
Structure, Dynamics and Self-Organization in Recurrent
Neural Networks:

From Machine Learning to Theoretical Neuroscience

Der Fakultät für Mathematik und Informatik
der Universität Leipzig

eingereichte

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM
(Dr.rer.nat.)

im Fachgebiet

Informatik

vorgelegt von

Diplom Ingenieur Pau Vilimelis Aceituno
geboren am 01.02.1989 in Lleida, Spanien

‘

Die Annahme der Dissertation wurde empfohlen von:
Professor Dr. Jürgen Jost (Universität Leipzig)

Professor Dr. Benjamin Grewe (Eidgenössische Technische Hochschule Zürich)

‘

Die Verleihung des akademischen Grades erfolg mit Bestehen der Verteidigung
am 19.06.2020 mit dem Gesamptprädikat magna cum laude

ii

Bibliographische Daten

Structure, Dynamics and Self-Organization in Recurrent Neural Networks:
From Machine Learning to Theoretical Neuroscience
(Struktur, Dynamik und Selbstorganisation in rekurrente neuronalen Netzen: Vom
maschinellen Lernen zur theoretischen Neurowissenschaft)
Vilimelis Aceituno, Pau
Universität Leipzig, Dissertation, 2019
126 Seiten, 21 Abbildungen, 172 Referenzen

iii

Abstract
At a first glance, artificial neural networks, with engineered learning algorithms
and carefully chosen nonlinearities, are nothing like the complicated self-organized
spiking neural networks studied by theoretical neuroscientists. Yet, both adapt to
their inputs, keep information from the past in their state space and are able of
learning, implying that some information processing principles should be com-
mon to both. In this thesis we study those principles by incorporating notions of
systems theory, statistical physics and graph theory into artificial neural networks
and theoretical neuroscience models.

The starting point for this thesis is Reservoir Computing (RC), a learning
paradigm used both in machine learning [JH04] and in theoretical neuroscience
[MNM02]. A neural network in RC consists of two parts, a reservoir a directed
and weighted network of neurons that projects the input time series onto a high
dimensional space and a readout which is trained to read the state of the neurons
in the reservoir and combine them linearly to give the desired output. In classical
RC, the reservoir is randomly initialized and left untrained, which alleviates the
training costs in comparison to other recurrent neural networks. However, this
lack of training implies that reservoirs are not adapted to specific tasks and thus
their performance is often lower than that of other neural networks. Our con-
tribution has been to show how knowledge about a task can be integrated into
the reservoir architecture, so that reservoirs can be tailored to specific problems
without training.

We do this design by identifying two features that are useful for machine learn-
ing: the memory of the reservoir and its power spectra. First we show that the
correlations between neurons limit the capacity of the reservoir to retain traces of
previous inputs, and demonstrate that those correlations are controlled by mod-
uli of the eigenvalues of the adjacency matrix of the reservoir. Second, we prove
that when the reservoir resonates at the frequencies that are present on the desired
output signal, the performance of the readout increases.

Knowing the features of the reservoir dynamics that we need, the next ques-
tion is how to impose them. The simplest way to design a network with that
resonates at a certain frequency is by adding cycles, which act as feedback loops,
but this also induces correlations and hence memory modifications. To disentan-
gle the frequencies and the memory design, we studied how the addition of cycles
modifies the eigenvalues in the adjacency matrix of the network. Surprisingly,
the shape of the eigenvalues is quite beautiful [ARS19] and can be characterized
using random matrix theory tools. Combining this knowledge with our result re-
lating eigenvalues and correlations, we designed an heuristic that tailors reservoirs
to specific tasks and showed that it improves upon state of the art RC in three dif-
ferent machine learning tasks.

iv

Although this idea works in the machine learning version of RC, there is one
fundamental problem when we try to translate to the world of theoretical neuro-
science: the proposed frequency adaptation requires prior knowledge of the task,
which might not be plausible in a biological neural network. Therefore the follow-
ing questions are whether those resonances can emerge by unsupervised learning,
and which kind of learning rules would be required.

Remarkably, these resonances can be induced by the well-known Spike Time-
Dependent Plasticity (STDP) combined with homeostatic mechanisms. We show
this by deriving two self-consistent equations: one where the activity of every
neuron can be calculated from its synaptic weights and its external inputs and a
second one where the synaptic weights can be obtained from the neural activity.
By considering spatio-temporal symmetries in our inputs we obtained two families
of solutions to those equations where a periodic input is enhanced by the neural
network after STDP. This approach shows that periodic and quasiperiodic inputs
can induce resonances that agree with the aforementioned RC theory.

Those results, although rigorous, are expressed on a language of statistical
physics and cannot be easily tested or verified in real, scarce data. To make them
more accessible to the neuroscience community we showed that latency reduction,
a well-known effect of STDP [SMA00] which has been experimentally observed
[MQW00], generates neural codes that agree with the self-consistency equations
and their solutions. In particular, this analysis shows that metabolic efficiency,
synchronization and predictions can emerge from that same phenomena of latency
reduction, thus closing the loop with our original machine learning problem.

To summarize, this thesis exposes principles of learning recurrent neural net-
works that are consistent with adaptation in the nervous system and also improve
current machine learning methods. This is done by leveraging features of the
dynamics of recurrent neural networks such as resonances and correlations in ma-
chine learning problems, then imposing the required dynamics into reservoir com-
puting through control theory notions such as feedback loops and spectral analy-
sis. Then we assessed the plausibility of such adaptation in biological networks,
deriving solutions from self-organizing processes that are biologically plausible
and align with the machine learning prescriptions. Finally, we relate those pro-
cesses to learning rules in biological neurons, showing how small local adapta-
tions of the spike times can lead to neural codes that are efficient and can be
interpreted in machine learning terms.

v

Acknowledgements
During the past three years I have been extremely lucky to be supervised by Jürgen
Jost, who has been a flexible and insightful advisor whose ideas and support made
this work possible, and who taught me how to think conceptually and motivated
me to use intuitive geometric intuitions when possible.

None of the results presented here would have been possible without the pa-
tience and work of many collaborators. Specially valuable where the discussions
and detailed revisions with Yang-Yu Liu and Gang Yan, without whom I could not
have completed the research on Echo State Networks. Similarly, Masud Ehsani
helped refine and prune many of the present arguments on synaptic plasticity. Fi-
nally, I am also thankful to Henning Schommerus and Tim Rogers, whose knowl-
edge of random matrix theory was instrumental to understand the subtleties of
large networks.

I have also benefited greatly from the scientific interactions with some of the
more experienced members of the institute. The discussions with Tobias, Slava,
Ivan, Guido, Nihat and Matteo where extremely instructive and taught me not only
how to solve specific problems, but also how to think and behave as a researcher.
On the other direction, I have to thank the Laura State and George Sivulka, two
promising graduate students which worked under my supervision and showed me
the limits of my own perspectives.

Besides the purely scientific interactions, I have also benefited from the help
of administrative staff that shielded me from most of the non-scientific problems
related to my thesis. I am specially grateful to the Antje Vandenberg and the
Library staff for making the work of a scientist really about science.

This thesis would not have been possible without the funding of the Max
Planck Society, both from the Max Planck Institute for Mathematics in the Sci-
ences and from the Max Planck School of Cognition. I should also mention ”la
Caixa” foundation, which sponsored my stay in Boston and gave me the chance
to come back to research.

Besides a dive into research, the past three years where a fascinating personal
experience. In this regard, I was fortunate to enter a friendly and open group of
researchers who became friends. A special thanks goes to Paolo, Sharwin, Renan,
Kostas, Caio, Gerardo, Raffaella, Felix, Marzieh, Claudia, Carolin and Zack.

Finally, even the most pleasant work interactions can sometimes be stressful
and frustrating. For their unwavering support and help through my Ph.D. I have
to thank my parents, my brother Miquel and my girlfriend Svenja.

vi

Contents

I Introduction 1
1 Motivation . 3
2 Approach and tools . 4
3 Brief history . 5
4 Current Trends and Relevant Approaches 6
5 Limitations, Caveats and Controversies 7

II Tailoring Artificial Recurrent Neural Networks 9
6 The ESN Framework . 11
7 Performance Measurement . 13

7.1 Forecasting Mackey-Glass time series 14
7.2 Forecasting Laser Intensity time series 15
7.3 Spoken Arabic Digit Recognition 15

8 Measuring Memory Capacity . 17
9 Memory and Dynamics . 19

9.1 A formal link between memory and correlations 19
10 Correlations and network spectra 27

10.1 Formal relationship between eigenvalues and correlation . 28
11 A structural proxy for Memory Capacity 33
12 Discussion . 35
13 A geometric approach to ESN training 37
14 Altering the Power Spectral Density (PSD) of the reservoir’s neurons 42

14.1 Cycles, resonances and eigenvalues in linear systems . . . 42
14.2 Eigenvalues of random matrices with cycles 44
14.3 Dealing with hyperbolic tangents 48

15 Generate adapted reservoirs . 53
16 Discussion . 54

III Self-Organized Activity in Spiking Neural Networks 57
17 Spiking neural networks . 59

vii

viii CONTENTS

18 Synaptic Plasticity . 61
18.1 Spike Time-Dependent Plasticity 61
18.2 Excitation-Inhibition . 63
18.3 Signal-To-Noise Ratio 70

19 Derivation of self-consistency equations 71
20 Solution I: Linearization and Sinusoids 73
21 Solution II: Sparsity and Binary Activity 75
22 Discussion . 77
23 Evolution of a single postsynaptic spike 79

23.1 Latency Reduction . 79
23.2 Late spike disappearance through synaptic noise 80
23.3 Numerical verification for random input spike trains . . . 83

24 Postsynaptic Spike Train . 85
24.1 Postsynaptic spikes evolve independently 85
24.2 Evolution of the postsynaptic spikes 88

25 The Emergence of Predictions 92
26 Discussion . 93

IV Conclusion 97
27 Summary and Contributions . 99
28 Open Questions and Future Directions 100
1 Training Echo State Networks 103

1.1 Selecting reservoir parameters 103
2 Network Generation Algorithms 104

2.1 Scale-free networks . 104
2.2 Random regular networks 104
2.3 Erdős-Rényi networks 105
2.4 Spectral radius and the variance of the weight distribution 105

3 Principal Component Analysis 106
4 Frobenius Norm and variances 107
5 Fourier Transformation and Parseval’s Theorem 108
6 Simulation of spiking neural networks 108

6.1 Continuous time approximation 108
6.2 Event-Based Implementation 109

List of Figures

1 The basic schema of an Echo State Network (ESN) 12
2 Plots of the time series for each task 14
3 Memory Capacity decay for various network architectures 18
4 Eigenvalue densities of the random networks studied in Fig. 3 . . 28
5 Neuron state correlation S vs average eigenvalue modulus 〈|λ|〉 . . 34
6 ESN performance explained by 〈|λ|〉 35
7 Sketch of the frequency adaptation argument 38
8 Sketch of the geometric bound on ESN performance 41
9 Frequency domain representation of reservoir activity for reser-

voirs with cycles . 43
10 Eigenvalues of matrices with cyclic correlations with theyr support 46
11 Improving ESN through frequency adaptation 52
12 Frequency plot of the Time Series 53
13 Leaky Integrate-and-Fire as a smooth function 64
14 Schema of the emergence of resonances 69
15 Evolution of a circulant peak of activity 74
16 Evolution of a circulant peak of activity 76
17 Latency reduction and spike proliferation 81
18 Noise deletes late spike in a regular presynaptic spike train 84
19 Evolution of the spike train . 90
20 Spike Count Evolution . 92
21 Encoding Predictions . 94

List of Tables

1 Effects of STDP on short random spike trains 95
2 Synchrony Evolution . 96

ix

x LIST OF TABLES

Abbreviations
ESN Echo State Network

LIF Leaky Integrate and Fire

LTD Long Term Depression

LTP Long Term Potentiation

NRMSE Normalized Root Mean Squared Error

PSD Power Spectral Density

RC Reservoir Computing

STDP Spiking Time-Dependent Plasticity

Part I

Introduction

1

Scope of this thesis

1 Motivation

How organisms and computers are able to take noisy and messy information from
the environment and eventually make inferences or predictions, and even find ex-
planations for the processes they are exposed to is a fascinating question that mo-
tivated this thesis. The fact that the best modern learning systems are inspired
by the way our own brains are structured makes the study of neural networks the
obvious choice to approach this problem.

Yet, just because we call both artificial learning systems and biological mod-
els neural networks, does not mean that both are equivalent. Despite the use
of the term ”neuron”, most modern research in neural networks for machine
learning and computational neuroscience differ at many levels. Machine Learn-
ing scientists and engineers use abstract neurons that have simple and differen-
tiable activation functions in a discrete time setting typically with feed-forward
networks [Bis95] that can be taught to perform some task with learning algo-
rithms such as backpropagation, while computational neuroscientists use com-
plex neuron models [HH53, Lap07b, Izh04] with heavily recurrent architectures
[GKNP14, Spo10] whose only goal is to reproduce activity from biological ob-
servations, with learning being enforced by local activity-driven synaptic learning
rules [DA01, SMA00].

Thus we must be careful to remain at the intersection of the two fields to
develop theories and concepts that are compatible with either. This does not imply
that the specific systems that we will study must always be biologically inspired
or machine learning based, but rather that any result must have a crystal clear
interpretation in either case. The features that we will be maintaining through this
thesis is the large number of neurons, the predominance of recurrent connections
and the fact that computation will be performed by the dynamics of the neural
activity.

3

4

2 Approach and tools
Those questions can be addressed from many different perspectives. Since this
is a Ph.D. done in a mathematics institute, it is natural to take a theoretician’s
approach, using formalisms and abstractions to obtain principles and derive new
measures and equations. Given my own background, most of the tools will draw
heavily from control theory and systems engineering, complemented with some
notions from statistical physics to deal with the large number of neurons that we
will be using. That being said, those tools are sometimes obscure, so we will use
geometric arguments as much as possible to make the results more intuitive.

An overview of neural computation

3 Brief history

The neuron doctrine – the concept that the nervous system is composed of indi-
vidual neurons– was put forward by Ramón y Cajal in 1888 [LMBA06]. This led
to the development of modern neuroscience where neurons would be character-
ized and modeled using ideas from electromagnetism [Lap07a]. Understanding
the behaviour of neurons would eventually led to the question of how can network
of neurons serve as a substrate for the mind able to reason and learn.

The first theory of how neurons compute was proposed by Warren McCul-
loch (a neuroscientist) and Walter Pitts (a logician) in 1943, where a neuron was
proposed to compute by adding its inputs and performing a step function on that
addition [MP43]. This theory would inspire the field of cybernetics, which gained
traction after the book of Norbert Wiener [Wie48] in which self-regulating mecha-
nisms are used as a unifying concept to a variety of fields, including neuroscience
and computer science. On that same decade, Donald Hebb proposed that neurons
could learn by reinforcing synapses that generate a spike, effectively presenting
the first biologically plausible learning rule [Heb05].

Soon after the famous study from Hodgkin and Huxley [HH53]showed that
neurons could be described by a small set of mathematical equations, which
paved the way for first simulation of a neural network by Nathaniel Rochester
[RHHD56]. The computerization of neurons eventually led to the first workshop
on artificial intelligence [MMRS06] and later to the development of the perceptron
by Frank Rosenblatt, an abstract network of neurons that could learn to classify
patterns [Ros58].

At this point, however, the unfulfilled promises of artificial intelligence [Ola96]
and the book of Minsky and Papert [MS69] clarifying the limitations of a single
layer perceptron, effectively halting research on artificial intelligence in general
in the so-called ”winter of AI”.

Naturally, the halt in AI did not have an effect in the study of neuroscience
from a computational perspective, the prime example being the works of Hubel
and Wiesel which showed how neurons in the visual cortex computed edge and

5

6

movement detection [HW62]. Similarly, some of
Research on computation with neural networks resurfaced on the eighties,

when John Hopfield improved popularized a neural network proposed by Lit-
tle [Lit74] which showed associative memory using Hebb’s learning rule [Hop82].
On the same year, the publication of David Marr’s book building analogies be-
tween neuroscience and computer science based on its levels of analysis brought
computational approach to the spotlight. By the end of that decade, Computa-
tional Neuroscience had its first conference [Sch93].

During the following decade, theoretical and computational neuroscientists
started exploring the synaptic mechanisms of learning [GKvHW96, BP98], ma-
chine learning researchers developed efficient methods for training neural net-
works [HS97, LBB+98]. However, the approaches where very different and the
two fields diverged.

For most of the twentieth century, mainstream neuroscience research removed
around targeted experiments trying to test a specific hypothesis by direct obser-
vation. This changed as computers became more powerful, widespread and data
could be easily digitalized and shared. Thus computer based techniques became
the stepping stone of some of the flagship projects in neuroscience such as the Blue
Brain Project [Mar06], which provided the first large-scale simulation of parts of
the brain, the Human Connectome Project [SL15] which creates a large atlas of
connections between neurons. This computer-based approach also permeated into
conceptual works trying to understand the principles of neural computation, with
two prime examples being the Neural Engineering Framework [EA04] and Liquid
State Machines [MNM02].

4 Current Trends and Relevant Approaches
Currently, the undeniable feats of machine learning have reignited the trend of
comparing trained artificial neural networks (ANN) to the biological ones, provid-
ing examples of successful cross-pollination between the two fields [GBFK19].

The prime example is found on the visual cortex, where the best machine
learning models for image understanding [HZRS15] have features such as hier-
archical multi-level organization reminding of the ventral visual system [Li14].
Furthermore, their activations are also system, with Gabor-like filters appear-
ing [GvG15] similarly to the edge detection neurons in the V1 region of the visual
cortex [HW62], a similarity that also goes to V4 [YD16] and IT [KRK14], and
even to the behaviour level in terms of errors made [KGGM16].

Beyond the visual system, tools from dynamical systems, have been lever-
aged to make by a direct comparison between recorded biological neural activity
and trained recurrent neural networks, illustrating that the dynamics – if not the

5. LIMITATIONS, CAVEATS AND CONTROVERSIES 7

training – do indeed coincide for the motor cortex [SCKS15]. Another example
of those similarities is on navigation tasks, where the Neural Engineering Frame-
work was used to create a model of navigation that already hinted to the existence
of grid cells before their discovery [CE05], and more modern trained networks do
show the equivalent of place and grid cells [KF17].

On an even more abstract level, the theory of cognitive spaces [BGMD18] pro-
poses that human reasoning works by using compact spaces where the dimensions
are given by multiple features to make inferences or classify unknown features.
Although rarely implemented with a neural network substrate, this idea is well
known in the machine learning community under the name of support vector ma-
chines [SV99].

Besides computer-based approaches, the development of very large-scale inte-
gration chip design has been used to emulate biological neural systems with elec-
trical components [Mea89], and this would eventually lead to the development
of neuromorphic electronics, which try to imitate neural architectures and func-
tions [NVS16] with hardware implementations, on the hopes of overcoming the
raising costs of training and running artificial neural networks [SGM19, AH18],
and provide cheap neuroscience simulators [DSG+13].

Finally, the approach that will be most relevant for this thesis is the use of large
recurrent networks of neurons as high-dimensional projections of inputs has been
proposed in both fields under the name of reservoir computing [JH04, MNM02],
with local unsupervised learning rules inspired by the brain have been found to
bring healthy dynamics to the recurrent neural network [SWV+08]. On the oppo-
site direction, there is also a relevant line of research in which synaptic learning
rules are studied by the effects that they have on large recurrent neural networks
with biologically inspired features, and how those rules are interpretable in terms
of machine learning [LPT09].

5 Limitations, Caveats and Controversies
One of the main issues with the use of artificial neural networks as models for
the brain – and vice versa – is that the level of abstraction at which we are work-
ing is not always clear. Indeed, there are many differences between artificial and
natural neural networks at the implementation level. The most clear one is the
use of temporal codes in some systems [Tho90], which do not have an analogy
in computer-run systems. Even if we assume rates and abstract temporal codes,
artificial systems have simple neurons that are replicated exactly across multiple
layers and whose dynamics depend only on its inputs and outputs, while biologi-
cal systems combine heterogeneous mechanisms working at multiple spatial and
temporal layers, from short time plasticity to synaptic adaptation or neuromodula-

8

tors. The differences also extend to training mechanisms, which are almost always
supervised for artificial neural networks [Bis95], but are typically assumed to be
unsupervised for most of the nervous system [HSP99] or based on reinforcement
learning [Doy00b] or a combination of both [Doy00a]. Here we must mention that
on an abstract level the boundaries between unsupervised and supervised learning
can be fairly thin [IGB19, DS12a, Ger18].

At the functional level, there are also undeniable differences between both sys-
tems. Artificial neural networks can outperform humans at complex board games
[SHM+16] using strategies that are not similar to those of humans [LWY+16].
On the other side, humans are able to do tasks that are impossible for artificial
networks [LUTG17], and even when the later do equal or surpass humans, they
typically need much more data [XT07] and can be subject to adversarial exam-
ples [NYC15], which humans are not.

Part II

Tailoring Artificial Recurrent
Neural Networks

9

The Echo State Network Framework

Reservoir computing is a computational paradigm that uses the dynamics of an
input-driven system to perform computations. The idea emerged from recurrent
neural networks research, both in machine learning [JH04] and biological mod-
els [MNM02], and eventually derived into a wide range of physical and virtual
systems [TYH+19, Ver09]. The key feature of this approach is the reservoir, a
high-dimensional non-linear dynamical system which projects the input into a
high-dimensional space where linear regression or classification can be applied.

In the first part of this thesis we will focus on ESN, a particular variant of
RC designed for machine learning tasks involving time series processing [JH04]
where the reservoir is a large network of neurons. Owing to its simplicity, flexi-
bility and empirical success, ESN and its variants have attracted intense interest
during the last decade [Jae01b, Jae02], and have been applied to many differ-
ent tasks such as electric load forecasting [DS12b], robotic control [PAGH03],
epilepsy forecasting [BSVS08], stock price prediction [LYS09], grammar pro-
cessing [TBCC07], and many others [VLS+10, NS12, Cou10, PHG+18].

Over the last decade, a plethora of studies have focused on finding good reser-
voir networks. Those studies fall broadly into two categories. First, for spe-
cific tasks, systematical parameter searches provide some improvement over clas-
sical Monte Carlo reservoir selection [FL11, JBS08, DZ06, Lie04, RIA17], but
remain costly and do not offer a significant performance improvement or bet-
ter understanding. Second, some authors have explored networks with some
particular characteristics that make them desirable, typically with long memory
[FBG16, RT12, SWL12] or “rich” dynamics [OXP07, BOL+12], although the de-
sirability of those traits is typically task-specific. Here we focus on a “mechanis-
tic” understanding of reservoir dynamics, but instead of trying to find reservoirs
with predefined features, we design reservoirs whose dynamics are tailored to
specific problems.

6 The ESN Framework

11

12

input

win

woutwofb

W

input
output

u(t)

u(t)
y(t)

Figure 1: The basic schema of an ESN.
The input signal u(t) goes to each neu-
ron in the reservoir with input weights
win, the neurons send their states to their
neighbors according to the matrix W,
and the contribution of each neuron to
the output y(t) is collected by wout. The
reservoir network may have self-loops,
and can have both excitatory (yellow)
and inhibitory (gray) synaptic connec-
tions.

The basic ESN architecture is depicted
in Fig. 1. With different coefficients
(weights), the input signal and the pre-
dicted output from the previous time
step are sent to all neurons in the reser-
voir. The output is calculated as a lin-
ear combination of the neuron states
and the input. At each time step,
each neuron updates its state accord-
ing to the current input it receives, the
output prediction and its neighboring
neurons’ states from the previous time
step. Formally, the discrete-time dy-
namics of an ESN withN neurons, one
input and one output is governed by

x(t) = f(Wx(t− 1) + winu(t)

+ wofby(t− 1)),
(1)

y(t) = wout

(
x(t)
u(t)

)
, (2)

where x(t) = [x1(t), . . . , xN(t)]> ∈
RN denotes the state of the N neurons
at time t, u(t) ∈ R is the input signal,

the vector
(

x(t)
u(t)

)
∈ RN+1 represents

the concatenation of x(t) and u(t), and
y(t) ∈ R is the output at time t. There
are various possibilities for the nonlin-
ear function f , the most common ones
being the logistic sigmoid and the hy-
perbolic tangent [Bis06]. Without loss
of generality we choose the latter in
this work. The matrix W ∈ RN×N is
the weighted adjacency matrix of the reservoir network describing the fixed wiring
diagram of N neurons in the reservoir. There is a rich literature on the conditions
that the matrix W must fulfill [Jae07, YJK12, BY06, GTJ12]. Here we adopt a
conservative and simple condition that the reservoir must be a stable dynamic sys-
tem. The vector win ∈ RN captures the fixed weights of the input connections,
which we draw from a uniform distribution in the interval [−1, 1]. The vector
wofb ∈ RN denotes the fixed weights of the feedback connections from the output

7. PERFORMANCE MEASUREMENT 13

to the N neurons, which can induce instabilities if chosen carelessly and may be
zero in some tasks [Jae02]. Finally, the row vector wout ∈ R1×(N+1) represents the
trainable weights of the readout connections from the N neurons and the input to
the output.

A key feature of ESN is that W, win and wofb are all predetermined before
the training process, and only the weights of the readout connections wout are
modified to w∗out during the training process:

w∗out = arg min
wout

t0+T∑
t=t0

(y(t)− ŷ(t))2, (3)

where t0 is the starting time, T is the interval of the training, and ŷ(t) is the target
output obtained from the training data. In other words, w∗out is the linear regression

weights of the desired output ŷ(t) on the extended state vector
(

x(t)
u(t)

)
, which can

be easily solved (see SI Sec. I. for details). Hence, w∗out captures the underlying
mechanism of the dynamic system that produces the training data. Indeed, the
right choice of w∗out can be used to forecast, reconstruct or filter nonlinear time
series.

Note that there is a rich literature on methods to improve the ESN performance
such as using regularization in the computation of w∗out [Jae02], controlling the
input weights [SWL12] or changing the dynamics of the neurons [LJ09]. Those
results, while relevant and important for applications, are tangential to our study.
Therefore in this work we will use the simplest version of the ESN as presented
above.

7 Performance Measurement
In the literature of ESN it is common to forecast time series [JH04]. To be consis-
tent with the previous literature we use the Normalized Root Mean Squared Error
(NRMSE), as a metric of forecasting error

σ =

√∑t0+T
t=t0

(y(t)− ŷ(t))2

T · var(u(t))
. (4)

This metric is a normalization of the classical root mean squared error. The nor-
malization is necessary in this case to avoid having different values if the signal is
multiplied by a scalar. This is particularly important for ESN because one of the
parameters that is usually tunned [Jae02] is the scaling of the input vector win or
the input signal u(t). The parameter t0 is used to describe when we start to count

14

the performance, since it is also common to ignore the inputs during the initial-
ization phase [Jae02], which is taken here as the full initialization steps given for
each task (see details in the subsequent sections). The parameter T is simply the
number of time-steps considered, which we take here as the full count of all points
except the initialization phase in each testing time series.

The NRMSE as presented here is obviously not a good metric for classification
tasks where the target variable is discrete. In order to have a comparable metric for
ESN performance, we use the failure rate in classification tasks such as the Spoken
Arabic Digit Recognition, which is similar to a Hamming distance. Note that
having 10 digits implies that the failure rate with random guesses is 0.9, therefore
a failure rate of 0.3 is well below it.

2 0 0 3 0 0 4 0 0
- 0 . 6

- 0 . 4

- 0 . 2

0 . 0

0 . 2

0 . 4

5 0 0 5 5 0 6 0 0 6 5 0 7 0 0

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

0 1 0 2 0 3 0 4 0
- 3

- 2

- 1

0

1

2
c S p o k e n D i g i t s T i m e S e r i e sL a s e r I n t e n s i t y T i m e S e r i e s

t i m e

b

t i m e

M a c k e y - G l a s s T i m e S e r i e s

 D i g i t 0
 D i g i t 1

CC
FD

 Ch
ann

el 1

t i m e

a

Figure 2: Plots of the time series for each task: The Mackey-Glass time series
with 500 points (left), the Laser Intensity time series with 300 points (center) and
the average value of the first mel-frequency cepstral coefficient (MFCC) Channel
of the first Spoken Arabic Digit, with the error bars represent standard deviations
over the training dataset (right).

7.1 Forecasting Mackey-Glass time series
Forecasting Mackey-Glass time series is a benchmark task to test the performance
of ESN [JH04]. The Mackey-Glass time series follows the ordinary differential
equation [JH04]:

ds(t)

dt
= β

s(t− τ)

1 + s(t− τ)n
− γs(t),

where β, γ, τ , n are real positive numbers. We used the parameters β = 0.2,
γ = 0.1, τ = 17, n = 10 in our simulations. The discrete version of the equation
uses a time step of length h = 0.1. For each time series we generated τ

h
= 170

uniformly distributed random values between 1.1 and 1.3 and then followed the
equations. The first 1000 points were considered as initialization steps, which did

7. PERFORMANCE MEASUREMENT 15

not fully capture the time series dynamics and were thus discarded. For training
and testing we used time series of 10,000 points, but in both cases the first 1000
states of the reservoir were considered as initialization steps and were thus ignored
for training and testing. For an ESN with 1000 neurons and an optimized memory,
the forecasting performance for this setting is close to its maximum value, thus the
addition of short cycles will have a small effect. In order to show the interest of
our contribution, we normalized the signal to have mean zero and variance of one
and we added Gaussian white noise with σ = 0.05, and the forecasting was done
using reservoirs of 100 neurons, average degree 〈k〉 = 10 and spectral radius
of α = 0.85, and the output was feed back to the reservoir through the vector
wofb where every entry is independently drawn from a uniform distribution on the
interval [−1, 1]. The ESN was trained to forecast one time-step, and then we used
this readout to forecast 84 time-steps in the future by recursively feeding the one-
step prediction of s(t + 1) into the ESN as the new input. Although it is possible
to directly predict s(t + k) from the state of the reservoir at time t, empirically it
has been observed the performance improves if the readout is trained to perform
a one-step prediction and then feeding back the result [Jae02, JH04].

7.2 Forecasting Laser Intensity time series
The Laser Intensity time series [HAW89,HKAW89] was obtained from the Santa
Fe Institute time series Forecasting Competition Data. It consists of 10,093 points,
which we normalized to have an average of zero and an standard deviation of one,
and were filtered with a Gaussian filter of length three and standard deviation of
one. The forecasting was done using reservoirs of 100 neurons, average degree
〈k〉 = 10 and spectral radius of α = 0.9, without feedback so wofb = 0. Here we
forecasted one time-step. We used 1,000 points of the time series for initialization,
4,547 for training and 4,546 for testing.

7.3 Spoken Arabic Digit Recognition
The Spoken Arabic Digits [HB10] dataset was downloaded from the [HB10] from
the UCI Machine Learning Repository [Lic13]. This dataset consists of 660
recordings (330 from men and 330 from women) for each of the ten digits and
110 recordings for testing. Each recording is a time series of varying length en-
coded with MCCF [Mer76] with 13 channels. While using the first three channels
gave a better performance, here we use only the first channel, which is akin to a
very lossy compression. We normalized this time series to have average of zero
and a standard deviation of one, and a length of 40. Since in most cases we had
less than 40 points, we computed the missing values by interpolation. The clas-
sification procedure was done using the forecasting framework. We collected the

16

reservoir states from all the training examples of each digit and computed wout

as did in the previous forecasting tasks. In the testing we collected the states and
computed the forecasting performance σ for each of the 20 cases. We classified
the time series as the digit that yielded the lowest forecasting error. Then we cal-
culate the failure rate as the number of misclassified recordings divided by the
total number of recordings in the training set. We used reservoirs of 100 neu-
rons, average degree 〈k〉 = 10 and spectral radius of α = 1, without feedback
(wofb = 0). Note that in our simulations we find that for this particular task the
ESN performance is not drastically affected by the output feedback.

Memory in ESN: From Reservoir
Dynamics to Structure

The success of ESN in tasks such as forecasting time-series comes from the ability
of its reservoir in retaining memory of previous inputs [CLL12]. Therefore, one
of the first problems to address consists on relating the structure and dynamics of
the reservoir with its memory.

8 Measuring Memory Capacity
In RC literature, the main metric for memory is the memory capacity defined as
follows [Jae01a]:

M =
τmax∑
τ=1

Mτ , (5)

with

Mτ = maxwτ
out

cov2(r(t− τ),wτ
outx(t))

var(r(t− τ))var(wτ
outx(t))

. (6)

Here r(t) is a random variable drawn from a standard normal distributionN (0, 1),
serving as a random input, ‘cov’ represents the covariance. Note that wτ

out is
equivalently obtained as a minimizer of the difference between yτ (t) and r(t− τ)
for any delay τ ∈ [1, ..., τmax], with τmax chosen so that Mτmax ≈ 0.

To get a first impression of how M depends on the network structure of the
reservoir we will measure Mτ for different network architectures:

• Erdös-Rényi (ER) random graphs where the degree distribution follows a
Poisson distribution and the weights are drawn from a normal distribution
and varying spectral radii of W.

• Erdös-Rényi random graphs with weights drawn from a power law distribu-
tion (PL) with exponenet β ∈ [2, 5] but normalized to have a spectral radius
α = 1.

17

18

• Scale-Free (SF) networks, whose degree distribution follows a power law.
The degree heterogeneity is given by the degree exponent γ ∈ [2, 6], and the
weights are drawn from a Gaussian distribution, also normalized to have a
spectral radius α = 1.

• Random Regular (RR), or graphs where every node has the same degree 〈k〉
and a spectral radius α = 1.

5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

M

ER networks with normal weight distribution

 = 0.7

 = 0.8

 = 0.9

 = 1

5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

M

SF networks with normal weight distribution

 = 6

 = 4

 = 3

 = 2

5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

M

ER networks with PL weight distribution

 = 4

 = 3

 = 2.2

5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

M

RR networks with normal weight distribution

<k> = 100

<k> = 50

<k> = 10

Figure 3: Memory Capacity decay for various network architectures. The
ability of the reservoir to retrieve previous inputs decays as with τ , the delay with
which we try to retrieve them. Each network has 400 neurons and the average
degree is 〈k〉 = 20 and is fed with 4,000 inputs randomly sampled from a normal
distribution. Each curve shows the average result over 100 trials and the error
bars are the standard deviation. The spectral radius α = 1, except in ER networks
where it varies as marked in the legend. The plots show Mτ , while the total
memory capacity M is simply the area under the curve.

The results from Fig. 3 show that the parametrization of the memory is not
entirely intuitive. On one side, the effects of the spectral radius are well under-
stood [Jae01a]: the larger the spectral radius, the slower do perturbations decay,
and thus the longer an input is stored in the reservoir state. However, other pa-
rameters such as degree heterogeneity or the tail strength of the weight distribution
also affect the memory capacity, while some network parameters that are typically
important – such as degree – do not always have an appreciable effect.

The first intuition that we can obtain from this is rather simple: when the state
of every neuron depends on many diverse variables, the memory is high, while

9. MEMORY AND DYNAMICS 19

when each neuron depends on only few values the memory is low. The strength of
the spectral radius modulates the relative effects of the last input u(t) versus the
previous state of the reservoir, such that when the spectral radius is high, x(t) de-
pends highly on the previous reservoir state – which is a high-dimensional variable
–, while a low spectral radius implies that most of the variance in x(t) is imposed
by the low-dimensional input u(t). Conversely, the degree heterogeneity controls
the ratio of shared inputs between neurons, as a high heterogeneity implies that
most neurons will get inputs from a very small set of highly connected neurons,
thus there are few variables that drive x(t). Similarly, heavy tails on the weight
distribution imply that most neurons have one or two neighboring neurons that
largely control their state, as opposed to having a multitude of relevant neighbors.
Finally, the effect – or lack thereof – of the degree distribution seems to contradict
our intuition, unless we consider that 〈k〉 = 10 already implies that on average
every neuron is subject to 11 inputs, one for every neighboring neuron and one
given by the systems’ input u(t).

9 Memory and Dynamics

9.1 A formal link between memory and correlations

To explain in more detail this relationship we will use an upper bound which
connects the variance of the reservoir across different directions with the memory
capacity. Intuitively, the state of the reservoir encodes previous inputs that must be
extracted linearly, hence more linearly independent neurons will be able to encode
more information about the past.

Before starting we need to note a couple of properties in our reservoirs, namely
that they are contracting. This implies that if we take two input sequences r1, r2

differing only at a given time t, the difference in the reservoir state space follows

‖x1(t)− x2(t)‖ > ‖x1(t+ 1)− x2(t+ 1)‖ ∀t. (7)

Similarly, reservoirs always have the fading memory property, which implies that
in the same context,

lim
i→∞
‖x1(t+ i)− x2(t+ i)‖ = 0, (8)

which can be explained informally by saying that the reservoir eventually forgets
its inputs. This explains the decay in Mτ and it is a necessary property of all
reservoirs [Maa11, Jae01a, YJK12].

20

Setting the problem

We start by noticing that the linear nature of the projection vector wout implies
that we are treating the system as

x(t) =
∞∑
k=0

akr(t− k) + εr(t) (9)

where the vectors ak ∈ RN are correspond to the linearly extractable effect of
r(t− k) onto x(t) and εr(t) is the nonlinear contribution of all the inputs onto the
state of x(t).

Notice that there are two perspectives here: on one side, the readout extracts
the best linear approximation of past inputs with a noise-like term, and on the
other it can be interpreted as a Taylor expansion around an undefined point where
the first order corresponds to the first term and the non-linear behavior to the
other expansion terms. This separation between linear and non-linear behavior
has been thoroughly studied [DVSM12,GHS08] and the general understanding is
that linear reservoirs have longer memory, but nonlinearity is needed to perform
interesting computations. Here we will not try to leverage or bypass this trade-
off, but rather we will show that for a fixed ratio of the non-linearity, the more
decorrelated the neurons are the higher the memory.

To maintain this trade-off between linear and non-linear behavior, we will
assume that the distribution of the linear and non-linear strengths are fixed. This
can be achieved if we impose the probabilities of the neuron states do not change,
meaning that the mean, variance and other moments of the neuron outputs are
unchanged and hence the strength of the nonlinear effects is unchanged.

A first constraint can also be obtained from the maintained strength of the
linear side of Eq. 9

var

(
∞∑
τ=1

aτr(t− τ)

)
= c (10)

where c is a constant.
If we are allowed to shift the linear side of Eq. 9, the natural choice of aτ to

maximize the memory capacity would be to impose aτ > 0 ⇐⇒ τ > N , and
also make the vectors aτ orthogonal to each other, so that the input at time t− τ1

does not interfere with the effect of an input at time t− τ2. This can be introduced
into Eq. 10 and we obtain

var

(
∞∑
τ=1

aτr(t− τ)

)
=

N∑
τ=1

var(r(t− τ))‖aτ‖2 =
N∑
τ=1

‖aτ‖2 = c (11)

This leaves us with a straightforward choice for the readout vector, namely

wτ = aτ , (12)

9. MEMORY AND DYNAMICS 21

which we can plug into the memory capacity to obtain

M∗
τ =

cov2(r(t− τ), aτx(t))

var(aτx(t))
=

cov2(r(t− τ), ‖aτ‖2r(t− τ) + 〈aτ , εr(t)〉)
var(‖aτ‖2r(t) + 〈aτ , εr(t))

=
‖aτ‖4 [cov(r(t− τ), r(t− τ)) + cov(r(t− τ), 〈aτ , εr(t)〉)]2

‖aτ‖2var(r(t− τ)) + var(〈aτr(t), εr(t)〉) + ‖aτ‖2cov(r(t− τ), 〈aτ , εr(t)〉)
(13)

where M∗
τ is the maximum memory that can be achieved by shifting the linear

side of Eq. 9 but maintaining the linear-nonlinear ratio of variance. We must
recall the definition of εr(t) in Eq. 9, which implies that any correlation between
its projection on aτ and r(t) would imply that part of r(t− τ) is projected linearly
onto the non-linear component. This necessarily means that

cov(〈r(t− τ), 〈aτ , εr(t)〉) = 0, (14)

hence our previous equation becomes

M∗
τ =

‖aτ‖2

‖aτ‖2 + var
(
〈 aτ
‖aτ‖ , εr(t)〉

) , (15)

and for the sake of simplicity we will name ‖aτ‖2 = aτ , and var
(
〈 aτ
‖aτ‖ , εr(t)〉

)
=

ετ , leaving us with
M∗

τ =
aτ

aτ + ετ
, (16)

where aτ is the squared modulus of the linear projection of the input r(t − τ) on
the reservoir state and ετ is the variance in that direction induced by the non-linear
terms in that same direction.

Hence the new problem that we must solve is to maximize

N∑
τ=1

M∗
τ =

N∑
τ=1

aτ
aτ + ετ

(17)

subject to the constraint
N∑
τ=1

aτ = c, (18)

with an order on the coefficients arising from the contractiveness or the reservoir

aτ+1 < aτ (19)

and under the assumption that we do not change the nonlinear effects on any
direction, hence ετ will be fixed.

22

Finally, we shall also note that we will assume that M∗
τ is always a monoton-

ically decreasing variable that goes from M∗
1 ≈ 1 to M∗

N ≈ 0, as we observed in
the plots on Fig. 3. By noting that

M∗
τ =

1

1 + ετ
aτ

, (20)

this assumption implies that qτ = ετ
aτ

goes from r1 ≈ 0 to rN → ∞, hence ετ
starts being much smaller than aτ and decreases much slower than aτ .

Optimizing the linear projections

Now the problem is to find how a change in the distribution of [a1, a2, ..., aN]
would affect the value of M∗. Our approach will be to show that the fastest aτ
decreases, the lower M∗.

We will show that there is one case, namely aτ ∝ ετ which has higher M∗

than an other setting where aτ decreases faster. Since we know that the values of
aτ must decrease faster than ετ , our best arrangement of the strength of the linear
projection of r(t) is to try to make aτ decrease as slowly as possible.

With a fixed ratio aτ = χετ , the upper bound on the memory is

M∗ =
N∑
τ=1

aτ
aτ + ετ

=
N∑
τ=1

1

1 + ετ
aτ

= N
1

1 + χ
. (21)

Now we will split the sequence of M∗
τ into two subsequences, one with τ < k

where the values of aτ will be increased by a factor β+ and another one with
τ > k + 1 where the values will be decreased by β−. This leads us to the new
memory capacity bound,

M∗ =
k∑
τ=1

β+

β+ + χ
+

N∑
τ=k+1

β−
β− + χ

= k
β+

β+ + χ
+ (N − k)

N∑
τ=k+1

β−
β− + χ

(22)

which for simplicity we will normalize to obtain

M∗

N
= m∗ =

k

N

β+

β+ + χ
+
N − k
N

β−
β− + χ

= φ
β+

β+ + χ
+ (1− φ)

β−
β− + χ

. (23)

where φ = k
N

, and m∗ is just a normalized memory capacity bound.
Note that the function m∗ is still subject to the constraints presented in Eq. 18

and Eq. 19. This yields

β+

k∑
τ=1

aτ + β−

N∑
τ=k+1

aτ = c, (24)

9. MEMORY AND DYNAMICS 23

by introducing the variable

γ =

∑k
τ=1 aτ

c
∑N

τ=1 aτ
, (25)

where γ < 1, and

1− γ =

∑N
τ=k+1 aτ

c
∑N

τ=1 aτ
. (26)

Now we can rewrite Eq. 18 to obtain the new constraint

β+γ + β−(1− γ) = 1. (27)

Now we can introduce another variable q = β+

β−
which determines the differ-

ence between β+ and β−. As our main point is to show that a faster decrease of
aτ would decrease m∗, which in this particular case translates to

∂m∗

∂q
< 0, (28)

which would imply that β+ is larger than β− and hence aτ decreases faster than
ετ at τ = k and equally at any other τ .

We can now compute the derivative

∂m∗

∂q
= φ

∂

∂β+

(
β+

β+ + χ

)
∂β+

∂q
+ (1− φ)

∂

∂β−

(
β−

β− + χ

)
∂β−
∂q

= φ
χ

(β+ + χ)2

∂β+

∂q
+ (1− φ)

χ

(β− + χ)2

∂β−
∂q

(29)

where the first term is positive and the second is negative – because the memory
capacity for τ < k will increase when β+ grows and vice-versa. Thus our main
goal is to prove that

φ
χ

(β+ + χ)2

∂β+

∂q
< −(1− φ)

χ

(β− + χ)2

∂β−
∂q

. (30)

Since β+ > 1 > β−,
χ

(β+ + χ)2
<

χ

(β− + χ)2
, (31)

hence we only need to prove that

φ
∂β+

∂q
< −(1− φ)

∂β−
∂q

. (32)

24

To do so we will use the constraint from Eq. 27. By setting β+ = β−q we can
solve both equations and obtain

β+ =
1

γ

q

q + 1−γ
γ

β− =
1

γ

1

q + 1−γ
γ

.
(33)

Therefore,
∂β+

∂q
=

1−γ
γ

(q + 1−γ
γ

)2

∂β−
∂q

= − 1

(q + 1−γ
γ

)2
,

(34)

which we can plug directly into Eq. 32, which simplifies to

φ

γ

1−γ
γ

(q + 1−γ
γ

)2
<

1− φ
γ+

1

(q + 1−γ
γ

)2

⇐⇒ φ(1− γ) < (1− φ)γ

⇐⇒ φ < γ,

(35)

which is true by the definitions of γ and φ, and the fact that aτ is decreasing.
Now we have proven that whenever we can take an index k and increase aτ

for τ > k and decrease aτ for τ < k, the memory capacity bound M∗ decreases.
We shall now use this result to prove that whenever

ετ+i

ετ
<
aτ+i

aτ
∀i, τ > 0, (36)

the memory capacity bound M∗ is lower than when ετ ∝ aτ .
We do so by starting with the case ετ ∝ aτ and we will change it step by step

to a series of a′τ that fulfills Eq. 36. This is a simple iterative procedure. We start
with k = 1, then select q = β+

β−
such that akβ+ = a′k under the constraint from

Eq. 27. Then we fix a1 and we have the same problem for aτ starting at τ ≥ 2.
This process can be repeated until k = N , at which point the memory bound m∗

will be lower because every modification with index k lowered it.
Note that we have used aτ in our argument, hence we obtained that the dis-

tribution of aτ should be as homogeneous as possible. However, our result can
also be stated for aτ + ετ , because the non-linear effects of the reservoir on every
direction are unchanged and the series ετ is also a decreasing one.

9. MEMORY AND DYNAMICS 25

Correlations as constraints on the variance

From the previous section we know that the memory bound increases when the
variance along the projections of the input into the reservoir state become more
homogeneous. This can be expressed in terms of the state space of the reservoir.
Intuitively, the variances at directions aτ must fit into the variances of the state
space, and since we already established orthogonality of the projections, those
variances must be along orthogonal directions. Since our goal is to have a variance
as homogeneous as possible along the directions of aτ , we need variance that is as
homogeneous along orthogonal directions. Finally, this homogeneity is reduced
when we add correlations between neurons.

We shall recall that we started our discussion by assuming that the probability
distribution of neuron states is unchanged, which would ensure that the strength
of the nonlinearity is not altered. This implies that the distribution of variances of
the neurons is fixed. If we start by having zero correlations, we can start by setting

aτ + ετ = var
(
xsort(τ)(t)

)
(37)

where sort(τ) is the operation that finds the neuron with the τ th largest variance
in the reservoir. In other words, we associate every neuron to one direction of aτ ,
with the constraint that the variances along those directions are ordered, hence we
associate a1 to the neuron with highest variance, a2 to the second and so on.

The distribution of aτ + ετ in that particular case is then given by the distribu-
tion of var (xn(t)). If the correlations are not zero, however, we need a new family
of vectors which preserves orthogonality across the covariance matrix C. This is
given by the eigenvectors of C, which implies that we are using Principal Compo-
nent Analysis as presented in Appendix 3. In that framework, the new variances
are given by the eigenvalues of the covariance matrix, λn(C). Naturally, when the
correlations are zero, the eigenvalues correspond to the entries of the diagonal,
which in our case are the variances as in the previous case.

Hence we have to now work on the distribution of the eigenvalues of the co-
variance matrix. Specifically, we would want to show that increasing the corre-
lations between neurons increases the inhomogeneity of the eigenvalues, which
would decrease our memory bound M∗. A simple way to quantify this inhomo-
geneity is the mean with respect to the square root of the raw variance, which is
given by

ν =

∑N
n=1 λ

2
n(C)(∑N

n=1 λn(C)
)2 , (38)

where λn(C) is the nth eigenvalue of C. To get an intuition of how this metric
reflects the inhomogeneity, consider the case of two eigenvalues λ1, λ2; when

26

λ1 = λ2 –very homogeneous – then ν = 1
2
, but when λ1 > 0, λ2 = 0 – very

inhomogeneous–, then ν = 1. For N � 1 the perfectly homogeneous case ap-
proach zero but the perfectly inhomogeneous one is still one.

We can compute
(∑N

n=1 λn(C)
)2

by using th relationship between trace and
eigenvalues [Str93],

N∑
n=1

λn(C) = tr [C] =
n∑
n=1

var (xn(t)) (39)

which is constant by the assumption that the probability distributions of the neuron
activities are fixed. Hence we can focus on the value of

∑N
n=1 λ

2
n(C). This is

easily done by noting that

Ckvn(C) = λn(C)Ck−1vn(C) = λkn(C)vn(C) (40)

where vn(C) and λn(C) are, respectively the nth eigenvector and eigenvalue of
C. If we plug this into the relationship between trace and eigenvalues we obtain

N∑
n=1

λ2
n(C) = tr

[
C2
]
, (41)

which we can compute by decomposing the square of covariance matrix and ob-
tain

N∑
n=1

λ2
n(C) =

N∑
n=1

N∑
m=1

CnmCmn =
N∑
n=1

cov (xn(t), xm(t))2 . (42)

Which obviously grows when the neurons become correlated. Hence, the inho-
mogeneity measured by ν grows.

Example

The bound developed in previous sections might seem a bit artificial and far from
the standard practice of reservoir computing, particularly the notion that we can
adapt the linear part of the dynamics as we want. To make it more understandable
and to show that the bound is indeed sharp we will present a simple example
where all our assumptions are easily verified and the bounds are sharp.

For this we consider a line of neurons with the input on the first one. That is,

Wij =

{
w ⇐⇒ j = i+ 1

0 otherwise,
(43)

10. CORRELATIONS AND NETWORK SPECTRA 27

with w < 1 to keep the contractivity and the input is only sent to the first neuron,
meaning that win = [win, 0, 0, ...]. If we letwin � 1, then the network is effectively
linear, because the hyperbolic tangent is almost an identity around 0. Then the
reservoir state becomes

x(t) ≈ win
[
u(t), wu(t− 1), ..., wNu(t−N)

]
(44)

which corresponds to the case where ετ ≈ 0, and the previous input can be easily
recovered, and this gives us M = M∗ = N , which is the memory maximum
[DVSM12, Jae01a]. If we increase the value of win, the reservoir is described as

x(t) = [tanh (winu(t)) , tanh (w tanh (winu(t− 1))) , ...] (45)

where a readout can be obtained for each delay but the nonlinearity of repeatedly
applying the hyperbolic tangent makes the memory harder and harder to recover,
so the factor ετ

aτ
grows. Naturally, here M = M∗.

In either case, the covariance matrix is diagonal because the inputs r(t), r(t−
τ) are uncorrelated. Notice that, if we add connections between neurons or if
we feed inputs with some alternative win, then we would be increasing the cor-
relations because there would be more neurons feed by the same input. This can
only decrease the memory, because a reservoir with a line of neurons achieves its
maximum memory capacity [DVSM12, WLS04].

10 Correlations and network spectra
Having related the memory capacity of an ESN and the dynamics of its reservoir,
the subsequent step is to relate the structure of the network to the aforementioned
dynamics.

The intuition here follows from the notion that the spectral radius sets the time
that a perturbation – the input – will affect the system [Jae01a]. While the spectral
radius fails to account for the effects of degree heterogeneity or fat tails on the
weight shown in Fig. 3, the notion that the eigenvalues of the adjacency matrix of
the network affect the memory is still valid.

Consider a network where all eigenvalues are zero, where there would be no
edges. The state of each neuron will only depend on the last input, and theMτ = 0
for all τ ≥ 1. If we add one non-zero eigenvalue to the matrix, the state of every
neuron now depends on two variables, the current input and the projection of the
previous state onto the single eigenvector. This idea can be extended to include
more and more eigenvalues, with their moduli accounting for the speed at which
the variance of previous states contracts. Eventually, every neuron will have many
variables on which it will depend, and therefore it will be less correlated –on
average – to other neurons, which will depend differently on the same variables.

28

This intuition can be easily checked by studying the eigenvalues of the net-
works whose memory was measured in Fig. 3. The results, plotted in Fig. 4, show
that indeed this is the case, as both parameters α, γ and β pull more eigenvalue
moduli close to zero, while 〈k〉 does not.

0 0.2 0.4 0.6 0.8 1
10 -2

10 -1

10 0

10 1

d
e

n
s
it
y

| | density for ER

=0.7

=0.8

=0.9

=1

0 0.2 0.4 0.6 0.8 1
10 -2

10 -1

10 0

10 1

d
e

n
s
it
y

| | density for SF

=6

=4

=3

=2

0 0.2 0.4 0.6 0.8 1
10 -2

10 -1

10 0

10 1

d
e

n
s
it
y

| | density for ER with PL

=4

=3

=2.2

0 0.2 0.4 0.6 0.8 1
10 -2

10 -1

10 0

10 1

d
e

n
s
it
y

| | density for RR

<k>=10

<k>=50

<k>=100

Figure 4: Eigenvalue densities of the random networks studied in Fig. 3. Each
line shows the density of eigenvalues at a distance λ from the origin. 200 realiza-
tions of a network. The network size is 1000, the edge weights are drawn from
a normal distribution except when in the ER networks with PL. Unless explicitly
stated in the sub-figure legend, 〈k〉 = 50 and the spectral radius is α = 1.

10.1 Formal relationship between eigenvalues and correlation
We must now show that the larger the eigenvalues of W, the lower the correla-
tions.

To do so we will first linearize the system presented in Eq. 1, which gives us

x(t) = Wx(t− 1) + winu(t). (46)

10. CORRELATIONS AND NETWORK SPECTRA 29

This linearization might seem unjustified, as a key requirement of a reservoir is
that it must be non-linear [Jae02] to provide the necessary diversity of computa-
tions that a practical RC implementation requires. However, here we are interested
in the memory capacity, which is maximized for linear reservoirs [Jae02,WLS04].
That is, by studying a linear system we are implicitly deriving an upper bound on
the memory, similarly to the approach taken in the control-theoretical study of the
effect of the spectral radius [Jae01a]. Finally, note that this linearizion is within
the parameters of the ESN from Eq.1, as it would suffice to set ‖win‖ � 1.

Given that our system is linear, we can formulate the state of a single neuron
xi(t) as

xi(t) =
∞∑
k=0

(
Wkwin

)
i
u(t− k) =

∞∑
k=0

ai,ku(t− k) = 〈ai,ut〉 (47)

where ut = [u(t), u(t− 1), u(t− 2), ...] and the coefficients of the vector ai =
[ai,0, ai,1, ...] are given by

ai,k =
(
Wkwin

)
i
, (48)

namely the effect that the kth last input u(t− k) will have on xi(t).
We can then plug this into the covariance between two neurons,

cov (xi, xj) = lim
T→∞

1

T

t+T∑
q=t

〈ai,uq〉〈aj,uq〉. (49)

Here it is useful to decompose each summand

〈ai,uq〉〈aj,uq〉 =

(
∞∑
k=0

ai,ku(q − k)

)(
∞∑
l=0

aj,lu(q − l)

)

=
∞∑
k=0

∞∑
l=0

ai,kaj,lu(q − k)u(q − l),
(50)

and combining now the limit and adding over all indexes q we obtain

cov (xi, xj) = lim
T→∞

1

T

t+T∑
q=t

∞∑
k=0

∞∑
l=0

ai,kaj,lu(q − k)u(q − l)

=
∞∑
k=0

∞∑
l=0

ai,kaj,l lim
T→∞

1

T

t+T∑
q=t

u(q − k)u(q − l),

(51)

and given that u(t) is a random time series with zero autocorrelation and variance
of one,

lim
T→∞

1

T

t+T∑
q=t

u(q − k)u(q − l) =

{
1 ⇐⇒ l = k

0 otherwise
(52)

30

This gives us

cov (xi, xj) =
∞∑
k=0

∞∑
l=0

ai,kaj,lδ(k − l) =
∞∑
k=0

ai,kaj,k = 〈ai, aj〉, (53)

and similarly, we can compute the variance of xi,

var (xi) = cov (xi, xi) = 〈ai, ai〉 = ‖ai‖2. (54)

We can plug the previous two formulas into the Pearson’s correlation coefficient
between two nodes i, j as:

Pij =
〈ai, aj〉
‖ai‖‖aj‖

= cos(∠(ai, aj)) (55)

which is the same as the cosine distance between vectors ai and aj .
The next step is thus to write ai as a function of the eigenvalues of W. To do

so, we note that the state of a neuron can be written as

x(t) =
∞∑
k=0

Wkwinu(t− k) =
∞∑
k=0

(
VΛkV −1

)
winu(t− k) (56)

where V is the matrix eigenvectors of W and Λ the diagonal matrix containing
the eigenvalues of W. When we obtain

xi(t) =
∞∑
k=0

N∑
n=1

λkn〈v−1
n ,win〉(vn)iu(t− k), (57)

where vn and v−1
n are, respectively, the left and right eigenvectors of W. Notice

that as long as the network given by W is drawn from an edge-symmetric prob-
ability distribution – meaning that Pr [Wij = a] = Pr [Wji = a] ∀a ∈ R– and is
self averaging then vn and v−1

n are vectors drawn from the same distribution.
The λkn terms present in the previous equation can be used as a new vector

basis,

xi(t) =
N∑
n=1

〈v−1
n ,win〉(vn)i〈λn,ut〉 =

∞∑
k=0

N∑
n=1

λknbi,nu(t− k), (58)

where λn = [1, λn, λ
2
n, ...] and bi,n = 〈v−1

n ,win〉(vn)i. By simple identification
from Eq. 47, we find that

(ai)k =
N∑
n=1

λknbi,n. (59)

10. CORRELATIONS AND NETWORK SPECTRA 31

Thus every coefficient of ai is a sum of many terms. Specifically, every term is a
multiplication of bi,n, which are all independent as they refer to the projections of
vn,i into win and the values of λn, whose phase – which we assume to be uniformly
distributed on [0, 2π]– ensures that (ai)k is uncorrelated with (ai)k+1.

We will now proceed to cast the distribution of ai as a uniform distribution
of points defining an ellipsoid. By the central limit theorem, the values of ai are
independent random variables drawn from a normal distribution with zero mean
and whose variance decreases with the index k. Therefore the distribution of ai is
given by

∞∏
k=0

e
− (ai)

2
k

s2
k (60)

where sk is a decreasing function of k. Thus all the points with probability e−r2

are given by the surface
∞∑
k=0

a2
k

s2
k

− r2 = 0 (61)

which are ellipsoids of infinite dimension and axes sk
r

. Furthermore, we are only
interested in the angular coordinates of the points in the ellipsoid, not on their
distance to the origin. Thus we can project every one of those surfaces into an
ellipsoid with axis

s =

[
1,
s2

s1

,
s3

s1

, ...

]
. (62)

Note that, even though the ellipsoid has infinite dimensions, the length of the axes
decreases exponentially due to the factor λkn. Therefore, it has finite volume and
it can be approximated by an ellipsoid with finite dimensions.

Now we have that the vectors ai are, ignoring their length, uniformly dis-
tributed on an ellipsoid with axis σ. Then

lim
N→∞

S =
1

2

∫
Es

∫
Es

cos2(∠(p, q))dpdq (63)

where the integrals are taken over Es, the ellipsoid with axes s, and the half factor
comes from counting every pair only once.

If we now change to spherical coordinates we will find that the two vectors
can be expressed as

p = [rp, φ
p
1, φ

p
2, ...]

q = [rq, φ
q
1, φ

q
2, ...] ,

where φp1 is the angle of p on the plane given by the first and second axis, φp2 the
plane by the first and third axis and so on. The cosine between the two vector is

32

then

cos(∠(p, q)) =
∞∏
k=1

cos(φpk − φ
q
k). (64)

Thus we can write the integral from Eq. 63 as

lim
N→∞

S =
1

2

∞∏
k=1

∫ 2π

0

cos2 (φpk − φ
q
k)µφk(φ

p
k)µφk(φ

p
k)dφ

p
kdφ

q
k (65)

where µφk(φ) is the probability density function of the difference angle φpk − φ
q
k.

We will show that this integral decreases when the values sk increase. To do
so, it is helpful to consider the extreme cases to get an intuition: when the semi-
minor axis is zero, then we have a line, and all the points in the line have an angle
between them either of zero or π, and thus a squared cosine of one. Conversely,
when the semi-minor axis is maximal it equals the semi-major one and we have
a circle, and the average squared cosine becomes 1/2. Those are the two extreme
values and thus the squared cosine decreases as the ellipse becomes more similar
to a circle.

To make this argument more precise, we start by finding the density µφk(φ
p
k).

This density is found by taking a segment of differential length dlS on the sphere
of radius one and then compare it with the length covered in the ellipse dlE . This
gives us

µφk(φ) ∝ dlE
dlS

=
‖ cos(φ− dφ)− cos(φ), s2

k(sin(φ− dφ)− sin(φ))‖
φ+ dφ− φ

=
√

sin2(φ) + a2
k cos2(φ) =

√
1− (1− s2

k) cos2(φ).

To fully evaluate the previous integral we would need to normalize µφk and then
evaluate the integral as a function of sk. However, we would take a simpler ap-
proach and note that sk controls the homogeneity of µφk : the larger sk is (within
the interval [0, 1]), the more the mass of probability is concentrated on the area
around φ ∼ 0 and φ ∼ π.

Furthermore, we note that the squared cosine has the following periodicities

cos2(θ) = cos2(π + θ) = cos2(π − θ) = cos2(2π − θ),

thus, when we integrate over the angle φ we can take advantage of the four-fold
symmetry and integrate only on the interval [0, π/2]. Thus we only need to study
the integral ∫ π

2

0

cos2 (φpk − φ
q
k)µφk(φ

p
k)µφk(φ

p
k)dφ

p
kdφ

q
k, (66)

11. A STRUCTURAL PROXY FOR MEMORY CAPACITY 33

and by using sin2(θ) + cos2(θ) = 1, we can recast the previous integral as

1−
∫ π

2

0

sin2 (φpk − φ
q
k)µφk(φ

p
k)µφk(φ

p
k)dφ

p
kdφ

q
k. (67)

In the interval φ ∈ [0, π/2] the squared sine can be seen a metric between two
angles. Therefore the term∫ π

2

0

sin2 (φpk − φ
q
k)µφk(φ

p
k)µφk(φ

p
k)dφ

p
kdφ

q
k (68)

is nothing else than an average distance between the points which have a density
given by µφk . Thus, the more the density is homogeneous, the larger the distance
and vice-versa. Putting it all together, sk controls the homogeneity of µφk , and
the homogeneity of µφk controls the terms on Eq. 65. Specifically, increasing sk
decreases S.

The last thing to mention is that the values of |λn| control sk, as they give the
variance to (ai)k in Eq. 59. Thus, the larger |λn| the higher sk and the lower S. By
the negative correlation between M and S, increasing the values of |λn| should
increase the memory.

11 A structural proxy for Memory Capacity
The previous argument highlighted the relationship between the eigenvalues of W
and S, but it is far from practical. Ideally, we would like to have a single number
that can be used to design reservoirs.

Given that the moduli of all eigenvalues of W contribute to the memory, we
take their average:

〈|λ|〉 =

∑N
i=1 |λi|
N

, (69)

where λi’s are the eigenvalues of the matrix W.
The numerical simulations presented in Fig5 show that indeed 〈|λ|〉 is nega-

tively correlated with S.
The correlation of 〈|λ|〉 with S and therefore withM indicate that 〈|λ|〉 indeed

reflects the memory capacity of the reservoir. As opposed to M and S, 〈|λ|〉 is
much easier to compute and is solely determined by the reservoir network. This
offers a simple measure to quantify the ESN memory capacity that does only
depend on the network structure. 〈|λ|〉 is consistent with the effects of scaling the
adjacency matrix to tune the spectral radius [JLPS07a] and it extends to network
topologies with a fixed spectral radius from Fig.3. This also explains two recent
studies in which it was found that ring networks and orthogonalized networks have

34

0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9
9

1 2

1 5

1 8

0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7
0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9b

M

 S F
 P L
 E R
 R R

S

S

 S F
 P L
 E R
 R R

< | λ| >

a

Figure 5: Neuron state correlation S vs average eigenvalue modulus 〈|λ|〉. We
created reservoirs of 400 neurons and sequences of 4000 random inputs uniformly
distributed in the interval [−1, 1] as inputs. For every network we plotted the
correlations S generated versus the value of 〈|λ|〉. The ER curve is given by
classical reservoirs having networks given by Erdös-Rényi random graphs with
weights drawn from a Gaussian distribution and varying spectral radii. The SF
curve (blue) corresponds to scale-free networks where the degree heterogeneity
is given by the degree exponent γ ∈ [2, 6], with more heterogeneous networks
rendering higher S and lower 〈λ〉. The PL curve (green) is calculated from Erdös-
Rényi random graphs with weights drawn from a power-law (PL) distribution
with varying exponent β ∈ [2, 5], with lower β rendering higher S and lower
〈λ〉. All networks have a spectral radius α = 1, except the ER random graphs
where each point corresponds to a spectral radius increasing from 0.2 to 1. The
ER random graphs are plotted with various spectral radius to show the impact of
spectral radius.

high memory capacities [RT12, FI16], as both networks have large eigenvalues
with respect to their spectral radii.

Since ESN is fundamentally a machine learning tool, any results should be
supported by studying its effects on the ESN performance. To demonstrate the
validity of 〈|λ|〉 as a proxy measure for memory, we tested ESN performance
for the three tasks presented earlier with a wide range of network topologies and
parameters in Fig. 6.

12. DISCUSSION 35

0.2 0.3 0.4 0.5 0.6 0.7
-5

-4

-3

-2

-1

0.1 0.2 0.3 0.4 0.5 0.6

-1.4

-1.3

-1.2

0.2 0.3 0.4 0.5 0.6

0.30

0.32

0.34

0.36

lo
g 1

0
(

)

 SF =1.0
 SF =0.9
 PL =1.0
 PL =0.9
 ER

<||>

lo
g 1

0
(

)

 SF =0.8
 SF =0.7
 SF =0.6
 PL =0.8
 PL =0.7
 PL =0.6
 ER

<||>

 SF =1.0
 SF =0.9
 SF =0.8
 PL =1.0
 PL =0.9
 PL =0.8
 ER

<||>

fa
ilu

re
 r

at
e

Mackey-Glass Forecasting Laser Intensity Forecasting Spoken Digit Recognition

Figure 6: ESN performance explained by 〈|λ|〉. The plot shows the ESN per-
formance as a function of the average eigenvalue modulus 〈|λ|〉 for forecasting
the Mackey-Glass time series (left), the Laser Intensity time series (center), and
classificatio of Spoken Arabic Digits (right). For each task, we use scale-free net-
works (SF), Erdős-Rényi random graphs with homogeneous link weights (ER),
and Erdős-Rényi random graphs whose link weights follow a power-law distribu-
tion (PL) as reservoirs (see SI Sec. II for the network generation algorithms). The
SF and PL reservoirs have various spectral radii α, chosen to be around the optimal
value of α for the Erdős-Rényi case. For each parameter set of each network type
we created 200 ESN realizations, and then all the points obtained were grouped
in 10 bins containing the same number of points. We plotted their median 〈|λ|〉
against their median performance: σ from Eq.4 for forecasting; and the failure rate
for the classification. The error bars correspond to the upper and lower quartile
respectively. Each ESN realization corresponds to a reservoir withN = 1000 neu-
rons and average degree 〈k〉 = 50 for Mackey-Glass; and N = 100, 〈k〉 = 10 for
Laser Intensity and Spoken Digit recognition. The three panels show that, regard-
less of topology or spectral radius, all networks have their optimal performance
when the average eigenvalue module, 〈|λ|〉, is within the intervals [0.55, 0.6] for
Mackey-Glass, [0.3, 0.4] for Laser Intensity, or [0.6, 0.7] for Spoken Arabic Digit
Recognition, which are highlighted in pink.

12 Discussion

The results from Fig. 6 highlight the generality of our argument, as it seems to
work for every network and every topology, but also a more basic idea: that a
reservoir should have a certain amount of memory for a given task, and not more.
If the memory is insufficient, the readout does not have enough information to
complete its task and the performance will be poor, as it happens when 〈|λ|〉 is
small. Conversely, if the memory is too high, the network is spending ”resources”

36

– here meaning volume in the state space – trying to remember inputs that are
irrelevant for the task, and thus its performance will decrease when 〈|λ|〉 is too
large.

An important consequence of the derivation presented here is that the relation-
ship between memory and structure goes through the correlations between neu-
rons. This implies that the same arguments presented here can be reused in more
complicated dynamical systems such as photonic reservoirs [LSB+12,BSVdS19],
where the nonlinearity of the nodes is not monotonic and thus the stability can-
not be used as a criteria for memory. In such cases, our argument of limiting the
memory by the correlations still works, hence tunning the correlations would still
adapt the memory of the reservoir.

However, the key result from this chapter remains that the metric 〈|λ|〉 can
serve as a proxy for memory, thus if we need to constraint our network architecture
we can find the optimal memory fist – by scaling the spectral radius in an ER
network – and then generate our constrained network in such a way that the value
of the memory is unchanged. This will be necessary in the following chapters,
where we will tailor reservoirs to specific problems in a way that would change
the distribution of their eigenvalues.

Frequency adaptation for Echo
State Networks

The need for a narrow interval for 〈|λ|〉, as opposed to simply maximizing the
memory, is in line with the general rule that specialization is key to performance.
This insight, which resembles in spirit the no-free-lunch theorem, indicates that a
reservoir should be selected depending on the task at hand. In this section we fol-
low this intuition using notions from signal processing, specifically the frequency
spectrum decomposition.

The Fourier transform has been an extremely useful tool in time-series pro-
cessing and dynamic systems modeling [CG89, BZA01, Wei94]. Any signal or
time series can be expressed in terms of its spectrum, which reflects the decom-
position of signals into sinusoids with different frequencies [SS90]. This type of
characterization usually offers valuable insights into the nature or underlying dy-
namics of the system, and has been exploited for various applications [Ell13]. In
this section we leverage it to adapt reservoirs to specific tasks or problems.

The intuition that we will use here is that every neuron can be seen as a filter
that extracts some features from the input time series. If the reservoir extracted
the right features, the ESN performance would improve. Our goal is then to show
that a convenient family of features to look for corresponds to the frequency re-
sponse of the neurons. To do so, we will first show how the problem of selecting a
good reservoir can be mapped into the problem of selecting neurons with the right
frequencies by a formal argument, then show that this frequencies can be imposed
onto the reservoir by adding cycles to it and finally show a simple heuristic to
improve ESN performance.

13 A geometric approach to ESN training
The gist of our argument relies on a geometric interpretation of the linear regres-
sion: the target time series is a point in a space of dimension T , where every
coordinate is the value of the target time series; the neurons are also points in that
same space, and the linear regression simply finds the point in the affine linear

37

38

t2

t3

t1

x2

x2

x3

x1

x1

x3

y

y

ŷ

e
e

f2

f3

f1

x2

x3

x1

y

ŷ

f2

f3

f1

e
ŷ

Figure 7: Sketch of the frequency adaptation argument: Given an input and
output time series, a randomly generated reservoir consists of N non-linear pro-
jections of the input time series, which can be written as N vectors in a space of
dimension T (left). This picture and the distances between points do not change in
the Fourier domain (center). However, in that domain it will be possible to force
the neurons to approach the target.

subspace spanned by all the neuron time series that is closest to the target point.
Naturally, by having the neurons closer to the target, the distance between the
hyperplane and the target – the training error – decreases. The problem here is
that getting the neurons closer to the target is typically difficult, as the time series
of the neurons are intertwined [PMB13]. Our insight is that the distances in the
time domain are the same as the distances in the Fourier domain – by Parseval’s
theorem– thus we can reduce the training error by making the reservoir resonate
at specific frequencies.

We start by noting that the ESN training from Eq. 3 is the minimization of a
Euclidean distance. More specifically, the squared training error

‖e‖2 =

T+t0∑
t=t0

e2(t) =

T+t0∑
t=t0

(y(t)−woutx(t))2 = ‖y −
N∑
i=1

(wout)ixi‖2 (70)

is a squared distance, where ‖·‖ is the euclidean norm and e is the vector of errors,
which inhabits the space of training time series. In this space, y is the target point,
where every value of y(t) corresponds to the coordinate of y at dimension t. The
time series of the neurons xi are also points in that space with xi(t) being their
corresponding coordinates. Then, ŷ is the linear combination of neuron points that
is closest to y.

Naturally, this implies that a change of basis does not affect the training error
as long as the new basis is orthonormal

Having this geometrical interpretation of the ESN training we can already get
an intuitive understanding of how the reservoir network should be selected: we

13. A GEOMETRIC APPROACH TO ESN TRAINING 39

should sample xi to be as close as possible to the target y, then the error – the
minimum distance between the hyperplane spanned by xi and the target – should
also be reduced.

To make this argument more precise, we will rotate the coordinate frame so
that the first dimension of our space is in the exact direction of y. We will note the
points in this coordinate by the superindex P , so that xPi are the new points and
yP = [‖y‖, 0, 0, ..., 0].

In this new basis, we can rewrite the error as

‖e‖2 = ‖yP (0)−
N∑
i=1

(wout)ix
P
i (0)‖2 + ‖

N∑
i=1

(wout)ix
P
i (j)‖2. (71)

To obtain a bound we impose the constraint that the first term must be equal to
zero, so

w∗out = arg min
w∗out

‖
N∑
i=1

(wout)ix
P
i (j)‖2 s.t. yP (0)−

N∑
i=1

(w∗out)ix
P
i (0) = 0,

(72)
where w∗out is the new readout. Note that we are not proposing a new training goal,
as this constraint is just a mathematical trick to bound the training error.

Naturally, this extra constraint can only make the minimization problem harder,
so

‖e‖2 ≤ ‖e∗‖2 =
T−1∑
j=2

[
N∑
i=1

(w∗out)ix
P
i (j)

]2

. (73)

Furthermore, we can also use the constraint to bound wout through the Cauchy-
Schwarz inequality,

(yP (0))2 = ‖y‖2 =

(
N∑
i=1

(w∗out)ix
P
i (0)

)2

≤ ‖w∗out‖2

N∑
i=1

(xPi (0))2 (74)

which gives us the inequality

‖w∗out‖2 ≥ ‖y‖2∑N
i=1(xPi (0))2

. (75)

Now we can plug this into Eq.73,

‖e‖2 ≤
T−1∑
j=2

[
N∑
i=1

(w∗out)ix
P
i (j)

]2

≤ ‖y‖

∑T−1
j=2

[∑N
i=1 x

P
i (j)

]2

∑N
i=1(xPi (0))2

. (76)

40

This equation gives us an upper bound for our training error. This bound simply
states that if the points are very large in coordinate 0 of the new reference frame,
and very small in all the other coordinates, then the training error will improve.
This is not surprising, as the coordinate 0 is aligned with the target; our bound
simply states that if the time series of the neurons are very similar to the target,
then calculating the target from the neurons is easy.

Furthermore, since the rotation preserves the symmetry, the signs of xPi (0) are
uncorrelated with the signs of xPi (j),

N∑
i=1

xPi (j) ≤ N (0, Ns2
xP⊥y) (77)

where s2
xP⊥y is the variance of xPi (j) for j > 1, and the zero mean comes from the

symmetry of the distribution. As the neurons are independently drawn and thus
have all the same variance, then

T−1∑
j=2

[
N∑
i=1

xPi (j)

]2

= Ns2
xP⊥y

T−1∑
j=2

N (0, 1)2 (78)

where
∑T−1

j=2 N (0, 1)2 is the chi-squared distribution with T − 1 degrees of free-
dom. When T is large, we can use the central limit theorem, and thus

‖e‖2 ≤ ‖y‖
TNs2

xP⊥y

Ns2
xP ‖y

= ‖y‖T
s2
xP⊥y

s2
xP ‖y

. (79)

where s2
xP‖y

is the variance of xPi (0).

Note that the factor T appears because we did not normalize ‖e‖2 by the num-
ber of entries in the time series. imagine that we concatenate the same time series
twice, both the training and target points. Naturally, wout would be the same, but
the squared distance to between y and ŷ would have doubled.

The bound in Eq. 79 is simple to understand but it is hardly helpful: designing
a reservoir so that the neuron time series would approach those of the target is a
high-dimensional problem with many coupled variables, so we would not expect
this to be an easy task; indeed, training recurrent neural networks is a known hard
problem [PMB13]. Our main insight here is that this design is much simpler in
the Fourier domain.

By Parseval’s theorem [Par06]

‖e‖2 =

t0+T∑
t=t0

(y(t)−woutx(t))2 =
T∑
f=0

|F [y −woutx] (ω)2, (80)

13. A GEOMETRIC APPROACH TO ESN TRAINING 41

e

e

e*

e*

y*

y*
y

y

ŷ

ŷx2

x1

x2

x1

Figure 8: Sketch of the geometric bound: The target output is approximated
by its orthogonal projection into the hyper plane formed by the neurons, with the
training error ‖e‖ being the distance. The constrained error ‖e∗‖ instead is the
projection that is orthogonal to ŷ, which is obviously larger. Both errors decrease
when the neurons are closer to ŷ, with ‖e∗‖ serving as an upper bound for ‖e‖.
Notice that the argument works for any orthonormal basis of the time series, thus
it is more general than the frequency adaptation used here.

where F is the Fourier transform. Furthermore, the Fourier transform preserves
linear operations, so

‖e‖2 =
T∑
f=0

(
|F [y] (ω)−

N∑
i=1

(wout)i.F [xi] (ω)|

)2

, (81)

Then we can plug this in Eq. 79, specifically on the quotient

s2
xP⊥y

s2
xP ‖y

(82)

which is fairly easy to interpret in terms of signal processing: s2
xP ‖y is the pro-

jection of the power spectral density of the distribution of xi on the target time
series, and s2

xP⊥y is the orthogonal power spectral density. In other words, ESNN
performance improves if the PSD of the variables xi approaches that of the target

42

time series y. This is quite a natural result, since the power spectral density is of-
ten used as a measure of how distant time series are [Wei94]; thus we are simply
saying that if the time series of the variables xi are similar to the target, then the
readout will work better.

14 Altering the PSD of the reservoir’s neurons
Knowing that altering the reservoir’s PSD may increase the ESN’s performance,
we can deliberately generate reservoirs with specific frequency bands. To achieve
that, we add feedback loops with delay L in our neurons, encoded as cycles of
length L in the network. Note that this can be considered as a simple extension of
classical Infinite Impulse Response filters from Signal Processing [Ell13]. We ac-
count for the number and strength of those cycles by using the following measure:

ρL = E
[
WL

]
=

∑N
n=1

(
WL

)
nn

N
(83)

which accounts for the number of cycles of length L because the Lth power of the
adjacency matrix of a graph corresponds to the adjacency matrix of the graphs of
paths of length L.

Before giving a mathematical study of how those frequencies are enhanced
we will show numerically that a reservoir with those cycles enhances different
families of frequencies by feeding white noise –which has all frequencies in equal
measure – to reservoirs with different ρL values, as shown in Fig. 9.

14.1 Cycles, resonances and eigenvalues in linear systems
The notion of resonance or frequency enhancement that we used can be expressed
in a dynamical systems setting, where a reservoir resonates at a frequency 1

L
if

x(t) ∼ ax(t− L) ∼ a2x(t− 2L)... (84)

for a > 0. Note that the similarity should only hold for t−L, t− 2L, ..., meaning
that a the system state will be close to its previous state L timesteps in the past
and not similar to it otherwise.

To show how the addition of cycles can generate those resonances, we will
start by considering a simple linear – or in this case, linearized – dynamical system
defined by

x(t) = Wx(t− 1) + winu(t) =
∞∑
k=0

Wkwinu(t− k) (85)

14. ALTERING THE PSD OF THE RESERVOIR’S NEURONS 43

0.0 0.1 0.2 0.3 0.4 0.5
10-6

10-4

10-2

100

102

po
w

er
 d

en
si

ty
 (

P
S

D
)

 
L
 = -0

.

.5

 
L
 = 0

 
L
 = 0.5.

0.0 0.1 0.2 0.3 0.4 0.5
10-6

10-4

10-2

100

102

0.0 0.1 0.2 0.3 0.4 0.5
10-6

10-4

10-2

100

102

frequency

cycle length = 1 cycle length = 2 cycle length = 3

frequencyfrequency

Figure 9: Frequency domain representation of reservoir activity for reser-
voirs with cycles. We plotted the average PSD of the reservoirs’ neuron states for
reservoirs with various ρL when using a random Gaussian input with zero mean
and variance of one. In each panel we plot the average PSD of 500 reservoirs with
400 neurons and connectivity 0.05. The length of cycles added into the reservoir
is 1, 2 and 3. Any reservoir with ρL > 0 consists mostly of low pass filters and
will therefore enhance the frequencies close to 0, while ρL < 0 will enhance the
complementary ones.

where the hyperbolic tangent has been replaced by an identity, similar to a lin-
earization around the origin. Expanding W into its eigenvalues and eigenvectors
gives us

x(t) =
∞∑
k=0

Wkwinu(t− k) =
N∑
n=1

vn〈v−1
n ,win〉

∞∑
k=0

λknu(t− k) (86)

where vn and v−1
n are the left and right eigenvectors of W respectively and λn the

eigenvalues.
With this decomposition, it is easy to see that in order to obtain the approxi-

mation from Eq. 84, we would like to have

N∑
n=1

λkn =

{
a ⇐⇒ k = L

0 ⇐⇒ k 6= L.
(87)

The trick to obtain that is to realize that the eigenvalues live in the complex
domain, so we can use them as vectors to satisfy Eq. 87. As a simple illustrative
example, we will consider a system of N = 3 neurons forming a cycle of length
three, which is defined by the matrix

W =

 0 w12 0
0 0 w23

w31 0 0

 (88)

44

The eigenvalues of this matrix are the three cubic roots of w12w23w31, thus ful-
filling Eq. 87. The three eigenvalues form an equilateral triangle centered at zero.
When we go back to Eq. 84, we find that in this particular system,

x(t) = winu(t) + Wwinu(t− 1) + W2winu(t− 2)

+ w12w23w31winu(t− 3) + W4x(t− 4)

∼ w12w23w31 [winu(t− 3) + Wx(t− 4)] = w12w23w31x(t− 3),

(89)

which implies that a = w12w23w31.
The simple example above illustrates the general relationship between eigen-

values and resonances: when the linear system resonates with period L, its dom-
inant eigenvalues have phases of 2πk

L
, for k = {0, 1, ..., L − 1} if the cycles have

positive feedback and 2π(k+1)
L

if the feedback is negative. This is simply because
then the dominant eigenvalues to the power L will be real, while they will not
have any alignment when taken to a power which is not a multiple of L.

14.2 Eigenvalues of random matrices with cycles
With this general intuition in place, we will now proceed to study the eigenvalue
support of large random matrices with an overabundance of cycles of length L.
We will do so by first establishing a connection between cycles and the eigenvalue
distribution of the network’s adjacency matrix and then studying the symmetries
and extrema of the eigenvalue distribution.

Before proving anything, however, we will generate some of those random
networks and show their eigenvalues. The algorithm to generate them takes as
parameters the number of neurons N ; the number of edges E; cL ∈ [0, 1], which
is the portion of edges that are dedicated to cycles and must be a rational fraction
with quotient E, a probability distribution for the weights P that is symmetric
around zero and has variance of one, and s ∈ {−1, 1}, which corresponds to the
feedback sign.

Step-1: Create cLEN
2L

permutations of L numbers randomly picked from 1 to N
without replacement. Each permutation corresponds to L nodes that will be
connected to form a cycle.

Step-2: For each cycle, assign random weights drawn from P .

Step-3: For each cycle, if the sign of the product of the edge weights is not the
same as s, multiply the last edge by −1. This process generates an adja-
cency matrix Wc.

Step-4: To complete the connectivity, draw random empty entries from the matrix
and fill them with random weights drawn from P .

14. ALTERING THE PSD OF THE RESERVOIR’S NEURONS 45

Step-5: Normalize the matrix by
√

N
E

.

Before continuing, we should notice that in the previous algorithm or figure we
have not considered the case of L = 1. The reason is that using purely the net-
work structure it would lead to inconsistencies: if Ec1 > N−1, which would be
common as N →∞, it would give a network where every node would have more
than one edge connecting to itself. This does not make sense in our framework so
for the reservoir generation we will simply use

W = (1− r1)Wr + c1I (90)

where Wr is a random network and I an identity matrix. Here the strength of the
cycles of length L = 1 comes not from their number, but from their weights given
by c1.

When we plot the eigenvalues of those networks we find a surprising result,
namely that after appropriate normalization, the eigenvalues of such a matrix in
the limit of N →∞ are within the support given by

z(ϕ) = e−iϕ + ρke
i(L−1)ϕ. (91)

This support, which was derived in a collaboration with Tim Rogers and Hen-
ning Schomerus [ARS19] is a generalization of the elliptic law of random ma-
trices [Gir86]. Although it is a very interesting result which was obtained in the
scope of this thesis, the proofs and derivations were mostly developed by Tim
Rogers (for the case of sparse matrices) and Henning Schommerus (for the case
of dense matrices). We will thus use a simpler method that will not get the exact
support but that does not require knowledge of cavity methods or free probability.

Our derivations follow the logic of the method of moments, which is classi-
cally used to derive the Wigner’s semicircle law [Fei12]. Since we rely heavily
in combinatorial arguments, we will take P to be a binary distribution that as-
sociates weights of either 1 or −1 to every weight with equal probability. As
exposed in [ARS19], the actual distribution of the weights is irrelevant to obtain
the eigenvalue support, so we shall just use the most convenient one.

We begin by defining the normalized weight of the cycles of length L

ρL =
1

N

∑
c∈CL

wc (92)

where CL is the set of cycles of length L, and wc =
∏

e∈cw(e), the multiplication
of weights of the edges e in cycle c. Note that this includes cycles where edges
or nodes are visited multiple times, as opposed to simple cycles where every node

46

Figure 10: Eigenvalues of matrices with cyclic correlations with theyr sup-
port: Hypotrochoid curves given by Eq. 91 (black lines) bounding the eigenvalue
spectra (blue dots) of random matrices with correlations TrWk = ρk, for different
cycle lengths k. Note that we did not include k = 1 nor k = 2, because those are
well-characterized cases.

and edge can only be visited once. Since the value
∑

c∈CL wc is given by the
entries of the power of the graphs’ adjacency matrix W [GY05], we can obtain
ρL from the adjacency matrix W by the formula

ρL =
1

N
tr
[
WL

]
(93)

where tr [·] is the trace operator. The trace of a matrix equals the sum of its eigen-
values [Str93], therefore ρL can be written as

ρL =
1

N

N∑
n=1

λLn (94)

where λn is the nth eigenvalue of the adjacency matrix M .
Equation 94 is particularly interesting as N → ∞. For this limit we can

consider the eigenvalues of a matrix as random i.i.d. values sampled from a prob-
ability density function p(λ) in the complex plane C. For a random graph sampled

14. ALTERING THE PSD OF THE RESERVOIR’S NEURONS 47

from a probability distribution with a fixed ρL, this value corresponds to a moment
of the eigenvalue distribution,

µL =

∫
C
p(λ)λLdλ = lim

N→∞

1

N

N∑
n=1

λLn = ρL. (95)

As the number of nodes goes to infinity, the values of ρL converge to their
expectations, and since only the cycles of length τ have non-zero expectations.

lim
N→∞

ρL =

wL
FL
N

⇐⇒ L ≡ 0 mod τ

0 otherwise
(96)

Where CL is the number of cycles of length L that were added as feedback loops.
Since ρL are the moments of p(λ), the previous equation says that the moments
which are not multiples of τ tend to zero. We will use this to study the symme-
tries in the eigenvalues, but first we need to consider the rotated density function
p(eθiλ). The moments of this distribution can be computed through a simple
change of variable,

µθL =

∫
C
p(eθiλ)λLdλ =

∫
C
p(λ)λLeLθidλ = eLθi

∫
C
p(λ)λLdλ = eLθiµL. (97)

Then the moments of p(λ) and p(eθiλ) are equal under the following conditions,

µL = µθL = eLθiµL ⇐⇒

θ ∈
{

0,
2π

L
,
4π

L
, ...,

2(L− 1)π

L

}
µL = 0.

(98)

This condition is fulfilled for large graphs with abundant cycles of length τ .
Furthermore since the eigenvalues are bounded, the equality of moments im-

plies that p(λ) = p(eθiλ), so

p(λ) = p(eθiλ) (99)

for θ ∈
{

0, 2π
τ
, ..., 2(τ−1)π

τ

}
. In geometric terms, this means that p(λ) has τ rota-

tional symmetries in the complex plane.
Within the constraints of this symmetries, we would still need to know how

ρτ affects the eigenvalue distribution. Since the entries of our adjacency matrix
are i.i.d. and their magnitude decreases sub-exponentially, the probability distri-
butions are uniform [BYY14] within a closed curve. This means that increasing
ρτ decreases the surface in the angular range θ ∈

[
π
k
, 2π
k

]
while increasing it in

48

θ ∈
[
0, π

k

]
. Intuitively, ρτ > 0 accounts for the number of cycles, and every cycle

is a feedback loop, therefore the linear system described by W has many cycles
with positive feedback, so it resonates at the frequency 1

τ
and its corresponding

harmonics. This resonant frequency corresponds to the phases of the dominant
eigenvalues, meaning that when ρτ increases the eigenvalues with the phases 2πk

τ

for k ∈ {0, 1, ..., τ − 1} increase their moduli while those with phases 2π(k+1)
τ

decrease it. For ρτ < 0, the argument is the same, but the eigenvalues that are
dampened are those with phases 2πk

τ
and the enhanced ones correspond to phases

2π(k+1)
τ

.

14.3 Dealing with hyperbolic tangents
Studying reservoir dynamics through the spectrum of their networks can be ex-
tremely helpful, but it ignores the fact that reservoirs must be non-linear. Thus,
we might be tempted to question whether rewiring the reservoir to include cy-
cles will enhance frequencies. We could just refer to the numerics as presented in
Fig. 9, but we will instead provide an argument that will also highlight some of the
problems of dealing with the specific reservoirs used in ESN, where the nonlinear-
ity is an hyperbolic tangent as in Eq. 1. Note that this will be easily generalizable
to any reservoir whose neurons have monotonic activation functions.

Naturally, it is difficult to deal with nonlinearities and large system sizes si-
multaneously, so in this section we will simplify the large size problem and we
study how a single neuron changes its power spectral density when it is embedded
in a cycle. Consider a neuron with adjacent connections whose state is defined by
the equation

xi(t) = tanh

(
(win)iu(t) +

∑
j∈Si

wjixj(t− 1)

)
, (100)

where Si are the presynaptic neighbors of i. For simplicity, we set u(t) to be a
random normal variable independently sampled at every time.

Sparse random large graphs are locally tree-like [Wor99, BKM10], meaning
that typically all the values of xj(t − 1) are only remotely connected to xi and
among themselves. This implies that we can effectively treat the input to the
neuron

ri(t) = (win)iu(t) +
∑
j∈Si

wjixj(t− 1) (101)

as a random variable, which in our case has mean zero and bounded variance.
Now we embed the neuron into a positive cycle of finite length L, meaning

that there is a sequence of L− 1 weights wij1 , wj1j2 , wj2j3 , ..., wjL−1i such that

wc = wij1 · wj1j2 · ... · wjL−1i > 0, (102)

14. ALTERING THE PSD OF THE RESERVOIR’S NEURONS 49

and proceed to use the mean value theorem to xi(t+ τ),

xi(t+ τ) = tanh′ (ξi(t+ τ)) ri(t+ τ),

ri(t+ τ) = wjL−1ixjL−1
(t+ τ) + (win)iu(t+ τ) +

∑
k∈Si−{jL−1}

wkixk(t+ τ − 1)

(103)
where sign [ξi(t+ τ)] = sign [xi(t+ τ)] and tanh′ is the derivative of tanh. To
simplify our notation, we will write

si(t) = (win)iu(t+ τ) +
∑

k∈Si−{jL−1}

wkixk(t+ τ − 1), (104)

which are randomly sampled from a symmetric probability distribution, so their
expectation over all samples of W, even including wc, is zero. The same expan-
sion can be applied to any node in our cycle, so for l < L,

xjl(t+ τ − l) = tanh′ (ξjl(t+ τ − l)) rjl(t+ τ − l)
rjl(t+ τ − l) = wjlixjl(t+ τ − l − 1) + sjl(t+ τ − l).

(105)

Then by recursively expanding xjl(t− l),

xi(t+ τ) =
L−1∏
l=0

wl,l+1 tanh′ (ξjl(t+ τ − l))xi(t)

+
L−1∑
l=0

sjl(t+ τ − l)
l∏

k=0

tanh′ (ξjl(t+ τ − l))

(106)

where we used the convention i = j0 = jL. We can already see that the value
of xi(t + τ) is now coupled to the value of xi(t). We can now compute this new
correlation

E|wc [ci(τ)] = E|wc

[
L−1∏
l=0

wl,l+1 tanh′ (ξjl(t+ τ − l))x2
i (t)

]

+ E|wc

[
xi(t)

L−1∑
l=0

sjl(t+ τ − l)
l∏

k=0

tanh′ (ξjl(t+ τ − l))

]
.

(107)

By the symmetry of the parameters of the network, the sign of sjl is uncorrelated
with xi if we average over all the possible values of W, so if we set τ = L we are
left with

E|wc [ci(L)] = E|wc

[
L−1∏
l=0

wl,l+1 tanh′ (ξjl(t+ L− l))x2
i (t)

]
= wcE|wc

[
tanh′ (ξjl(t+ L− l))x2

i (t)
]
.

(108)

50

Note that tanh′(x) =
(
1− tanh2 (x)

)
> 0, therefore

E|wc [ci(L)] > 0. (109)

This implies that by having cycles, the neurons will have, on average, a positive
autocorrelation with time-delay L.

Finally, the autocorrelation function gives the PSD by the Wiener-Khinchin
Theorem [Khi34, Wie30],

si(f) =
∞∑

k=−∞

ci(k)e−2πifk, (110)

thus if we select f = n/L,

E|wc
[
si

(n
L

)]
> 0, (111)

for n ∈ Z.
The gist of the argument presented here is that since neurons are filters ran-

domly sampled from a probability distribution that is not biased towards positive
or negative feedback, the average autocorrelation is zero. By adding cycles, we
are forcing some of those autocorrelations to be –on expectation– different from
zero, which is equivalent to changing frequencies.

An important insight from the derivation presented here is that by using the
mean value theorem we loose information about the actual value of the autocor-
relation. That is, while in linear systems we know how much the frequencies will
be modified, in non-linear systems we do not, having to conform ourselves with
knowing which frequencies will be enhanced or dampened.

Improving reservoirs

Now that we know how to alter the frequencies of the reservoir while keeping
its memory intact, the next natural step is to apply this knowledge and design
reservoirs adapted to a specific task.

Before working on the frequency adaptation it is important to consider the
memory capacity of the reservoirs. As we have seen before, having cycles in
the adjacency matrix change the distribution of eigenvalues, specifically creating
some extreme values that are larger than in the original, non-adapted adjacency
matrix [Ace18]. This obviously affects the spectral radius as well as 〈|λ|〉. Since
we expect that the memory capacity requirement for a forecasting task is not af-
fected by adapting the PSD, it is reasonable to use 〈|λ|〉 as the normalization
variable for the weights of reservoir matrix, instead of the spectral radius [Jae02].
We can thus use the optimal value of 〈|λ|〉 from the data in Fig. 6 where cL = 0
before adapting the PSD.

We start by simply taking different reservoirs with varying fractions of cycles
and compare values of cL against the performance of the reservoir in that task.

As we see in Fig. 11, the performance of ESN depends heavily on the fraction
of cycles cL. To understand them better, it is useful to compare the optimal cL
values with the PSD of the time series. A simple example is given by the Mackey-
Glass time series: Fig. 12 shows that for cL > 0, the reservoir’s average PSD
response is enhanced for the frequencies close to 0, which is exactly the regime
where the spectrum of the Mackey-Glass Time Series is concentrated. Consistent
with our hypothesis, positive cL improves the ESN performance on forecasting
the Mackey-Glass Time Series (Fig. 11.a, d, g), while negative cL decreases it.
Similarly, the Spoken Arabic Digits are also dominated by frequencies close to 0,
and thus the performance of ESN improves when cL > 0 (Fig. 11c,f,i). As for the
Laser Intensity Time Series, its dominating frequencies are around 0.13, 0.27 and
0.38, thus ESN is improved when the response of the reservoir enhances those
frequencies. As shown in Fig. 12.e,h, this happens when cL < 0 for L = 2, 3.
Indeed, as shown in Fig. 11e,h, negative cL (for L = 2, 3) improves the ESN
performance. For the case of L = 1, we observed in Fig. 12 that the three
peaks cannot be all enhanced simultaneously by setting r1 to be either positive or

51

52

-1.0 -0.5 0.0 0.5 1.0
-6

-4

-2

0

2

4

-1.0 -0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

-1.0 -0.5 0.0 0.5 1.0
0.2

0.3

0.4

0.5

-1.0 -0.5 0.0 0.5 1.0
-6

-4

-2

0

2

4

-1.0 -0.5 0.0 0.5 1.0
-1.6

-1.4

-1.2

-1.0

-1.0 -0.5 0.0 0.5 1.0
0.2

0.3

0.4

0.5

-1.0 -0.5 0.0 0.5 1.0
-6

-4

-2

0

-1.0 -0.5 0.0 0.5 1.0
-1.5

-1.4

-1.3

-1.2

-1.0 -0.5 0.0 0.5 1.0
0.2

0.3

0.4

0.5

Mackey Glass Time Series Forecasting

lo
g

1
0(

)
a b c

Laser Intensity Time Series Forecasting

lo
g

1
0(

)

fe

 Female
 Male

Spoken Arabic Digit Recognition

F
a

ilu
re

 R
a

te

d

lo
g

1
0(

)

cy
cl

e
 le

n
g

th
 =

 3
cy

cl
e

 le
n

g
th

 =
 2

lo
g

1
0(

)

cy
cl

e
 le

n
g

th
 =

 1

h

 Female
 Male

F
a

ilu
re

 R
a

te

g

lo
g

1
0(

)

i

lo
g

1
0(

)

 Female
 Male

F
a

ilu
re

 R
a

te

cL

cL

cL

cL

cL cL

cL

cL

cL

Figure 11: Improving ESN through frequency adaptation. ESN performance
σ vs ρL, for the tasks of Mackey-Glass Forecasting (a, d, g), Laser Intensity Fore-
casting (b, e, h), and Spoken Arabic Digit Recognition (c, f ,i). The length of
cycles added into the reservoir is 1 in (a-c), 2 in (d-f) and 3 in (g-i). Every point
corresponds to the median performance –measured by σ from Eq.4 in the (a, b, d,
e, g, h) and by the failure rate in (c, f, i)– over 200 ESN realizations with the er-
ror bars corresponding to upper and lower quartiles. The dashed lines correspond
to the performances obtained for each task by creating reservoirs combining cy-
cles of various lengths. Each ESN realization corresponds to a reservoir with
N = 1000 neurons and average degree 〈k〉 = 50 for (a) and N = 100, 〈k〉 = 10
for (b) and (c). In all cases we see that combining cycles of different lengths can
bring substantial improvements to ESN performance.

negative. Instead, setting r1 = 0 would yield the optimal performance. This is
what we observed in Fig11.b.

The immediate conclusion is that the reservoir should be designed to enhance
the frequencies present in the target signal. A simple way of achieving this is to
obtain the frequency responses of the reservoir for an unstructured signal (white
Gaussian noise), and then select the parameters of the reservoir for which the
frequencies match the target signal better. Based on those considerations we de-
signed a simple heuristic algorithm to find the optimal values of cL’s

15. GENERATE ADAPTED RESERVOIRS 53

0.0 0.1 0.2 0.3 0.4 0.5
10-6

10-4

10-2

100

102

po
w

er
 d

en
si

ty
 (

P
S

D
)

0.0 0.1 0.2 0.3 0.4 0.5
10-5

10-3

10-1

101

0.0 0.2 0.4
10-5

10-3

10-1

101

 Male
- - - - Female


Spoken Arabic DigitsMackey-Glass time series Laser Intensity time series

Figure 12: Frequency plot of the Time Series: We plot the power spectral den-
sity of the time series used. The Mackey-Glass (left) is a low-frequency signal,
meaning that it evolves smoothly and thus most of its power is on low frequen-
cies. The Laser Intensity has three frequency peaks in the middle of its spectrum,
making it a comparatively high-frequency signal as observed by the fact that it has
very large fast shifts. Finally, the Spoken Arabic Digits is also a low frequency
signal on average.

15 Generate adapted reservoirs
In the tasks described in the main text, different tasks require different reservoir
parameters. Specifically, for a given maximum cycle length value L there is one
combination of ρl, ∀l ≤ L and a value of 〈|λ|〉, which optimizes the ESN perfor-
mance. In this section we present the heuristic that we use to find those parame-
ters.

The first step is to tune the memory for the current task. We take a very simple
approach, where we simply try many spectral radii on the interval [0, 1] and pick
the one that gives the best performance on a classical ER network. Once found,
we calculate the corresponding 〈|λ|〉 and we will use that for the rest of the process
(see Supplementary Information Sec. I).

Since the reservoirs that we use are not linear, we need to characterize their
frequency response for various values of ρl for all the l ≤ L considered. This
response, that we denote R̂(ρl, L) is computed by generating Gaussian noise with
the same variance and mean as the original signal and use it as an input for the
reservoir. Then apply the Fast Fourier Transform to the neurons’ states and av-
erage over all neurons. As the reservoirs are generated randomly, it is necessary
to average those responses over multiple reservoir instances. For a given L we
use the following heuristic to find the optimal combination of cycles with size no
greater than L.

Step-1: Compute the Fourier transform of the input signal and keep the vector
of absolute values ŝ = [ŝ(0), ŝ(2), ...ŝ(fS)], where fS is half the sampling
frequency.

54

Step-2: Compute the scalar product 〈ŝ, R̂(ρl, l)〉 for all ρl, l, and select the ρl that
maximizes it for each l.

Step-3: Test the performance of an ESN with the values of ρl found in the previ-
ous step. If the performance is lower than in the default case of ρl = 0, do
not optimize with regard to that length.

Step-4: For all values of ρl where the cycle length is allowed and which fill the
condition ‖ρ‖1 ≤ 1, select the one that maximizes

∑
l〈ŝ, R̂(ρl, l)〉.

As shown in Fig. 11 (black dashed lines), this heuristic does indeed further
improve the ESN performance. Intuitively, the explanation for our approach is that
a reservoir is a set of coupled filters that extract features from the input signal, and
our heuristic simply selects filters that focus on the family of features that are
present in the signal, thus increasing the ability of the reservoir to capture relevant
information.

16 Discussion
The heuristic and network generation algorithms proposed improve the perfor-
mance of an ESN beyond that of traditional reservoirs with relatively simple and
fast procedures. This has obvious advantages from an engineering point of view,
as we can obtain better performances with smaller reservoirs for any task in which
an Echo State Network might be used. This is particularly interesting for the neu-
romorphic computing community, as they typically resort to reservoir computing
to implement learning algorithms in their chips [TRA+17, VdSBS17, TYH+19].

Our approach is in stark contrast to previous results in which the reservoir
network was selected to cover uniformly all the frequency spectrum [OXP07],
creating reservoirs that generalize well across multiple tasks, but failing to spe-
cialize in a particular one. Note that adding cycles of length one is similar to the
Leaky reservoirs used previously [JLPS07b], but here we show that those reser-
voirs are not better simply because they increase the memory –as this could had
been achieved by scaling the weight matrix – but rather because the leaky term
adapts the neurons to the dynamics of the time series. Thus our results provide a
theoretical backbone and a direct generalization of leaky reservoirs.

An important limitation of the work outlined here is that the cycles cannot
have arbitrary long lengths, because the frequency enhancement becomes weaker
and weaker with growing L (see Fig. 12). This comes from the random matrix
theory finding, as high ρL are difficult to generate without lowering the average
degree to a point where the network would be disconnected [ARS19].

16. DISCUSSION 55

However, a recent line of work has expanded leaky reservoirs to multi-layer ar-
chitectures [GMP18,GMP17], finding that adding layers can refine low-frequency
adaptation, just as stacking up filters can further refine frequency adaptation.
While those studies relay on the PSD to adapt the reservoir architecture, they
focus on obtaining rich reservoir dynamics and low-frequency features, ignoring
possible intermediate or high frequencies as well as the supervised frequency se-
lection that we use here. Thus an encouraging continuation of this work would
be to use hierarchical architectures to have reservoirs that can be adapted in a
supervised way to very precise PSDs.

It is important to note that we are not advocating for hand-tuning reservoir
topologies for specific tasks, but rather to raise the point that notions from clas-
sical signal processing can help us understand and improve recurrent neural net-
works, either through selection of appropriate initial topologies in a pre-training
stage, or by designing learning algorithms that account for the principles outlined
here. Given that most current learning strategies such as backpropagation focus on
adapting single weights, we are convinced that many new learning algorithms can
be created by focusing on network-level features; after all the heuristic presented
here is extremely simple and could be refined in multiple ways.

56

Part III

Self-Organized Activity in Spiking
Neural Networks

57

Spiking Neural Networks and
Spiking Time-Dependent Plasticity

Knowing how to design neural networks that are tuned to a particular task does not
necessarily tell us anything about biological neural networks. Indeed, we would
not expect that the heuristic and network algorithms that we proposed and used
are implemented by biology, as this would require knowing the task at hand before
wiring the networks. However, the principles behind them might still provide us
insight into how biology adapts, and in the following chapters we will show how
some of the notions used in signal processing can be implemented by well-known
biological rules. Before digging into that problem it is necessary to understand
the models and assumptions underlying biological neural networks, which is the
topic of this chapter.

17 Spiking neural networks
The main feature of a neuron is the capacity to receive information through electri-
cal impulses, combine this information and send impulses to other neurons. How-
ever, the neurons – or neuron models – that neuroscientists and machine learning
engineers use are very different. While in machine learning neurons are nodes
in a network that take a linear combinations of their inputs and apply a nonlinear
function at every time step [Ros57, Bis95], biological neurons are very compli-
cated cells that can have extremely rich dynamics [HH53, Izh04] and they behave
continuously in time without an actual clock to tell them when to process or not
to process information.

Since real biological neuron dynamics can be very complicated, the study of
biological networks of neurons often starts by making some simplifying assump-
tions [HGMJ06, BHR14]. A common starting point is to assume that neurons
are individual units with a single state variable whose state depends only on their
direct inputs from other neurons, and they communicate through short discrete
signals called spikes that are sent to other neurons when a certain value of their
state variable is reached.

59

60

This still gives us a whole family of possible models, depending on how the
activity of neurons at some point in time is described – either as a instantaneous
rate or a collection of individual spikes –. In this thesis we will oscillate between
those cases depending on the precise problem at hand; when modeling how neural
populations change their activity we will consider instantaneous rates and com-
pute averaged quantities, while the study of how single neurons modify their spike
trains will relay on individual spikes. This does not mean that the neurons consid-
ered would be different depending on our problem, but rather that they correspond
to different levels of description. In fact, our simulations will all be done with the
same neuron model and the transition between different levels of description will
be made explicit when necessary.

To be more precise, the model that we will use for simulations and some of
our analysis will be the Leaky Integrate and Fire (LIF) model with a refractory
period [Lap07b]. In this model, the state of a neuron at a given time is described
by its membrane potential v(t), which evolves according to the equation

τm
dv(t)

dt
= −(v(t)− v0) + u(t), (112)

where τm = 10ms, v0 = −70mV . u(t) is the input to the neuron at time t.
When the membrane potential reaches a certain threshold vth = −50mV , the
neuron ”fires” or ”spikes”, meaning that it emits a pulse of current – the spike –
that will be sent to other neurons in the form of a delta function. After firing, the
membrane potential is reset to its resting state v0 and kept frozen at this value for
a fixed period of time called the refractory period tref = 1ms.

The firing of a neuron generates pulses of current that arrive at other neurons,
which in turn update their membrane potentials. If neuron a receives the spikes of
neuron b we will say that there is a synapse going from the second to the first. The
receiving neuron is called postsynaptic and the sending neuron is the presynaptic
one. This synapse is characterized by a weight wab and a delay dab which cor-
respond, respectively, to the gain and the latency that the pulse of neuron a goes
through before arriving at b.

At this point it is useful to discuss the input u(t). As mentioned before, the
input to a neuron is often given by spikes from other neurons, which would give
us

u(t) =
∑
k

wkδ(t− tk), (113)

where wk is the weight of the kth spike and tk its arrival time to the neuron. Note
that we can also aggregate small contributions from many other neurons forming
a smooth function of time or a stochastic variable. In this case, u(t) might be
better described by the statistics of this variable, such as the expected value and
the variance.

18. SYNAPTIC PLASTICITY 61

Finally, we shall note that the activity of neuron populations does not need
to be described by a set of spike times. In many cases we are interested in a
coarser description and then it is better to use variables such as the instantaneous
firing rate – the average number of spikes per time unit – instead the exact spike
times [GKNP14]. Furthermore, if we are considering time scales much larger than
τm, the exact evolution of the inner neuron state is irrelevant and we can focus on
the coarse neuron activity which is given by

x(t) = f (u(t)) , (114)

where f is a smooth function with lower bounded by zero – meaning that the
neuron cannot fire less than zero spikes – and upper bounded by 1

tref
, because the

neuron needs 1ms between spikes.

18 Synaptic Plasticity
One of the most fascinating feats of the nervous system is its ability to learn.
However, in contrast to the supervised, error-based learning that we took in the
first part of this thesis the networks of neurons that we observe in biology evolve in
an unsupervised way, meaning that they do not have an explicit notion of error, but
rather adapt to the input they receive and their inner dynamics. In this section we
will present some of the most common rules and models governing this adaptation.

18.1 Spike Time-Dependent Plasticity
Despite the rate-centered approach that we –and many others– use to analyze
network dynamics, the fact that neurons communicate by spikes with precise
times has crucial consequences in terms of adaptation. The most prominent rule
that accounts for this is known as Spiking Time-Dependent Plasticity (STDP)
[SG10, GKvHW96].

In STDP the weight of a connection is modified depending on the time interval
between pairs of pre- and post-synaptic spikes. For every pair the weight of the
synapse is modified according to the equations

∆STDPw(∆t) =

{
A+(w)e−

|∆t|
τs if ∆t ≥ 0

A−(w)e−
|∆t|
τs if ∆t < 0

(115)

where ∆t = tpost − tpre is the time difference between the postsynaptic spike
and the presynaptic one. The constant τs establishes the timescales of the STDP
and is typically very short in comparison to behavioral timescales, meaning that

62

most processes involving STDP happen over long time intervals. The coefficients
A+ > 0 and A− < 0 are coefficients that determine the relative strengths of the
Long Term Depression (LTD) and Long Term Potentiation (LTP) processes, and
both of them are very small so that the STDP works on very long timescales. In
subsequent sections we will refer to A± to indicate both A+ and A− depending on
the sign of ∆t.

Stability

As many other rules used in neuroscience, STDP has the problem of being un-
bounded and potentially unstable [DA01]. That is, we need to have some mecha-
nism that prevents synaptic weights from growing to infinity.

We will take two different approaches to this. When we are considering neu-
rons that get input spike trains whose origin is not relevant, we will only require
the weights to be upper bounded. This is the simplest approach to study biologi-
cally plausible input-output function for neurons. The model is based on previous
works [KH00, VRBT00], and consist on taking A+ and A− as

A+(w) = η+(wmax − w),

A−(w) = −η−(w − wmin).
(116)

However, sometimes we have large networks of neurons with recurrent synapses
and then our goal is not only to ensure a finite synaptic weight, but also to have
stable neural activity. This can be done by different means, for example by having
an homeostatic term [TN04] of the form

∆Hw = −γ(r)w (117)

where γ is a monotonically increasing positive function of r, the firing rate of the
neuron. In our simulations this will be a simple linear dependency, but other rules
are possible. Note that this term also keeps the weights finite, so we also obtain
the weight stability.

Full Plasticity Model

When we integrate all the previous components we end up with the following
model which is valid for a the time interval [t, t+ T],

∆w = −γ
(
Spost
T

)
+

Spre∑
spre

Spost∑
spost

A±(w)e−
|∆t|
τs (118)

where Spre, Spost are the number of pre- and post-synaptic spikes in the interval
[t, t+ T] respectively. Note that in any case we will assume |∆w| � 1, so that

18. SYNAPTIC PLASTICITY 63

the evolution of the weight in any single input presentation is small and the weight
evolves smoothly.

Furthermore, depending on the case at hand we will use different parameter
regimes. When considering recurrent neural networks we will be concerned with
neuron rates but we can ignore weight saturations, hence we will work on the
regime where γ(r) > 0 and A+(w) and A−(w) are constant. Conversely, when
we consider single neurons getting a train of spikes without recurrent connections
we will not be concerned with rates directly so that γ(r) ∼ 0, but add a saturation
term to A±(w).

18.2 Excitation-Inhibition

We must note that the input need not to be always positive. Many neurons –
and their corresponding synapses – are inhibitory, meaning that they lower the
membrane potential of the target neuron, reducing the chance that it will fire.

This can have a variety of strange effects on the dynamics of a neural network.
For instance, it might be crucial to impose oscillatory regimes [PSvRN13], or
shape receptive fields [SG02, DA01]. More recently it has been shown that the
balance between excitation and inhibition is a key factor in explaining the irregular
firing that biological neurons exhibit [Bru00]. Thus in studies we should be aware
of the parameter regime in which we are working. In this section we will show that
for our purposes, any parameter regime in which excitation is either stronger than
inhibition or precisely balanced, thus covering a wide range of possible regimes.

LIF neurons subject to excitatory or balanced inputs

For now we will consider u(t), the input variable to a single neuron as a stationary
stochastic variable. In particular, for a single leaky integrate and fire neuron,
the output firing rate is given by the time it takes for the membrane potential to
cross the threshold. The average inter-spike-interval decreases as the mean of
u(t) increases – meaning that excitation is larger than inhibition – or, if the mean
is kept at zero – meaning a balanced regime –, if the variance of u(t) increases.
To illustrate this we simulated a LIF neuron subject to a Gaussian input in Fig. 13.
The firing rate starts at zero, then starts to grow and eventually saturates and it
does so for both the mean and variance of u(t). This implies that we can use the
so-called balanced networks [Bru00], where the amount of inhibition is similar to
the amount of excitation, and still model the activation of networks of neurons by
a monotonic function bounded from above and below.

64

Figure 13: Leaky Integrate-and-Fire as a smooth function: Here we plot the
firing rate of a LIF neuron as function of the parameters of a Gaussian input. The
left plot presents the average of firing rate for an input presented for 5 seconds
and with the two variables being the mean and standard deviation of a Gaussian
input. The middle and right plots correspond to cuts through that surface on the
respective directions, with the center one being the mean firing rate for a standard
deviation of 40V/s and the right one corresponding to varying levels of noise for
a mean input of −5V/s.

Balance-preserving plasticity

The STDP rule presented before is well characterized and widely used, but mostly
for excitatory neurons. However, in biological systems, inhibitory synapses are
also present and have plasticity [VFD+13]. Naturally, this might compromise the
effects of STDP, as an inhibitory synapse that gets potentiated could counteract
the effects of excitatory STDP. For instance, it might decrease the membrane po-
tential and thus increase the latency of the postsynaptic neuron [EJL15]. Our goal
in this section is to find the parameter regime in which the presence of inhibitory
plasticity gives qualitatively the same effect for the STDP. Specifically, we will
try to find the parameters of STDP such that the probability of generating a post-
synaptic spike at time t increases if that time is shortly before a postsynaptic spike
and decreases if that time is shortly after a postsynaptic spike.

Intuitively, in a network with random connectivity for both inhibitory and ex-
citatory the mean inputs will still follow –on average – the potentiating tendency
of excitatory STDP as long as the STDP in inhibitory synapses is weaker than the
STDP in excitatory ones. The question is then to find a way of measuring ”how
much weaker” it has to be. Following the observation from Fig. 13 that the activ-
ity of a neuron will increase either by increasing the mean or the variance of the
input, we will find parameters such that the inhibitory and excitatory STDP cancel
each other. This is in line with the balanced neural networks that have been shown
to reproduce biological observations [Bru00].

To maintain this balance, the potentiation of excitatory synapses must be com-
pensated by the potentiation of inhibitory synapses. Potentiating all synapses but

18. SYNAPTIC PLASTICITY 65

maintaining the average input leads to the increase in fluctuations of the mem-
brane potential, meaning that the membrane potential preceding a postsynaptic
spike would change more around the average.

The approach that we will take is to start by assuming a fixed postsynaptic
spiking time and then we will study how the presynaptic input is modified by
STDP. This will lead to modified average membrane potentials, and thus modified
spike trains.

Consider a single postsynaptic spike at time tpos. For simplicity we will only
treat the membrane potential at t < tpost, as the case where t > tpost case fol-
lows the same logic but with depression instead of potentiation. This membrane
potential is given by

v(t) =
∑
tk<t

wke
− t−tk

τm , (119)

and for now v(t) < vth. Now we wonder what happens when the weights wk
change, by using only information about the distribution from which the list of
(wk, tk) was sampled.

The subsequent step is to find the conditions that guarantee that E [∆rv(t)]
increases. A sufficient condition for this to happen is to have

E [∆ru(t)] = ∆rE [ue(t)]−∆rE [ui(t)] > 0, ∀t < tpost (120)

where E [ue(t)] is the expected input to the neuron at time t, and E [ui(t)], E [ui(t)]
is simply its decomposition in inhibitory and excitatory inputs, which gives us

E [ue(t)] = ρe

∫ ∞
0

µwe(w, t)dw

E [ui(t)] = ρi

∫ ∞
0

µwi(w, t)dw

(121)

where ρe, ρi are the rates of incoming spikes and µwe(w, t), µwi(w, t) the proba-
bilities of the weights associated to time t.

Thus, to maintain the condition from Eq. 120 we must ensure that the param-
eters µwe , µwi , η

e
+, ηi+, wemin, wimin are such that

ρe

∫ ∞
0

∆we(r)µwe(w, t)dw > ρi

∫ ∞
0

∆wi(r)µwi(w, t)dw, (122)

where ∆w(r) are given by the STDP Eq. 115 over many repetitions –counted by
r – of the input spike train. We will now find a parameter regime in which this
holds by finding its boundary. In other words, we are interested on the parameter
set in which

ρe

∫ ∞
0

∆we(r)µwe(w, t)dw = ρi

∫ ∞
0

∆wi(r)µwi(w, t)dw. (123)

66

Note that it is not enough to find two weight distributions µwe , µwi where

ρe

∫ ∞
0

Ae+(we)µwe(w, t)dw = ρi

∫ ∞
0

Ai+(wi)µwi(w, t)dw, (124)

because this would only work for the first input repetition. We have to ensure
that even after STDP changes the distribution, the equality holds. A simple way
to achieve this is to set the inhibitory and excitatory parameters to be equal. It
is obvious that if the probability distributions of weights, input rates and STDP
parameters are the same, then the change in input will affect the inhibitory and
excitatory synapses in the same way. However, we know that this is not the case,
as there are typically fewer inhibitory synapses than excitatory ones. Thus, we
modify this symmetry to include rescaling, meaning that we have the ratio

α =
ρi
ρe

(125)

that is also intrinsic to the probability distributions

αµwi (αx, t) = µwe(x, t) ∀x, t. (126)

and the STDP parameters

αAi+(αx) = Ae+(x) ∀x. (127)

By a simple change of variable we can show that, if those properties are satisfied,

ρe

∫ ∞
0

Ae+(x)µwe(x, t)dx =
1

α
ρi

∫ ∞
0

αAi+(αx)αµwi (αx, t)
1

α
d(αx)

= ρi

∫ ∞
0

Ai+(y)µwi(y, t)dy.

(128)

Furthermore, if we take a pair of inhibitory and excitatory weights such that we =
αwi we have that after STDP,

αwi → α(wi + Ai+(wi)e
− |t−tpost|

τs) = αwi + αAi+(αwe)e
− |t−tpost|

τs

= we + Ae+(we)e
− |t−tpost|

τs ← we,
(129)

meaning that the weight probability changes in such a way that

µ′we

(
x+ Ae+(x)e−

|t−tpost|
τs , t

)
= µwe (x, t)

= αµwi (αx, t) = αµ′wi

(
α

(
x+ Ai+(x)e−

|t−tpost|
τs

)
, t

)
,

(130)

18. SYNAPTIC PLASTICITY 67

where µ′we and µ′wi are the weight distributions after STDP has acted once. Thus,
if Eq. 126 holds at some point, it will also hold for all subsequent iterations of the
input spike pattern.

Thus, we have found a set of conditions that satisfy Eq. 126 at r = 0 and for
any subsequent r > 0 for the case where the postsynaptic spike does not change
during r repetitions.

Notice that the self-consistency of this condition does not make any assump-
tions about the learning constant or ∆t dependent term on STDP, it only requires
that the expected increase in excitatory input is matched by the expected increase
in inhibitory input.

The same argument also applies when the postsynaptic spike advances. Con-
sider the change of weights at time t with a postsynaptic spike initially triggered
at time tpost for r′ repetitions, and then changes in the presynaptic spike train
change the firing time so that the postsynaptic spike is triggered at t′post with
t < t′post, tpost. In that case the shape of Eq. 129 remains the same for every

repetition, is only that the coefficient of change will be e−
|t−tpost|

τs for r < r′ and

e−
|t−t′post|

τs for r ≥ r′.
Now we have a large set of parameters in which latency reduction is expected

to happen. Any STDP parameters for which αAi+(αx) < Ae+(x) combined with
Eq. 126, or distribution of weights with αµwi (αx, t) < µwe(x, t) with Eq. 127, or
both cases combined.

It is worth noticing that the case when all the equalities Eq. 126 and Eq. 127
are met we would still expect the latency to decrease. The reason is that even if

E [∆rv(t)] = E [∆ru(t)] = ∆rE [u(t)] = 0, (131)

the variance of v(t) increases. More explicitly,

∆rVar [v(t)] = ∆r

∫ t

−∞
Var [u(t)] dt

= ∆r

∫ t

−∞
E
[
u2(t)

]
−∆r

∫ t

−∞
E [u(t)]2 dt,

(132)

and since ∆rE [u(t)] = 0, we can write

∆rVar [v(t)] =

∫ t

−∞
∆rE

[
u2(t)

]
dt

=

∫ t

−∞
∆rE

[
u2
e(t)
]
dt+

∫ t

−∞
∆rE

[
u2
i (t)
]
dt

(133)

where the term E [u(t)]2 = 0 by the symmetry of the weights and it is maintained
at zero by the symmetry of the STDP. Since we are only concerned with t < tpost,

68

STDP potentiates both inhibitory and excitatory synapses, so

∆rE
[
u2
i (t)
]
,∆rE

[
u2
e(t)
]
> 0 (134)

and therefore the variance increases.
Notice that the conditions stated do can also be used for t > tpost, as it suffices

to set
αAi−(αx) = Ae−(x) ∀x. (135)

and replace all Ae+, A
i
+ for Ae−, A

i
− in the subsequent equations and they would

still hold. Naturally the difference is that the synapses get depressed rather than
potentiating, but the equilibrium condition is kept. This implies that ∆rE [u(t)] =
0 and

∆rE
[
u2
i (t)
]
,∆rE

[
u2
e(t)
]
< 0, (136)

which is still in agreement with the general principle of STDP, namely to increase
the firing probability before a postsynaptic spike and decrease it afterwards.

Naturally, if the variance of a certain distribution increases, then the probabil-
ity of reaching a value higher than some threshold –vth– also increases, which is
precisely what we observed in Fig. 13.

The approach outlined here can be also used for other STDP kernels. While the
symmetry in the excitatory and inhibitory STDP kernels might not exist for some
choices of inhibitory and excitatory plasticity, the approach can, in principle, still
be used by simply adding a bias on the number or weight of excitatory synapses
that would compensate the asymmetry in the STDP kernel.

Self-Organized Signal Enhancement

From Sec. 15 in Chapter II we know that adapting the network structure to enhance
the frequencies present in the reservoir would be advantageous from a machine
learning perspective. In a more general setting, we would think that exposing a
network to a signal should make the network represent the signal better. In this
section we will show that these phenomena of signal improvement can be im-
plemented with the well-known rules presented before using simulations and an
analytical approach based on two self-consistency equations relying neural activ-
ity and its weights.

As a introductory example, we can consider a single neuron with two autapses
– synapses to the neuron itself – with different delays presented in Fig. 14. One
of the autapses has a delay of 100ms while the other has a delay of 200ms, on
the orders of magnitude od non-myelinated central axons [SW12]. If the neuron
is externally forced to fire every 200ms, the autapse with delay two has its presy-
naptic spikes coincide with postsynaptic ones, and thus will get reinforced, while
the one with delay of one second would not be affected, on account that the pre-
and postsynaptic spikes are too far apart to undergo plasticity. This leads to a
neuron with a very strong autapse with delay two, which is effectively a resonant
dynamical system with frequency 1

2
Hz.

d = 200ms

t = 100 ms

d = 200ms d = 200ms d = 200ms

d = 100ms d = 100ms d = 100ms d = 100ms

t = 100 mst = 100 ms

Figure 14: Schema of the emergence of resonances: A minimal example of a
neural network that induces resonances. The three leftmost schemas show the
evolution movement of a spike through the autapses and the rightmost plot the
resulting structure of the network. A neuron

69

70

The previous schema is simple to understand but biologically implausible;
synapses are typically very fast and autapses are extremely rare, so we will instead
use large networks of neurons where the spikes will travel through a large network
with short synapses instead of few large synapses. This will require having a
network where neurons are active at different points in time, and thus the receptive
fields of the neurons must correspond to different phases of the input.

To ease our computations we will use periodic signals with symmetries among
neurons and only excitatory synapses. Specifically, we will have the external input
being

un(t) = um(t+ ∆tmn) = un(t+ T) (137)

where T is the period of the signal, and ∆tmn simply encodes the difference of
timing between neurons n and m. Alternatively, we can think of this external
input to every neuron as a periodic signal with neurons having different receptive
fields.

This external input, which was our signal in Section 6 modifies the activity of
the neurons with the equation

xn(t) = f

(
un(t) +

N∑
m=1

Wmnxm(t)

)
(138)

where f is a monotonically increasing function with upper and lower bounds as
shown in Fig. 13. This is just a coarse representation of the LIF neurons that
represents the probability of a spike at time t –sometimes called the instantaneous
firing rate– when the time scale of the input is much larger than the time scale of
the neuron.

18.3 Signal-To-Noise Ratio
Before looking into the STDP adaptation we shall clarify what we would consider
an improvement of the input representation. The main idea behind the geomet-
ric bound derived to adapt ESN to a task and is associated heuristic is to make
the network activity reflect the features of the input while keeping the nonlinear
variations that make the reservoir useful. Focusing on the linear part turns out to
give relevant improvements on ESN performance, thus we will show how this is
implemented by STDP. Specifically, we will take the Signal-to-Noise Ratio inter-
pretation of Eq. 79, meaning that we are looking at how much the neural activity
grows with respect to the background noise.

The ratio can grow through two mechanisms: by increasing the activity, with
constant background noise, or by decreasing the background noise. In either case,
it is worth noticing that the shape of the input should be maintained, as otherwise

19. DERIVATION OF SELF-CONSISTENCY EQUATIONS 71

the nonlinearity of the reservoir would be also modified – and it is not immediately
clear how or when that is a good thing.

19 Derivation of self-consistency equations
Given the activities of two neurons we can then apply the STDP equation, which
gives us

∆wmn = −γ(rn)wmn +

∫ ∞
−∞

∫ T

0

xm(t)xn(t+ ∆t)A±(wmn)e
∆t
τS dtd∆t. (139)

Note that this equation has some parameters that change as the weights evolve,
such as the rate rn or the activities of the neurons. Here we are not interested in
the evolution of those, but rather in their final values, so we will treat this equation
together with Eq. 138 as a system at equilibrium. This implies that rn is constant,
xn(t) is fixed and ∆wmn is zero, thus

Wmn =
1

γ(rn)

∫ ∞
−∞

∫ T

0

xm(t+ ∆t)xn(t)A±(wmn)e
− |∆t|

τS dtd∆t. (140)

Furthermore, since we have the γ(rn) homeostatic term we do not need to have
bounds on the weights, so we will drop that dependency on A±.

If we notice that the timescale of the STDP is very small so that τS → 0 we
can simplify the integral∫ ∞

−∞
xn(t+ ∆t)A±e

∆t
τS d∆t =∫ 0

−∞
xn(t+ ∆t)A−e

∆t
τS d∆t+

∫ ∞
0

xn(t+ ∆t)A+e
−∆t
τS d∆t

≈ κSxn(t) + κAẋn(t)

(141)

where ẋn is the derivative of xn and the constants κA and κS are constants that
account for the symmetric and asymmetric parts of the STDP kernel,

κA =

∫ ∞
0

A+(wmn)e
−∆t
τS d∆t+

∫ 0

−∞
A−(wmn)e

∆t
τS d∆t

κS =

∫ ∞
0

A+(wmn)e
−∆t
τS d∆t−

∫ 0

−∞
A−(wmn)e

∆t
τS d∆t,

(142)

and therefore we can compute the final weights by

wmn = b 1

γ(rn)

∫ T

0

xm(t) [κSxn(t) + κAẋn(t)(t)] dtc

= bβS〈xm, xn〉+ βA〈xm, ẋn〉c
(143)

72

where βS, βA correspond to the values of κS, κA normalized by γ(rn), and 〈, 〉
corresponds to the correlation over the interval [0, T]. The brackets b·c denote the
fact that the weights cannot be negative; even if we were to use balanced networks
with inhibitory synapses, the weights would simply decay to zero.

At this point it is convenient to modify the notation and associate to every
neuron a spatial variable θ such that we can write the input as

un(t) = u(t, θn) = u(t− cθn) (144)

where u(t− cθn) is a periodic function that corresponds to the input with different
delays due to the neurons position.

Naturally this leads to a similar formulation in terms of the neuron activity,

xn(t) = x(t, θn) = x(t− cθn). (145)

Here it is important to note that by using this type of notation where the position
is only relevant in terms of time we are imposing a spatial symmetry that must be
justified.

In a network where the neurons have different connections, we cannot claim
that the activity of one neuron is equal to the activity of another neuron with a
shift. This is simply because their inputs from other neurons might differ. Thus,
what we are stating here is that not only do neurons obtain the same input with a
phase change, but also that the matrix W is built so that

Wmn = Wm′n′ ∀m− n = m′ − n′ mod N. (146)

Here we shall note that most biological networks of neurons are sparse, mean-
ing that most pairs of neurons are not connected. In small networks, this would
imply that the input to a single neuron is not given by its expectation, as we will
assume here. The main justification here is the sheer number of connections that
every neuron has, which is typically assumed to be on the order of 10.000 [HA16].
This implies that we can be fairly sure the input to a neuron follows the law of
large numbers.

Furthermore, the number of neurons can also be assumed to be large, implying
that even if the phases θn are randomly drawn from a uniform probability, the
whole phase space will be uniformly covered, again by the law of large numbers.

Another side effect of the symmetries imposed is that we can now describe the
activity of the whole network by a single equation

x(t) = f

(
u(t) +

∫ T

0

w(∆θ)x(t+ c∆θ)d∆θ

)
. (147)

20. SOLUTION I: LINEARIZATION AND SINUSOIDS 73

Notice that we are talking about a periodic input, and the phase of each neuron is
only given by the phase of that neuron in temporal units that are arbitrary. Thus,
we will set c = 1 and now we can exchange the integral by a convolution, so that

x(t) = f (u(t) + [x ∗w] (t)) (148)

where ∗ is the convolution operator.
We can also use our new notation and the normalization of c to rewrite Eq. 143

w(∆θ) = βA

∫ T

0

x(t)ẋ(t+ ∆θ)dt+ βS

∫ T

0

x(t)x(t+ ∆θ)dt

= βA [x ∗ ẋ] (∆θ) + βS [x ∗ x] (∆θ).

(149)

Eq. 148 and Eq. 149 determine the final weights and activity of a neural net-
work subject to the input u(t) after STDP has modified the synapses.

Now we would like to know if they can implement a network adaptation such
as the ones presented in Section 15 given an input signal u(t).

20 Solution I: Linearization and Sinusoids
The first problem in Eq. 148 is that we have the non-linear function f(·), rendering
closed-form solutions complicated. The first approach to deal with such situations
is to linearize Eq. 148,

x(t) = %

[
u(t) +

∫ T

0

w(∆θ)x(t+ c∆θ)d∆θ

]
(150)

where % is the derivative of f around the mean input to a single neuron,

% =
∂f

∂u

(
ū+ x̄

∫ T

0

w(∆θ)d∆θ

)
(151)

with x̄, ū are the mean activity and input respectively. Note that the derivative
of f is taken with respect u, although it can be taken with respect to any of the
inputs to a neuron. The means can be used because the linearization implies that
the fluctuations are small, but in any case the main point is that % is constant.

Now that the system consists only of linear equations with convolutions whose
solutions are periodic, we can notice that all the operations involved can be written
in the Fourier domain,

F [x] (ω) = % (F [u] (ω) + F [x] (ω)F [w] (ω))

F [w] (ω) = (βAω + βS)F [x]2 (ω),
(152)

74

Neural Activity Before STDP

50 100 150 200 250 300

Time (ms)

50

100

150

200

250

300

350

400

450

500

N
e
u
ro

n
 I
n
d
e
x

Neural Activity After STDP

50 100 150 200 250 300

Time (ms)

50

100

150

200

250

300

350

400

450

500

N
e
u
ro

n
 I
n
d
e
x

-40 -20 0 20 40

Relative Time (ms)

0.2

0.25

0.3

0.35

0.4

A
ve

ra
g
e
 R

a
te

Before STDP

After STDP

Connectivity Matrix

100 200 300 400 500

Neuron Index

50

100

150

200

250

300

350

400

450

500

N
e
u
ro

n
 I
n
d
e
x

Connectivity Matrix

100 200 300 400 500

Neuron Index

50

100

150

200

250

300

350

400

450

500

N
e
u
ro

n
 I
n
d
e
x

-1000 0 1000

Input Phase Distance

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
ve

ra
g
e
 C

o
n
n
e
ct

io
n
 W

e
ig

h
t

Synaptic Weight Distribution

Before STDP

After STDP

Figure 15: Evolution of a circulant peak of activity: We simulated 400 neurons
and feed each one with a sinusoid with phases uniformly distributed across the full
circle for all neurons. The upper left and upper center plot correspond to raster
plots of neural spikes, and the upper right is the neural activity averaged over ten
periods and over all neurons with the phase being centered with respect to their
inputs. The lower left and center plots are the matrix weights where brighter color
represents higher weights, and the right lower plot is the average vector w. After
repeating the input many times, the STDP changes the weights which take the
shape of a sinusoid (lower row), and the activity is shifted to be slightly advanced
and higher (upper row). The low effect of the weight is simply a result of the
parameters of the neurons and weights, which do not allow large weights without
generating instabilities through the STDP

which we can merge to obtain

F [x] (ω) = %
(
F [u] (ω) + F [x]3 (ω) (βAω + βS)

)
(153)

This last equation has the advantage that it gives us a direct connection between
the input and the activity. More specifically, if we put a single sinusoid with period
T as an input, the Fourier transform consists of two deltas at ω = ±2π. Thus, the
previous equation is zero everywhere except at the position of the deltas, and there
it yields a depressed cubic equation that can be solved analytically.

21. SOLUTION II: SPARSITY AND BINARY ACTIVITY 75

Even though we have an analytical solution, it is worth noticing that the values
of %, βA, βS must be estimated numerically as they depend nonlinearly on the
input statistics to each neuron. Furthermore, there are severe constraints on the
parameters of the STDP that arise from the stability of the plasticity and depend
on the number of neurons and synapses. Thus, in the simulations presented in
Fig. 15 we observe that there is only a small modification of the input activity.

That limitation does not imply that our previous results were useless. First,
because the results relate the general shape of the STDP kernel to qualitative mod-
ifications on the activity, namely the shift in signal phase linked to the strength and
sign of βA that arises from the two solutions for ±ω. Second, because we can ob-
tain the shape of w as a sinusoid which in our case leans towards the asymmetry
and thus gives us weights that are sinusoids with a phase difference in the interval[
0, π

2

]
, mostly toward the end of it as shown in Fig. 15.

21 Solution II: Sparsity and Binary Activity

The second approach to this problem to deal with Eq. 148 is to take advantage
of the particular the nonlinearity of f(·) – with upper and lower saturation – and
take a signal – u(t) – that is encoded as a sequence of very sharp symbols with
small overlapping, and then let STDP converge into a neural network where each
of those symbols ”prepares” the activation of the next.

The intuition here is that we have a signal consisting in two levels of activ-
ity: the peak and the background activity. To improve the signal we only need to
push those two levels apart, meaning that the neurons that would be active should
have a rate as high possible and those that are not meant to be active should be as
silent as possible. This can be seen as a long sequence of symbols where only a
small population of neurons should be active for every symbol and with the popu-
lations having very little overlap; then, the causal associations promoted by STDP
will create a network of neural populations where the populations associated to
each symbol have strong connections towards the subsequent population and thus
prepare it to receive an input and fire.

In more practical terms, we are using a simple input which consists of a very
narrow peak of current concentrated on very few neurons, and a constant back-
ground activity corresponding to the probability of a neuron firing without input.
This peak corresponds to a mollified Dirac of activity, which we can plug into
Eq. 149,

w(θ) =
⌊
βA

[
δ̃(θ) ∗ aδ̃(θ − ε)− δ̃(θ) ∗ aδ̃(θ + ε)

]
+ βS

[
δ̃(θ) ∗ δ̃(θ) + c

]⌋
(154)

76

Neural Activity Before STDP

100 200 300 400 500 600

Time (ms)

20

40

60

80

100

120

140

160

180

200

N
e
u
ro

n
 I
n
d
e
x

Neural Activity After STDP

100 200 300 400 500 600

Time (ms)

20

40

60

80

100

120

140

160

180

200

N
e
u
ro

n
 I
n
d
e
x

-100 -50 0 50

Relative Time (ms)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 R

a
te

Before STDP

After STDP

Connectivity Matrix

50 100 150 200

Neuron Index

20

40

60

80

100

120

140

160

180

200

N
e
u
ro

n
 I
n
d
e
x

Connectivity Matrix

50 100 150 200

Neuron Index

20

40

60

80

100

120

140

160

180

200

N
e
u
ro

n
 I
n
d
e
x

-600 -400 -200 0 200 400 600

Input Phase Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

A
v
e
ra

g
e
 C

o
n
n
e
c
ti
o
n
 W

e
ig

h
t

Synaptic Weight Distribution

Before STDP

After STDP

Figure 16: Evolution of a circulant peak of activity: We simulated 500 neurons
with random connections and imposed an activity u(t) ∝ exp

(
− t2

2τu

)
where the

time constant τu is on the order of magnitude of the leak time constant so that
the activity of neurons with phase t − cδθ affects the activity of neurons at t.
This activity modifies the initially random network into a circulant-like network,
where every neuron connects only to its left neighbors (lower panels), which in
turn reduces the noise in the network by decreasing the amount of input at non-
active times and increasing the input at the time when the neurons should be active
(upper panels).

where δ̃ is the mollified Dirac function, whose derivative is approximated by
aδ̃(θ − ε) − aδ̃(θ + ε), with ε being a very small number and a being a scaling
that depends on the exact mollification, and the c corresponds to the probability of
two neurons randomly firing at similar times thus strengthening their connections
by βS . Assuming that the mollified version behaves similarly to a Dirac, we can
apply the convolutions and obtain

w(θ) ≈
⌊
βAaδ̃(θ − ε)− βAδ̃(θ + ε) + βS δ̃(θ) + cβS

⌋
. (155)

In our case βA � βS > 0, and the weights cannot be negative, the shape of
the weights remains constant with value βSc for most θ, then a peak with height

22. DISCUSSION 77

aβA at −ε and a drop to zero at ε. Furthermore, with those weights the activity
gets reinforced because the neurons at phase θ promote the activity of neurons
at phase θ + δθ, thus the activity increases due to neighboring neurons is mostly
arriving at the time when the neuron is getting the high level input. This leads to
an increased signal to noise ratio, which is shown in Fig. 16

22 Discussion
In this chapter we derived solutions for the evolution of synaptic activity under
periodic inputs that use differential Hebbian learning under a self-consistency set-
up. In this way we have shown that the features of Echo State Networks that
were important in the first part of the thesis can emerge out of synaptic plasticity
rules that are well known in the field of neuroscience. In particular, we saw that
increased signal-to-noise ratios appear in both the linear and the sparse solution,
showing that the signal processing notions can provide neuroscience insight.

The networks proposed here differ from the Echo State Networks used in ear-
lier chapters in the sense that the two solutions presented require very specific
receptive fields. Therefore, we cannot use the input as we did in Echo State Net-
works, but must instead project it into the network in such a way that different
neurons are active at different times.

Although the self-consistency equations used before can in principle be solved
numerically, the fact that the parameters βA, βS are unknown makes such numer-
ical approaches problematic. However, the limitations outline here are general
to theoretical neuroscience, as biological neural networks are typically heteroge-
neous and estimating the parameters of its components is an arduous task. The
results here should therefore be taken qualitatively, in the sense that we would ex-
pect STDP to adapt networks of neurons to their input in such a way as to increase
the signal to noise-ratio and maybe induce an advancement of the neural activity
with respect to the input.

Another remark to this chapter is that we have only proposed the two simplest
solutions compatible with Eq. 148 and Eq. 149, but naturally there are other pos-
sible options. A straightforward approach would be to increase the multiplicity of
the solution, for instance by having multiple isolated sinusoids, or multiple peaks
of activity per neuron, in such a way that the general shape of the solution stays
the same but neurons have activities composed by multiple receptive fields.

78

Optimizations of the neural code

The self-organized dynamics that we explored in the previous cases gave us a way
to compute the activity and weights that a recurrent spiking neural network will
converge to. While this follows naturally from the machine learning theory pre-
sented in the first chapters, it is not necessarily optimal for studying neural codes,
as the receptive fields of any neuron might not follow one of the two prescribed
receptive fields. Furthermore, this only describes the activity towards which the
neural activity converges, but does not state anything about its evolution.

We would thus like to study how the postsynaptic spikes evolve under general
assumptions and while doing so gain insight into the neural code.

23 Evolution of a single postsynaptic spike

We start by showing how STDP can change individual postsynaptic spikes by
reducing their latencies and their number. We will start by presenting simple
scenarios with excitatory inputs in which both effects are easy to illustrate, then
show how inhibitory synapses can be added to the model, and finally show that
those effects can appear in random input spike trains by presenting simulations. It
is worth noticing that the time windows in this section are on the order of τs and
the number of repetitions of each input pattern will be small.

23.1 Latency Reduction

If a fixed train of presynaptic spikes is repeated very often, then the spikes that
arrive before the postsynaptic spike get reinforced. This implies that the post-
synaptic spike might then be triggered earlier [SMA00, GKvHW96]. When this
happens, the refractory period of the postsynaptic neuron would prevent a second
spike on the original spiking site. However, when the postsynaptic spike hap-
pens earlier and earlier, it might lead to a proliferation of spikes by having a new
spike appear at the time of the original postsynaptic spike. Following previous
literature [SMA00, AN00, KGH01], to prevent this effect, we assume that long

79

80

term depression – the weakening of synaptic weights – is stronger than long term
potentiation – the strengthening of postsynaptic weights.

This is easy to understand in a simple scenario: Considering a very long, exci-
tatory presynaptic spike train which generates a single postsynaptic spike at some
time t0. The postsynaptic spike will advance through the spike train, and after
some repetitions it will be triggered one presynaptic spike earlier. After this ad-
vancement is repeated many times, the postsynaptic spike is triggered at time t∞,
very far (in time) from the place where it was first triggered, so that

t∞ � t0. (156)

Note that the argument that we give here is qualitative in nature, in the sense
that we simply state that LTD should dominate LTP through the constant η, but we
have not studied how to find that ratio. As this would depend on the exact param-
eters of the regular spike train –and thus would not be directly generalizable–, we
will simply assume that the brain operates in a parameter regime in which spikes
do not proliferate.

23.2 Late spike disappearance through synaptic noise
If latencies might be reduced, then two postsynaptic spikes that are triggered at
distant points in time might become close as time progresses. We must then ask
what happens to a pair of postsynaptic spikes that occur very close in time. In this
section we show that in the absence of synaptic noise the two spikes can coexist,
but random modifications of the presynaptic weights –induced, for instance, by
other presynaptic inputs – can lead to the disappearance of the second postsynaptic
spike.

There are many possible scenarios that we might consider when we have pairs
of postsynaptic spikes in the same neuron: we must consider the time between the
two spikes, the movements in time of both of them and the possibility of synaptic
noise. The case when two postsynaptic spikes happen originally very close in time
is extremely rare – because postsynaptic spikes are sparse. The case where the
first postsynaptic spike also moves is not interesting, because the spike will move
forward in time, increasing the distance between the two postsynaptic spikes and
thus reducing the LTD effect on the second spike. Therefore we will consider the
case where there is an early postsynaptic spike at some fixed time that will remain
in place, and a second postsynaptic spike that will initially be triggered very far in
time.

The intuition here is that there is a time interval for the second postsynaptic
spike, in which the LTD of the first postsynaptic spike would lead to a decrease in

23. EVOLUTION OF A SINGLE POSTSYNAPTIC SPIKE 81

0 50 100 150 200 250
time (ms)

70

65

60

55

50

45

40

M
em

br
an

e
Po

te
nt

ia
l (

m
V)

Single neuron membrane potential
Repetition 100
Repetition 70
Repetition 0

0 10 20 30 40 50 60 70 80 90
Input Repetitons

0

20

40

60

80

100

120

140

160

Fi
rin

g
Ti

m
e

(m
s)

Single neuron firing time

0 50 100 150 200 250
time (ms)

70

65

60

55

50

45

40

M
em

br
an

e
Po

te
nt

ia
l (

m
V)

Single neuron membrane potential
Repetition 100
Repetition 70
Repetition 0

0 10 20 30 40 50 60 70 80 90
Input Repetitons

0

20

40

60

80

100

120

140

160

Fi
rin

g
Ti

m
e

(m
s)

Single neuron firing time

Figure 17: Latency reduction and spike proliferation: We plot the membrane
potential (left) and firing times (right) of a postsynaptic neuron that receives a
constant train of spikes with inter-spike interval of 3.5ms and strength 5.5mV ,
from time t = 0ms to t = 150ms, and we add an extra spike at t = 150ms with
potential 2mV . The neuron generates a single postsynaptic spike at the original
input presentation (Repetition 0). The upper plots reflect the case η+ = η−, while
for the lower ones we picked 3

2
η+ = η−. After an initialization period, the post-

synaptic spike moves forward in time at a constant rate. As this happens, a single
presynaptic spike will get reinforced proportionally to the η+ and dampened pro-
portionally to η−. If LTP is equal to LTD, after the postsynaptic spike happens
much earlier than before, the membrane potential of the postsynaptic neuron will
reach the threshold again. This second postsynaptic spike would move forward
in time at the same speed as the strengths of the spikes are left unchanged by
the compensation of LTD and LTP (upper plots). In the case where η+ < η−, the
depression compensates the potentiation, so there is no second postsynaptic spike.

82

the membrane potential of the postsynaptic neuron at the time of the second post-
synaptic spike, which could lead to the irreversible disappearance of the second
postsynaptic spike or its recession. Outside of this time interval, the second post-
synaptic spike will reduce its latency, approaching the early postsynaptic spike
and the dangerous zone. In the remaining of this section we will show that this
interval is never reached in a deterministic system but that the addition of noise
can enforce this disappearance.

We start by showing that repeating always the same input spike train without
noise cannot lead to the reduction of the number of postsynaptic spikes. Con-
sider a long presynaptic spike train with presynaptic spikes arriving at t0, t1, ...tN ,
which generates two postsynaptic spikes, one at time t0, which is fixed and will
appear at every presentation of the spike train, and another one that is originally
triggered at tN . For the second spike to disappear, it can either do so at tN or
first advance through the spike train – that means, being triggered at tN−1, then
at tN−2 and so on – and eventually die. For now, we assume that tN − t0 � τs,
so that initially the spike at time tN evolves independently of the spike at time
t0, and it would not disappear at tN . Consider now that the input has been re-
peated long enough so that the second postsynaptic spike is now triggered at ti,
and the effects of the STDP generated by the spike at t0 are not negligible to the
presynaptic weight ti−1, which is associated to the presynaptic spike at ti−1. If the
postsynaptic spike is originally triggered at ti, then it would move to ti−1 only if,
after repeating the same input many times,

v(ti−1) =
i−1∑
k=1

wke
− tk−ti−1

τm ≥ vth. (157)

After v(ti−1) crosses the vth threshold, the postsynaptic spike at ti moves to ti−1,
and thus the time difference between every presynaptic spike at t ≤ ti−1 and the
postsynaptic spike is reduced. This naturally implies that the synaptic weights wk
for all k ≤ i − 1 increase, thus the postsynaptic spike cannot disappear because
the membrane potential at v(ti−1) cannot decrease unless the postsynaptic spike
moves to ti−2.

This argument assumes that presynaptic spike trains are always repeated with
fixed spike timings but with weights that are affected by LTP and LTD. This is
generally not true, as there are many factors that can introduce stochasticity on
the evolution of the weights, such as jitter, the stochastic nature of molecular
dynamics on the synaptic cleft and on the neuron membrane.

If we now consider the stability of both postsynaptic spikes with respect to
that noise, we easily realize that they are not equal: while the presynaptic spikes
that generate the first postsynaptic spike are only subject to LTP and noise, the
presynaptic spikes that generate the second spike – which happen necessarily be-

23. EVOLUTION OF A SINGLE POSTSYNAPTIC SPIKE 83

tween postsynaptic spikes – are subject to both LTP – from the late postsynaptic
spike – and LTD –from the earlier postsynaptic spike – on top of the noise.

This difference implies that the noise can make a postsynaptic spike disap-
pear or recede, either by directly weakening the associated presynaptic weights or
strengthening them, so that the postsynaptic spike moves into a region where LTD
dominates and it would be later erased or receded.

To explain this in the setting that we used before, consider a neuron with a
postsynaptic spike at time ti that would not move to ti−1 in the previous deter-
ministic system. However, now the weights evolve by the combined effects of
that spike, an earlier postsynaptic spike at time t0 and some noise. The membrane
potential at time ti and after r repetitions of the input spike train follows

v(ti) =
i∑

k=1

wke
− tk−ti

τm + ξti , (158)

where ξt is the contribution of the random evolution of the weights to v(t).
If this postsynaptic spike train is repeated very often, the deterministic part of

the weights goes to a fixed value, which is zero for k > i and thus v(tk) ∼ ξtk for
all k > i. Thus, under the assumption

ξti < vth −
i∑

k=1

wke
− tk−ti

τm (159)

for a few repetitions of the input spike train, the second spike vanishes. Therefore
among the subsequent input repetitions subjected to the ever present postsynaptic
spike at t0,the weights wk will decrease for all values of k, hence it is possible
that v(ti) < vth thereafter. This will result in the irreversible disappearance of the
postsynaptic spike at ti or its delay. This is illustrated in Fig. 18.

23.3 Numerical verification for random input spike trains
The examples presented to illustrate the latency reduction and the disappearance
of late postsynaptic spikes were simple, so we must now extend them to a more
general case. To do so, we simulated spike trains where the times of the presy-
naptic spikes are random, including only excitatory or excitatory and inhibitory
STDP, noise and the presence of an earlier postsynaptic spike. The results are pre-
sented in Table 1 and agree with our previous conclusions: a single postsynaptic
spike tends to reduce its latency, if there are multiple postsynaptic spikes in a short
time window the later one tends to disappear, and the presence of noise increases
those effects. Note that we have not included jitter or probabilistic presynaptic
spikes, choosing instead to have noise directly on the weight evolutions. As both

84

0 20 40 60 80 100 120
time (ms)

70

65

60

55

50

45

40

M
em

br
an

e
Po

te
nt

ia
l (

m
V)

Single neuron membrane potential
Repetition 300
Repetition 70
Repetition 0

0 50 100 150 200 250 300
Input Repetitons

0

10

20

30

40

50

60

70

80

Fi
rin

g
Ti

m
e

(m
s)

Single neuron firing time

0 20 40 60 80 100 120
time (ms)

70

65

60

55

50

45

40

M
em

br
an

e
Po

te
nt

ia
l (

m
V)

Single neuron membrane potential
Repetition 300
Repetition 10
Repetition 0

0 50 100 150 200 250 300
Input Repetitons

0

10

20

30

40

50

60

70

80

Fi
rin

g
Ti

m
e

(m
s)

Single neuron firing time

Figure 18: Noise deletes late spike in a regular presynaptic spike train: We plot
the membrane potential (left) and firing times (right) of a postsynaptic neuron that
receives a constant train of spikes with inter-spike interval of 5ms and strength
7.5mV , from time t = 0ms to t = 150ms, and we add an extra spike at t = 80ms
with potential 5mV , with a forces postsynaptic spike at time 0.5ms. Note also
that, during its existence, the latency of the postsynaptic spike subject to noise
decreases faster than its noiseless counterpart.

cases have been addressed before [GVT05] with similar conclusions, we shall not
repeat them here.

So far we have only considered effects in small time scales, meaning that
there were only a few spikes on a time interval of the order of 10ms, and the
postsynaptic spike train would evolve over a few repetitions, on the order of 20.
This leads us to the conclusion that, with plausible assumptions on the parameters
of our model, an individual postsynaptic neuron will fire a given postsynaptic
spike earlier after many repetitions of the same presynaptic spike train and that if
two postsynaptic spikes are close in time, then the later one could disappear.

24. POSTSYNAPTIC SPIKE TRAIN 85

24 Postsynaptic Spike Train
Now we will study the effects of the previously described phenomena, which act
on small temporal scales and affect only one or two postsynaptic spikes, for a
population of postsynaptic neurons, each one receiving many presynaptic spike
trains happening over time scales much larger than τm or τs. Specifically, we will
explore how phenomena explored before –the latency reduction and suppression
or delaying of late postsynaptic spikes– change the postsynaptic spike distribution.

Before studying the previous effects, we must validate some of the assump-
tions that we made in the previous section. Specifically, we assume that all the
input spikes came from different synapses, which allowed us to treat the weights
of all presynaptic spike as independent. This is a valid assumption when we are
considering a short time interval, as the sparsity of presynaptic firing and the ex-
istence of refractory periods implies that a single synapse would typically not fire
more than once during a short presynaptic spike train. However, when there is a
long presynaptic spike train, a presynaptic neuron might contribute to that spike
train more than once, thus our assumption might be invalid and the phenomena
described in the previous section might not appear. To ensure that the phenomena
of latency reduction and late spike disappearance are still present in long spike
trains we use a combinatorial argument and count the number of synapses that
might evolve in a non-trivial fashion.

24.1 Postsynaptic spikes evolve independently
The problem with having multiple spikes per presynaptic neuron is that all of
the presynaptic spikes coming from the same synapse have the same weight, and
therefore when a postsynaptic spike is close to one of those presynaptic spikes,
all of the presynaptic spikes that come from that synapse will undergo the same
weight modifications. There are two scenarios when this would be a problem:

1. A single synapse undergoes STDP from two or more different spikes: If
there are two postsynaptic spikes, affected by their respective presynaptic
spikes, but some of those presynaptic spikes come from the same synapse,
the resulting weight change from STDP would be a combination of the ef-
fects of both postsynaptic spikes. This is undesirable as the effects could be
opposite: one postsynaptic spike could induce depression while the other
potentiation, and thus the evolution of one of the presynaptic spikes would
not evolve as our STDP rule predicts.

2. A new postsynaptic spike appears spontaneously from STDP: Typically,
STDP applies only when there exists a postsynaptic spike. However, if
some synapses are very strong due to STDP, and those synapses have spikes

86

that are close together, they could generate a new postsynaptic spike. This
would automatically generate pairs of presynaptic spikes that are affected
by two postsynaptic spikes simultaneously (thus we would be in the pre-
vious case). Furthermore, the spontaneous generation of new postsynaptic
spikes is itself problematic.

Consider M presynaptic neurons which fire with a rate λ, and a postsynaptic
neuron that receives them with a rate ρ = Mλ during a time interval of length T ,
generating spost postsynaptic spikes. Furthermore, each one of those postsynaptic
spikes imposes STDP that affects the presynaptic spikes that are close to it. For
simplicity, we will assume that the noticeable effect on the presynaptic spikes is
restricted to a time window of size lτS where l is a small integer number.

We start by studying case (1). If we have spost postsynaptic spikes, then the
effects of STDP are noticeable for

ta = lτSspost (160)

milliseconds in which all presynaptic spikes should come from different synapses.
Given that the arrival times of each spike are uniform of the whole interval, the
expected number of presynaptic neurons that fire in that interval more than once
is given by

N
∞∑
k=2

(λta)
ke−λta

k!
= N

(
1− e−λta − λtae−λta

)
, (161)

and by a Taylor expansion to order two,

E [#1] ≈ N

(
1− 1 + λta −

λ2t2a
2
− λta + λ2t2a

)
= N

λ2t2a
2
. (162)

To get an intuition of the magnitude of these numbers, consider, for instance, an
input spike train lasting 1s with presynaptic spike rate of 0.5Hz which generates
two postsynaptic spikes and we pick the relevant time window to be twice τS , so
l = 2 and spost = 3. Then, the expected number of events of type (1) would be

E [#1] ≈ M

400
. (163)

Furthermore, not all of those events would actually be problematic; if all of them
are potentiating or depressing, then this does not change our analysis.

For case (2) we argue that in order to spontaneously generate new spikes, the
synapses affected STDP must be very strong and excitatory, and a few of those
strong excitatory synapses must coincide within a small time window of order τm.

24. POSTSYNAPTIC SPIKE TRAIN 87

The synapses that can be very strong are those in the ta time, meaning that we
expect

na = ρta = ρlτSspost, (164)

independent synapses to be close to wmax. Each one of those synapses can fire
within the remaining T − ta time at a rate λ, so we would expect to have presy-
naptic rate of spikes affected by STDP of

λa = naλ. (165)

Now we must compute the probability that enough of them coincide to generate a
postsynaptic spike.

We denote this number by k and we will compute the number of spontaneous
postsynaptic spikes that would appear for every k. We start by considering k = 2
of those presynaptic spikes (although for some choices of wmax we have to start at
k > 2), and note that in order to have the postsynaptic spike, we must have

wmax + wmaxe
−∆tk=2

τm + σv > vth (166)

where σv is a term that accounts for the presence of other spikes that could be
driving the membrane potential higher, and ∆tk=2 is the time interval between the
two spikes. By rearranging,

∆tk=2 < i2 = τm ln (ϑ− 1) , (167)

where ϑ = vth−σv
wmax

. Since the spikes follow a Poisson distribution, the probability
of a time interval between spikes is given by an exponential distribution, so

Pr [#2|k = 2] = Pr [∆tk=2 < i2] = 1− e−λai2 , (168)

and the number of those intervals tends to λaT for large T , so

E [#2]k=2 = λaT
(
1− e−λai2

)
, (169)

For k > 2, the estimation can be done by applying the fact that two contiguous
spikes are independent, and therefore the inter-spike intervals are also indepen-
dent, so we can multiply their probabilities. Furthermore, we should not have any
two spikes at a distance closer than i2, so

Pr [#2|k = 3] <

∫ ∞
i2

λae
−λax

∫ ∞
i2

λae
−λayΘ

[
1 + e−

x
τm + e−

y
τm − ϑ

]
dydx,

(170)

88

where the inequality comes because we let the interval time go to infinity, while
T is finite. We can ignore the Θ

[
1 + e−

x
τm + e−

y
τm − ϑ

]
term and we obtain

Pr [#2|k = 3] <
(
1− e−λai2

)2
. (171)

And here the number of pairs of contiguous time intervals is also lower than Tλa,
which gives us

E [#2]k=3 ≤ Tλa
(
1− e−λai2

)2
. (172)

Naturally, the same upper bound can be computed for any k, so

E [#2]∀k =
∞∑
j=2

E [#2]k=j ≤ Tλa

∞∑
j=2

(
1− e−λai2

)j−1

= Tλae
λai2 = Tλa (ϑ− 1)λa .

(173)

Which will be low as long as λa is low. If we have, for instance, M = 50, l = 2,
spost = 3 and λ = 0.5Hz, we obtain λa = 6·10−3. Then, if we take σv = wmax/2,
ϑ = 1.5,

E [#2]∀k ≈
3T

1000
, (174)

with T being in milliseconds, this means that for an input spike train lasting half
a second, generating 3 postsynaptic spikes, there would be one expected sponta-
neous postsynaptic spike.

The estimates from Eq. 163 and 174 give a relatively low number of coupled
postsynaptic spikes or spontaneous spikes. We will therefore assume, from now
on, that the effects described in Sec.23 are valid and happen in every postsynaptic
spike of every neuron independently of the presence of other postsynaptic spikes.

24.2 Evolution of the postsynaptic spikes
We can now consider the first time that an input presynaptic spike train is pre-
sented. Every neuron starts at v(0) = 0 and then its membrane potential will
change depending on its inputs. As the input spike train consists of independent
spikes with independent weights, the times of the first spike have a probability
distribution f 1

0 (t) with support on t > 0, which depends on the parameters of the
input spike train. After spiking, every neuron resets its membrane potential to
zero, and thus the distribution of inter-spike intervals f ISI0 (t) follows

f ISI0 (t) = f 1
0 (t− tref). (175)

After the input has been repeated many times, the distribution of postsynaptic
spikes changes to f 1

∞ and f ISI∞ respectively. Specifically, the first spikes reduce

24. POSTSYNAPTIC SPIKE TRAIN 89

their latency on average and thus move closer to t = 0, while the inter-spike
intervals increase, due to the depressive effect of postsynaptic spikes that repels
or eliminates late postsynaptic spikes. Therefore,

F 1
∞(t) =

∫ t

0

f 1
∞(x)dx ≥

∫ t

0

f 1
0 (x)dx = F 1

0 (t)

F ISI
∞ (t) =

∫ t

0

f ISI∞ (x)dx ≤
∫ t

0

f ISI0 (x)dx = F ISI
0 (t)

(176)

where F 1
∞, F

ISI
∞ , F ISI

0 and F F
0 are the cumulative probability distributions of the

inter-spike intervals and first spikes respectively. This is illustrated in Fig. 19
showing that indeed the first spikes move forward through STDP and the later
spikes are more separated, which is consistent with the results from previous sec-
tions.

It is worth noting that our results are only valid for the specific case where the
plasticity rule potentiates the presynaptic spike to a neuron before its postsynaptic
spikes and depresses those afterwards.

For the next section it will be convenient to look at the instantaneous firing
rate, which is obtained by accumulating the times of all spikes.

s(t) = lim
∆t→0

∞∑
k=1

Pr [tk ∈ [t, t+ ∆t]]

∆t
(177)

where tk is the time of the kth spike. Since the time of the kth spike is the sum
of the inter-spike intervals of the first k − 1 spikes and the first spike, and the
probability of a sum is given by the convolution of the probability distributions,
we can rewrite the previous function as

s(t) =
(
f 1 + f 1 ∗ f ISI + f 1 ∗ f ISI ∗ f ISI + ...

)
(t) =

(
f 1 ∗

∞∑
k=0

(
f ISI

)∗k)
(178)

where ∗ is the convolution operator, ∗k is the convolution power. Note that f 1 and
f ISI depend on how many times the input has been repeated. We will refer to the
subindex 0 and ∞ to refer respectively to the cases where the presynaptic spike
train is presented for the first time or when it has been presented many times.

The postsynaptic spike trains generated by neural populations are instantiate
codes that transmit information about presynaptic spikes to other neurons. As
STDP is a learning mechanism that modifies the postsynaptic spike train, we ex-
pect that it should improve this encoding. Each input stimulus triggers spikes in a
certain neural population, and every neuron in that population has a certain perfor-
mance associated to it, the two most common performance measures being energy
consumption and resistance to noise [R+96].

90

0 20 40 60 80 100
Inter-Spike Interval

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y
CDF of ISI before STDP

0 20 40 60 80 100
Inter-Spike Interval

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

CDF of ISI after STDP

1st spike
2nd spike
3rd spike
Before learning

0 10 20 30 40 50
t

0

20

40

60

80

100

s(
t)

Instantaneous Spike Rate
Before STDP
After STDP

Figure 19: Evolution of the spike train : We plot cumulative probability distri-
bution of the time of the first spike, the inter-spike interval when a presynaptic
spike train is presented for the first time (left) and after many repetitions (center)
and the Number of spikes per bins of 4ms on the first 50ms of a spike train (left).
We simulate 2000 neurons each receiving a presynaptic spike train lasting 600ms
with 200 presynaptic spikes, both inhibitory and excitatory, and whose arrival time
is uniformly sampled. Every synapse evolves through STDP and being subject to
both the fixed spike train with probability 0.33 or a random pair of pre- and post-
synaptic spikes with tpost − tpre ∈ [−20ms, 20ms] with probability 0.66. We plot
the time of the first spike (blue) and the inter-spike interval for second, third and
fourth spikes, but subtracting the refractory period to have a pertinent comparison
with the first spiking time. We can see that initially the first spike time is the same
as the inter-spike interval for all the spikes, but after STDP is applied the average
time of the first spike reduces, implying that the blue line moves to the left with
respect to the time before learning (in the black dotted line) while the average
inter-spike intervals increase, thus moving the curves to the right. This changes
the distribution of spikes to have more of them concentrated in the begining of the
spike train.

If we take the number of postsynaptic spikes generated by the neural popu-
lation as a proxy for the metabolic costs of encoding a stimulus, then we would
expect that number to decrease as the stimulus is presented more often, so that the
encoding of common stimuli incurs less metabolic costs.

To evaluate how the number of spikes evolves, we consider the evolution of
the first spike and inter-spike-interval cumulative probability distributions from
Fig. 19. On one hand, the fact that the first spike moves forward implies that
there will be more spikes concentrated on a small region at the beginning, so if
we consider a very short time interval the concentration of spikes will increase.
However, as we increase the length of the stimulus the average distance between
spikes will start to depend mostly on the inter-spike interval, implying that the
spike density will be lower. In more formal terms, the number of spikes is given

24. POSTSYNAPTIC SPIKE TRAIN 91

by the integral

S =

∫ T

0

s(t)dt =

∫ T

0

f 1(t)dt+

∫ T

0

f 1 ∗
∞∑
k=1

(
f ISI

)∗k
dt, (179)

which is dominated by the first term when T is small and by the second term when
T is large. This can be quantified by the ratio in the decrease of spikes

S∞ − S0

S0

, (180)

where S0 is the number of spikes before STDP and S∞ is the number afterwards.
Naturally, there are many parameters that affect the change in the number of
spikes, in particular the length of the stimuli and the input rate or how often the
input is presented with respect to other stimuli, which are shown in Figure 20. In
general, in short time intervals at most one spike would be present, thus the disap-
pearance of second spikes induced by the depressive side of STDP does not play
a role; at the same time, the spikes that would appear by the fluctuations in input
weight, and which would simply disappear by the same process if STDP was not
present, remain. Hence in that case the number of spikes increases, while for long
spike intervals the number of spikes decreases.

It is worth noticing that the reduction in the number of spikes that we observe
in Fig 20 does not correspond to the reduction in spike count that STDP induces
in Poissonian spike trains. We tested this by checking how a Poissonian spike
train with the same STDP parameters and the same weight distribution and input
rate as in Fig. 19 changed, and we found that this leads to an increase of 10% in
the number of postsynaptic spikes because excitatory presynaptic spikes tend to
induce postsynaptic spikes, thus the excitatory weights systematically increase.

Besides the number of spikes, it is also interesting to note how the distribution
of those spikes change. Specifically, as the first spikes move forward, the spike
train will become more synchronous as the distribution of spiking times becomes
sharper, as we can see in Fig. 19, where the postsynaptic spike train has a peak of
spikes that grows after STDP is applied. We quantify this by counting the highest
concentration of spikes in a small time window of size L with respect to the total
number of spikes, which can be written as

φ =
maxt

∫ t+L
t

s(t)dt

S

T

L
, (181)

where T is the time interval for the full stimulus such that S/T S
T

is the average

spike rate and maxt
∫ t+L
t s(t)dt

L
is the highest rate in a time window of length L. For a

random spike train, the highest rate of spikes in a time window of length L would

92

102 103

Time Interval (ms)

10

5

0

5

10

15

Sp
ik

e
Co

un
t C

ha
ng

e(
%

)

Evoluiton of the spike count

IR = 1 Hz, SP = 0.33
IR = 0.33 Hz, SP = 0.33
IR = 1 Hz, SP = 1
IR = 0.33 Hz, SP = 1

Figure 20: Spike Count Evolution: We simulated spike trains of various lengths
for different parameters of the input rate (IR) and the probability that the stimulus
is presented (SP), and when it is not we induce a random pair of pre-postsynaptic
spikes in every synapse with a tpost − tpre ∈ [−20ms, 20ms]. In either case we
investigate the change in the number of spikes. As we can see, for long spike trains
the inter-spike-intervals increase and thus the number of spikes decreases. For
short spike trains, on the other hand, there is at most one spike that can fit, so the
inter-spike intervals are irrelevant. Furthermore, the spikes in such short intervals
are self-maintained when STDP is present: if a spike appears and disappears when
the presynaptic weights evolve randomly, the presence of a postsynaptic spike will
potentiate those weights, hence the spike will be maintained, implying that STDP
increases the number of spikes in short time intervals.

be similar to the average firing rate, corresponding to a φ ≈ 1. However, if many
spikes concentrate in a small time window, the spike trains are synchronized and
we obtain a high value of φ. The results of simulations for various parameters are
presented in Table 2, where the increase in φ can be easily seen.

25 The Emergence of Predictions
When a group of neurons encodes a stimulus we mean that those neurons fire
when the stimulus is presented. However, the neurons themselves are not aware
agents and do not know anything about that stimulus; they simply receive a spike
train that is strong enough to trigger their spiking. From the point of view of an en-
coding neurons, there is no difference between the stimulus-induced presynaptic
spike train and any other input spike train that always precedes the stimulus.

Combining this observation with the results from previous sections showing
that neurons will fire at the onset of a frequent input spike train, we can conclude
that a neuron that ”encodes” a stimulus can start firing before the stimulus is pre-
sented if another stimulus appears before it. As an illustrative example, imagine

26. DISCUSSION 93

listening to a melody. Different parts of the melody trigger the activity of different
groups of neurons in the same area of the brain. If the melody is repeated very
often, the neurons P1 that react to an early part of the melody will systematically
fire before the neurons P2 that react to a later part. As the melody is repeated,
neurons in P2 will always fire after receiving spikes from neurons in P1 and
thus the synapses from P1 to P2 will be reinforced. Eventually, the reinforced
synapses might trigger spikes in P2 before the late part of the melody sounds.
This can be extended to more populations encoding more stimuli, and thus the
whole melody is encoded through simultaneous activity of all the neurons which
originally encode only separate notes. This is illustrated and simulated in Fig. 21.

It is important to notice here that the predictions that we mention here are re-
stricted to stimuli sequences that can be identified from the first input, meaning
that we are not addressing the case of two sequences of stimuli which start acti-
vating the same neural population and then go on to activate different populations.
If we have two possible stimuli sequences which start equally, STDP would force
some neurons associated to both possible sequences fire at the onset of the stimuli,
meaning that the system would learn that both sequences might follow. However,
the differentiation of the two sequences can only be done when the two diverge,
so the system must learn to maintain memory traces of the stimuli, a process that
can also be implemented by STDP with lateral inhibition [KM13]

26 Discussion
In this chapter we analyzed and expanded previous computational findings on
latency reduction [SMA00, GVT05]. Then we interpret them in communication
terms: those mechanisms lead to encoding the more common inputs with less
spikes while concentrating the remaining spikes in smaller time windows. This
leads us to the conclusion that STDP can reduce the amount of spikes used to
encode frequent stimuli, in line with the idea that metabolic efficiency is one of
the guiding principles of the brain [HOCS10, Lau01]. The same phenomena also
improves decoding performance of the neural code by concentrating encoding
spikes on small time windows, corresponding to the notion that synchronization is
a learned behavior used to improve communication between neuronal assemblies
[Sin11, Fri05, VDM94] and remaining consistent with the latency code that has
been found experimentally [ZSN+11, GKR96]. Finally, we show that the latency
reduction can explain how the nervous system learns to forecast even without any
feedback.

94

External Event

Stimulus 2

Stimulus 1

P 2

P 1

Stimulus 3 P 3

0 25 50 75 100 125 150 175 200
Stimulus repetition

0

200

400

600

800

1000

1200

1400

La
te

nc
y

Evolution of Median Latency

Figure 21: Encoding Predictions: Schema for the emergence of predictions (left)
and firing latencies of neurons in encoding population (right): An external event
creates three stimulus that trigger all the neurons in corresponding distinct neu-
ral populations P1, P2, P3 with the stimuli inducing spikes during the inter-
vals [0ms, 500ms] for P1, [500ms, 1000ms] for P2 and [1000ms, 1500ms] for
P3 respectively. The three populations, with N = 50 neurons each, also have
synapses between them with delays sampled from a uniform distribution between
dPiPj ∈ [1ms, 5ms]. Originally, almost all neurons in each population fire only
after receiving inputs from their respective stimuli, but after the external event is
repeated very often, the inter-population connections become strong enough to
trigger some spikes before the stimulus is received.

26. DISCUSSION 95

STDP
Type

Noise
Var.

Spike
at t=0

Spike
Count
Increase

Spike
Count
Decrease

Spike
Latency
Increase

Spike
Latency
Decrease

Average
Latency
Change

E & I 0 No 0.1 % 13.5 % 5.2 % 51.9 % -2.7 ms
E & I 0.2 No 1 % 30.6 % 13.8 % 23.1 % -1.5 ms
E 0 No 1.4 % 0.0 % 0.5 % 81.4 % -3.1 ms
E 0.2 No 4.2 % 11.3 % 16.2 % 32.6 % -0.34 ms
E & I 0 Yes 0.0 % 8.3 % 28.8 % 22.1 % 3.2 ms
E & I 0.2 Yes 0.6 % 21.5 % 33.1 % 13.1 % 2.8 ms
E 0 Yes 5.2 % 10.8 % 15.9 % 31.3 % 0.1 ms
E 0.2 Yes 2.8 % 12.9 % 27.2 % 18.7 % 3.3 ms

Table 1: Effects of STDP on short random spike trains: We explored the ef-
fects of STDP on the postsynaptic spike train of a neuron receiving 8 excitatory
and 2 inhibitory presynaptic spikes arriving at uniformly sampled times on the
interval [0, 40ms] and the stimulus is repeated 100 times. The first three columns
determine the set-up: the STDP Type indicates if STDP was active for excitatory
presynaptic neurons only (E) or for inhibitory as well as excitatory (E & I) with
the inhibitory STDP having the parameters to exactly compensate the excitatory
one as presented in Section 18.2, the second column indicates the variance of the
Gaussian noise added to every weight at every stimulus repetition, and the third
column indicates whether we added a postsynaptic spike at the begining of the
time window. The remaining columns explain the results: the fourth one indicates
the percentage of spike trains in which new postsynaptic spikes appeared, the fifth
one the percentage of spike trains in which a spike disappeared, the sixth one the
percentage of spike trains in which a single postsynaptic spike (not counting the
imposed one at t = 0) happened later after learning, the seventh one corresponds
to the postsynaptic spike happening earlier, and the last one is the average latency
change of the postsynaptic spikes (here we only accounted for the cases where
there was a single postsynaptic spike at the beginning and at the end of the learn-
ing). We calculated the percentages and averages from 1000 randomly generated
spike trains in which a single postsynaptic spike was triggered at the beginning
of the training. The results clearly show that in all cases spike latencies tend to
decrease when no spike is placed at t = 0, and increase otherwise. Naturally,
adding noise or inhibitory plasticity increases the percentage of spikes that dis-
appear. Similarly, adding the initial spike increases the number of disappeared
spikes.

96

SP = 0.33 SP = 1
IR = 0.33 IR = 1 IR = 0.33 IR = 1

L = 2 2.1→ 2.7 2.8→ 3.9 2.3→ 3.4 2.9→ 4.9
L = 5 1.8→ 2.4 2.4→ 3.0 2.0→ 3.0 2.5→ 3.6
L = 10 1.7→ 2.0 1.9→ 2.1 1.9→ 2.6 1.9→ 2.3

Table 2: Synchrony Evolution: We simulated spike trains with different values
of the presynaptic input rate (IR) and the probability that the stimulus is pre-
sented compared to random pair of spikes per synapse (SP), and then measured
the change in φ taking a time window of 100ms and using 1000 neurons. As we
can see, the synchronization always increases.

Part IV

Conclusion

97

27. SUMMARY AND CONTRIBUTIONS 99

27 Summary and Contributions
This thesis started by formalizing a simple idea: that neurons in a reservoir should
be similar to the output of the reservoir. This formalization allowed us to bring
well-known notions from signal processing, improving standard Echo State Net-
works by making them resonate at specific frequencies.

However, this result goes beyond the practical applications of Echo State Net-
works. By studying which properties of a recurrent neural network make it well-
suited for a particular problem, we are also addressing the converse question of
how should a neural network be after it has been adapted to a specific task. Specif-
ically, this suggests that biological neural networks could learn to process inputs
by having their neurons improve the input representation by resonating at the ap-
propriate frequencies.

Thus we have an hypothesis for biological neural systems. The first step in this
case is to check whether the hypothesis is compatible with known rules of synaptic
plasticity and neural dynamics. Nicely, this compatibility is straightforward: by
using a statistical physics approach, we found that Spiking Time-Dependent Plas-
ticity –one of the most well studied mechanisms of synaptic adaptation – does
indeed generate the resonances that we required.

The self-consistency approach that we used, while indicative, is limited in that
it works for periodic inputs and specific receptive fields. To make a more general
study we shifted from a rate-based theory to one focused on the evolution of post-
synaptic spikes, finding that the same phenomena could easily be interpreted in
terms of neural coding, with increased signal to noise ratio and emergent predic-
tions.

This thesis provides another example of how simple, well-known plasticity
rules that are present at synaptic level lead to modifications that can be interpreted
at a larger scale. Furthermore, the fact that the same mechanism improves the
neural code and creates predictions might explain how the ability of the brain to
make predictions and process time series –which is one of the core problems in
cognitive science– could have emerged as a consequence of evolutionary pressures
on metabolic cost and information transmission.

Naturally, our work is also interesting for researchers in machine learning, as
it shows that synaptic plasticity rules, which are classically used to infer or rein-
force correlations [DA01], can be used to find predictions and improve reservoir.
Furthermore, the fact that the same mechanism gives rise to predictions and cod-
ing efficiency is another example of the intimate relationship between machine
learning and coding [MMK03], thus it might be interesting for information theo-
rists.

Finally, there are a few contributions of this thesis that are minor steps in the
development of the general thread but are relevant as standalone results. The main

100

one is the hypotrochoid law of random matrices, which finds beautiful patterns of
eigenvalues in the notably unintuitive setting of non-hermitian matrices. Similarly,
the geometric bound on the training error is a simple construction that can be
applied to a variety of problems concerning time series, as long as the appropriate
basis for it is found. Similarly, on the neuroscience setting, the effect that late
postsynaptic spikes disappear by being close to another postsynaptic spike has not
been reported in the literature, but would easily explain the emergence of latency
codes [ZSN+11].

28 Open Questions and Future Directions
The results exposed here also open new questions. The most immediate question
is whether this unsupervised process is used in the nervous system to improve time
series processing. An experimental study should identify the neurons that encode
a periodic stimulus and follow the evolution of the spiking times of the involved
neurons as the input is repeated and the animal learns the stimulus. A natural
candidate for this would be the cerebellum because of its organization based on
Granule and Purkinje cells, with the first being simple but abundant – thus easily
interpretable as high-dimensional reservoir – while the latter are large and com-
bine the inputs from the first – thus akin to a readout –, an interpretation that
is consistent with Liquid State Machines [YT07], the biological version of Echo
State Networks, implement periodic patterns of activity and seem to be important
for proper movements [GS85] as well as other functions [MBC+12, Itō84], all the
while having STDP rules [SLS+17].

But beyond the circuit studied, it is important to have the appropriate data and
tools to verify if the temporal consistency of spike trains is indeed increased as
the network learns. Since our only requirement is that neurons have coherent fir-
ing times associated to a periodic activity without any population-level synchrony,
the learning framework proposed here should be studied using spikes rather than
aggregate methods such as electroencephalography. On the data analysis side, we
would need a tool that can check the temporal coherence of a long and repeti-
tive spike train. For this purpose a research project in collaboration with Laura
State [AS19], where spiking times are converted in phases of a complex number,
allowing us to use linear algebra tools to discern temporal patterns. This tool in
combination with multielectrode or calcium imaging recordings while an animal
learns a periodic motor task should provide the necessary evidence of existence
for the proposed learning theory.

Beyond the interest of this thesis for neuroscience, the use of frequency adap-
tation and filter theory can also be interesting for extensions of machine learning.
Just as we could propose that biological neurons adapt their autocorrelations or

28. OPEN QUESTIONS AND FUTURE DIRECTIONS 101

frequencies, it seems natural to propose that artificial networks do the same. In-
deed it seems plausible that recurrent artificial neural networks keep only the parts
of the frequency spectrum that are necessary for future computations, while dis-
regarding the rest. This is in line with a recent theory [TZ15, SZT17] proposing
that deep neural networks learn to compress their inputs by discarding irrelevant
information for the output. Notice here that the frequency adaptation can be im-
plemented by cycles, but also by feedforward structures where the paths from
input to neurons generate the equivalent of a Finite Impulse Response filter; even
if the frequency adaptation takes place, which filter structure is preferred would
probably depend on the training algorithm and the number of neurons.

Similarly, if the frequency adaptation is indeed part of the learning mechanism
of a recurrent neural network, then it might be worth integrating it into the training.
A first possible extension would be to consider how recurrent neural networks are
after being trained. Since most training methods work on the weights of each
connection independently, there is large potential for improvement in designing
algorithms which train structural features such as cycles directly.

Finally, another application of the techniques for Echo State Networks pro-
posed here would be to adapt them to other, more complicated reservoirs. Indeed,
the multitude of physical substrates that can implement a reservoir includes many
systems that cannot be tuned or adapted through modern methods for training arti-
ficial neural networks, therefore offering an alternative path to adapt their dynam-
ics could help improve their performance. A natural choice in this respect would
be neuromorphic chips – silicon implementations of spiking neural networks –
[Boa05] which are often used as reservoirs [ILBL+13], and can also implement
plasticity [LZZ+14, VTP+03], making them ideal candidates for implementing
the learning rules to induce frequency adaptation.

Besides the field-specific questions addressed earlier, there is one larger ques-
tion that underlies the thesis as a whole: if and which principles of time series
processing from machine learning can be used to guide neuroscience and vice
versa. Adapting the concepts presented here for both fields could help integrate
well known concepts of signal processing into a general principled theory of learn-
ing in time series.

102

Code availability. The code used in this thesis is available for download through
github under the following link:
https://github.com/pvili

https://github.com/pvili

1. TRAINING ECHO STATE NETWORKS 103

1 Training Echo State Networks
The training of an ESN aims to find the output weights of each neuron state such
that the output y(t) can best approximate the target variable ŷ(t) [Jae01b]. Here
the output is a linear combination of the neurons’ states x(t) and the input u(t),
i.e.,

y(t) = wout
(

x(t)
u(t)

)
. (182)

This aim can be achieved by minimizing the squared training errors
∑T

t=1(ŷ(t)−
y(t))2. Hence it becomes a classical linear regression problem: Given T vectors
x(t) of dimension N and the target variable ŷ(t), calculate the vector wout that
satisfies

wout = arg min
wout

T∑
t=0

(
y(t)−wout

(
x(t)
u(t)

))2

.

We rewrite Eq. 182 as a matrix equation Y = wout ·X , where Y is the column
vector containing all y(t) for t = 1, ..., T values and X a matrix where each row

contains the values of the corresponding vector
(

x(t)
u(t)

)
. Thus, wout can be solved

through the Moore-Penrose pseudo-inverse X+ = X∗ (XX∗)−1 where X∗ is the
Hermitian transpose (also known as conjugate transpose of X). In the case of
real matrices, the Hermitian transpose is just the transpose. Thus we can write
X+ = X>

(
XX>

)−1, and
wout = Y ·X+.

The calculation of X+ is implemented with the command pinv in Matlab.
Depending on the task [Jae02], the output y(t) can be fed back to the reservoir

through wofb. During the training phase, we do not have the actual y(t), since
wofb has not been trained. If the reservoir’s output is expected to be close to the
target variable, we can instead feed the target variable ŷ(t + 1). To have a valid
comparison with the original benchmark problem [JH04], we use this process for
the task of forecasting Mackey-Glass time series, and for the rest of tasks the
values of wofb are set to be 0.

1.1 Selecting reservoir parameters
Besides the training of the readout, the reservoir has other parameters that must
be optimized. Typically, those are the scaling of win, wofb and W. In this work,
however, we take a very simple version of ESN where win and wofb are fixed and
only the scaling of W is trained. This is often trained through the spectral radius
|λmax|, which grows linearly with the weights of W – just as our metric 〈|λ|〉 does.

104

In the examples used in this work we trained this in the simplest possible way:
by trying a range of scalings – from a spectral radius of 0.2 to 1 with intervals of
0.05. This is done with classical Erdős-Rényi reservoirs, and in the last experi-
ments, we evaluated the 〈|λ|〉. By noticing that the Erdős-Rényi reservoirs have
a uniform eigenvalue distribution within a circle in the complex plane centered
at zero and with radius |λmax|, then we only need to integrate the radius over the
uniform distribution and divide by the area,

〈|λ|〉 =
1

π|λmax|2

∫ |λmax|

0

r2πrdr =
2

3
λmax. (183)

2 Network Generation Algorithms
In this section we described the methods of generating various model networks
with different topological properties.

2.1 Scale-free networks
In scale-free (SF) networks the probability distribution of node degrees follows a
power law, i.e., P (k) ∼ k−γ , and the exponent γ usually varies between 2 and 3.

In this paper we adopted the so-called static model [GKK01], to generate
scale-free networks with tunable degree exponent γ and mean degree 〈k〉. Since
we use directed networks, we have outgoing and incoming edges. For simplic-
ity we use γin = γout, meaning that for every node the expected outgoing and
incoming degrees are the same. The static model can be described as follows:

Step-1: We start with N isolated nodes, labeled from 1 to N . Each node is
assigned a weight wi ∼ i−a, where a = 1/(γ − 1).

Step-2: We independently pick up two nodes according to their assigned
weights, and add a link between these two nodes if they have not been connected
before. Self-links and double-links are forbidden.

Step-3: Repeat Step-2 until M = 〈k〉N/2 links have been added into the
network.

2.2 Random regular networks
In a random regular (RR) network, all nodes have the same degree and the edges
randomly connect node pairs. Random regular networks can be generated by
rewiring, as described by the following algorithm, which follows the same logic
as Wormald’s algorithm [Wor84] but is designed for directed networks:

The algorithm takes the number of nodes N and the connectivity c as param-
eters.

2. NETWORK GENERATION ALGORITHMS 105

Step-1: Create a list L1 where, for each of the N nodes, there are cN/2 out-
going edges.

Step-2: Copy the previous list and make a random permutation, creating list
L2. The nth edge is the edge that goes from the node L1(n) to the node L2(n).

Step-3: If there are repeated edges, randomly swap the destinations, until there
are no more repeated edges.

Step-4: If Step-3 was repeated M times, jump to Step-2.
The limited number of iterations given by step 4 was set to avoid infinite iter-

ations. In this work we set M = 500.
For each node there are k outgoing links and the k links can go to k of the

N nodes. Thus we have N !
(N−k)!

combinations of destinations that do not include
a repetition against Nk possible combinations, giving us a probability of pr =
1− N !

Nk(N−k−1)!
of repeating an edge. Thus on the first iteration we will have prcN2

repetitions, on the second one p2
rcN

2 and therefore the complexity isO(1
1−pr cN

2).

2.3 Erdős-Rényi networks
In an Erdős-Rényi (ER) random network, each pair of nodes are connected with
probability p. We can use different probability distributions to assign link weights
in the ER random networks, including binary, uniform, normal and power law
distributions. Networks used in ESN typically have no preference for positive or
negative weights, and we modified the link weight distributions to keep the mean
as zero.

• For binary distribution, each link was assigned a weight−a or a, with a > 0.

• For uniform distribution, the link weights were randomly drawn from the
interval [−a, a] where a > 0.

• For normal distribution, the link weights were drawn from a normal distri-
bution with zero mean and standard deviation a.

• For the power law (PL) distribution we use the inverse transform sampling
method to convert a uniform distribution in [0, 1] into a power law [Deá90].
The power law distribution provides only positive numbers, thus we ran-
domly inversed the sign of each link with probability 0.5.

2.4 Spectral radius and the variance of the weight distribution
In the main text we do not mention the variance of the probability distribution
from which we draw the weights. Here we show that the variance of the link
weight distribution is actually irrelevant.

106

The networks referred in the main text have an adjacency matrix W = (W)ij
the weights are drawn from a normal distribution with zero mean and some vari-
ance v. As we consider the case where the dimension of the adjacency matrix is
very high, the variance converges to its expected value. We recall the definition of
the variance,

v = Var [Wij] =
1

N

N∑
i=1

N∑
j=1

W 2
ij.

If we multiply the matrix by a scalar a ≥ 0, when the variance becomes

Var [aWij] =
1

N2

N∑
i=1

N∑
j=1

a2W 2
ij = a2v. (184)

Note that the entries of aW are still drawn from a normal distribution, it is simply
that the variance has changed. Consider now the spectral radius α of W ,

α = max
v

‖Wv‖
‖v‖

where ‖ · ‖ is the euclidean norm. If we scale the matrix by a,

max
v

‖aWv‖
‖v‖

= max
v

a
‖Wv‖
‖v‖

= aα. (185)

Putting together Eqs. 185 and 185, we see that both values can be set though α,
meaning that there is a one-to-one correspondence between variance and spectral
radius. Therefore, when we fix the spectral radius, we also fix the variance. Thus,
the original variance of the distribution is irrelevant.

The statement is obviously only true as long as the variance does exist. When
we draw numbers from a distribution whose variance diverges, then the spectral
radius does not determine the variance, because it does not exist. We will thus still
use α in those cases as we still need the stability of the reservoir.

3 Principal Component Analysis

The goal of the principal component analysis (PCA) is to find the directions ex-
plaining the variance in a cloud of points, for instance, the points as the values
of a time series at different times. Naturally, this idea is only sensible when the
cloud of points has correlations between the values at different dimensions.

4. FROBENIUS NORM AND VARIANCES 107

Our goal is to find a vector v1RN such that var (〈v1, z(t)〉) is maximized, but
as we are looking for a basis, we will set the constraint that 〈v1, v1〉 = 1,

1

T

T+t0∑
t=t0

〈v1, z(t)〉〈v1, z(t)〉 − λP1 (〈v1, v1〉 − 1) = v1

(
1

T

T+t0∑
t=t0

z>(t)z(t)

)
v>1 − λP1 (〈v1, v1〉 − 1)

= v1Pv
>
1 − λP1 (〈v1, v1〉 − 1).

(186)
Then by differentiating we obtain that

∂v1

∂(v1)i
v1Pv

>
1 − λP1 (〈v1, v1〉 − 1) = 0⇒ Pv1 = λP1 v1 (187)

which is an eigenvector equation. The choice of eigenvector is given by noticing
that

var (〈v1, z(t)〉) = v1Pv
>
1 = λP1 v1λ

P
1 v
>
1 = λP1 , (188)

which implies that we would pick the largest eigenvalue. The subsequent eigen-
value/eigenvector pairs are selected by being orthogonal to every previous eigen-
vector, this gives us a full orthonormal basis in which the variances var (〈vi, z(t)〉)
are sorted.

4 Frobenius Norm and variances
The Frobenius norm of an N ×N real matrix is defined as

‖A‖F =

√√√√ N∑
i=1

a2
ij =
√
A>A. (189)

This norm is invariant under rotations, as

‖RA‖F =
√
A>R>RA =

√
A>R>RA = ‖A‖F . (190)

and therefore it is unchanged if our original matrix is symmetric and we take the
corresponding diagonalized matrix

‖A‖F = ‖DA‖F =

√√√√ N∑
i=1

λ2
i (A). (191)

If we take a correlation matrix, which is symmetric and positive semidefinite,

‖P‖2
F =

N∑
i=1

λ2
i (P) (192)

108

5 Fourier Transformation and Parseval’s Theorem
For a vector v ∈ RT , its Fourier transform v̂ is given by

v̂ [k] =
T−1∑
n=0

v(n) exp
[
2π
(n
T

)
ik
]
, (193)

where i is the imaginary square root of −1. The transformation can be seen as a
change of basis where the new basis vectors are

uk = exp

[
2πi

(
0

T

)]
, exp

[
2πi

(
k

T

)]
, exp

[
2πi

(
2k

T

)]
, ... (194)

The basis is naturally orthogonal, as

〈uk, ul〉 =
T−1∑
n=0

exp

[
2πi

(
n(k + l)

T

)]
= 0 (195)

This basis can be normalized with the coefficient
1

T
.

The fact that the Fourier transform is an orthonormal basis implies that Eu-
clidean distances are maintained when the transformation is applied. In equations,

T−1∑
t=0

|v [t] |2 =
1

T

T−1∑
k=0

|v̂[k]|2 (196)

which gives us Parseval’s theorem.

6 Simulation of spiking neural networks

6.1 Continuous time approximation
The neural dynamics described by Eq. 112 can be simulated by a simple itera-
tive algorithm in which time is discretized in small time bins and the membrane
potential is updated. This gives us the discretized equation

v(t+ 1) =

(
1− 1

τm

)
v(t) + u(t) (197)

where v(t) is already centered such that the resting potential is zero. This oper-
ation is repeated for every timestep, which must be chosen such that τm � 1 in
those units.

6. SIMULATION OF SPIKING NEURAL NETWORKS 109

This solution is perfect when the input is a continuously evolving function of
time. However, here we need as much computations as the number of time beans,
which seems a waste or resources since in many of those steps no input will be
given. Furthermore, if we have step size large enough to condensate multiple
inputs, then the neurons will only receive the sum of the inputs, which might miss
a spike in the case where an inhibitory spike arrives slightly after a excitatory one.

6.2 Event-Based Implementation
Thus for the case of inhibitory synapses and a purely spike-based input we will
process spikes in an event-based manner. In that case, the membrane potential is
only calculated when necessary, meaning at the time of arrival.

More specifically, when a spike with weight w is received at time t, the new
membrane potential is calculated as

v(t) = v(tlast)e
− t−tlast

τm + w. (198)

An important notion here is that spikes must be processed in strict temporal order.
For the study of isolated neurons with predefined inputs, it suffices to put every
input into a list, but when we deal with recurrent networks more care must be
taken.

To make sure that we maintain the temporal order while remaining efficient,
we must choose the appropriate data structure. The natural choice if we want to
have heterogeneous delays in synapses is to use a heap.

110

Bibliography

[Ace18] Pau Vilimelis Aceituno. Eigenvalues of random graphs with cycles.
arXiv preprint arXiv:1804.04978, 2018.

[AH18] Dario Amodei and Daniel Hernandez. Open ai, May 2018.

[AN00] Larry F Abbott and Sacha B Nelson. Synaptic plasticity: taming
the beast. Nature neuroscience, 3(11s):1178, 2000.

[ARS19] Pau Vilimelis Aceituno, Tim Rogers, and Henning Schomerus.
Universal hypotrochoidic law for random matrices with cyclic cor-
relations. Physical Review E, 100(1):010302, 2019.

[AS19] Pau Vilimelis Aceituno and Laura State. Training delays in spiking
neural networks. In International Conference on Artificial Neural
Networks, pages 713–717. Springer, 2019.

[BGMD18] Jacob LS Bellmund, Peter Gärdenfors, Edvard I Moser, and Chris-
tian F Doeller. Navigating cognition: Spatial codes for human
thinking. Science, 362(6415):eaat6766, 2018.

[BHR14] Nicolas Brunel, Vincent Hakim, and Magnus JE Richardson. Single
neuron dynamics and computation. Current opinion in neurobiol-
ogy, 25:149–155, 2014.

[Bis95] Christopher M Bishop. Neural networks for pattern recognition.
Oxford University Press, 1995.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[BKM10] Béla Bollobás, Robert Kozma, and Dezso Miklos. Handbook of
large-scale random networks, volume 18. Springer Science & Busi-
ness Media, 2010.

111

112 BIBLIOGRAPHY

[Boa05] Kwabena Boahen. Neuromorphic microchips. Scientific American,
292(5):56–63, 2005.

[BOL+12] Joschka Boedecker, Oliver Obst, Joseph T Lizier, N Michael
Mayer, and Minoru Asada. Information processing in echo state
networks at the edge of chaos. Theory in Biosciences, 131(3):205–
213, 2012.

[BP98] Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in cul-
tured hippocampal neurons: dependence on spike timing, synap-
tic strength, and postsynaptic cell type. Journal of neuroscience,
18(24):10464–10472, 1998.

[Bru00] Nicolas Brunel. Dynamics of sparsely connected networks of ex-
citatory and inhibitory spiking neurons. Journal of computational
neuroscience, 8(3):183–208, 2000.

[BSVdS19] Daniel Brunner, Miguel C Soriano, and Guy Van der Sande. Pho-
tonic Reservoir Computing: Optical Recurrent Neural Networks.
Walter de Gruyter GmbH & Co KG, 2019.

[BSVS08] Pieter Buteneers, Benjamin Schrauwen, David Verstraeten, and
Dirk Stroobandt. Real-time epileptic seizure detection on intra-
cranial rat data using reservoir computing. In International Con-
ference on Neural Information Processing, pages 56–63. Springer,
2008.

[BY06] Michael Buehner and Peter Young. A tighter bound for the echo
state property. IEEE Transactions on Neural Networks, 17(3):820–
824, 2006.

[BYY14] Paul Bourgade, Horng-Tzer Yau, and Jun Yin. Local circular law
for random matrices. Probability Theory and Related Fields, 159(3-
4):545–595, 2014.

[BZA01] Rune Brincker, Lingmi Zhang, and Palle Andersen. Modal identi-
fication of output-only systems using frequency domain decompo-
sition. Smart Materials and Structures, 10(3):441, 2001.

[CE05] John Conklin and Chris Eliasmith. A controlled attractor network
model of path integration in the rat. Journal of computational neu-
roscience, 18(2):183–203, 2005.

BIBLIOGRAPHY 113

[CG89] TM Cameron and JH Griffin. An alternating frequency/time do-
main method for calculating the steady-state response of nonlinear
dynamic systems. Journal of Applied Mechanics, 56(1):149–154,
1989.

[CLL12] Hongyan Cui, Xiang Liu, and Lixiang Li. The architecture of dy-
namic reservoir in the echo state network. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 22(3):033127, 2012.

[Cou10] Paulin Coulibaly. Reservoir computing approach to great lakes wa-
ter level forecasting. Journal of Hydrology, 381(1):76–88, 2010.

[DA01] Peter Dayan and Laurence F Abbott. Theoretical neuroscience, vol-
ume 806. Cambridge, MA: MIT Press, 2001.

[Deá90] István Deák. Random number generators and simulation. Mathe-
matical methods of operation research, 1990.

[Doy00a] Kenji Doya. Complementary roles of basal ganglia and cerebellum
in learning and motor control. Current opinion in neurobiology,
10(6):732–739, 2000.

[Doy00b] Kenji Doya. Reinforcement learning in continuous time and space.
Neural computation, 12(1):219–245, 2000.

[DS12a] Gustavo Deco and Bernd Schuermann. Information dynamics:
foundations and applications. Springer Science, 2012.

[DS12b] Ali Deihimi and Hemen Showkati. Application of echo state net-
works in short-term electric load forecasting. Energy, 39(1):327–
340, 2012.

[DSG+13] Egidio DAngelo, Sergio Solinas, Jesus Garrido, Claudia Casellato,
Alessandra Pedrocchi, Jonathan Mapelli, Daniela Gandolfi, and
Francesca Prestori. Realistic modeling of neurons and networks:
towards brain simulation. Functional neurology, 28(3):153, 2013.

[DVSM12] Joni Dambre, David Verstraeten, Benjamin Schrauwen, and Serge
Massar. Information processing capacity of dynamical systems.
Scientific Reports, 2, 2012.

[DZ06] Zhidong Deng and Yi Zhang. Complex systems modeling using
scale-free highly-clustered echo state network. In Neural Networks,
2006. IJCNN’06. International Joint Conference on, pages 3128–
3135. IEEE, 2006.

114 BIBLIOGRAPHY

[EA04] Chris Eliasmith and Charles H Anderson. Neural engineering:
Computation, representation, and dynamics in neurobiological sys-
tems. MIT press, 2004.

[EJL15] Felix Effenberger, Jürgen Jost, and Anna Levina. Self-organization
in balanced state networks by stdp and homeostatic plasticity. PLoS
computational biology, 11(9):e1004420, 2015.

[Ell13] Douglas F Elliott. Handbook of digital signal processing: engi-
neering applications. Academic Press, 2013.

[FBG16] Igor Farkaš, Radomı́r Bosák, and Peter Gergel’. Computational
analysis of memory capacity in echo state networks. Neural Net-
works, 83:109–120, 2016.

[Fei12] Adina Roxana Feier. Methods of proof in random matrix theory.
PhD thesis, Harvard University, 2012.

[FI16] Gergeľ P. Farkaš I., Bosák R. Computational analysis of memory
capacity in echo state networks. Neural Networks, 83,:109–120,
2016.

[FL11] Aida A Ferreira and Teresa B Ludermir. Comparing evolutionary
methods for reservoir computing pre-training. In Neural Networks
(IJCNN), The 2011 International Joint Conference on, pages 283–
290. IEEE, 2011.

[Fri05] Pascal Fries. A mechanism for cognitive dynamics: neuronal com-
munication through neuronal coherence. Trends in cognitive sci-
ences, 9(10):474–480, 2005.

[GBFK19] Joshua I Glaser, Ari S Benjamin, Roozbeh Farhoodi, and Konrad P
Kording. The roles of supervised machine learning in systems neu-
roscience. Progress in neurobiology, 2019.

[Ger18] Wulfram Gerstner. Private Communication during Bernstein Net-
work Booth, 2018.

[GHS08] Surya Ganguli, Dongsung Huh, and Haim Sompolinsky. Memory
traces in dynamical systems. Proceedings of the National Academy
of Sciences, 105(48):18970–18975, 2008.

[Gir86] VL Girko. Elliptic law. Theory of Probability & Its Applications,
30(4):677–690, 1986.

BIBLIOGRAPHY 115

[GKK01] K-I Goh, Byungnam Kahng, and Doochul Kim. Universal behavior
of load distribution in scale-free networks. Physical Review Letters,
87(27):278701, 2001.

[GKNP14] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam
Paninski. Neuronal dynamics: From single neurons to networks
and models of cognition. Cambridge University Press, 2014.

[GKR96] Timothy J Gawne, TROELS W Kjaer, and BARRY J Richmond.
Latency: another potential code for feature binding in striate cortex.
Journal of neurophysiology, 76(2):1356–1360, 1996.

[GKvHW96] Wulfram Gerstner, Richard Kempter, J Leo van Hemmen, and Her-
mann Wagner. A neuronal learning rule for sub-millisecond tem-
poral coding. Nature, 383(6595):76, 1996.

[GMP17] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Deep reser-
voir computing: a critical experimental analysis. Neurocomputing,
268:87–99, 2017.

[GMP18] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Design of
deep echo state networks. Neural Networks, 108:33–47, 2018.

[GS85] C. Ghez and Fahn S. The cerebellum. Principles of neural science,
1985.

[GTJ12] Manjunath Gandhi, Peter Tiño, and Herbert Jaeger. Theory of input
driven dynamical systems. In European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learn-
ing, pages 25–27, 2012.

[GvG15] Umut Güçlü and Marcel AJ van Gerven. Deep neural networks
reveal a gradient in the complexity of neural representations across
the ventral stream. Journal of Neuroscience, 35(27):10005–10014,
2015.

[GVT05] Rudy Guyonneau, Rufin VanRullen, and Simon J Thorpe. Neu-
rons tune to the earliest spikes through stdp. Neural Computation,
17(4):859–879, 2005.

[GY05] Jonathan L Gross and Jay Yellen. Graph theory and its applica-
tions. CRC press, 2005.

116 BIBLIOGRAPHY

[HA16] Jeff Hawkins and Subutai Ahmad. Why neurons have thousands of
synapses, a theory of sequence memory in neocortex. Frontiers in
neural circuits, 10:23, 2016.

[HAW89] U Hübner, NB Abraham, and CO Weiss. Dimensions and entropies
of chaotic intensity pulsations in a single-mode far-infrared nh 3
laser. Physical Review A, 40(11):6354, 1989.

[HB10] Nacereddine Hammami and Mouldi Bedda. Improved tree model
for arabic speech recognition. In Computer Science and Informa-
tion Technology (ICCSIT), 2010 3rd IEEE International Confer-
ence on, volume 5, pages 521–526. IEEE, 2010.

[Heb05] Donald Olding Hebb. The organization of behavior: A neuropsy-
chological theory. Psychology Press, 2005.

[HGMJ06] Andreas VM Herz, Tim Gollisch, Christian K Machens, and Di-
eter Jaeger. Modeling single-neuron dynamics and computations: a
balance of detail and abstraction. Science, 314(5796):80–85, 2006.

[HH53] A.L. Hodgkin and A.F. Huxley. A quantitative description of mem-
brane current and its application to conduction and excitation in
nerve. Journal of Physicology, 1953.

[HKAW89] U Huebner, W Klische, NB Abraham, and CO Weiss. On problems
encountered with dimension calculations. In Measures of Complex-
ity and Chaos, pages 133–136. Springer, 1989.

[HOCS10] Andrea Hasenstaub, Stephani Otte, Edward Callaway, and Ter-
rence J Sejnowski. Metabolic cost as a unifying principle governing
neuronal biophysics. Proceedings of the National Academy of Sci-
ences, 107(27):12329–12334, 2010.

[Hop82] John J Hopfield. Neural networks and physical systems with emer-
gent collective computational abilities. Proceedings of the national
academy of sciences, 79(8):2554–2558, 1982.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term mem-
ory. Neural computation, 9(8):1735–1780, 1997.

[HSP99] Geoffrey E Hinton, Terrence Joseph Sejnowski, and Tomaso A
Poggio. Unsupervised learning: foundations of neural computa-
tion. MIT press, 1999.

BIBLIOGRAPHY 117

[HW62] David H Hubel and Torsten N Wiesel. Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex. The
Journal of physiology, 160(1):106–154, 1962.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

[IGB19] Bernd Illing, Wulfram Gerstner, and Johanni Brea. Biologically
plausible deep learning–but how far can we go with shallow net-
works? Neural Networks, 2019.

[ILBL+13] Giacomo Indiveri, Bernabé Linares-Barranco, Robert Legenstein,
George Deligeorgis, and Themistoklis Prodromakis. Integration of
nanoscale memristor synapses in neuromorphic computing archi-
tectures. Nanotechnology, 24(38):384010, 2013.

[Itō84] Masao Itō. The cerebellum and neural control. Raven press, 1984.

[Izh04] Eugene M Izhikevich. Which model to use for cortical spiking
neurons? IEEE transactions on neural networks, 15(5):1063–1070,
2004.

[Jae01a] Herbert Jaeger. Short term memory in echo state networks. GMD-
Forschungszentrum Informationstechnik, 2001.

[Jae01b] Herbert Jaeger. The echo state approach to analysing and train-
ing recurrent neural networks-with an erratum note. Bonn, Ger-
many: German National Research Center for Information Technol-
ogy GMD Technical Report, 148:34, 2001.

[Jae02] Herbert Jaeger. Tutorial on training recurrent neural networks, cov-
ering BPPT, RTRL, EKF and the” echo state network” approach.
GMD-Forschungszentrum Informationstechnik, 2002.

[Jae07] Herbert Jaeger. Discovering multiscale dynamical features with hi-
erarchical echo state networks. Jacobs University Bremen, Techni-
cal Reports, 2007.

[JBS08] Fei Jiang, Hugues Berry, and Marc Schoenauer. Supervised and
evolutionary learning of echo state networks. In Parallel Problem
Solving from Nature–PPSN X, pages 215–224. Springer, 2008.

118 BIBLIOGRAPHY

[JH04] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predict-
ing chaotic systems and saving energy in wireless communication.
Science, 304(5667):78–80, 2004.

[JLPS07a] Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo
Siewert. Optimization and applications of echo state networks with
leaky-integrator neurons. Neural Networks, 20(3):335–352, 2007.

[JLPS07b] Herbert Jaeger, Mantas Lukosevicius, Dan Popovici, and Udo
Siewert. Optimization and applications of echo state networks with
leaky-integrator neurons. Neural Networks, 20(3):335–352, 2007.

[KF17] Ingmar Kanitscheider and Ila Fiete. Training recurrent networks
to generate hypotheses about how the brain solves hard navigation
problems. In Advances in Neural Information Processing Systems,
pages 4529–4538, 2017.

[KGGM16] Saeed Reza Kheradpisheh, Masoud Ghodrati, Mohammad Gan-
jtabesh, and Timothée Masquelier. Deep networks can resemble
human feed-forward vision in invariant object recognition. Scien-
tific reports, 6:32672, 2016.

[KGH01] Richard Kempter, Wulfram Gerstner, and J Leo van Hemmen. In-
trinsic stabilization of output rates by spike-based hebbian learning.
Neural computation, 13(12):2709–2741, 2001.

[KH00] Werner M Kistler and J Leo van Hemmen. Modeling synaptic plas-
ticity in conjunction with the timing of pre-and postsynaptic action
potentials. Neural Computation, 12(2):385–405, 2000.

[Khi34] Alexander Khintchine. Korrelationstheorie der stationären
stochastischen prozesse. Mathematische Annalen, 109(1):604–615,
1934.

[KM13] Stefan Klampfl and Wolfgang Maass. Emergence of dynamic mem-
ory traces in cortical microcircuit models through stdp. Journal of
Neuroscience, 33(28):11515–11529, 2013.

[KRK14] Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep su-
pervised, but not unsupervised, models may explain it cortical rep-
resentation. PLoS computational biology, 10(11):e1003915, 2014.

[Lap07a] L Lapique. Recherches quantitatives sur lexcitation des nerfs traitee
comme une polarization. J Physiol Pathol Gen, 9:620–635, 1907.

BIBLIOGRAPHY 119

[Lap07b] L. Lapique. Recherches quantitatives sur lexcitation electrique
des nerfs traite comme une polarization. Journal de Physiologie
Pathologie Genetique, 1907.

[Lau01] Simon B Laughlin. Energy as a constraint on the coding and pro-
cessing of sensory information. Current opinion in neurobiology,
11(4):475–480, 2001.

[LBB+98] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al.
Gradient-based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[Li14] Zhaoping Li. Understanding vision: theory, models, and data. Ox-
ford University Press, USA, 2014.

[Lic13] M. Lichman. UCI machine learning repository, 2013.

[Lie04] Benjamin Liebald. Exploration of effects of different network
topologies on the ESN signal crosscorrelation matrix spectrum.
PhD thesis, University Bremen, 2004.

[Lit74] William A Little. The existence of persistent states in the brain. In
From High-Temperature Superconductivity to Microminiature Re-
frigeration, pages 145–164. Springer, 1974.

[LJ09] Mantas LukoševičIus and Herbert Jaeger. Reservoir computing ap-
proaches to recurrent neural network training. Computer Science
Review, 3(3):127–149, 2009.

[LMBA06] Francisco López-Muñoz, Jesús Boya, and Cecilio Alamo. Neuron
theory, the cornerstone of neuroscience, on the centenary of the no-
bel prize award to santiago ramón y cajal. Brain research bulletin,
70(4-6):391–405, 2006.

[LPT09] Andreea Lazar, Gordon Pipa, and Jochen Triesch. Sorn: a self-
organizing recurrent neural network. Frontiers in computational
neuroscience, 3:23, 2009.

[LSB+12] Laurent Larger, Miguel C Soriano, Daniel Brunner, Lennert Ap-
peltant, Jose M Gutiérrez, Luis Pesquera, Claudio R. Mirasso, and
Ingo Fischer. Photonic information processing beyond turing: an
optoelectronic implementation of reservoir computing. Optics ex-
press, 20(3):3241–3249, 2012.

120 BIBLIOGRAPHY

[LUTG17] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and
Samuel J Gershman. Building machines that learn and think like
people. Behavioral and brain sciences, 40, 2017.

[LWY+16] Chang-Shing Lee, Mei-Hui Wang, Shi-Jim Yen, Ting-Han Wei, I-
Chen Wu, Ping-Chiang Chou, Chun-Hsun Chou, Ming-Wan Wang,
and Tai-Hsiung Yan. Human vs. computer go: Review and prospect
[discussion forum]. IEEE Computational intelligence magazine,
11(3):67–72, 2016.

[LYS09] Xiaowei Lin, Zehong Yang, and Yixu Song. Short-term stock price
prediction based on echo state networks. Expert systems with ap-
plications, 36(3):7313–7317, 2009.

[LZZ+14] Yi Li, Yingpeng Zhong, Jinjian Zhang, Lei Xu, Qing Wang, Huajun
Sun, Hao Tong, Xiaoming Cheng, and Xiangshui Miao. Activity-
dependent synaptic plasticity of a chalcogenide electronic synapse
for neuromorphic systems. Scientific reports, 4:4906, 2014.

[Maa11] Wolfgang Maass. Liquid state machines: motivation, theory, and
applications. In Computability in context: computation and logic
in the real world, pages 275–296. World Scientific, 2011.

[Mar06] Henry Markram. The blue brain project. Nature Reviews Neuro-
science, 7(2):153, 2006.

[MBC+12] Mario Manto, James M Bower, Adriana Bastos Conforto, José M
Delgado-Garcı́a, Suzete Nascimento Farias Da Guarda, Marcus
Gerwig, Christophe Habas, Nobuhiro Hagura, Richard B Ivry, Peter
Mariën, et al. Consensus paper: roles of the cerebellum in motor
controlthe diversity of ideas on cerebellar involvement in move-
ment. The Cerebellum, 11(2):457–487, 2012.

[Mea89] Carver Mead. Analog vlsi and neutral systems. NASA STI/Recon
Technical Report A, 90, 1989.

[Mer76] Paul Mermelstein. Distance measures for speech recognition, psy-
chological and instrumental. Pattern Recognition and Artificial In-
telligence, 116:374–388, 1976.

[MMK03] David JC MacKay and David JC Mac Kay. Information theory, in-
ference and learning algorithms. Cambridge university press, 2003.

BIBLIOGRAPHY 121

[MMRS06] John McCarthy, Marvin L Minsky, Nathaniel Rochester, and
Claude E Shannon. A proposal for the dartmouth summer research
project on artificial intelligence, august 31, 1955. AI magazine,
27(4):12–12, 2006.

[MNM02] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-
time computing without stable states: A new framework for neu-
ral computation based on perturbations. Neural Computation,
14(11):2531–2560, 2002.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the
ideas immanent in nervous activity. The bulletin of mathematical
biophysics, 5(4):115–133, 1943.

[MQW00] Mayank R Mehta, Michael C Quirk, and Matthew A Wilson.
Experience-dependent asymmetric shape of hippocampal receptive
fields. Neuron, 25(3):707–715, 2000.

[MS69] Minsky Marvin and Papert Seymour. Perceptrons, 1969.

[NS12] Michael J Newton and Leslie S Smith. A neurally inspired musical
instrument classification system based upon the sound onset. The
Journal of the Acoustical Society of America, 131(6):4785–4798,
2012.

[NVS16] Robert A Nawrocki, Richard M Voyles, and Sean E Shaheen. A
mini review of neuromorphic architectures and implementations.
IEEE Transactions on Electron Devices, 63(10):3819–3829, 2016.

[NYC15] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks
are easily fooled: High confidence predictions for unrecognizable
images. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 427–436, 2015.

[Ola96] Mikel Olazaran. A sociological study of the official history of the
perceptrons controversy. Social Studies of Science, 26(3):611–659,
1996.

[OXP07] Mustafa C Ozturk, Dongming Xu, and José C Prı́ncipe. Analysis
and design of echo state networks. Neural computation, 19(1):111–
138, 2007.

[PAGH03] Paul G Plöger, Adriana Arghir, Tobias Günther, and Ramin Hos-
seiny. Echo state networks for mobile robot modeling and control.
In Robot Soccer World Cup, pages 157–168. Springer, 2003.

122 BIBLIOGRAPHY

[Par06] Marc-Antoine Parseval. Mémoire sur les séries et sur lintégration
complète dune équation aux différences partielles linéaires du sec-
ond ordre, à coefficients constants. Mémoires présentés par divers
savants, Academie des Sciences, Paris,(1), 1:638–648, 1806.

[PHG+18] Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Ed-
ward Ott. Model-free prediction of large spatiotemporally chaotic
systems from data: a reservoir computing approach. Physical re-
view letters, 120(2):024102, 2018.

[PMB13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the dif-
ficulty of training recurrent neural networks. International Confer-
ence on Machine Learning, 28:1310–1318, 2013.

[PSvRN13] Hugh Pastoll, Lukas Solanka, Mark CW van Rossum, and
Matthew F Nolan. Feedback inhibition enables theta-nested gamma
oscillations and grid firing fields. Neuron, 77(1):141–154, 2013.

[R+96] Theodore S Rappaport et al. Wireless communications: principles
and practice, volume 2. prentice hall PTR New Jersey, 1996.

[RHHD56] Nathaniel Rochester, J Holland, L Haibt, and W Duda. Tests on a
cell assembly theory of the action of the brain, using a large digital
computer. IRE Transactions on information Theory, 2(3):80–93,
1956.

[RIA17] Nathaniel Rodriguez, Eduardo Izquierdo, and Yong-Yeol Ahn. Op-
timal modularity and memory capacity of neural networks. arXiv
preprint arXiv:1706.06511, 2017.

[Ros57] Frank Rosenblatt. The perceptron, a perceiving and recognizing
automaton Project Para. Cornell Aeronautical Laboratory, 1957.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological review,
65(6):386, 1958.

[RT12] Ali Rodan and Peter Tiňo. Simple deterministically constructed cy-
cle reservoirs with regular jumps. Neural computation, 24(7):1822–
1852, 2012.

[Sch93] Eric L Schwartz. Computational neuroscience. Mit Press, 1993.

BIBLIOGRAPHY 123

[SCKS15] David Sussillo, Mark M Churchland, Matthew T Kaufman, and Kr-
ishna V Shenoy. A neural network that finds a naturalistic solu-
tion for the production of muscle activity. Nature neuroscience,
18(7):1025, 2015.

[SG02] Harvey A Swadlow and Alexander G Gusev. Receptive-field con-
struction in cortical inhibitory interneurons. Nature neuroscience,
5(5):403, 2002.

[SG10] J. Sjstrm and W. Gerstner. Spike-timing dependent plasticity.
Scholarpedia, 5(2):1362, 2010. revision #184913.

[SGM19] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy
and policy considerations for deep learning in nlp. arXiv preprint
arXiv:1906.02243, 2019.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature,
529(7587):484, 2016.

[Sin11] Wolf Singer. Dynamic formation of functional networks by syn-
chronization. Neuron, 69(2):191–193, 2011.

[SL15] Daniel Stimson and Marsh Love. Nih launches the human connec-
tome project to unravel the brain’s connections, Oct 2015.

[SLS+17] Martina Sgritta, Francesca Locatelli, Teresa Soda, Francesca
Prestori, and Egidio Ugo D’Angelo. Hebbian spike-timing de-
pendent plasticity at the cerebellar input stage. Journal of Neu-
roscience, 37(11):2809–2823, 2017.

[SMA00] Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive
hebbian learning through spike-timing-dependent synaptic plastic-
ity. Nature neuroscience, 3(9):919, 2000.

[Spo10] Olaf Sporns. Networks of the Brain. MIT press, 2010.

[SS90] Samir S Soliman and Mandyam D Srinath. Continuous and discrete
signals and systems. Englewood Cliffs, NJ, Prentice Hall, 1990,
523 p., 1, 1990.

[Str93] Gilbert Strang. Introduction to linear algebra, volume 3. Wellesley-
Cambridge Press Wellesley, MA, 1993.

124 BIBLIOGRAPHY

[SV99] Johan AK Suykens and Joos Vandewalle. Least squares support
vector machine classifiers. Neural processing letters, 9(3):293–
300, 1999.

[SW12] Harvey A Swadlow and Stephen G Waxman. Axonal conduction
delays. Scholarpedia, 7(6):1451, 2012.

[SWL12] Tobias Strauss, Welf Wustlich, and Roger Labahn. Design strate-
gies for weight matrices of echo state networks. Neural computa-
tion, 24(12):3246–3276, 2012.

[SWV+08] Benjamin Schrauwen, Marion Wardermann, David Verstraeten,
Jochen J Steil, and Dirk Stroobandt. Improving reservoirs using
intrinsic plasticity. Neurocomputing, 71(7-9):1159–1171, 2008.

[SZT17] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black
box of deep neural networks via information. arXiv preprint
arXiv:1703.00810, 2017.

[TBCC07] Matthew H Tong, Adam D Bickett, Eric M Christiansen, and Gar-
rison W Cottrell. Learning grammatical structure with echo state
networks. Neural Networks, 20(3):424–432, 2007.

[Tho90] Simon J Thorpe. Spike arrival times: A highly efficient coding
scheme for neural networks. Parallel processing in neural systems,
pages 91–94, 1990.

[TN04] Gina G Turrigiano and Sacha B Nelson. Homeostatic plasticity
in the developing nervous system. Nature reviews neuroscience,
5(2):97, 2004.

[TRA+17] Jacob Torrejon, Mathieu Riou, Flavio Abreu Araujo, Sumito
Tsunegi, Guru Khalsa, Damien Querlioz, Paolo Bortolotti, Vin-
cent Cros, Kay Yakushiji, Akio Fukushima, et al. Neuromor-
phic computing with nanoscale spintronic oscillators. Nature,
547(7664):428, 2017.

[TYH+19] Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho
Nakane, Naoki Kanazawa, Seiji Takeda, Hidetoshi Numata, Daiju
Nakano, and Akira Hirose. Recent advances in physical reservoir
computing: a review. Neural Networks, 2019.

[TZ15] Naftali Tishby and Noga Zaslavsky. Deep learning and the informa-
tion bottleneck principle. In 2015 IEEE Information Theory Work-
shop (ITW), pages 1–5. IEEE, 2015.

BIBLIOGRAPHY 125

[VDM94] Christoph Von Der Malsburg. The correlation theory of brain func-
tion. In Models of neural networks, pages 95–119. Springer, 1994.

[VdSBS17] Guy Van der Sande, Daniel Brunner, and Miguel C Soriano. Ad-
vances in photonic reservoir computing. Nanophotonics, 6(3):561–
576, 2017.

[Ver09] David Verstraeten. Reservoir computing: computation with dynam-
ical systems. PhD thesis, Ghent University, 2009.

[VFD+13] Tim P Vogels, Robert C Froemke, Nicolas Doyon, Matthieu Gilson,
Julie S Haas, Robert Liu, Arianna Maffei, Paul Miller, Corette
Wierenga, Melanie A Woodin, et al. Inhibitory synaptic plasticity:
spike timing-dependence and putative network function. Frontiers
in neural circuits, 7:119, 2013.

[VLS+10] Thierry Verplancke, S Looy, Kristof Steurbaut, Dominique Benoit,
F Turck, G Moor, and Johan Decruyenaere. A novel time series
analysis approach for prediction of dialysis in critically ill patients
using echo-state networks. BMC Medical Informatics and Decision
Making, 10(1):1, 2010.

[VRBT00] Mark CW Van Rossum, Guo Qiang Bi, and Gina G Turrigiano. Sta-
ble hebbian learning from spike timing-dependent plasticity. Jour-
nal of neuroscience, 20(23):8812–8821, 2000.

[VTP+03] R Jacob Vogelstein, Francesco Tenore, Ralf Philipp, Miriam S
Adlerstein, David H Goldberg, and Gert Cauwenberghs. Spike
timing-dependent plasticity in the address domain. In Advances in
Neural Information Processing Systems, pages 1171–1178, 2003.

[Wei94] William Wu-Shyong Wei. Time series analysis. Addison-Wesley
publ Reading, 1994.

[Wie30] Norbert Wiener. Generalized harmonic analysis. Acta mathemat-
ica, 55(1):117–258, 1930.

[Wie48] Norbert Wiener. Cybernetics or Control and Communication in the
Animal and the Machine. Technology Press, 1948.

[WLS04] Olivia L White, Daniel D Lee, and Haim Sompolinsky. Short-term
memory in orthogonal neural networks. Physical Review Letters,
92(14):148102, 2004.

126 BIBLIOGRAPHY

[Wor84] Nicholas C Wormald. Generating random regular graphs. Journal
of algorithms, 5(2):247–280, 1984.

[Wor99] Nicholas C Wormald. Models of random regular graphs. London
Mathematical Society Lecture Note Series, pages 239–298, 1999.

[XT07] Fei Xu and Joshua B Tenenbaum. Word learning as bayesian infer-
ence. Psychological review, 114(2):245, 2007.

[YD16] Daniel LK Yamins and James J DiCarlo. Using goal-driven deep
learning models to understand sensory cortex. Nature neuroscience,
19(3):356, 2016.

[YJK12] Izzet B Yildiz, Herbert Jaeger, and Stefan J Kiebel. Re-visiting the
echo state property. Neural Networks, 35:1–9, 2012.

[YT07] Tadashi Yamazaki and Shigeru Tanaka. The cerebellum as a liquid
state machine. Neural Networks, 20(3):290–297, 2007.

[ZSN+11] Oran Zohar, Trevor M Shackleton, Israel Nelken, Alan R Palmer,
and Maoz Shamir. First spike latency code for interaural phase dif-
ference discrimination in the guinea pig inferior colliculus. Journal
of Neuroscience, 31(25):9192–9204, 2011.

BIBLIOGRAPHY 127

Erklärungen
• Ich erkenne die Promotionsordnung der Fakultät für Mathematik und Infor-

matik der Universität Leipzig.

• Die eingereichte Arbeit wurde nicht in gleicher oder ähnlicher Form einer
anderen Prüfungsbehörde zum Zwecke einer Promotion oder eines anderen
Prüfungsverfahrens vorgelegt.

• Es haben keine früheren erfolglosen Promotionsversuche stattgefunden.

...
(Pau Vilimelis Aceituno)

Curriculum Vitae

PERSONAL INFORMATION Pau Vilimelis Aceituno
Max Planck Institute for Mathematics in the Sciences, Inselstraβe 22, 04103 Leipzig Germany

 +34 647515639 G Georg-Schumann Straβe 73, 04155 Leipzig, Germany

 Institutional: aceituno@mis.mpg.de, Personal: pau.vilimelis.aceituno@gmail.com

LinkedIn Profile Google Scholar Profile

Date of birth 1st February 1989 | Nationality Spanish

EXPERIENCE

10/2016–12/2019 Ph.D. student – Max Planck Institute for Mathematics in the Sciences
Max Planck Institute for Mathematics In the Sciences (Leipzig, Germany), Advisor: Jürgen Jost

Find optimization principles behind synaptic plasticity that explain how network structures change and
that can be interpreted in terms of learning and information processing.

06/2019–12/2019 0-year student – Max Planck School of Cognition
Max Planck School of Cognition

Mentor the first wave of Ph.D. students, select applicants, and build the course handbook and e-lectures.

11/2015–08/2016 Visiting Scholar – Harvard Medical School
Channing Division for Network Science, Harvard Med. School, (Boston, USA), Supervisor: Yang-Yu Liu

Investigated the effects of network structure in learning for artificial recurrent neural networks.

01/2014–11/2014 Software Developer – Amadeus IT Group
Pricing Division Amadeus IT Group, (Sophia Antipolis, France)

Back-end software development. Launched a project on fraud detection through data mining

03/2013–08/2013 Intern on Space Robotics – Airbus Defence & Space
Group for Space Robotics and Exploration, Airbus Defence & Space, (Bremen, Germany)

Design and implementation of an algorithm for pose estimation applied to the recovery of dead satellites.

EDUCATION

09/2007–09/2013 Master's in Telecommunications Engineering – INSA Lyon
Institut National des Sciences Appliquées de Lyon (INSA Lyon), France

Core Subjects: Algorithms, Networks, Signal Processing and Coding Theory.

09/2011–02/2013 Master Thesis & Research Assistant – KIT
Karlsruhe Institut für Technologie, (Karlsruhe, Germany) Advisor: Muhammad Shafique

Thesis: Software and hardware error modeling to ensure software resilience under unreliable software.

02/2011–06/2011 Capstone Project and Academic Exchange – Yonsei University
Yonsei University, South Korea

Project: Reducing Wi-Fi Interference through Power Control.

	I Introduction
	Motivation
	Approach and tools
	Brief history
	Current Trends and Relevant Approaches
	Limitations, Caveats and Controversies

	II Tailoring Artificial Recurrent Neural Networks
	The ESN Framework
	Performance Measurement
	Forecasting Mackey-Glass time series
	Forecasting Laser Intensity time series
	Spoken Arabic Digit Recognition

	Measuring Memory Capacity
	Memory and Dynamics
	A formal link between memory and correlations

	Correlations and network spectra
	Formal relationship between eigenvalues and correlation

	A structural proxy for Memory Capacity
	Discussion
	A geometric approach to ESN training
	Altering the PSD of the reservoir's neurons
	Cycles, resonances and eigenvalues in linear systems
	Eigenvalues of random matrices with cycles
	Dealing with hyperbolic tangents

	Generate adapted reservoirs
	Discussion

	III Self-Organized Activity in Spiking Neural Networks
	Spiking neural networks
	Synaptic Plasticity
	Spike Time-Dependent Plasticity
	Excitation-Inhibition
	Signal-To-Noise Ratio

	Derivation of self-consistency equations
	Solution I: Linearization and Sinusoids
	Solution II: Sparsity and Binary Activity
	Discussion
	Evolution of a single postsynaptic spike
	Latency Reduction
	Late spike disappearance through synaptic noise
	Numerical verification for random input spike trains

	Postsynaptic Spike Train
	Postsynaptic spikes evolve independently
	Evolution of the postsynaptic spikes

	The Emergence of Predictions
	Discussion

	IV Conclusion
	Summary and Contributions
	Open Questions and Future Directions
	Training Echo State Networks
	Selecting reservoir parameters

	Network Generation Algorithms
	Scale-free networks
	Random regular networks
	Erdos-Rényi networks
	Spectral radius and the variance of the weight distribution

	Principal Component Analysis
	Frobenius Norm and variances
	Fourier Transformation and Parseval's Theorem
	Simulation of spiking neural networks
	Continuous time approximation
	Event-Based Implementation

