wird bei niedrigen oder ausbleibenden diastolischen Blutflüssen bzw. spätysystolischen Inzisuren angewandt (STEINER und SCHNEIDER 2008).
Formel 2: \[RI = \frac{S-D}{S} \]

Formel 3: \[PI = \frac{S-D}{TAMV} \]

RI: Resistenzindex
PI: Pulsatilitätsindex
S: maximale systolische Blutflussgeschwindigkeit
D: enddiastolische Geschwindigkeit
TAMV: die über einen Herzzyklus gemittelte maximale Geschwindigkeit
Formeln modifiziert aus DICKEY 1997

2.3.5.3 Quantitative Analyse

Formel 4: $\text{Vol} = v_{\text{mean mitt}} \cdot A$

Formel 5: $A = (d_m/2)^2 \cdot \pi$

Vol: Blutflussvolumen
$v_{\text{mean mitt}}$: über einen Herzzyklus gemittelte mittlere Blutflussgeschwindigkeit
A: Gefäßquerschnittsfläche
d_m: mittlerer Gefäßdurchmesser
Formel modifiziert aus STEINER und SCHNEIDER (2008)

2.3.5.4 Pixelanalytische Methode

Die pixelanalytische Methode ist für die Auswertung von Blutflussuntersuchungen geeignet, die mittels Color-, Power- und auch Pulse Wave-Doppler, durchgeführt wurden. Diese Methode ermöglicht eine direkte Perfusionsanalyse des Gewebes (z.B. des Uterus) und nicht, wie bei der qualitativen, semiquantitativen und quantitativen Analyse, einen indirekten Rückschluss von der Perfusion im einzelnen Gefäß (z.B. A. uterina) auf die Gewebeperfusion (AMSO et al. 2001; ACOSTA et al.)

2.3.5.4.1 Vergleich pixelanalytischer Programme

2.3.6 Dopplersonographie am ingraviden Uterus in der Humanmedizin

In nachfolgenden Studien wurde untersucht, ob verschiedenste Faktoren wie Alter, Tageszeit, Füllungsstand der Harnblase und die Untersuchungsposition der Probandin (stehend versus liegend) Einfluss auf die Perfusionsverhältnisse des Uterus hatten (BATTAGLIA et al. 1994; Dickey et al. 1994; ZAIDI et al. 1995b; HSIEH et al. 2000). Andere dopplersonographischen Untersuchungen wurden im
Literaturübersicht

2.3.7 Dopplersonographie am ingraviden Uterus in der Veterinärmedizin

3 Publikation

Die bibliographischen Angaben der Publikation lauten:

Feasibility of transabdominal Doppler sonography for studying uterine blood flow characteristics in cycling gilts

Catherine Herlt; Rosa Stark; Haukur L. Sigmarsson; Johannes Kauffold

Tierärztl Prax Ausg G 2018; 46(03):154-163

DOI: 10.15653/TPG-180369
4 Diskussion

Die durchgeführten Untersuchungen ergaben, dass die transabdominale Dopplersonographie bei in einem Untersuchungsstand fixierten Jungsauen möglich ist. Da sich lediglich die Color-Dopplersonographie als geeignet zur Untersuchung der Perfusion des Uterus bei Jungsauen erwies, wurde nur diese Methode
Diskussion

Im Folgenden werden die Ergebnisse der Forschungsarbeit übergreifend diskutiert.

4.1 Immobilisation der Jungsaue

Während der dopplersonographischen Untersuchung können zahlreiche Bewegungen des Patienten (Lokomotion, Atmung, Vokalisation oder Futteraufnahme) auftreten und Bewegungsartefakte verursachen, welche die Perfusionsignale der Gefäße überlagern. Um Bewegungsartefakte zu minimieren, ist eine Immobilisation der Tiere notwendig, auf die nachfolgend eingegangen werden soll.

Diskussion

4.2 Insonationswinkel
Der Insonationswinkel (Winkel zwischen Schallwelle und Gefäßlängsachse) spielt für die genaue Berechnung der Blutflussgeschwindigkeit und Abschätzung des Messfehlers beim winkelabhängigen Color- und Pulse Wave-Doppler eine essentielle Rolle (SCHÄBERLE 2010). Je kleiner der Insonationswinkel ist, umso sensitiver ist der Strömungsnachweis und geringer ist der Messfehler (SCHÄBERLE 2010). Allgemein gilt, dass der Insonationswinkel ≤ 60° sein sollte, damit die berechnete Blutflussgeschwindigkeit möglichst nah an der realen Geschwindigkeit liegt und der Messfehler akzeptabel klein ist (STEINER und SCHNEIDER 2008).

4.3 Uterusgefäße
Mittels Color-Doppler war es in dieser Studie möglich, Gefäße zwischen benachbarten und innerhalb von Uterusschlingen darzustellen und für Perfusionsanalysen zu nutzen. Bei Gefäßen zwischen Uterusschlingen handelte es sich sehr wahrscheinlich um solche des breiten Mutterbandes, während die innerhalb von Uterusschlingen myometriale und/oder endometriale Gefäße repräsentierten. Während die Darstellung der Gefäße des breiten Mutterbandes jederzeit gelang, war

4.4 Analysen von Einzelbildern bzw. Videos

Bisher wurden perfusionsanalytische Untersuchungen sowohl in Human- als auch Veterinärmedizin überwiegend anhand von Einzelbildern mithilfe diverser pixelanalytischer Programme, wie NIH Image 1.55, Virtual Organ Computer-aided AnaLysis (VOCAL™)-imaging program version 4.0 oder Analysis Pro 1.1, analysiert (EPSTEIN et al. 2002; RAINFENNING et al. 2004; WÜNSCHMANN 2007). Auch wenn nicht generell in ihrer Validität zu hinterfragen haben derartige Einzelbilderanalysen einen Nachteil: der Herzzyklus (d.h. Systole versus Diastole), der Einfluss auf Perfusionseigenschaften nimmt, ist nicht bekannt, so dass die

Schlussfolgerungen/Ausblick
5 Zusammenfassung

Catherine Herlt, geb. Poser

Untersuchungen zur Perfusion des Uterus im Zyklus von Jungsauen mittels transabdominaler Dopplersonographie

Klinik für Klauentiere der Veterinärmedizinischen Fakultät der Universität Leipzig

Eingereicht im Juli, 2019
32 Seiten, 1 Publikation, 9 Abbildungen, 2 Tabellen, 98 Literaturangaben, 1 Anhang

Schlüsselwörter: Dopplersonographie, uterine Perfusion, Jungsaue, Zyklus

Zusammenfassung

Ergebnisse: Uterine Durchblutung konnte jederzeit zwischen und gelegentlich auch innerhalb der Uterusschlingen dargestellt werden. Alle erhobenen Blutflussparameter zeigten im Verlauf des Zyklus einen charakteristischen Verlauf. Blutflussgeschwindigkeit, durchblutete Fläche und Blutflussintensität waren im Proöstrus hoch, sanken im Östrus, um im Met- und den meisten Teilen des Diöstrus niedrig zu bleiben und danach wieder anzusteigen. Alle drei Parameter korrelierten mittelstark bis stark positiv miteinander (r: 0,63-0,95; p<0,05). Nahezu reziprok verhielten sich Resistenz- und Pulsatilitätsindex mit den vorherigen Parametern. Sie korrelierten mit der Blutflussgeschwindigkeit, der durchbluteten Fläche und der Blutflussintensität mittelstark bis stark negativ (r: -0,52 – -0,88; p<0,05), miteinander jedoch mittelstark bis stark positiv (r: 0,6-0,85; p< 0,05).

Summary

6 Summary

Catherine Herlt, geb. Poser

Investigation into transabdominal Doppler Sonography to study uterine perfusion during the estrous cycle in gilts

Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig

Submitted in July, 2019
(32 pages, 1 publication, 9 figures, 2 tables, 98 references, 1 appendix)

Keywords: Doppler Sonography, uterine perfusion, gilts, estrous cycle

Introduction: Reproductive disorders are the most frequent cause for culling sows. Frequently, the uterus is diseased. Some of them are clinically apparent. Others cannot be detected even if conventional B-Mode ultrasonography is applied. In the latter case it seems meaningful to use Doppler sonography in addition to B-Mode ultrasonography to study uterine perfusion in order to obtain additional diagnostic information as has been previously done in mares and cows. To evaluate pathological conditions with respect to uterine perfusion in pigs it is, however, necessary to understand the physiological condition, which is yet not known.

Aims: The aim of this study was therefore to characterize the uterine perfusion of gilts by means of transabdominal Doppler sonography during the estrous cycle. It was also the aim to test if this method is feasible to be performed intra vitam, i.e. on the living sow.

Animals, materials and methods: A total of 15 synchronized, gynecologically healthy gilts were included and investigated in the subsequent spontaneous estrous cycle between proestrus and diestrus using Doppler sonography while being confined in a mobile crate. Color-, Power- and Pulse Wave-Doppler were applied to characterize uterine perfusion within and between uterine cross-sections. Due to confinement of the gilts in the purpose-designed mobile crate, animal movements were reduced as needed to successfully perform Color- and Power-, but not enough for Pulse Wave-Doppler. In addition, with Pulse Wave-Doppler, it was impossible to constantly place the sample gate onto uterine vessels which was due to the fact of the tortuous course of the vessels. In comparison to Power-Doppler, Color-Doppler convinced through a
lower susceptibility for flash artifacts and a higher frame rate. Hence, Color-Doppler was used for the evaluation of recorded single images as well as videos. For evaluation, the software PixelFlux® was employed to analyze the number and color hue of the colored pixels within a standardized region of interest (ROI) in order to calculate blood flow velocity, perfused area, blood flow intensity, resistance index and pulsatility index. Statistical analysis was done using SPSS. Since the stages of the estrous cycle of the gilts examined varied in length they were normalized with day of ovulation defined as day 2. The values that were then available per day were averaged/parameter respectively the stages of the estrous cycle and, after applying Bonferroni-correction analyzed using the Friedman and Wilcoxon test. In order to detect relationships between the parameters determined the Spearman and Pearson correlation was employed.

Results: Uterine perfusion was always detectable between uterine cross-sections and occasionally also within uterine tissue. All recorded blood flow parameters showed a characteristic pattern throughout the estrous cycle. Blood flow velocity, perfused area and blood flow intensity were high in proestrus, declined in estrus to remain low in metestrus and most parts of diestrus to increase again. All three parameters showed a medium to strong positive correlation (r: 0.63-0.95; p<0.05). Almost inverse courses were observed for the resistance and pulsatility index, respectively. They displayed a medium or strong negative with blood flow velocity, perfused area and blood flow intensity (r: -0.52 – -0.88; p<0.05), but between both, a medium to strong positive correlation was observed (r: 0.6-0.85; p< 0.05).

Conclusion: In conclusion, this study has proven that, Doppler Sonography is feasible in principle to characterize uterine perfusion in gilts that are immobilized in a crate. While Pulse Wave- and Power-Doppler were not or only limited feasible, Color-Doppler proved appropriate to determine characteristic perfusion patterns during the estrous cycle. The results of this study encourage for further investigations into e.g. reasons of uterus-related sub- and infertility.
7 Literaturverzeichnis

Literaturverzeichnis

Literaturverzeichnis

Ford SP, Reynolds LP, Magness RR. Blood flow to the uterine and ovarian vascular beds of gilts during the estrous cycle or early pregnancy. Biol Reprod. 1982;27:878–85.

Rathmacher RP. Relationship of blood flow and progestin levels on uterine-ovarian function in pigs and rabbits. [Ph.D.]. Iowa: Iowa State University of Science and Technology; 1967.

Literaturverzeichnis

Anhang

Publikationen

Vorträge

Danksagung

Ich danke Herrn Prof. Johannes Kauffold für die Überlassung des interessanten Themas, die Vermittlung umfangreicher Kenntnisse und der Liebe zur Sonographie, der zur Verfügung gestellten erstklassigen Technik, den Erkenntnissen über mich selbst sowie den konstruktiven Anregungen bei der gewissenhaften Korrektur des Manuskriptes.

Des Weiteren danke ich Herrn Dr. Haukur L. Sigmarsson für die sonographische Ausbildung, seine Hilfe bei der Versuchsdurchführung und die Unterstützung bei technischen Problemen.

Bei dem Team des Schweinestalls des Lehr- und Versuchsgutes Oberholz möchte ich mich ganz herzlich für die tägliche Versorgung der Versuchstiere und die gute Zusammenarbeit bedanken.

Ich danke Frau Bettina Hentschel für Ihre geduldige Beratung bei der statistischen Auswertung der Arbeit.

Herrn Dr. Matthias Hoops und Frau Nadja Legler danke ich vielmals für ihre Hilfe bei der Versuchsdurchführung, die aufmunternden Worte, die lustigen Gespräche und die lehrreichen Ausflüge in den Kuhstall. Ich habe gute Freunde in euch gefunden.

Meinen Eltern danke ich für die Möglichkeit Veterinärmedizin zu studieren, sowie ihre stetige emotionale, mentale und finanzielle Unterstützung und Beratung.

Meinem Papa und Wenke Markgraf gilt ein großer Dank für die konstruktiven Ratschläge bei der kritischen Durchsicht dieser Arbeit.

Ein besonderer Dank gebührt meinem Ehemann, Martin Herlt, der mich in allen Etappen der Promotion geduldig und liebevoll unterstützt, mir den Rücken freigehalten und mich zum Weitermachen angespornt hat.
Ein überragendes Dankeschön geht an meine Kollegin, Rosa Stark. Sie hat mit mir gemeinsam tagtäglich die Versuche durchgeführt, mich bei 30°C im Schweinestall danach mit einem Eis aufgemuntert, sich über die Auswertung Gedanken gemacht, mich bei der Verfassung des Artikels mit ihren Englischkenntnissen unterstützt, mit mir alle Höhen und Tiefen geteilt und mir vor allem die Kraft gegeben, das Projekt Promotion durchzuziehen. Ich danke dir, Rosa!