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The carboxylate platform is an alternative way of anaerobic digestion to valorise
organic wastes or biomass residues, in the form of medium-chain carboxylates (e.qg.,
n-caproate and n-caprylate). Some anaerobic bacteria are known to produce medium-
chain carboxylates through microbial chain elongation. Mixed culture fermentation is
commonly employed for the chain elongation processes. However, a systematic
investigation of the metabolism and ecological interactions of the chain elongation
communities was missing so far. This thesis focuses on the chain elongation
communities in closed model ecosystems. First, a model ecosystem was developed
by operating a continuous bioreactor with an enriched mixed culture. During long-term
reactor operation under constant conditions, the results suggested that the chain-
elongating bacteria were outcompeted by butyrate-producing bacteria, leading to the
increase of butyrate yield at the cost of n-caproate and n-caprylate yields. Second,
effects of environmental manipulations on chain elongation community assembly and
functioning were investigated in the model ecosystems. Shortening the hydraulic
retention time shaped the communities towards higher n-caproate and n-caprylate
productivities, which were accurately predicted by using machine learning. The
developed machine learning framework to quantitatively predict process performance
is transferable to other microbial systems. Increasing pH induced dramatic shifts in the
community assembly but exhibited no strong effects on medium-chain carboxylate
yields. High functional redundancy was indicated despite the reactors being long-term
closed systems. Last, three novel chain-elongating species were isolated, which can
convert lactate to n-caproate and iso-butyrate. The shared metabolic features and
genomic diversity of the entire repertoire of chain-elongating species were indicated.
In summary, this thesis sparkles new insights into the relationship between chain
elongation community diversity and functioning, and it extends the metabolic

knowledge of chain elongation bacteria.



“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you
are. If it doesn’t agree with experiment, it's wrong. In that simple statement is

the key to science”.

(Richard Feynman, 1964)
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Zusammenfassung

Zusammenfassung

Offene Mischkulturen in anaeroben Reaktorsystemen wandeln organische
Abfalle oder Biomasse-Ruckstande in hauptsachlich kurzkettige Carboxylate
mit zwei bis finf Kohlenstoffatomen um. Kurzkettige Carboxylate kdnnen von
methanogenen Konsortien in der anaeroben Vergarung in das stark reduzierte
Endprodukt Methan umgewandelt werden. Die mikrobielle Kettenverlangerung,
z.B. Uber die reverse [(-Oxidation, ist eine alternative Elektronensenke in
solchen anaeroben Reaktormikrobiota. In natirlichen Okosystemen wie dem
Pansen sind bestimmte anaerobe Bakterien bekannt, die mittelkettige
Carboxylate (z.B. n-Caproat und n-Caprylat) durch reverse [(-Oxidation
produzieren. Die Carboxylat-Plattform zielt darauf ab, Kohlenstoff aus
Abfallstromen oder Biomasse-Rickstanden durch anaerobe Fermentation in
Form von mittelkettigen Carboxylaten zurickzugewinnen. Sie bietet die
Maoglichkeit Chemikalien zu ersetzen, die aus nicht nachhaltigen Quellen wie

fossilen Rohstoffen stammen.

Fur Verfahren der mikrobiellen Kettenverlangerung wird tblicherweise die
Mischkulturfermentation  eingesetzt. Die verschiedenen mikrobiellen
Gemeinschaften enthalten unterschiedliche funktionelle Gruppen, die an der
Hydrolyse und Fermentation der verfligbaren organischen Verbindungen sowie
an der Konversion von Intermediaten in mittelkettige Carboxylate beteiligt sind.
Im Allgemeinen sind die zugrunde liegenden Stoffwechselwege und
Okologischen Wechselwirkungen der mikrobiellen Gemeinschaften nicht gut
verstanden. Diese Doktorarbeit behandelt die mikrobielle Kettenverlangerung
mit Laktat, insbesondere den Metabolismus und die 06kologischen
Wechselwirkungen der beteiligten mikrobiellen Gemeinschaften in

geschlossenen Modell-Okosystemen, d.h. in anaeroben Bioreaktoren.

Das erste Kapitel beschreibt die Entwicklung eines Modell-Okosystems mit
reduzierter Komplexitat, indem Laktat und Xylan als definierte
Kohlenstoffquellen verwendet wurden, um die Substratbedingungen bei der
anaeroben Fermentation von Maissilage zu Caproat zu simulieren. Die

Futterung mit definierten Kohlenstoffquellen ermdglichte die Bilanzierung der

12



Zusammenfassung

Elektronen- und Kohlenstofffliisse. Durch die Vermeidung einer Kintinuierlichen
Inokulation konnten der Metabolismus und die Dynamik dieser vereinfachten
mikrobiellen Gemeinschaft gezielter untersucht werden als in offenen
Reaktorsystemen. Wahrend eines Langzeit-Reaktorversuchs wurden vier
aufeinanderfolgende Stadien beobachtet: Anpassungsphase, Stadium |
(Periode  hoher  Produktivitdt von  mittelkettigen  Carboxylaten),
Ubergangsphase und Stadium 1l (Periode hoher Butyrat-Produktion). Auf der
Basis von 16S rRNA-Amplikonsequenzen und Korrelationen mit
Prozessparametern wurden Netzwerkanalysen durchgefihrt, um auf
potenzielle Stoffwechselfunktionen der beteiligten Spezies und deren
Okologische Interaktionen zu schliel3en. Die Ergebnisse legten nahe, dass der
Prozess verschiedene Funktionen der Xylan-Hydrolyse, der Xylose-
Fermentation und der Kettenverlangerung mit Laktat als Elektronendonor
umfasste. Die geschlussfolgerten Interaktionen, wie die Kooperation zwischen
Milchsaurebakterien und kettenverlangernden Bakterien sowie die Konkurrenz
zwischen  Bakterien, die mittelkettige @ Carboxylate  bilden, und
butyratproduzierenden Bakterien, erklarten die Entwicklung der mikrobiellen
Gemeinschaft Gber vier Sukzessionsstadien. In diesem geschlossenen Modell-
Okosystem wurden die kettenverlangernden Bakterien unter konstanten
Bedingungen von Butyrat-Produzenten auskonkurriert, was zu einer Erhéhung
der Butyrat-Ausbeute auf Kosten der n-Caproat- und n-Caprylat-Ausbeuten
fuhrte.

Im zweiten Abschnitt wurden die Auswirkungen einer Verkirzung der
hydraulischen Verweilzeit auf den Aufbau und die Funktion der mikrobiellen
Gemeinschaften in den Modell-Okosystemen getestet, mit dem Ziel,
O0kophysiologische Funktionen im Hinblick auf die Prozessleistung quantitativ
vorherzusagen. Durch die Verklirzung der hydraulischen Verweilzeit von 8
Tagen auf 2 Tage in zwei kontinuierlichen Reaktoren wurden ho6here
Produktivitaten und Ausbeuten von n-Caproat und n-Caprylat erreicht. Fiur die
Vorhersage wurde ein Modell durch Anwendung des Random-Forest-Ansatzes
unter Verwendung von 16S rRNA-Amplikon-Sequenzierungsdaten erstellt. Es
wurde eine Genauigkeit von mehr als 90% bei der quantitativen Vorhersage
der n-Caproat- und n-Caprylat-Produktivitdt erreicht. Vier abgeleitete

13
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Bioindikatoren, die zu den Gattungen Olsenella, Lactobacillus,
Syntrophococcus und Clostridium IV gehéren, deuteten auf deren Relevanz fir
die héhere Carboxylatproduktivitat bei kirzerer hydraulischer Verweilzeit hin.
Die Rekonstruktion von Populationsgenomen dieser Bioindikatoren aus
Metagenomdaten bestétigte das genetische Potenzial dieser Indikatorspezies,
Schlusselschritte der Carboxylatproduktion durchzufiihren. Aul3erdem wurde
eine funktionelle Redundanz bei der Konversion von Xylan und Laktat zu n-
Butyrat, n-Caproat und n-Caprylat beobachtet, wobei die relevanten
Bioindikatoren in ihrer relativen Abundanz zunahmen. Dies zeigt, dass die
beteiligten Stoffwechselwege stark an die Verkirzung der hydraulischen
Verweilzeit gekoppelt waren. Im Allgemeinen ist das entwickelte Konzept des
maschinellen Lernens zur Identifizierung von Bioindikatoren und zur
quantitativen Vorhersage der Prozessleistung auf andere Okosystemprozesse
und mikrobielle Systeme Ubertragbar, bei denen die Gemeinschaftsdynamik

mit Schltsselfunktionen verknipft ist.

Das dritte Kapitel beschreibt Untersuchungen zu Auswirkungen des pH-Werts
auf den Aufbau und die Funktionsweise der mikrobiellen Gemeinschaften auf
der Grundlage der entwickelten Modell-Okosysteme. Der Anstieg des pH-
Wertes von 5,5 auf 6,0 verursachte Schwankungen in den Ertragen von n-
Butyrat, n-Caproat und n-Caprylat. Nach der pH-Stérung kehrten die
Carboxylat-Ausbeuten zu den vorherigen Werten zuriick, wahrend sich die
mikrobiellen Gemeinschaften in ihrer Zusammensetzung &nderten, was als
Abnahme der Diversitat und Aquitat (Evenness) und Zunahme des
Artenreichtums (Richness) beobachtet wurde. Einige zuvor seltene Taxa
wurden dominant, was starke selektive Effekte des pH-Werts auf die mikrobielle
Diversitat widerspiegelt. Durch Anwendung von Aitchison PCA-Clustering,
linearen Mischwirkungsmodellen und Random-Forest-Klassifizierung wurden
die unterschiedlichen pH-Praferenzen der potenziellen Kettenverlangerer
Clostridium IV und Clostridium sensu stricto identifiziert. Co-occurrence-
Netzwerke fur verschiedene pH-Werte zeigten, dass die mit dem
Kettenverlangerer Clostridium IV kooperierenden Milchsaurebakterien infolge
des pH-Anstiegs von Olsenella zu Lactobacillus wechselten, was die Plastizitat

des Nahrungsnetzes der mikrobiellen Gemeinschaften zeigt. Im Vergleich zu

14
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den oben genannten Ergebnissen zur Verkirzung der hydraulischen
Verweilzeit fuhrte der pH-Anstieg zu dramatischen Verschiebungen in der
Zusammensetzung der mikrobiellen Gemeinschaften, zeigte aber keine
starken Auswirkungen auf die metabolischen Funktionen im Hinblick auf die
Produktion von Carboxylaten mittlerer Kettenlédnge. Es zeigte sich eine hohe
funktionelle Redundanz, obwohl es sich bei den Reaktoren um langfristig

geschlossene Systeme handelte.

Parallel zu den Reaktorexperimenten wurden Reinkulturen von
kettenverlangernden Clostridienstammen isoliert, die drei neue Spezies
reprasentieren. lhre Genome wurden mit Hilfe eines hybriden Short- und Long-
Read-Sequenzierungsverfahrens rekonstruiert. Die drei neuartigen Stamme
produzierten n-Caproat, n-Butyrat, Iso-Butyrat und Acetat aus Laktat in Batch-
Kultivierung bei pH 5,5. Der genetische Hintergrund der Kettenverlangerung mit
Laktat wurde analysiert, wobei die CoA-Transferase als terminales Enzym der
reversen B-Oxidation identifiziert wurde. Die Genome weisen eine betrachtliche
genetische Heterogenitat auf, enthalten jedoch hochkonservierte Gene, die an
der Laktatoxidation, der reversen [B-Oxidation, der Wasserstoffbildung und
einer von zwei Arten von Energieerhaltungssystemen (Rnf und Ech) beteiligt
sind. Der genetische Hintergrund der Laktat-basierten Kettenverlangerung in
diesen Isolaten und anderen experimentell validierten kettenverlangernden
Stammen wurde durch vergleichende Genomik analysiert. Es zeigte sich, dass
das fur die Kettenverlangerung spezifische Kerngenom die Wege fur die
reverse [(-Oxidation, Wasserstoffbildung und Energieerhaltung kodiert und
gleichzeitig kettenverlangernde Spezies eine betrachtliche
Genomheterogenitat aufweisen. Weitere Experimente sind erforderlich, um die

Stoffwechselwege fiir die Iso-Butyrat-Bildung in diesen Stammen aufzuklaren.

Zusammenfassend lasst sich sagen, dass Modellgemeinschaften fur die
mikrobielle Kettenverlangerung durch Wechsel von pH-Wert und hydraulischer
Verweilzeit in Langzeit-Bioreaktorversuchen angereichert und weiter geformt
wurden. Der Metabolismus und die ©kologischen Interaktionen der
Mikroorganismen, die an der mikrobiellen Kettenverlangerung mit Laktat
beteiligt sind, wurden mit Hilfe von 16S rRNA-Amplikonsequenzierung und
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Zusammenfassung

Metagenomik in Verbindung mit Netzwerkanalyse, statistischer Modellierung
und maschinellem Lernen aufgeklart, was auch zu neuen Erkenntnissen tber
die Beziehung zwischen der Diversitat der mikrobiellen Gemeinschaften und
ihrer Funktionsweise fuhrte. Die Isolierung neuer Spezies erweitert unser
Wissen dber den Metabolismus der mikrobiellen Kettenverlangerung.
Schlielilich ist ein besseres Verstandnis der Mechanismen, die der Etablierung
von Reaktoremikrobiomen zugrunde liegen, der Schilussel zur
Weiterentwicklung von auf Mikrobiota basierenden Biotechnologien.
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Summary

Summary

Open cultures of anaerobic reactor systems convert organic wastes or biomass
residues into mainly short-chain carboxylates with two to five carbon atoms.
The short-chain carboxylates can be converted into the highly reduced end
product methane by methanogenic consortia in anaerobic digestion. Microbial
chain elongation such as via the reverse B-oxidation pathway was found as an
alternative electron sink with the same anaerobic reactor microbiota. In natural
ecosystems such as rumen microbial ecosystem, some anaerobic bacteria are
known to produce medium-chain carboxylates (e.g., n-caproate and n-caprylate)
through reverse B-oxidation. The carboxylate platform aims to recover carbon
from waste streams or biomass residues by anaerobic fermentation in the form
of medium-chain carboxylates. It has created great opportunities to replace
chemicals derived from non-sustainable sources such as fossil feedstock.

Mixed culture fermentation is commonly employed for the chain elongation
processes. The diverse microbial chain elongation communities contain
different functional groups involved in the processes of hydrolysis and
fermentation of available organic compounds as well as the conversion of
intermediates to medium-chain carboxylates. In general, the underlying
metabolism and ecological interactions of the chain elongation communities are
not well understood. This PhD thesis centres on the metabolism and ecological
interactions in closed model ecosystems (i.e., anaerobic bioreactors) involved

in microbial chain elongation with lactate.

In the first chapter, a model ecosystem with reduced complexity was developed
by using lactate and xylan as defined carbon sources to simulate the feedstock
conditions of caproate-producing bioreactors operated with corn silage.
Feeding defined carbon sources enabled balancing of electron and carbon
flows. By preventing continuous inoculation, the simplified community of
enrichment cultures allowed to study the metabolic and community dynamics
in a clearer manner than open reactor systems. During a long-term reactor
experiment, four succession stages including adaptation, stage | (high medium-

chain carboxylate-producing period), transition and stage Il (high butyrate-
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producing period) were observed. Co-occurrence networks of species based
on 16S rRNA amplicon sequences and associations with process parameters
were analysed to infer potential metabolic functions and microbial interactions.
The results suggested that the process included diverse functions of xylan
hydrolysis, xylose fermentation and chain elongation with lactate as electron
donor. The inferred interactions such as cooperation between lactic acid
bacteria and chain-elongating bacteria, as well as competition between
medium-chain carboxylate-producing bacteria and butyrate-producing bacteria,
resulted in the community development over four succession stages. In this
closed model ecosystem, the chain-elongating bacteria were outcompeted by
butyrate-producing bacteria under constant conditions, leading to the increase

of butyrate yield at the cost of n-caproate and n-caprylate yields.

The second chapter tested the effects of shortening the hydraulic retention time
on the community assembly and functioning in the model ecosystems, aiming
to quantitatively predict ecophysiological functions of the microbial communities.
For the process performance, higher productivities and yields of n-caproate and
n-caprylate were achieved by reducing the hydraulic retention time from 8 days
to 2 days in two continuous reactors. A predictive model was generated by
applying the random forest approach using 16S rRNA amplicon sequencing
data. More than 90% accuracy in the quantitative prediction of n-caproate and
n-caprylate productivities was achieved. Four inferred bioindicators belonging
to the genera Olsenella, Lactobacillus, Syntrophococcus and Clostridium IV
suggested their relevance to the higher carboxylate productivity at shorter
hydraulic retention time. Combined with metagenomics, the recovery of
metagenome-assembled genomes of these bioindicators confirmed their
genetic potential to perform key steps of carboxylate production. Besides,
functional redundancy in the conversion of xylan and lactate to n-butyrate, n-
caproate and n-caprylate was revealed, with the relevant bioindicators
increasing in relative abundance. Thus, the involved metabolic pathways were
strongly coupled to the decrease in hydraulic retention time. In general, the
developed machine learning framework to identify bioindicators and to
guantitatively predict process performance is transferable to other ecosystem
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processes and microbial systems where community dynamics is linked to key

functions.

In the third chapter, the effects of pH increase on the chain elongation
community assembly and functioning were tested based on the developed
model ecosystems. The increase in pH from 5.5 to 6.0 caused fluctuations in
the yields of n-butyrate, n-caproate and n-caprylate. After the pH disturbance,
the carboxylate yields returned to the previous values while the communities
developed to a different state, observed as decrease in diversity and evenness
and increase in richness. Some taxa shifted from rare to abundant, reflecting
strong selective effects of lower pH values. By applying Aitchison PCA
clustering, linear mixed effect models and random forest classification, the
different pH preferences of the potential chain elongators Clostridium IV and
Clostridium sensu stricto were identified. By constructing networks for different
pH levels, the cooperation of the chain elongator Clostridium IV with lactic acid
bacteria switches from Olsenella to Lactobacillus along the pH increase,
revealing the plasticity of the food web of chain elongation communities.
Compared with the previously observed results of decreasing the hydraulic
retention time, pH increase induced dramatic shifts in the community assembly
but exhibited no strong effects on community functioning in terms of medium-
chain carboxylate production. High functional redundancy was indicated

despite the reactors being long-term closed systems.

In parallel to the reactor experiments, pure cultures of chain-elongating
clostridial strains were isolated, representing three novel species. Their
genomes were assembled using a hybrid short and long read sequencing
approach. The three novel strains produced n-caproate, n-butyrate, iso-
butyrate and acetate from lactate in batch cultivation at pH 5.5, with the
confirmation of their genetic background of lactate-based chain elongation and
using CoA transferase as the terminal enzyme. Their genomes show
substantial genetic heterogeneity but contain highly conserved genes involved
in lactate oxidation, reverse (B-oxidation, hydrogen formation and either of two
types of energy conservation systems (Rnf and Ech). The genetic background
of lactate-based chain elongation in these isolates and other experimentally
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validated chain-elongating strains was analysed by comparative genomics. The
chain elongation-specific core-genome was indicated to encode the pathways
for reverse [B-oxidation, hydrogen formation and energy conservation while
chain-elongating species displayed substantial genome heterogeneity. Further
research is needed to elucidate the pathways for iso-butyrate formation in these

strains.

In summary, model communities of chain elongation processes were enriched
and further shaped by alternations of pH and hydraulic retention time in long-
term bioreactor experiments. The metabolism and ecological interactions of
reactor microbiota involved in microbial chain elongation with lactate were
elucidated by using 16S rRNA amplicon sequencing and metagenomics
coupled to network analysis, statistical modelling and machine learning, which
also sparkled new insights into the relationship between microbial chain
elongation community diversity and functioning. The isolation of novel chain-
elongating species further expands our knowledge on the metabolism of chain
elongation bacteria. Finally, a better understanding of the rules governing
community assembly is key to accelerate the development of microbiota-based

biotechnologies.
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Introduction

1 Introduction

1.1 Reactor microbiota

As proposed, the term microbiota refers to the assemblage of microorganisms
present in a defined environment (Marchesi and Ravel, 2015). Reactor
microbiota used in this study refers to the biologically active environment of
reactors, represented as open cultures of anaerobic microbial consortia.
Employing microbial communities in bioreactors provides the opportunity to
recover valuable resources from organic wastes or biomass residues. Within
the reactor microbiota, diverse microbial species may cooperate or compete
with each other, presenting a broad metabolic capacity for the utilisation of
complex substrates. Understanding the metabolism and ecological interactions
of reactor microbiota, and designing effective control strategies for key players
hold promise to engineer communities towards the desired bioprocesses,
providing a window for potential applications of microbiota-based
biotechnologies (Verstraete et al., 2007; Koch et al., 2014; Lawson et al., 2019).

1.2 Carboxylate platform

Using reactor microbiota for producing biogas (mainly methane) in anaerobic
digestion is a mature technology that has been developed and widely
implemented for decades all over the world (Angenent et al., 2016). While it is
a well-known waste-to-energy process, the economics of anaerobic digestion
are less favourable due to the low value of biogas (Agler et al., 2011). The
carboxylate platform is an alternative way to recover carbon from wastes with
anaerobic fermenters, in the form of medium-chain carboxylates (MCCs).
Hereafter, their dissociated and undissociated forms are subsumed as
carboxylates. MCCs are defined as monocarboxylates of six to twelve carbon
atoms, here mostly focusing on n-caproate (C6) and n-caprylate (C8). MCCs
are attractive bio-based products in the context of biorefinery platforms.
Currently, MCCs are mainly produced from vegetable oils (e.g., refinery of
coconut and palm kernel oils). Due to the limited supply and the high demands
in industry, they have relatively high values in the market. The reported prices
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of C6 and C8 are 2,880 and 5,060 US dollars per metric ton in 2018,
respectively (Scarborough, 2019). Additionally, the solubility of the carboxylate
in water decreases along with the increase in carbon chain length. This means
the longer-chain carboxylates are easier to extract from water due to their
hydrophobic  carbon-chains (Angenent et al.,, 2016). Therefore,
biomanufacturing valuable chemicals such as MCCs in a sustainable way can
meet the industrial needs and contribute to further evolve current production

schemes into a circular economy.
1.3 Microbial chain elongation

The communities of anaerobic digestion contain different trophic groups
involved in four main processes: hydrolysis, acidogenesis, acetogenesis and
methanogenesis. Short-chain carboxylates (SCCs, two to five carbon atoms)
are key intermediates in the conversion of organic wastes or biomass residues
to biogas, resulting from the main fermentation of hydrolysis products (Agler et
al., 2011). Strategies for inhibiting methanogenesis include the operation at
acidic pH in the range of 5.0 to 6.5 and addition of chemical inhibitors (e.g., 2-
bromoethanosulfonic acid), which can promote carboxylate production. In
anaerobic bacteria, the formation of MCCs from SCCs is known as a metabolic
process termed microbial chain elongation (CE). It has been described since
the early 1940s, when Clostridium kluyveri (Barker et al., 1945) was isolated
and characterised for the production of C6. Some specialists in the anaerobic
communities are involved in the elongation of fermentation products such as
acetate (C2) or n-butyrate (C4) to MCCs via reverse (3-oxidation. In reverse -
oxidation, acyl-CoA molecules are condensed and reduced, thereby increasing
the chain length of carboxylates by two carbon atoms within each cycle (Spirito
et al., 2014). As shown in Figure 1.1, initiated with acetyl-CoA, C4, C6 and C8
are all potential end products. In the CE process, ethanol or lactate can serve
as electron donor providing energy for coupling acetyl-CoA formation and
elongating acyl-CoA units; thioesterase or CoA transferase can act as terminal
enzymes resulting in carboxylate formation. Besides acetyl-CoA being
proposed as a primary source for reverse 3-oxidation, propionyl-CoA can also
be elongated for the production of odd-chain products (e.g., n-valerate and n-
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heptanoate) (Jeon et al.,, 2016). Branched MCCs were also reported to be
produced in CE, such as the formation of iso-caproate via iso-butyrate

elongation with ethanol (De Leeuw et al., 2019).
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Figure 1.1 The metabolic pathways of reverse B-oxidation with lactate or
ethanol as electron donor. Cycle refers to the reverse (-oxidation cycle; the
dashed lines represent multi-enzyme reactions between the two indicated

molecules.

Energy-rich, reduced molecules such as ethanol and lactate are suitable as
electron donor to be oxidised to provide metabolic energy (ATP) via substrate
level phosphorylation and reducing equivalents (NADH) for the reverse [3-
oxidation. Similar to CE with ethanol, CE with lactate can occur without the
presence of short-chain carboxylates such as C2 (Zhu et al., 2015), although
an extra addition of electron acceptors was reported to increase the production
rate of C6 (Zhu et al., 2017). Monosaccharides can also serve as direct electron
donors for CE. The chain-elongating bacteria using carbohydrates include:
Megasphaera elsdenii, Megasphaera hexanoica, Megasphaera indica,

Pseudoramibacter alactolyticum, Caproiciproducens galactitolivorans (D-
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galactitol, sugar alcohol) and Caproiciproducens sp. 7D4C2 (Marounek et al.,
1989; Willems and Collins, 1996; Kim et al., 2015; Jeon et al., 2017; Esquivel-
Elizondo et al., 2020). However, the detailed mechanism of the sugar-driven
CE needs to be further studied.

On the one hand, MCCs are the end products of chain-elongating species in
the reactor microbiota. On the other hand, the toxicity of MCCs can inhibit the
growth of many community members, possibly leading to the collapse of the
production of MCCs (Liu et al., 2020a). MCCs cause pH-dependent microbial
inhibition that can damage the integrity of bacterial cell membranes (Andersen
et al., 2017). For example, Escherichia coli was described to be inhibited at an
acidic pH of 4.3 whereas not inhibited at pH 7 in the presence of C6 and C8
(Yang et al., 2010; Royce et al., 2013). The inhibition needs to be managed
because CE is often performed under acidic conditions to prevent
methanogenesis. Effective ways include in-line extraction (pertraction),
operation at neutral pH level and maintaining low concentrations of MCCs by
attentive organic loading, which should be considered for a stable MCC

production.
1.4 Methods for investigating reactor microbiota

A lot of methods have been developed and are still in development for gaining
insights into the complexity of microbial communities. Briefly, these can be
sorted into culture-independent and culture-dependent techniques. Here, a

short overview of those methods employed in this thesis is given.
1.4.1 PCR-based methods

After the DNA extraction procedure, polymerase chain reactions (PCR) are
commonly applied for the amplification of 16S rRNA genes (prokaryotic small
subunit rRNA genes) or functional marker genes (e.g., mcrA for methanogens).
Terminal restriction fragment length polymorphism (T-RFLP) is relatively simple
to be applied to analyse the microbial community composition and dynamics.
Suitable combination of primers and restriction enzymes can be chosen in order

to obtain the best resolution at the desired taxonomic level (Talbot et al., 2008).
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Other fingerprinting techniques such as denaturing gradient gel electrophoresis
(DGGE), single strand conformation polymorphism (SSCP), temperature
gradient gel electrophoresis (TGGE) and automated ribosomal intergenic
spacer analysis (ARISA) were also commonly used. Fingerprinting cannot
provide any sequence-dependent information, but only allows to quantify
community diversity and compare community structure between different
samples. Combined with cloning and Sanger sequencing of clone libraries, it is
possible to identify some members (usually the most abundant ones) of the

microbial community.

Next-generation sequencing (NGS) delivers the information of microbiome
profiling by directly obtaining it from the presence and abundance of certain
sequences, which is fundamentally different from that of fingerprinting. The
amplicon NGS circumvents the cloning step that is needed to sequence
amplicons based on Sanger technology. The first commercial NGS platform
was released by Roche 454 in 2005; with new platforms emerged meanwhile,
now the market is dominated by Illumina platforms. For example, Illumina
MiSeq and HiSeq can target phylogenetic and functional marker genes,
obtaining a higher depth in community analysis than fingerprinting techniques
(Cabezas et al., 2015).

1.4.2 Metagenomics

Metagenome analysis provides more detailed genomic information and
taxonomic resolution by sequencing all microbial genomes within a sample, and
it allows the detection of functional genes and the construction of whole
pathways (Knight et al., 2018). Given adequate sequencing depth, it may go
deeply into strain-level resolution. Shotgun sequencing is commonly used to
profile taxonomic composition and genetic potential of communities, and to
recover whole genome sequences. The lack of reference genome data is a
main issue of metagenome analyses, particularly for environmental samples
with high microbial diversity (Quince et al., 2017). As for the technology itself,
long-read sequencing (third generation sequencing, Figure 1.2) holds promise
to significantly improve genome reconstruction from metagenomes. PacBio for

de novo assembly and Oxford Nanopore Technologies (ONT) for portable
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sequencing both may successfully occupy the commercial market. The hybrid
genome assembly approach that combines the short-read accurate sequencing
data (lllumina) with long-read less accurate (PacBio or ONT) sequencing data
has shown its ability in the recovery of high-quality genomes (Liu et al., 2020b;
Esquivel-Elizondo et al., 2020; Scarborough et al., 2020). At the moment, the
complexity of computational analyses and further interpretation are limitations
for metagenomics. Compared with 16S rRNA amplicon sequencing analysis,
the cost of metagenome analysis including sequencing itself and training

computational scientists to analyse the complex datasets is still high.
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Figure 1.2 Schematic examples of first (a), second (b) and third (c) generation

sequencing technologies. Figure was adapted from Shendure et al., 2017.
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1.4.3 Culture-dependent methods

The high-throughput DNA-based sequencing approaches generated a
countless number of sequences that have not been assigned to any known
microorganism (Lagier et al., 2016). We microbiologists should realise that the
field of microbial isolation cannot be completely abandoned, because pure
cultures remain essential to elucidate the functions of those unknown
microorganisms. The important physiological and biochemical features need to
be studied by cultivation methods. For pure cultures, defined mixed cultures
and self-assembled undefined mixed cultures, special efforts need to be made
under anaerobic conditions using systems like batch, continuous, microtiter well
plate format and the recently developed lab-on-a chip model (Vrancken et al.,
2019). At the moment, it is still challenging to cultivate most of the
microorganisms from natural environments under lab conditions, and isolating
anaerobes is even more difficult. Culturomics is a promising culture-dependent
method, because of the application of high-throughput culture conditions in the
investigation of the microbial community, the use of matrix-assisted laser
desorption/ionization-time of flight (MALDI-TOF) and 16S rRNA amplicon
sequencing for the colony identification (Lagier et al., 2016). It can be expected
that culturomics will bring an exponential increase of the microbial repertoire in
the near future (Lagier et al., 2015). The identification of the rare species and
new species might allow to extend our knowledge to levels equivalent to those

of sequencing.
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1.5 Aims of this study

The carboxylate platform has shown to be an effective way to produce medium-
chain carboxylates and it created an opportunity to substitute fossil-based fuels
and chemicals. However, characterising the chain elongation processes in
existing open reactor systems is a grand challenge, due to the complexity
regarding microbial interactions and involved metabolic processes. Systematic
investigations of the metabolism and ecological interactions of reactor
microbiota involved in lactate-based chain elongation were missing so far.
Knowledge on the genetic features and metabolism of lactate-consuming
chain-elongating species is limited. The goals of this dissertation were therefore:

1. to develop a closed model ecosystem by operating a continuous bioreactor
with an enriched mixed culture, and to clarify how ecological interactions
influence the chain elongation process performance and shape the community
structure during a long-term reactor operation under constant conditions
(Chapter 2.1),

2. to investigate how environmental manipulations affect chain elongation
community assembly and functioning in the closed model ecosystems during
long-term reactor operation (Chapters 2.2 and 2.3),

3. to identify the shared metabolic features and genomic diversity of the entire
repertoire of experimentally validated chain-elongating bacterial species
(Chapters 2.4 and 2.5).
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Medium-chain carboxylates such as n-caproate and n-caprylate are valuable chemicals,
which can be produced from renewable feedstock by anaercbic fermentation and
lactate-based microbial chain elongation. Acidogenic microbiota involved in lactate-
based chain elongation and their interplay with lactic acid bacteria have not bean
characterized in detail yet. Here, the metabolic and community dynamics were studied in
a continuous bioreactor with xylan and lactate as sole carbon sources. Four succession
stages were observed during 148 days of operation. After an adaptation period of
36 days, a relatively stable period of 28 days (stage [} was reached with n-butyrate, n-
caproate and n-caprylate productivities of 7.2, 8.2 and 1.8 gCOD L' ', respactively.
After a transition period, the process changed to another period (stage 1), during which
46% maore n-butyrate, 51% less n-caproate and 67% less n-caprylate were produced.
Co-occurmence netwarks of species based on 165 rRNA amplicon sequences and
correlations with process parameters were analyzed to infer ecological interactions and
potential metabolic functions. Diverse functions including hydrolysis of xylan, primary
fermentation of xylose to acids (e.g., to acetate by Synirophococcus, to n-butyrate by
Lachnospiraceae, and to lactate by Lactobaciius) and chain-elongation with lactate (by
Ruminiclostrigivm 5 and Pseudaoramibacter) were inferred from the metabolic netwark.
In stage |, the sub-network characterized by strongest positive cormelations was mainly
related to the production of n-caproate and n-caprylate. Lactic acid bacteria of the
genus Oisenella co-occurmed with potentially chain-elongating bacteria of the genus
Pseudoramibacter, and their abundance was positively comelated with n-caproate
and n-caprylate concentrations. A new sub-network appeared in stage I, which was
mainly refated fo n-butyrate production and revealed a network of different lactic acid
bacteria (Bifidobactenium) and potential n-butyrate producers (Clostridium sensu stricto
12). The synergy effects between lactate-producing and lactate-consuming bacteria
constitute a division of labor cooperation of mutual benefit. Besides cooperation,
competition between different taxa determined the bacterial community assembly over
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Luetal

Competition In Chain Eiongalion Frocess

the four succession stages in this resource-limited system. During long-term reactor
operation under constant conditions, chain-elongating bacteria were outcompeted by
butyrate-producing bacteria, leading to the increase of n-butyrate yield at the cost of
medium-chain carbaxyiate yields in this closed model system.

Keywords: carboylate platform, reactor microblota, anasroblc fermentation, mixed cufture, lactate-based chain
elongation, ecological INteractions, lactic ackd bactena

INTRODUCTION

The production of platform chemicals and fuels from renewable
resources is a major focus of a circular economy. The carboxylate
platform offers the opportunity to sustainably produce bio-
based chemicals such as medium-chain carboxylates (MCCs),
which are mainly produced from coconut and palm kernel oils
{Anneken et al., 2006). MCCs can be widely utilized in agriculture
and industry, for example, as precursors for the production of
fragrances (Kenealy et al., 1995), antimicrobial agents (Desbois,
2012} and drop-in biofuels {Urban et al., 2017). Besides the multi-
functional applications, MCC production in a biorefinery context
also meets the requirement of sustainable development because it
replaces fossil resources and botanical oils such as palm kernel oil.

Medium-chain carboxylates are monocarboxylates that
contain six to twelve carbon atoms. In this study, we subsume
their dissociated and undissociated forms as carboxylates, with
a main focus on n-caproate (C6) and m-caprylate (CE). In
a process known as chain elongation (CE), intermediates of
acidogenesis such as acetate (CZ) and n-butyrate (C4) can be
elongated to MCCs by adding acetyl-CoA in reverse f-oxidation
cycles (Spinto et al, 2014). C2 or C4 need to be transformed
to acetyl-CoA or butyryl-CoA, respectively, as initial substrate
for elongation in the reverse f-oxidation. Thivesterase or
coenzyme A transferase can be used as terminal eniymes for
MCC production. Ethanol has been well described as electron
donor providing energy for coupling acetyl-CoA formation and
elongating acyl-CoA units (Seedorf et al., 2008). Besides ethanol,
lactate also suits as electron donor for the CE process (Zho et al,
2015; Kucek et al, 2016; Khor et al., 2017). Feedstocks that are
rich in lactate (e.g. ensiled plant biomass} or lactate-precursors
(e.g.. carbohydrates) are thus promising substrates for the
production of MCCs.

Phylogenetically different species have been described as
CE bacteria that can produce C6 and even C8. The genera
Clostridium (C. kluyveri), Eubacterium (E. limosum and
E. pyruvativorans), Megasphaera (M. elsdenii, M. indica, and
M. hexanoica), and Caproiciproducens {C. galactitolivorans) all
include chain-elongators (Angenent et al, 2016). The recent
discovery of chain-elongating Ruminococcaceae bacterium CPBES
(£hu et al., 2017) suggests that further Cé-producers remain to
be discovered. To convert complex organic substrates (eg., corn
silage), the joint efforts of different trophic groups in a food web
are required. However, the substrate spectrum of pure strains
that are able to carry out CE is limited. Therefore, multi-species
reactor microbiota can be considered more viable for the
utilization of complex substrates due to their broad metabolic
capacity. On the one hand, diverse functional groups in the

microbial community may cooperate in metabolizing complex
substrates like polysaccharides. Recent studies suggested that
lactic acid bacteria (LAB) play an important role in lactate-based
CE (Andersen et al, 2017; Scarborough et al., 2018b; Lambrecht
et al, 2019). However, in such open-culture reactor systems,
other intermediates including ethanol may also be produced
from hydrolysis and acidogenesis of complex substrates, making
it hard to discern the role of lactate. On the other hand, bacterial
competition cannot be aveided in a resource-limited bioreactor.
From an ecological perspective, the relationships between LAB
and CE bacteria are still unexplored.

Aforementioned ecological interactions have been commonly
investigated in other engineered microbial ecosystems, such
as activated sludge of wastewater treatment plants (Ju and
Fhang, 2015) and anaerobic digesters (Ziels et al, 2018). For
chain elongation systems, it is not clear how cooperation and
competition influence the process performance and shape the
structure of the microbial community. To address this question,
we studied lactate-based CE in a simplified lab-scale system. To
reduce the complexity of a real system such as the anaerohic
fermentation of ensiled plant biomass, we applied a model
system with sterilized mineral medium containing xylan and
lactate as sole carbon sources. We hypothesized that lactate
formed in situ by sugar fermentation can be converted to MCCs
in the CE process. By monitoring the process performance
during long-term operation under constant conditions and by
investigating the microbial community structure based on 165
rENA amplicon sequencing, we intended to understand how
the community dynamics affects the MCC productivity in our
system. By performing network analysis, we aimed to clucidate
the ecological interactions between the different functional
groups LAB and CE bacteria.

MATERIALS AND METHODS

Growth Medium and Inoculum

The basal medium was modified from a previous study in which
lactate was wsed to produce m-caproate (Weimer and Moen.
20132). It contained per liter: 0.054 g MgClz - 6Hz0, 0.065 g CaClz
- 2H,0, 1612 g NH,Cl, 5470 g KH;POy, 10415 g K;HPO,,
0,032 g NapCls, 0030 g cysteine-HCL, 0.5 g yeast extract,
I mL of vitamin solution (biotin 20 mg/L, folic acid 20 mg/L,
pyridoxine 100 mg/L, thiamine 50 mg/L, riboflavin 50 mg/L.
nicotinic acid 50 mg/L, calcium pantothenate 50 mg/L. vitamin
By; 20 mg/L, p-amino benzoic acid 80 mg/L, lipoic acid 50 mg/L),
and 1 mL of trace element solution (FeClz - 4Hz0 1.5 g/L, CuClz
- ZHz0 2 mgfL, CoCl; - 6HaO 190 mg/L. MnCl; 100 mgL.
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NaiMoOy - ZH20 36 mg/L, NiCla - 6H10 24 mg/l, NagwW(Qy -
ZH]D 20 I.TlE:rL. Na; SEU] - SH]D 3 :I'.I'.Ig(lll, Znﬂ; 70 mg."L I-I;EO3
& mg(L). The medium was adjusted with 1 M NaOH selution to
the operating value of pH 5.5. Lactate and xylan were fed daily as
carbon sources to the reactor.

The inoculum was taken from a lab-scale CE reactor fed
with lactate-rich corn silage (Lambrecht et al. 2019). This
semi-continuous stirred tank reactor with a working volume
of 12 L and operated at pH 5.5 had been daily fed with 3 L
substrate mix resulting in a substrate retention time of 4 days.
The bioreactor microbiota showed a stable performance for
producing MCCs. Initially, 1 L fermentation broth taken from
the lab-scale CE reactor was sieved (mesh size 2 mm) to remove
particles of the corn silage. After the filtration, 875 ml liquid
phase was used as inoculum and pumped into the reactor flushed
with nitrogen. No chemical agent for the specific inhibition of
methanogenesis was applied.

Bioreactor Operation and Sampling

A BioStat-A plus bioreactor (Sartorius AG, Géttingen, Germany)
with 1 L working volume was used. The tank reactor was operated
at 38 + 1°C and at a constant stirring rate of 150 rpm. The pH
was automatically controlled at 5.5 by addition of 1 M sodinm
hydroxide solution. For the daily feeding, 1.47 g lactic acid (85%,
FCC grade; Sigma Aldrich, 5t. Lowis, M1, United 5States) diluted
in 50 mL deionized water, and 1.25 g water-soluble xylan {more
than 95% xylooligosaccharides, from corncob; Roth, Karlsruhe,
Germany) dissolved in 75 mL medium were supplied. Once a
day, 125 mL effluent was taken before feeding corresponding to a
hydraulic retention time (HRT) of & d. A gas-tight bag (produced
on-site using thermoplastic coated aluminum foil}) was used to
collect the produced gas or for compensating underpressure in
the reactor system. It was connected after a MilliGascounter
(MGC-1; Ritter, Bochum, Germany). A buffer bottle was installed
between the MGC and the bioreactor preventing the sealing
fluid of the MGC-1 to be sucked into the reactor in case of
underpressure. A septum was placed in the gas pipe for gas
sampling. Gas samples of 1 mL were taken with a syringe flushed
with nitrogen and injected into 20-ml gas-tight glass vials that
had been flushed with argon for 20 min.

Reactor effluent was used for cell concentration measurement.
For other analyses, liquid samples were collected twice per week
and centrifuged for 10 min at 20,817 = g (Centrifuge 5417R;
Eppendorf, Hamburg, Germany). The supernatants were used
for measuring concentrations of xylan, total ammonia nitrogen
{TAN), carboxylates and alcohols. Pelleted biomass samples from
50 mL reactor effluent were washed three times with phosphate
buffer (PBS, 1.8 g L~! NayHPOy, 0.223 g L' NaH; POy, 85 g
L~ MNaCl in deionized H2 0O pH 7.2; centrifugation at 10,000 x g,
10 min, 10°C) before determination of the cell dry weight. For
microbial community analysis, the pelleted cells from 2 mlL
samples were washed with 100 mM Tris- HCI butfer pH 8.5 and
stored at —20°C.

Analyses of Process Parameters
Dhaily gas production was monitored using MGC-1 and
normalized to standard pressure and temperature conditions

(101.325 kPa and 273.15 K as described by Striuber et al {2018).
Gas composition was analyzed in triplicate for Hy, COg, Ng, Og.
and CHy by GC according to Urban et al. (2017).

The TAN concentration was monitored twice a week as
described previously (Popp et al,, 2015).

Concentrations of carboxylates and alcohols were determined
by gas chromatography ((GC) in triplicate after derivatization of
the analytes as previously reported (Urban et al., 2017). Here,
I mL of 2-ethylbutyric acid was used as the internal standard
For the derivatization, 0.5 mL methanol and 2.5 mL 1 M sulfuric
acid were added. Xylan was measured with a modified classical
dinitrosalicylic acid reagent method (Miller, 1959). Xylan in
the supernatant was acidified with 1 M sulfuric acid and then
hydrolyzed at 121°C for 60 min. Before using the reagent, the pH
of the hydrolysate was adjusted to be neutral.

The cell mass concentration was determined by measuring
the optical density (0D} at 600 nm (spectrophotometer Genesys
10 5 Thermo Scientific Inc., Waltham, MA, United States) and
correlated with the cell dry mass. For determining the cell dry
mass, the cell pellets were dried at 60°C for 48 h before weighing
(six replicates). Considering the microbial community shifts, we
calculated a mean correlation coefficient (1 ODgy = 0.581 g
L) based on all cell dry mass measurements except the
first measurement (Supplementary Material B). The chemical
oxygen demand (COD) of microbial biomass was measured
with a COD kit (LCK 714, Hach Lange GmbH, Germany) as
described by Bonk et al. {2018).

The electron recovery was caloulated according to the
Eqs 1 and 2.

S i e T (1)
Qzc + Gxylan

e = —EmE ) one ()
Qiac + Guylan

‘Where n,- and 13- are defined as electron recovery, gci—cio is
the sum of all electrons in the carboxylates (fso-butyrate, n-
butyrate, iso-valerate. n-valerate, n-caproate, m-heptanoate. n-
caprylate, n-nonanoate, n-decanoate), Jhiamess 15 the number of
electrons in the cell biomass, 4, and Fryian 4T€ the numbers of
electrons of the input substrates lactate and xylan.

Microbial Community Analysis

Genomic DNA was extracted from frozen pellets using the
NucleoSpin Microbial DNA Kit (Macherey-Nagel, Germany)
according to the instructions of the manufacturer. Methods
for DNA quantification and quality control were as described
before (Lucas et al, 2015). The community dynamics throughout
the experiment was studied by terminal restriction fragment
length  polymorphism  (T-RFLP)  fingerprinting.  For  this
purpose, bacterial 165 ribosomal ENA (rRNA) genes were
amplified by polymerase chain reaction (PCR) using the
MyTag™Mix (Bioline, Germany) and the primers 27f (labeled
with phosphoramidite fluorochrome  5-carbooryfluorescein
(FAM); 5-GAG TTT GAT CMT GGY TCA G-3') and 1492r
(5"-TAC GGY TAC CTT GTT ACG ACT T-3) (according to
Lane, 1991). With a total volume of 12.5 pL, the mixtures of PCR
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reaction contained 6.25 pL of M}'TaqTM Mix, 3.85 pL of nuclease
free water, 0.7 pL of each Pn'mer (5 pmol) and | pL sample
DMA (diluted to 20 ng w17 ") The cycling protocol included an
initial denaturation at 95°C for 1 min, followed by 30 cycles of
denaturation at 95°C for 15 s, primer annealing at 58*C for 155,
elongation at 72°C for 10 5, and a final elongation step at 72°C
for 15 min. Amplicons were purified using the SureClean Kit
(Bioline, Germany) and quantified using a NanoDrop NI 1000
spectral photometer (Thermo Fisher Scientific, United States).
For T-RFLP analysis, 80 ng of 165 rRNA amplicons were digested
over night at 37°C with 2 U of restriction endonuclease Mspl
or Rzal (New England Biolabs, Germany). The MapMarker1000
(Bio¥entures Inc., United States) was applied as fragment size
standard. By using capillary electrophoresis with an automatic
sequencer (ABI PRISM 3130 Genetic Analyrer; Applied
Biosystems, United States), the terminal restriction fragments
(T-RFs) were separated. The electropherograms were analyzed
by using the GeneMapper 5 software (Applied Biosystems) and
processed by using a script according to Abdo et al. (2008}
implemented in B Studio (Version 1.0.143). Low-signal peaks
were removed below a threshold of seven times the standard
deviation of data sets. T-RFs in the range of 50-1000 bp were
included in further analyses.

For analyzing the community composition based on 165
rHNA gene sequences. 25 sampling points representing the
different process stages were selected Amplicon sequencing
of 165 rRNA gene fragments was performed on the Ilumina
MiSeq platform (V3-V4 regions, 2 = 300 bp). The primers
341f (CCT ACG GGN GGC WGC AG) and 7851 (GAC TAC
HVG GGT ATC TAA KCC) were used for amplification. De-
multiplexed sequence data were processed with QIIMEZ vanie.1
(Bolyen et al,, 2019). Filtering of phiX reads, denoising, merging
of paired ends, trimming and chimera detection were done
with the plugin of Dwisive Amplicon Denoising Algorithm
DADA2 (Callahan et al, 2016). The following parameters were
used in DADAZ: p-trim-lefi-f 0, p-trim-lefi-r 0, p-trunc-len-f
250, p-trunc-len-r 200. These were selected by reviewing the
Interactive Quality Plot for removing low quality regions of
the sequences. Other parameters were used by default. The
generated feature table indicates the frequency each amplicon
sequence variant (ASV) is observed in each sample. Taxonomic
assignment was carried out using a naive Bayes classifier trained
on 165 rRMNA gene sequences of the latest Midas database 2.1
{Mcllroy et al, 2015). The feature table was rarefied down to
the lowest read number (21,214 sequences) for further analyses.
Two samples (days 46 and 116) were excluded doe to lower read
numbers. The de-multiplexed sequence dataset of 25 samples
was deposited to the EMBL-EBI database under accession
number PRIEB34417.

Statistical Analyses

Non-metric multidimensional scaling (NMD3) was used as
ordination technique for dissimilarity matrices based on the
T-RFLP profiles including occurrence and relative abundance
of terminal restriction fragments (T-RFs). The Bray-Curtis
dissimilarity index was used to evaluate the dynamics of the

microbial communities {Bray and Curtis, 1957) reflected by the
distances between data points. Smaller distances indicate higher
similarities of community compositions. Based on the “vegan™ R
package (Oksanen et al, 2016), the "enviit” algorithm was used
to calculate the relationships between abiotic parameters and
T-RFLP profiles. The significance threshold was set to 0.01, which
was tested by Monto Carlo test with 999 permutations.

Alpha diversity based on T-RFLP and ASV data was evaluated
by using the ecological indices including richness, diversity and
evenness as described by Lucas et al. (2017). Diversity of order
one (1) and evenness of order one (E1) quantify the diversity
and evenness by weighting all present types equally, whereas
diversity of order two (D2) and evenness of order two (EZ) give
more weight to the dominant types than to the rare types.

Significant differences of mean carboxylate recoveries were
tested by Students f-test (***F < 0.001, **F < 001, and
*P = 0.05 m = 6). Significant differences of mean biomass
recoveries were tested by Mann-Whitney rank sum test
(***P < 0.001,**P = 0.01, and *P = .05, n = 6).

Co-occurrence networks based on 165 rENA amplicon
sequence data and abiotic parameters were inferred by following
the protocol of Faust et al. (2015}, using the CoNet App (v
1.1.1 beta) (Faust and Raes, 2016). Only A5Vs that had = 0.1%
relative abundance in more than three samples were included
in the analysis to reduce spurious correlations. Relative ASY
abundances were converted into absolute mean abundances
based on total cell concentrations (gram dry mass per liter).
Correlations between ASVs and process parameters (time;
biomass; concentrations of C2, C4, C6, C8, and lactate; CO4 and
H; content; gas amount) were also considered in the network.
Pearson, Spearman, and Kendall correlation coefficients were
computed and if at least one method featured a coefficient below
—0.75 or shove 0,75, an edge connecting the corresponding
ASVs or abiotic parameters was added to the network. All
networks were visualized and analyzed for topological features in
Cytoscape software (v 3.7.1) (Shannon et al., 2003).

RESULTS

Metabolic and Microbial Community
Dynamics Over Different Succession
Stages

The microbial chain elongation system analyred in this study
was designed to incude hydrolysis and primary fermentation.
Xylan and lactate were fed daily over a period of 148 days, and
the reactor microbiota produced mainly n-butyrate, n-caproate
and n-caprylate (Figure 1A). The gas was composed mainly
of carbon dioxide and hydrogen (Figure 1C), with traces of
nitrogen and oxygen. No methane was detected in the reactor
headspace. The community dynamics analyzed by T-RFLP
fingerprinting is shown as NMDS plots (Figure 2 for Rsal and
Supplementary Figure 51 for Mspl). From 25 samples analyzed
by amplicon sequencing, in total 909,240 sequence reads were
obtained, which were assigned to 95 ASVs from high-quality
sequence reads. Overall, ASVs were affiliated to three phyla
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{Firmicutes, Actinobacteria and Proteobacteria), six classes
(Clostridia, Coricbacterita, Actimobacteria, Erysipelotrichia,
Bacilli and Alphaproteobacteria), seven orders, 11 families
and 20 genera with at least 0.1% relative abundance for each
A5V (Figure 3). During this long-term reactor operation,
four succession stages — adaptation (days 0-21), stage |
(days 22-64), transition (days 65-98) and stage II (days 99-
148) - were identified based on carboxylate concentration
profiles (Figure 1A) and T-RFLP profiles (Figure 2 and
Supplementary Fignre 51).

In the adaptation stage, a certain share of the carboxylates
produced still originated from the liguid inoculum. Large
variations in daily gas production and carbon dioxide content
were observed (Figure 1C). The T-RFLP profiles (Figure 2}
indicate considerable community shifts from the adaptation
stage to the formation of a stable community composition
{Figure 3). In the adaptation stage, the microbial community was
dominated by ASVs assigned to unclassified Lachrospiraceae,
Lactobacillus, Bifidobacterium, Pseudomamibacter,  Oisenella,
Aeriscardovia, Solobacterium, and Atopobium  (Figure 3).
Hereafter, it took around 2.5 HR T for the microbiota to adapt to
the given process conditions.

After the adaptation, the dominating genera were distinctly
different from those in the inoculum, which indicates the highly
selective conditions of our reactor system. In contrast to the
strong community shifts during adaptation, data points standing
for stage [ (red), tramsition (green) and stage I (blue) are
less scattered in the NMDS plot, displaying a relatively lower
dissimilarity of the community structures within these periods
(Figure 2). After the transition stage, the microbial community
shifted from stage | to stage II as indicated by the vector "Stage.”
Similar results were obtained by T-RFLP analysis with Mspl
(Supplementary Figure 51).

Alpha diversity metrics shows that richness, diversity of order
one (1) and as well as evenness of order one (E1) based on the
T-RFLP data varied more over time than the respective indices
based on the ASVs (Supplementary Figure 52). This could be
due to the limitation of the T-RFLP method, which fails to detect
rare sequence types. When focusing on the dominant types (D2
and EZ), we observed a clear trend that the diversity (D2) was
lower in stage Il (mean values; ASV: 4.6, Rsal: 2.5 and Mspl: 3.5)
compared with stage | (mean values; ASV: 6.1, Rsal: 4.7 and Mspl:
5.8). The community in stage Il was also less even than that in
stage I, as E2 was lower in stage IT {mean values; ASV: 0.2, Rsal:

Fronfiers in Microbiciogry | wean fronfliersin. o

B Maerch 2020 vilume 11 | Articia 338

34



Research chapter 2.1

Lu et al.

Compstition In Chain Elongalion Frocess

® Adapiation
® Siage |
* Transition

Sipess = 011

FIGURE 2 | BaCteral communiy Cymamics 1 e 1our SLCCession Etapss,
Inuestratet by & non-mebnc muBidmensions scaing (NMDS) piot of T-RALP
Proflias [16S rRNA pene amplicores, rastricion enzyme Asal; the pot based
on Mzl I shown I Supplementary Figure 21). Date points ara named
acconding to semping days. Provimity of date points reprasents community
simiarty based on the Bray-Curtis Indes. Coicred potypons Indicata semplng
daye of aach process stage. The veckor shows community shifts within the
temporal dynamics (P -« 0.01, Sgnificanca celoulsted by Monte-Cano fest
with 923 permutations).

0.2 and Mspl: 0.2) compared with stage [ (mean values; ASV: 0.3,
Rzal: 0.4, and Mspl: 0.4).

In stage I, the first period with constant carboxylate
production over days 46-64 was observed (Figure 1A). With a
loading rate of 10.7 gCOD L™ 47! as lactate and 12.1 gCOD L™
d~! as xylan, mean concentrations of 1.0 £ 0.1 gCOD L1
acetate, 7.2 & 0.7 gCOD L™ n-butyrate, 8.2 & 0.7 gCOD L~}
n-caproate and 1.8 + 0.2 gCOD L1 n-caprylate were obtained.
Additionally, 1.0 £ 0.2 gCOD L™ of lactate and 0.5 + 0.5 gCOD
L of xylan were detected during this period. The mean daily
gas production was 5994 + 859 mL d™! in stage I The gas
consisted mainly of COz (60.4 & 1.7%) and Hz (33.2 £ 0.7%).
After the inoculation, still some particles from the seed sludge
were retained in the bioreactor, which highly influenced the
measured O values. Therefore, OD values are only shown
from day 15 onward (Figure 1B) as we assumed that most
of the residual particles in the inoculum were washed out by
then. The mean cell mass concentration was 0.66 £ 0.02 g

mass L™ Here, ASVs assigned to  Symtrophococcus
{17.2 £ 5.9%), Lactobacillus (159 £ 4.3%), Pseudoramibacter
(3.9 + 2.6%), Neenella (7.9 + 2.4%), Aeriscardovia (1.9 £ 0.7%),
Solobacterium (2.6 £+ 1.7%), Atopobium (4.3 £ 2.5%), uncultured
Coriobacteriaceae (0.3 £ 0.2%), Erysipelotrichaceae UCG 009
(0.9 + 06%), Eubactertum nodatum group (03 + 0.2%),
Lachnospira (0.1 X 0.1%), unclassified Erysipelotrichacens
(0.1 £ 0.1%), and Ruminiclostridium 5 {42.3 £+ 3.8%) (mean
relative abundance + standard deviation, n = 7) predominated,

while ASVs identified as Bifidobacterium and unclassified
Lachnospiraceas were detected below 0.1% of relative abundance.
ASVs assigned to Acetobacter and Clostridiales family X111 UCG
001 were below the detection limit.

From the beginning of the transition interval on day &5, a
trend of more C4 production and less C&/CE production was
observed. The daily gas production was not as stable as before.
Here, ASVs assigned to Aeriscardovia and Preudoramibacter
disappeared and Clostridium sensu stricto 12 (0.9 & 0.7%; n = 4)
emerged (Figure 3).

After the transition period, 46% more C4, 51% less U6 and
67% less C8 were produced compared with stage 1. In stage
II, we obtained mean concentrations of 1.3 + 0.3 gCOD L™t
acetate, 105 £ 1.0 gCOD L' n-butyrate, 4.0 £ 0.3 gCOD L1
n-caproate, and 0.6 £ 0.1 gCOD L™! n-caprylate. The mean
concentration of lactate was 1.6 & 0.3 gCOD L™, whereas no
xylan was detected in stage II. For comparing with the results
of stage I, concentrations owver days 130-148 were used for
calculating mean concentrations over the last six sampling points
in each stage. Remarkably, no propionate was detected since stage
L. The daily gas production was 21.1% lower than in stage L
with an average of 473.0 £ 84.3 mL d~1. The contents of COy
and H; were 62.6 & 5.0 and 31.3 £ 5.3%, respectively. The
fluctuation of the Hz content was always consistent with the daily
gas production. For €0y, the trend was in the reverse direction
throughout stage [I. The mean daily hydrogen production was
152.3 £ 48.3 mL d~!, the mean daily carbon dioxide production
was 206.2 £ 48.4mLd ™, Moteworthy, occasional underpressure
in stage II was indicated by the sealing fluid of the MGC
sucked into the tube toward the reactor. The mean cell mass
concentration increased by 42% in stage Il up to 0.93 £ 0.07 g
dry mass L7 In stage 11, ASVs assigned to Fubacterium
nodatum group, Lachnospira, Lactobacillus, Syntrophoacoccus and
Solobacterium increased in their relative abundance to 1.6 & 0.8,
14 £ 0.7, 189 + 7.6, 398 £ 69, and 9.4 + 3.6% (stage IL
n = 8), respectively. ASVs of Atopebium, Ruminiclostridium 5 and
Oisemella dropped down to abundances of 0.7 & 0.5, 19.3 £ 4.4,
and 7.2 £ 1.9%, respectively. All uncertainties are represented by
95% confidence intervals.

Electron and COD Balances in Stage |
and Stage |l

The electron recovery indicates the partitioning of electrons from
electron donors (xylan and lactate) to acceptors as a result of
anabolic and catabolic processes. Taking all compounds analyzed
by GC into account and considering a total input of 2.85 maol
L™! electron equivalents, the electron balances were similar in
stage | (92 £ 3%) and stage 11 (89 £ 4%) (Sopplementary Tahle
§1). Comparable results were obtained for the COD balances
(Supplementary Table 52). With an input of 23.48 gCOD L1,
the COD balances in stage I and stage IT were 91.2 £ 0.6 and
92.2 + 0.8%, respectively.

Moast of the electrons were recovered in the C4-C10 products
in both stages (Supplementary Table $1 and Figore 4). As
shown in Figure 4, the electron recovery (median values) in
these CE products decreased by 12% from stage 1 to stage II as
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time progressed, which represents a significant difference {two-
tailed P-value = 0.007). Moreover, compared with stage 11, 80%
maore of the electrons (median values) from consumed xylan and
lactate were channeled to cell biomass in stage I, which also
shows a significant difference between the two stages (two-tailed
P-value = 0.002). Thus, electron balances indicate that a higher
percentage of substrate was directed to cell biomass synthesis and
other non-target CE products with progressing operating time.

Network Inference in Stage | and Stage Il
We constructed three separate networks to analyre the
relationships among microbial taxa or process parameters with
the aim to reveal potential functions and ecological interactions
within the microbial community in our CE reactor.

The network inferred from data of stage I only (Figure 5A)
mainly consisted of two co-ocourring sub-network moedules. The
first one was a CA/C8-related sub-network (left) characterized
by positive correlations of Lactobacillus with unclassified
Cortobacteriaceae, Psewdoramibacter with  Olbsenella  and
Pseudoramibacter  with  undclassified Coriobacteriaceae. 6
production was positively correlated with Preuwdoramibacter,
(Mzenella and unclassified Coriobacteriaceae. The second
sub-network {right} was acetate related C2 production was
positively correlated with Biftdobacterium, Clostridiales family
XIIT UCG 001, unclassified Lachnospiracese and Solobacterim.

Lachnospira, Eubacterium nodatum group and Aeriscardovia
were also involved in positive correlations within this module.

In the network derived on data of stage 11 only (Figure 5B),
a new C4-related sub-network module appeared. C4 production
positively correlated with Clostridium  sensu  stricto 12, a
genus that was positively correlated with Ruminiclostridium 5,
unclassified Erysipelotrichaceas and Bifidobacterium here. It is
worth to mention that Afopobism correlated with C6 and C8
positively in stage II, in which Pseudoramibacter had vanished

In eddition, we identified more co-ocourrence pairs inoa
network analysis comprising stage I, transition stage and stage
Il (Figure 5C). Here, Aeriscardovin correlated positively with
Ct and C8 production, while Syntrophococcus correlated with
C4 production. Patterns of co-occurrence were detected for
Aeriscardovia with Psewdoramibacter and Symtrophococcus with
Clostridium semsu stricto 12, Lachnospira, Solobacterium, and
Eubacterium nodatum group.

DISCUSSION

In owr previous studies (Strivber et al, 2016, 2018;
Lambrecht et al, 2019), ensiled energy crops were used as
substrate for MCC production. Te simulate the feedstock
conditions of an acidogenic fermenter fed with crop silage

and producing MCCs in the present study, we selected xylan

2012,
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and lactate as model substrates. Feeding such defined carbon
sources enabled electron balances and carbon flows. To gain
further knowledge on the microbial community development
in such a CE model system, we simplified the community by
preventing continuous inoculation as it would have occurred
in open systems.

Xylan is the major component of hemicellulose in plant
cell walls {Badal, 2004). During acidogenic fermentation of
corn silage, higher degradation of hemicellulose compared with
cellulose was testified both in our previous batch (Strinber et al.,
2012) and continuous (Striuber et al, 2016) studies. The xylan
we used here contained more than 95% xylooligosaccharides
(XO5), which is a mixture of oligosaccharides formed from
xylose with a polymerization degree ranging from 2 to 10.
Lactate is a typical fermentation product of LAB during the
ensiling process. Previous studies have shown that the LAB
Bifidobacterium, which was highly abundant in the inoculum of
our CE process but later decreased in abundance, can ferment
X05 to lactate and acetate as main products (Okazyla et al.,
199 Falck et al,, 2013} Lactobacillis, which was highly enriched
and became the most abundant LAB in our reactor, can also
ferment XO5 and produces meinly lactate (Kontula et al.
1993; Ananieva et al, 2012). For the other LABR we detected,
such as Aerizcardovia, Atopobium and Olseneila, the ability to
hydrolyzre X058 has not been demonstrated yet. Therefore, we
assume that they benefited from XO8-hydrolyzing bacteria and
fermented xylose to produce mainly lactate, acetate and formate
(Placidi et al., 2001; Kraatz et al, 2011). Other dominant genera,

such as Ruminiclostridium 5, Solobacterium, Syntrophococcus,
Psewdoramibacter, Eubacterium nodatum group, Clostridium
semsu stricto 12, and Lachmospira, were not yet reported
to hydrolyze XOS.

Our study was designed to include hydrolysis and primary
fermentation in the CE process. Acetate-producing xylose
fermenters such as Syntrophococcus (Dore and Bryant, 1990) and
butyrate-producing xylose fermenters such as Lachrospiraceae
(Cotta and Forster, 2006) and Selobacterium (Kageyama and
Benno, 2000) can be assumed to be imvolved in primary
fermentation. Lactate-utiliring species of the genus Eubacterium
were reported to produce mainly butyrate (Cuncan et al,, 2004),
which indicates that CE with lactate may also be mvolved
in C4 production. The produced intermediates {C2 and C4)
can he elongated to MCCs with lactate as electron donor. We
suppose that, besides the lactate fed as substrate, i situ lactate
formation from xylan as mentioned above contributed to the
CE process. The dominant genus Ruminiclostridium 5 might
have been the potential CE bacteria, as strain CPB6 belonging to
this genus was described to catalyze CE with lactate (Zhu et al.,
2017). Another genus potentially involved in MCC production is
Psewdoramibacter, which dominated only in stage | characterized
by high C6/C8 concentrations. Candidatus P. fermentans was
predicted to use lactate as substrate for CE (Scarborough et al.,
2019). MCC production directly from xylose without external
electron donor, which might also have been a possible process in
our reactor, was described for Candidatus Welmerbacter bifidus
of the family Lachrospiraceae (Scarborough et al., 2019).

Owerall, our CE process showed diverse functions including
hydrolysis of XO5 (e.g.. by Lactobacillus), primary fermentation
of xylose to acids {by Syntrophococcus for C2, Lachrospiraceae
for C4, and Lactobacillus for lactate) and CE with lactate (by
Eubacterium, Ruminiciostridium 5 and Pseudoramibacter).

To identify potential ecological interactions within microbial
communities, correlation-based network analysis may help
understand the guiding roles of community assembly and
decipher the community dynamics (Réttjers and Faust, 2018).
Process parameters were also included in the network analyses
in some studies on artificial microbial ecosystems (Ju and Zhang,
2015; Ziels et al, 2018) to understand the change of process
performance and further to maintain process stability. For our
CE microbiota, we detected pairwise relationships among taxa,
amaong abiotic parameters, and between taxa and parameters over
time during the different process perinds.

Generally, many more positive correlations were observed in
stage | than in stage IL. In stage I, the higher C6/CE productivity
can be explained by Preudoramibacter that served as a key taxon
within the C6/C8-related sub-network. In stage [1, the Ca/C8-
related sub-network was less complex and only determined by
Atopobium. The C4-related sub-network emerged in stage 1T with
the key taxon Clostridium sensu stricto 12, explaining the higher
C4 productivity.

Co-occurrences between pairs of phylogenetically distant
taxa may suggest bacterial cooperation such as mutualism.
As reported by Ju and Zhang (2015), the co-occurrence
between ammonia-oxidizing bacteria of the genus Nitrozomonas
and mitrite-oxidizing bacteria of the genus Nitrospira most
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likely suggests their muotualistic interactions in  activated
sludge. In our bioreactor, a typical example was the co-
occurrence of Pseudoramibacter (phylum  Firmicutes) and
Olzgnella (phylaom  Actinobacteria) in stage | (Fignre 5A).
Chain elongators such as Pseudoramibacter might use lactate
released from LAB such as Olsemella to produce CafCE.
Lactate-based CE driven by Olsenells was recently reported
by Lambrecht et al. {2019) for the reactor microbiota that
served as inoculum for our reactor. We therefore assume
that the C6/C3 sub-network was a key feature of the CE
process based on corn silage, which probably persisted after
adaptation to the defined carbon sources at least during
stage |. The other example of cooperation was shown in
the Cd-related sub-network of stage 11 (Figure 5B). Here,
Bifidobacterium  (phylum  Actinebacteria) co-occurred  with
Clostridium sensu stricto 12 (phylum Firmicutes), the latter
ASV sharing a high similarity (98.3% BLAST identity)
with Clostridium luticellarti. We propose that Clostridism
semsu sivicto 12 may have used acetate and lactate released
from Bifidobacterium to produce C4 in our system. O
Iuticellarii was also assumed as the dominant candidate for
performing methanol-based CE in the study of de Smit et al
(2019). Most importantly, not only lactate was provided
as electron donor for CE, but also removing lactate as the
reaction product shifts the reaction equilibrium toward
more lactate production. Inm other words, LAB might
increase the availability of energy from such shift Such
synergy between producer and consumer constitutes a
division of labor cooperation revealed as mutual benefit
{Gontriler-Cabaleiro et al., 2015).

By supplying a finite carbon resource in a2 CE system,
it is reasonable to assume that bacterial competition also
impacts unignorably the community structure, manifesting the
shift of process performance. As reported in the literature,
C4-producers like species of the genus Lachnospira (Cotta
and Forster, 2006) can ferment xylose. In our CE system,
the negative correlations between the functional groups of
lactate producers (OMsenella, Lactobacillus) and €4 producers
(e.g.. Lachnospira) (Figore 5B) may potentially reflect the
competition for the carbon and energy source xylose. This
competition might direct the carbon flow more to C4 as
observed in stage 1L Such negative interactions between
different functional groups may have some agreement with
previous findings in other biotechnological systems such as
wastewater treatment plants (Ju and Fhang, 2015). Likewise,
under such resource-limited conditions, widespread competition
between taxa crucially structures the microbial community.
Finally, although integrating process parameters and absolute
biomass can effectively support our hypotheses of bacterial
cooperation and competition, the true ecological interactions
still need to be validated in colture-dependent experiments
with defined synthetic communities of species with known
metabalic functions.

During long-term reactor operation, we found that the reactor
microbiota self-optimized to yield more biomass at the cost of
C6/C8 yields. This indicates that the C6/C8-producing bacteria
in our system could not successfully compete with C4-producing

bacteria during the battle for the finite resources. This might
be different in open systems such as those fed with complex
biomass, where new microorganisms including different CE
bacteria can enter the system during operation. In ouwr medel
system, the absolute abundance of potential Cé-producers such
as Ruminiclostridium 5 decreased significantly in stage II, and
the genus Pseudoramibacter was even completely washed out
after the tramsition period. Instead, other functional groups
including potential C2-producers {e.g.. Symtrophococcus), LAB
(Lactobacillus) and C4-producers (Clostridium sensu stricte 12,
Solobacterium, Eubacterium nodatum group and Lachnospira)
increased in their absolute abundances. The negative correlations
between CE bacteria of the genus Preudoramibacter and other
functional groups are shown in Fignre 5C. Considering the
higher €2 and C4 electron recoveries in stage II, we concude
that bacteria of these functional groups (e, C2-producers,
LAE and C4-producers) captured emergy from the substrate
more efficiently than C&/CE-producing bacteria for their growth
Qur results may confirm the theory that maximum metabolic
energy harvest rate for growth can select the microbial catabolic
activities in microbial ecosystems (Gonzdler-Cabaleiro et al.,
2015). As for the CE process, longer pathways with higher
input of metabolic labor decrease the energy harvest rate. This
applies to another recent study on the CE process, which also
explained this effect well from the thermodynamics perspective
(Wu et al, 2018). For our system, the pattern of competition
would be more favored due to the following reasons. First,
the enriched members share overlapping metabolic niches and
require the same nutrients as so many species are functionally
similar. After inoculation of the reactor. no new microorganisms
with different metabolic needs or capabilities were brought
into this insular community. Second, in our reactor system, all
nutrients are well mixed, thus limiting spatial heterogeneity and
consequently different niches, but favoring nutrient availability.
In both aspects, the conditions in our system differ from those
in systems with complex biomass substrate Moreover, our
resource-limited reactor drove selection for favering bacteria
that rapidly grow to take wp resources (Maitra and Dill,
2015). As 2 consequence, community dynamics over time
depends on the selection pressures mentioned above (Ghoul
and Mitri, 2016). Therefore, competition cannot be avoided
when using mixed cultures for producing MCCs. However, the
degree of competition might be different in open systems. Ta
what extent our observations could be extrapolated to more
complex systems needs to be further tested. Until now, many
studies focused mainly on other competing processes such as
methanogenesis (Grootscholten et al., 2014), bacterial sulfur
reduction {Cavalcante et al, 2016) and the acrylate pathway in
lactate-based CE (Kucek et al. 2016) to ensure effective MCC
production. Such processes were not ohserved here. However,
the C4-producers should be also realized as a competitor for
utilizing carbon sources and other nutrients. In this study, the
processes of xylose fermentation to butyrate and lactate-based CE
of acetate both contributed to the C4 production. In the mixed
microbial fermentation study of Scarborough et al. (2018a),
these were also described as the competing processes in CE
for producing MCCs.
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Another possible explanation is that product inhibition also
promated the community shift. With an operation at pH 55,
the protonated C6 (0.72 g L™!) and C8 (0.15 g L™!) in stage
I showed inhibitory concentrations comparable to the system
reported by Andersen et al. (2017).

Furthermore, other environmental factors such as HRT
and pH probably also influenced the community development
and the MCC production during the long-term reactor
operation. 3ince the operation conditions were not changed
in this study, future experiments could investigate the effects
of certain abiotic factors on the CE community assembly
by changing them.

Ouwr findings showed that hydrolysis, primary fermentation
and CE with lactate functions were all enriched in the reactor
microbiota by feeding xylan and lactate as the substrates.
Ecological interactions such as cooperation between LAB and
CE bacteria, as well as competition between C6/C8-producing
bacteria and C4-producing bacteria, resulted in the community
development over four succession stages. The higher blomass
and C4 yields at the cost of C6/C8 yields may be explained
by the ecological interactions discussed above. Additionally, the
lower reactor performance in terms of C6/C8 production could
be atiributed to the loss of diversity in stage 11, as the more
diverse community in stage I might have a higher capacity to
use redundant pathways, resulting in more efficient community
functions (Werner et al., 2011). In conclusion, during the long-
term reactor operation without tuning any process parameters,
the CE reactor microbiota developed toward predominating
C4 and biomass production instead of MCC production in
our system.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the
Supplementary Material B and the EMBL European Nucleotide
Archive (ENA) under accession number PRIEB34417 (hitpe//
www_ebiac uk/ena/dataiview/PRIEB34417).

REFERENCES

Abdo, 7, Schiiette, U. M. E, Bent, 5 1., Willams, C. I, Forney, L ],
Joyce, P, et al (2006). Statistical methods for chamacteriring diversity of
microbial communities by analysis of terminal restriction fragment length
polymarphisms of 165 rENA genes. Emviron. Microbiol. B, 929-938. dai: 10
1111451442 2020, 2005 00050 x

Ananieva, M., Mandadrhieva, T., Kolandowva, 1, and Sta'rmuvlﬁ. g (20012)
Utiliration of ryloaligosaccharides from different Lactobacilhes strains . BisSci
Bifech. 2012, 147-150.

Andersen, 5. I, de Groof, V.. Khor, W. C., Roume, H., Praps, &, Coma, ML, et al.
(2017). A Clostridium group IV species dominates and suppresses 2 mixed
culture fermentation by tolerance to medivm chain fatty acids products. Front.
Biverg. Biotechrol. 5:8. doi: 103389/ thioe 201700005

Angenent, L. T., Richter, H., Buckel, W., Spirita, C. M., Steinbusch, K. ]. 1., Plagge,
C. M., et 2l (20016). Chain cl.unpl:inu with reactor microbiomes: u]]m-nllmrc
hintechnology to produce biochemicals. Emviren. 5o Techrol. 50, 2796-2810.
daoi 10,1021 facs est. ShIMBAT

AUTHOR CONTRIBUTIONS

BL, HS, and SK designed the study and the experiments
and contributed to data analysis and data interpretation. BL
performed the experiments and analyzed the reactor data as
well as T-RFLP and amplicon sequencing data. FC did the
network analysis. HH contributed to the discussion of the results.
All authors critically contributed to the preparation of the
manuscript, read and approved the final manuscript.

FUNDING

This work was funded by the China Scholarship Council
(# 201606350010), the BMBF - German Federal Ministry of
Education and Research (# 031B0339B, # 01DM)17016, and #
031A317) and the Helmholtz Association (Program Renewable
Energies). The funding agencies had neither influence on the
design of the study, the collection, analysis and interpretation of
the data nor the writing of the manuscript.

ACKNOWLEDGMENTS

e thank Ute Lohse for her technical assistance in molecular
analyses, and the colleagues Birbel Haase, Martin Apelt,
Peter Fischer, and Susann Hoffmann from DBFZ Deutsches
Biomasseforschungsrentrum gemeinniitrige GmbH for their
technical support in analyses of abiotic parameters. We
also thank Denny Fopp and Fabian Bonk for their help
with data analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at:  hitps:/fwww.frontiersin.org/articles’10. 3389/ fmich.
2020.00336/full#supplementary- material

Anneken, [ |, Both, 5, Christoph, B, Fieg, G_, Steinberner, U, and Westfechel,
A (2006). “Fatty acids,” in Ulfmann’s Encyclopedia of Indestrinl Chemistry, Vol.
14 {Weinheim: Wilsy-VOH Verlag GmbH & Co. KGad), 73-116.

Badal, C. 5 (204} “Lignocellulose biodegradation and applications in
biotechnology, in Lignocellidose Bivdegradation, eds B. . Saha and K. Hayashi
(Washington, D2 American Chemical Societyl, dai: 10.1021/bk- 2004-0889.
chindl

Balyen, B, Rideout, |. B, Dillon, M. B, Bakulich, M. A., Chase, ]., Cope, B K.,
etal (2019). Reproducihle, interactive, scalahle and extensible microbiome data
science nsing CIIME 3. Nat. Bistechnol 37, B32-857. doi: 10L1038/s41587-018-
0a.9

Bank, F., Popp, D, Weinrich, 5., Strauber, H., Kleinsteuber, 5., Harms, H_, ot al.
(2008). Intermittent fasting for microbes: how discontinuous feeding increases
functional stahility in anaerobic digestion. Biotechmol Bigfusls 11:274. doi: 10.
1 1B6is] 306GE- 0 B- 1275. 5

Bray, 1. B, and Curtis, [. T. (19570 An codination uFﬂ):up]ind. forest communities
of Wisconsin. Erol. Momagr. 27, 325-M9. doi: 1023077194
2268

Frontiers N MICIoHicIogy | W montersin.org

MErch 2020 | violume 11 | Article 338

40



Research chapter 2.1

Luetal

Compatition in Chain Elongation Process

Callahan, B ], McMurdie, P [, Rosen, M. ], Han, & W, Jobnson, &4 ]. A, and
Haolmes, 5. P. (1016). DADAZ: high-resolution sample inference from Hhemina
amplicon data. Nat. Methods 13, 581-583. doi: 1001038/nmeth 3868

Cavalcante, W. IL A, Leitio, K. ., Gehring, T. A. Angenent, L. T., and
Santasll, 5. T. (2016). Anasrabic fermentation for n-cagroic acid production:
a review. Process Biochem 54, 106-11% dot  1010LG prochio. 2006,
12024

Caotta, M_, and Forster, B {2006). The family Lachnospiraceas, incloding the genera
Butyrivibrio. Lachnospir and Rossburia. Prokaryotes 4, 1002-1021. doi: 10,
1007 10-387-30744-3_35

de Smit, 5. M., de Lesuw, B D., Buisman, C. . M., and Strik, D P. B. T. B.
(2019). Continuous n-valerate formation from propionste and methanol in an
anzerobic chain elongation apen-culture bioreactar. Bistechnol. Bigfuels 12:132.
doi 10.1186/513068-0159- 1458-x

Deshais, P. A. (2012). Potential applications of antimicrobial fatty acids in
medicine, agriculture and other ind Becent Pat. Artiinfect. Drug Discov.
7, 111-122. doi 10.2174/1574891 12801619728

Dore, [, and Bryant, M. P. {1990}, Metabolism of one-carbon :mpmmd}b:r the
DE4-089. doiz 1001128/ AEM_56.4.984- 288, 1990

Duncan, 5. H., Loais, P., and Fint, H. ]. (2004). Lactate-ntilizing bacteria, isalated
from human feces, that prodwce batyrate 25 a major fermentation product. Appl.
Ervirom. Microbiol 70, 5810-5817. doi: 1000 1 2B/ AEM.70.10.5810

Falck, B, P:achaAmm,&Cﬂ . O, Immerzeel, P, Switlbrand, H.,
Adlercrentr, P, et al. {20130 thnﬁpﬂ:hulds from hardwood and cereal
xylans produced by a thermostable rylanase as carbon sources for Lactobaciilus
brewis and Bifidobacterium adolewentic. | Agric Food Chem 61, 73337340
doi 1010017012495

Faust, K., LimaMender, G Lerat, I. 5., Sathirpongsasusi, ] E. Knight,
B, Huttenhower, C, et al (2015). Cros-biome comparison of microbdal
association networks. Frant. Microbiol. 61300, doi: 10_3388fmich 201501200

Faust, K, and Raes | {2016} CoMet app: inference of biological asociation
netwarks using Cyinscape. FIR0Ressarch 5:1519. doi 10.12688/71000research.
B050.2

Ghoul, M., and Mitri, 5 (2006). The ecology and evolution of microbial
competition. Trends Microbiol. 24, B33-845. dok 101016/ tim. 2016.06.01 1

Gonnilez-Cabalsiro, B, Ofigeru, L I, Lema, ]. M., and Bodriguer, ]. (2015).
Microbial cataholic activities are natarally selscted by metabolic energy harves:
rate ISME [ %, 2630-2641. doi: 10,1038 fismej. 200 5.69

Grootscholten, T. L M., Strik, D, P. B. T. B., Steinbusch, K. 1. I, Buisman, C. ). M.,
and Hamelers, H. ¥. M. (2014). Two-stage medium chain fatry acid (MCEFA)
production from municipal solid waste and sthanol. Appl. Emergy 116, 223-228.
doi: 10.1006fj.apenergy. 301311061

Ja,F.and Zhang, T.{2015). Bﬂ:t:nalﬂmu'r nndhﬂnpnmld'rnmu im activated
sludge af a full-scale municipal wastewater treatment plant. [SME J. 9, 683625,
daoi 10,1038 sms] 2014162

Kageyama, A., and Benna, ¥. {2000). Phylogenic and phenotypic characterization
of some Euvhacterium-like isolates from human feces: description of
Solohacterium moorel gen. mov., s Dov. Microbiol Fremurol 44, 223327,
daoi 10.11115.1348-042 1 2000th02487 x

Kenealy, W. K., Can, ¥., and Weimes, P. 1. (1995}, Production of cagroic acid by
cocultures of raminal celluloltic bacteria and Clostridium kligveri grown an
cellulose and ethanal. Appd Microbiol. Biotechnol 44, 507-513. dok 10.0007¢
02530050590

Khor, W. C, Andersen, 5., Vervasren, H., and Rabaer. K. (2017). ﬂecl:n:lhr—
asisted production of cproic acdd fom grass. Bistechnol Riofuels 10:180.
dor 101186113068 017-0863-4

Kontula, P, Von Wright, A, and Mattila-Sandholm, T_ {1998} Ot bran f-ghsoo-
and xylo-dlignsaccharides as fermentative substrates for butic acid bacteria. fnt.
I Food Microbiol 45, 163-169_ doi 10 1016/50168- 1605{8)00156- 1

Kraatr, M., Wallace, B ], and Svensson, L (2001, (lsmella umbonata sp. nov_, a
microaerotolerant anasrobic bactic acid bacterinm from the shesp rumen and
pig jefurem, and emended descriptions of (lemella, Olserefle uli and Olenella
prafisa, Int. J. Sprt. Evol. Microhiol, 61, 795803, diai: 10.1099/j=.0.022954-0

Kucek, L A Nguyen, M., 2nd Angenent, L T. (2016). Conversion of Llactate into
n-capraate by a continwonsly fed rexctor microbiome. Water Res. 93, 163-171
daoi 10,1006 watres 20 1602.018

Lambrecht, |, Cichocki, M., Schattenberg, F., Kleinsteuher, 5., Harms, H., Miller,
5. et al (2018). Key suh-commumity dynamics of medinm-chain carboxylte
production. Microb. Cell Fact. 18:92. doi: 1011 186/512634-01%-1143-8

Lane, D. . (1991). “165/235 rANA sequencing” in Nucic Acid Technigues in
Bacterial Systematics, eds E. Stackbrandt and M. Goodfellow (Chichester: John
Wiley and Sons), 177-203.

Lucas, B, Groeneveld, 1., Harms, H., Johst, K, Frank, E_, and Eleinsteuber, 5.
(2017). A critical evaluation of ecological indices for the comparative anabysis
«of microbial communities based on molecular datasets. FEMS Microbiol Ecol
G2-fiwd0d. dai: 101053 femsec w209

Luwcas, R, Kuchenbuch, &, Fetrer, 1, Harms, H., and Eleinsteuber, 5 (2015). Long-
term momitoring reveals stable and remarkably similar microbial communities
in parallel full-scale biogas reactors digesting energy crops. FEMS Microbiol.
Ecol 91:vi04. doi: 101093 femsecifivi0d

Maitra, A., and Dl ¥. A {2015). Bacterial mhmrcﬂaclﬂnnn]mnm
importance of energy efficiency. Proc. Natl Acad 5o LLEAL 112, 406-411.
daiz 10,1073 pnas. 1421138111

Ml:ﬂm'y. 5. 1., Sammders, A. M., Al:ﬂ'&m.M..Niﬂ'rd:lﬂ. M., Mn:'lh'uy.. E., Hansen,
A A et al (20050 MiDAS: the field guide to the microbes of activated sludge.
Diatabase 201 5:bax016. doi 10,1093/ database/bavis2

Miller, G. L. {1959). Use of dini 'a:idmgmtfm’d:l:rminaﬁ:unnf
reducing sugar. Amal Chem. 31, 426428, doi: 10.0021/ac50 1472030

Dkzu:yki. M.,FujikmS..mdMammm.u.N. (1900}, E'Eect-nfrrhaligamchaﬁde
on the growth of Bifidobacteria. Bifidobact. Micrgflora 9, 77-86. doi: 10.12838/
hifidus1582. 8.2 77

Oksanen, [, Elanchet, F. G., Kindt, R, Legendre, P., Minchin, P. R, "Hara,
R B., et al (2016). Multivariate Analysis of Feological Communities in K- vegan
Tutorial. Available online at- hetp fwww moorescology.com fupload s 2040201
24213970/ vegantutar polf (sccessed September 18, 2017).

PMaridi, B, Floris, B, Borrao, A, Romigi, &, Baviera, M. E, Tombini, M_, = al
(2001). Complete genome sequence of Atopobium parvulom type strain. Stend.
Genomic Sci. 57, 534-537. dot- 10,4056/ s3gs 20547

Popp, D, Schrader, 5, Kleinstenber, §, Harms, H., and Stranber, H {2015). Biogas
production from coumarin-rich plants-inhibition by coumarin and recovery
by adaptation of the bacterial community. FEMS Microbiol Ecol 91fiwl03.
dioiz 10,1083 femnsecifv103

Hiittjers, L., and Fauwst, K {2018). From hairballs to bypothesesbiological insights
from microbial networks. FEMS Microbiol Hev. 42, 761-780. doi 10,1093/
femnareifayl30

Scarborough, M. 1. Lawson, C. E. Hamilton, 1. ].. Donohwe T. J.. and
Moguera, [ B. (20182). Metatranscriptomic and thermodynamic insights into
medium -chain fatry acid production using an anaesrohic microbiome. mSystems
F:e0221- 18, doi: 10011 28/mSystems 0221 18

Scachorongh, M. I, Lynch, G., Dickson, M., McGee, M., Donchae, T. |, and
Nng;u:m,D.R.{ZﬂlBlﬂ. hﬂmﬂngﬂ):nmmkvnhmufﬁpmﬂulmi:slﬂap
through medium-chain fatty acid production. Bistedhmol Bigfusls 11:200. dod:
101 1B6/s 13068018 1193-x

Scarborough, M. [, Myess, K 5. Donchue, T. 1., and Nogaera, D. K. (2019),
Muli-omic analysis of medivm-chain fatty acid synthesis by Candidatus
Weﬁmﬂ'ﬁ:rﬂerh:ﬁ&u.gm MOV ., 5P . DOV ., and Candidatus Peudoramibacter
fermentans, sp. nov. bioRxiv [Preprint]

Seedarf, H., Fricke, W. F,, Veith, B, Briggemann, H., Liesegang, H., Strittmatter,
.‘L.:taL{MBLTB;gmﬂuuufduﬂ:idium}Lmaanict arasrobe with
unigue metabalic features. Proc. Natl Acad. S ULS.AL 105, 2128-2133, dod:
100073/ pras 07 11093105

Shanmon, P, Markiel, &, Owder, 0., Baliga, N. 5, Wang, |. T, Hamage, D,
et al (3003). Cytoscaper a software environment for mtegrated models of
hiomalecular interaction networks. Gemome Res. 13, 2488-2504. dai- 1001017
gr. 1239303

Spirito, €. M., Richter, H.. Rabaey, ., Stams, A_ . M., and Angenent, L T. (2014].
Chain elongation in anaerohic reactor microhiomes to recover respurces from
waste Curr. Opin. Bistechmol 37, 115132 doi: 101016/ .cophio 2001401 003

Strinber, H., Bihligen, F., Sabine, B, and Dittrich-Zachendarf, M. (2018).
Carboxylic acid production from ensilsd crops in anaerchic solid-state
fermentation - trace dements as pH controlling agents sapport microbial
chain elongation with lactic acid. Erg. Life Sci. 18, 447-458. doi: 10,1002 elsc.
2017001586

Frontiers I MICrobiciogy | warw mntersin. org

12

Merch 2020 | volume 11 | Article 338

41



Research chapter 2.1

Llu et al.

Compatition In Chain Elongation Process

Strimber, H., Lucas, B, and Kleinsteuber, 5 (2016} Metabalic and microbial
community dynamics during the anaerchic digestion of maize silage in a two-
phase process. Appl Microbiol. Biotechnol, 100, 479481 doi: 10.1007/500253-
1562060

Strimber, H., Schrider, M., and Eleinsteaber, 5. (2012). Metahalic and microbial
community dymamics during the hydrolytic and acidogenic fermentation
in a leachbed process Energy. Sustoie Soc 2:03. doi: 10.11B6/2192-
0567-2-13

Urban, C, Xu, ], Striuber, H., dos Santos Dantas, T. B, Mihlenberg, 1, Hartig, .,
et al. (2017). Production of drog-in fie] from biomass by combined microbial
and electrochemical conversions. Erergy Environ. Sci. 10, 2231-2344. doi: 10
1039 CFEEN M03E

Weimer, P. |, and Moen, G. N. (2013} Quantitative analysis of growth and
volatile fatty acid prodwction by the anaerohic ruminal bacterium
eledemii TEL. Appl Microbiol Biotechral. 97, 40754081, doi: 10.1007!s00253-
12-4545-4

Werner, | |., Knights, D, Garcia, M. L, Scalfone, M. B., Smith, 5, Yarasheski,
E., et al. (2011} Bacterial community structures are anigue and resilient in
full-scale bicenergy systems. Proc. Natl Aoud. 5. US.A. 108, 41584163, doi:
10107 poas. 1015676108

W, O, Guo, W, Bao, X, Meng. X., Yin, R, D, I.. et al (2018). Upgrading liquar-
making wastewater into medium chain fatty acid- insights into co-electron
donors, key microflora, and energy harvest Water e 145, 6500658, doi:
10,101 &/ watres. 201 B.08 046

Fhu, ¥, Tao, Y., Liang, ., Li, X, Wei, N, Zhang. W_, et al {2015). The synthesis of
n-caproate from lactate a new efficient process for medivm-chain carboxylates
production. Sci. Rep. 5:14360. doi 10,1038 /srep] 4360

Zhu, X., Zhoa, Y., Wang, Y., Wu, T,, Li, X, Li, D, et al {3017} Production of
high-concentration n-capraic acid from lactate through fermentation using a
newly isolated Rumirococoacens bactericm CPBE. Biotechnol Riofuels 10:102.
iz 101 186/513068-017- 0T8E-y

Fiels, . M., Svensson, B. H., Sundberg, C., Larsson, M., Karlsson, A., and
Yekia, 5 & (2018 Microbial rfENA gene expression and co-ccourrence
profiles associate with bickinetics and elemental compesition in full-scale
amaerabic digesters. Microb. Bistechmod 11, §84-708. dod: 10.1111/1751-7915.
13254

Conflict of Interest: The awthars declare that the research was conducted in the
ahsence of any commercial or francial relationships that could be construed as a
potential condlict of interest.

Copyright & 3020 Lin, Kleinsteuber, Centler, Harms and Striuber. This is an open-
wcrees article distribunied under the ferms of the Creative Commonrs Attribution
Licerse ({00 BY). The wse, distribution or reproduction in other forums is permitied,
provided the origiral author(s) ard the copyright owner{s) are oradited and that the
origing publication in this journel is died, in accordanee with accepied eoademic
practice. No e, distribution or reproduction i permitted which does not comply
with there terms.

Fronflers In Microbioiogy | waw inoniersin.org

13

March 2020 | violume 11 | Article 338

42



Research chapter 2.1
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Figure S1 Bacterial community dynamics in the four succession stages,

illustrated by nonmetric multidimensional scaling (NMDS) of T-RFLP profiles

(16S rRNA gene amplicons, restriction enzyme Mspl). Data points are named

according to sampling days. Proximity of data points represents community

similarity based on the Bray-Curtis index. Colored polygons indicate sampling

999 permutations).

days of each succession stage. The vector shows community shifts within the
temporal dynamics (P < 0.01, significance calculated by Monte-Carlo test with
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Figure S2 Alpha diversity metrics (richness, diversity and evenness) in the four
succession stages based on the relative abundance of amplicon sequence
variants (ASV) (A) and of terminal restriction fragments (T-RF) of 16S rRNA
gene amplicons for restriction enzymes Rsal (B) and Mspl (C). D1: diversity of
order one (q = 1), D2: diversity of order two (q = 2); E1: evenness of order one

(g =1), E2: evenness of order two (q = 2)
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Table S1 Electron-equivalent balance in stages | and Il showing mean values
obtained from different sampling points in both stages, represented by 95%
confidence intervals. The electron balance calculation was based on the

number of electrons and the molar mass of the reduced compounds.

Stage | Stage Il
(mol/L) Mean Standard deviation Mean Standard deviation
Acetate! 0.13138 0.01259 0.16870 0.03952
iso-Butyrate? 0.00000 0.00000 0.00068 0.00014
n-Butyrate® 0.89421 0.09115 1.28598 0.11784
iso-Valerate* 0.00038 0.00009 0.00073 0.00018
n-Valerate® 0.00345 0.00026 0.01763 0.00193
n-Caproate® 1.00428 0.07569 0.49796 0.04068
n-Heptanoate’ 0.00124 0.00008 0.00630 0.00028
n-Caprylate® 0.22191 0.01219 0.06714 0.00303
n-Nonanoate® 0.00011 0.00002 0.00020 0.00004
n-Decanoate?® 0.00042 0.00010 0.00037 0.00006
Lactate®! 0.12843 0.03005 0.19604 0.04347
Phenyl acetate!? 0.00106 0.00147 0.00345 0.00112
Phenyl propionate'® 0.00000 0.00000 0.00855 0.00175
Ethanol** 0.02892 0.00208 0.01566 0.00795
2-Butanol*® 0.00000 0.00000 0.00017 0.00020
1-Propanol*® 0.00152 0.00058 0.00370 0.00073
1-Butanol*’ 0.00825 0.00058 0.01835 0.00270
Biomass?® 0.13511 0.00464 0.23645 0.01400
H'* 0.01850 0.00341 0.01257 0.00584
Xylan® 0.04061 0.03988 0.00455 0.01016
Total Output 2.61978 0.07519 2.54884 0.12050
Total Input 2.84848 0 2.84848 0
Electron Balance 92% 3% 89% 4%

Number of electrons (mol molt): *Acetate 8, %iso-Butyrate 20, 3n-Butyrate 20,
4iso-Valerate 26, °n-Valerate 26, ®n-Caproate 32, ’n-Heptanoate 38, én-
Caprylate 44, °n-Nonanoate 50, °n-Decanoate 56, ''Lactate 12, ?Phenyl

acetate 36, **Phenyl propionate 42, *Ethanol 12, *>2-Butanol 24, ¢1-Propanol
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18, 171-Butanol 24, *¥Biomass 6 x n, °H2 2, 2°Xylan 20 x n; “n” stands for the
degree of polymerization. The electron number of cell biomass was calculated
by using a theoretical molecular composition; the empirical formula of
microorganisms was assumed as CH1.8005No.2 (molar mass = 24.6 g mol?).
The molar mass (g mol?): 1Acetate 60, %iso-Butyrate 88, 3n-Butyrate 88, “%iso-
Valerate 102, °n-Valerate 102, ®n-Caproate 116, ’n-Heptanoate 130, én-
Caprylate 144, °n-Nonanoate 158, °n-Decanoate 172, 'Lactate 90, ?Phenyl
acetate 136, °Phenyl propionate 150, “Ethanol 46, '52-Butanol 74, 161-
Propanol 60, 71-Butanol 74, 8Biomass 24.6 x n, °H2 1/22.4, 2°Xylan 132 x n;

“n” stands for the degree of polymerization.

Table S2 COD balances in stage | and stage Il. By using COD Kkit, one point
was selected per week in stage | and stage Il, results are shown below. The
“Input” means measured results of mineral medium with lactate and xylan
added. The “Output” means measured results of effluents. COD balance was
calculated from the quotient of “Output” divided by “Input’. Within 95%

confidence intervals, standard deviation was calculated from three measured

values.
Time Input Standard Output  gtandard COD  Standard
(d) (@CODL™Y)  geviation (@CODL™) eviation balance deviation
(%)
36 23.48 0.31 20.37 0.14 92.0 0.7
43 23.48 0.31 19.94 0.09 90.0 0.4
Stage | 50 23.48 0.31 20.25 0.15 914 0.7
57 23.48 0.31 19.94 0.08 90.0 0.3
64 23.48 0.31 20.38 0.17 92.0 0.8
120 23.48 0.31 20.52 0.15 92.7 0.7
127 23.48 0.31 20.02 0.13 90.4 0.6
Stage Il 134 23.48 0.31 20.96 0.13 94.6 0.6
141 23.48 0.31 20.38 0.08 92.0 0.3
148 23.48 0.31 20.19 0.36 91.2 1.6
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2.2.1 Main text
Abstract

Background: The ability to quantitatively predict ecophysiological functions of
microbial communities provides an important step to engineer microbiota for
desired functions related to specific biochemical conversions. Here, we present
the quantitative prediction of medium-chain carboxylate production in two
continuous anaerobic bioreactors from 16S rRNA gene dynamics in enrichment

cultures.

Results: By progressively shortening the hydraulic retention time from 8 days
to 2 days with different temporal schemes in both bioreactors operated for 211
days, we achieved higher productivities and yields of the target products n-
caproate and n-caprylate. The datasets generated from each bioreactor were
applied independently for training and testing in machine learning. A predictive
model was generated by employing the random forest algorithm using 16S
rRNA amplicon sequencing data. More than 90% accuracy in the prediction of
n-caproate and n-caprylate productivities was achieved. Four inferred
bioindicators  belonging to the genera Olsenella, Lactobacillus,
Syntrophococcus and Clostridium IV suggest their relevance to the higher
carboxylate productivity at shorter hydraulic retention time. The recovery of
metagenome-assembled genomes of these bioindicators confirmed their

genetic potential to perform key steps of medium-chain carboxylate production.

Conclusions: Shortening the hydraulic retention time of the continuous
bioreactor systems allows to shape the communities with desired chain
elongation functions. Machine-learning predictive analytics demonstrates that
16S rRNA amplicon sequencing data can be used to predict the model process
performance in a quantitative and accurate way. Characterising and harnessing
bioindicators holds promise to manage reactor microbiota towards selection of
the target processes, as such taxa can be used to predict ecosystem
performance. Our mathematical framework is transferrable to other ecosystem

processes and microbial systems where community dynamics is linked to key
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functions. The general methodology can be adapted to data types of other

functional categories such as genes, transcripts, proteins or metabolites.

Keywords: Predictive biology, carboxylate platform, model ecosystems,

reactor microbiota, microbial chain elongation
Background

Microbes form complex communities that play essential roles in ecosystem
functioning. ldentifying bioindicators derived from community analysis and
using them to predict process performance may delineate potential cause-
effect relationships with ecosystem functioning [1,2]. The knowledge gained
from prediction can be used to generate hypotheses on the role of key species.
At ecosystem level, designing effective control strategies for key species holds
promise to manage the community towards selection of the target processes,

which is crucial for microbiota-based biotechnologies [3-5].

Our goals were to investigate how environmental manipulations affect
ecosystem functioning and to predict performance metrics of the quantifiable
biological processes by following microbial community dynamics. Model
ecosystems offer the opportunity to link microbial diversity and ecosystem
functioning in a quantifiable and predictable way [6-8]. Such simplified
ecosystems can be still complex regarding microbial interactions and involved
metabolic processes [6]. Here, we used anaerobic fermentation reactors as
model ecosystems and considered microbial chain elongation (CE) as the
guantifiable model ecosystem process. CE is a microbial process that produces
medium-chain carboxylates (6 to 8 carbon atoms) through reverse (-oxidation
[9]. Recently we enriched a mixed culture that produces n-butyrate (C4), n-
caproate (C6) and n-caprylate (C8) from xylan and lactate in a daily-fed reactor
system [10], to simulate the feedstock conditions of anaerobic fermentation of
ensiled plant biomass [11]. For this bioprocess to be viable, it needs to include
diverse functions such as xylan hydrolysis, xylose fermentation and CE with
lactate as electron donor. Mixed culture fermentation is characterised by
different trophic groups that may cooperate or compete with each other to

metabolise complex substrates [9]. Species involved in these interactions can
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drive shifts in community structure and function [1]. During the long-term stable
reactor operation, the community developed towards predominating C4 and
biomass production at the cost of C6/C8 production [10]. We wanted to explore
how process parameter changes shape the existing microbiota to optimise the
process towards the target products C6 and C8. The current study was
conducted on the enriched chain-elongating microbiota in two parallel
bioreactors. To promote C6 and C8 production and enrich the functional groups
relevant to process performance, we reduced the hydraulic retention time
(HRT). HRT refers to the average time soluble compounds reside in the
bioreactor. Shortening the HRT is a common operation-based strategy for
increasing C6/C8 production [12-16] and a key factor influencing microbial
diversity [17]. It is relevant to the microbial growth rate in reactors without
biomass retention, and it affects biomass concentration and community
composition [18]. Following variations in diversity induced by HRT reduction,
we tested if productivity and yield of the target products (C6 and C8) could be
predicted by using machine learning. To provide insight into the dynamics of
community structure and function, we measured process performance and
collected samples for community analysis using high-throughput sequencing of
the 16S rRNA gene. Community analysis using 16S rRNA amplicon sequencing
data combined with environmental variables can reveal relationships between
microbial communities and ecosystem functioning. For example, Werner et al.
demonstrated strong relationships between the phylogenetic community
structure, reflected by time-resolved 16S rRNA amplicon data, and the
methanogenic activity in full-scale anaerobic digesters, by applying constrained
ordination [19]. Predictive analytics using machine learning has shown promise
in microbiota-based biotechnologies [6,20,21]. We chose the random forest
algorithm because it runs efficiently and accurately on high-dimensional
datasets with multi-features, and it avoids overfitting, particularly when using
different training and test datasets [22]. Our random forest analysis consisted
of two parts. First, we performed feature selection identifying Amplicon
Sequence Variants (ASVs) that would be relevant to community dynamics
caused by HRT reduction. Next, we trained the algorithm with these features
(hereafter, HRT bioindicators) that later were used to predict the production of
C6 and C8.
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Methods

Reactor operation and process monitoring. The inoculum was initially taken
from a continuous lab-scale bioreactor that produced C6 and C8 by anaerobic
fermentation of lactate-rich corn silage [11]. Enrichment was performed in a
reactor that was daily fed with mineral medium (pH 5.5; Additional file 1. Table
S1) containing water-soluble xylan (more than 95% xylooligosaccharides, from
corncob; Roth, Karlsruhe, Germany) and lactic acid (85%, FCC grade; Sigma
Aldrich, St. Louis, USA) as defined carbon sources and produced C4, C6 and
C8 over 150 days [10]. For the present study, two 1-L bioreactors (A and B;
BIOSTAT® A plus, Sartorius AG, Gottingen, Germany) were filled up with 0.5
L of the enriched culture. Both bioreactors were daily fed with 0.125 L medium
containing 1.47 g lactic acid and 1.25 g xylan, without withdrawing effluent.
After four days the contents of both bioreactors were mixed by pumping them
three times from bioreactor A to B and back while keeping anoxic conditions.
Eventually, they were equally distributed to both bioreactors, which is
considered the starting point (day 0) of the experiment.

We employed semi-continuous stirred tank reactors for anaerobic fermentation,
which were operated at 38 + 1°C and constantly stirred at 150 rpm. The pH of
the reactor broth was automatically controlled at 5.5 by addition of 1 M NaOH.
For each bioreactor, the produced gas was collected in a coated aluminium foll
bag that also served for compensating underpressure in the reactor system.
The bag was connected after a MilliGascounter® (MGC-1; Ritter, Bochum,
Germany) that measured on-line the volume of the produced gas. A gas-sample
septum was placed in the gas pipe of each bioreactor.

In the beginning, both bioreactors were operated as replicates with an equal
HRT of 8 days. For daily feeding, 1.47 g lactic acid and 1.25 g xylan were
supplied in mineral medium. After 51 days, we gradually decreased the HRT of
bioreactor A from 8 days to 6 days, and further to 4 days and 2 days as shown
in Additional file 1: Table S2. Next, we shortened the HRT of bioreactor B from
8 days to 2 days in a fast transition mode and with the same substrate load as
in bioreactor A. Considering the effect of time on community assembly, we
conducted unequal HRT changes in two bioreactors and aimed to delineate the
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model prediction strength with the two different datasets. Finally, both

bioreactors were operated at an HRT of 2 days until day 211.

Gas samples were taken through the septum twice per week. Samples for
determining cell mass concentrations were collected from the reactor effluent.
Concentrations of xylan, carboxylates and alcohols were measured in the
effluent supernatants [10]. In total, samples were collected on 59 time points
for each bioreactor. At the beginning and the end of the experiment, pelleted
biomass from the effluent was used to determine the cell dry mass as previously
described [10]. For microbial community analysis, pelleted cells from 2 mL
effluent were washed with 100 mM Tris-HCI pH 8.5 and stored at -20°C until
DNA extraction.

Analytical methods. Daily produced gas volume was monitored with the MGC-
1 and normalised to standard pressure and temperature [23]. Gas composition
(Hz, CO2, N2, O2 and CHa) was determined by gas chromatography in triplicate
[24]. Concentrations of carboxylates and alcohols were analysed in triplicate by
gas chromatography [10]. Concentration of xylan was measured by a modified
dinitrosalicylic acid reagent method [10]. Cell mass concentration was
calculated from optical density (OD) values that were correlated with the cell
dry mass [10]. The calculated mean correlation coefficients were 1 ODeoo =
0.548 g L for bioreactor A and 1 ODeoo = 0.537 g L ** for bioreactor B.

Microbial community analysis. Total DNA was isolated from frozen cell
pellets using the NucleoSpin® Microbial DNA Kit (Macherey-Nagel, Duren,
Germany). Methods for DNA quantification and quality control were as
described before [25]. For high-throughput amplicon sequencing, V3-V4
regions of the 16S rRNA genes were PCR-amplified using primers 341f and
785r [26]. Sequencing was performed on the lllumina Miseq platform (Miseq
Reagent Kit v3; 2 x 300 bp). A total of 12,168,404 sequences ranging from
57,612 to 389,963 pairs of reads per sample (mean: 135,205; median: 122,367)

were obtained.

The demultiplexed sequence data were processed with the QIIME 2 v2019.7
pipeline [27] using the DADAZ2 plugin [28]. The DADA2 parameters were set as
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follows: trim-left-f O, trim-left-r O, trunc-len-f 270, trunc-len-r 230, max-ee 2 and
chimera-method consensus. A total of 4,194,700 sequences ranging from
13,518 to 138,498 reads per sample were retained, with a mean of 46,608
reads per sample. The generated feature table indicates the frequency of each
ASV clustered at 100% identity. Taxonomic assignment was done with a naive
Bayes classifier trained on 16S rRNA gene sequences of the database MIDAS
2.1 [29], and curated using the RDP Classifier 2.2 with a confidence threshold
of 80% [30]. For downstream analyses, ASVs of all samples were rarefied to a
sequencing depth of 13,518 reads (rarefaction curve reached the plateau,
Additional file 1: Figure S1). We obtained a total of 71 unique ASVs in 90
samples.

Alpha diversity based on rarefied ASV data was evaluated by the observed ASV
counts and the Shannon index [31], which were determined using the R
package phyloseq v1.30.0 [32]. Dissimilarities in bacterial community
composition (beta-diversity) were calculated using Bray-Curtis distance [33]
based on rarefied ASV abundances and visualised as nonmetric
multidimensional scaling (NMDS) plots. Statistical analyses of beta-diversity
results were performed using permutational multivariate analysis of variance
(PERMANOVA) [34] in the R package “vegan” (v2.5.6, “adonis” function,
Monto-Carlo test with 1000 permutations); P values were adjusted for multiple

comparisons using the false discovery rate (FDR) method [35].

Network analysis. The co-occurrence network analysis was performed using
the method described by Ju et al. [36]. Briefly, we constructed a correlation
matrix by computing possible pairwise Spearman’s rank correlations using the
rarefied ASV abundances and abiotic parameters (HRT; concentrations of C4,
C6, C8 and lactate; productivities and yields of C4, C6 and C8). Correlation
coefficients below -0.7 or above 0.7 and adjusted P-values (FDR method) lower
than 0.05 were considered statistically robust. Network visualisation and

topological features analysis were conducted in Gephi (v0.9.2) [37].

16S rRNA phylogenetic analysis. The 16S rRNA gene sequences of ASVs
were aligned using the SINA alignment algorithm [38] via the SILVA web
interface [39]. We additionally used SINA to search and classify the sequences
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with the least common ancestor method based on the SILVA taxonomy. For
each query sequence, the minimum identity was set to 0.95 and the five nearest
neighbours were considered. The tree was reconstructed based on the aligned
sequences and their neighbours, with RAXML using the GTRCAT model of
evolution. Later only ASV species of this study were kept in the generated tree

for an easier viewing. The tree was visualised using iTOL [40].

Metagenomic analysis. Six samples were selected for whole-genome
sequencing, which was performed by StarSEQ GmbH (Mainz, Germany), using
the Illlumina NextSeq 500 system (NEBNext Ultra Il FS DNA library prep kit; 2
x 150 bp) with at a minimum of 20 million reads per library generated. Quality
checking and reads trimming were performed using metaWRAP (v0.7, raw read
QC module) [41] and TrimGalore (v0.4.3) [42]. Reads of human origin were
discriminated from microbial reads using BMTagger (v3.101) [43]. All adapters
were removed and the resulting reads were assembled using metaSPAdes
(v3.11.1) [44]. Paired-end reads were aligned back to the assembly using BWA
(v0.7.15, mem algorithm) [45]. Binning of assembled contigs was performed
using the metaWRAP modules metaBAT (2.12.1) [46], MaxBin (2.2.4) [47] and
CONCOCT (1.0.0) [48]. The metaWRAP-Bin_refinement module was applied
to separate the overlaps between two bins. Quality of metagenome-assembled
genomes (MAGs) was checked using CheckM (v1.0.7) [49]. MAGs were
classified in high or medium quality regarding completeness, contamination,
guality score (completeness - 5 x contamination) and strain heterogeneity [50].
The following thresholds were used for high quality: quality score > 50,
completeness > 80, contamination < 5 and strain heterogeneity < 50; and for
medium quality: quality score > 50, completeness > 50 and contamination < 10.
One bin with lower quality was removed from the analysis. The taxonomy was
assigned using GTDB-Tk (v0.3.2) [51]. Genome metrics were calculated with
the statswrapper tool in the BBTools suite [52]. A phylogenomic tree based on
Mash distances was generated with Mashtree (V1.1.2) [53] and visualised in
iTOL [40]. Miscellaneous visualisations of the dataset metrics were performed
in R with the packages ggplot2 (v3.3.0) and DataExplorer (v0.8.1). Species
differentiation was performed wusing fastANlI [54] and aniSplitter.R

(http://github.com/felipborim789/aniSplitter/). Genomes were annotated with
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Prokka (v1.14.6) [55]. Functional annotation of genes relevant to xylan
hydrolysis, xylose fermentation and chain elongation was curated using Swiss-
Prot, COG and GenBank [56-58].

Determining bioindicators of HRT changes. The HRT bioindicators were
determined using the random forest algorithm (randomForest R package, v4.6-
14) [59]. ASV relative abundances were used as features to train and test the
random forest classifier. Considering how we replicated the HRT changing
mode in both bioreactors (Additional file 1: Table S2), the whole operation
period was divided into four sampling intervals: 0-50 days, 51-100 days, 101-
140 days and 141-211 days. Based on the results of community analysis, we
chose the ASV data of both bioreactors in the sampling intervals of 0-50 days
and 141-211 days to determine the HRT bioindicators, and we used data of all
samples in the four HRT phases as controls. To evaluate the robustness of the
predictions, we trained the classifier with ASV data of one bioreactor and tested
in the other bioreactor and vice versa. For random forest classification analysis,
importance of the different features (ASVs) was measured by the Gini index
(mean decrease in Gini, default in randomForest R package; where larger

values indicate a variable to be more important for accurate classification [60]).

The random forest classifier was trained on the training set, with 2,000 trees
and 40 variables (with lowest out-of-bag estimated error rates achieved) being
selected randomly for each tree. Explained variance (% Var. explained in R)
was used to measure the model performance on the training set [59]. We
predicted the accuracy by measuring how well the features can classify the
HRT phases on the test set [60]. We first computed the feature importance of
all 71 ASVs. Then at each step, the ASVs having the smallest importance were
eliminated and a new forest was built with the remaining ASVs. For both
bioreactors, the features were selected when their Gini scores were higher than
1% of the sum of the Gini scores of all ASVs (Additional file 1: Table S3). Finally,
we selected the 15 top-ranked ASVs leading to the model of smallest error rate
for classifying the HRT phases of 8 days and 2 days. In each bioreactor, the 15
ASVs that best discriminated between HRT phases were referred to as A-HRT
bioindicators or B-HRT bioindicators (bioreactors A and B, respectively). ASVs
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common to both sets were defined as HRT bioindicators (workflow of random

forest classification in Additional file 1: Figure S2).

Quantitative predictions based on HRT and non-HRT bioindicators. The
process parameters specified as concentrations of lactate, C4, C6 and C8, and
productivities as well as yields of C4, C6 and C8 were the prediction objects.
Here, the relevance of the different ASVs to the prediction was determined by
residual sum of squares (IncNodePurity, default in randomForest) for the
regressions. Explained variance (% Var. explained in R) was used to measure
the model performance on the training set [59]. We predicted the accuracy by
measuring how well the features can explain the variance of these process

parameters on the test set [60].

We performed the quantitative prediction by applying a two-step regression
analysis (workflow in Additional file 1: Figure S3). First, HRT bioindicators were
used to predict the data of different process parameters in the sampling
intervals of 0-50 days and 141-211 days. Data of all samples in the four HRT
phases were considered as controls. Random forest regressors were trained
as follows: relative abundance dataset of bioreactor A was used as training set
and that of bioreactor B was used as test set and vice versa; 2,000 trees and

four out of 11 features were selected randomly for each tree.

Considering community assembly caused by time, we determined the ASVs
(non-HRT bioindicators) that could predict the numeric values of each process
parameter, using data of samples in the intervals of 0-50 days and 141-211
days. For each process parameter, we started with computing the feature
importance of all ASVs and further selected the 15 top-rated ASVs as the
bioindicators of this non-HRT parameter. The model was trained as follows:
datasets of bioreactors A and B were independently used for training and
testing; 2,000 trees and five out of 15 features were selected randomly for each
tree. As controls, we used the non-HRT bioindicators of each parameter to
predict the corresponding data of all samples in the four HRT phases. The final
set of ASVs presented in HRT bioindicators and not in non-HRT bioindicators

were considered HRT bioindicators irrespective of time.

56



Research chapter 2.2

Evaluating prediction accuracy. When in both training sets the HRT
bioindicators and non-HRT bioindicators explained more than 80% of the
variance in a process parameter, we proceeded only with those parameters. To
compare the predicted and measured values for these process parameters, we
considered the following performance metrics for reflecting the error of the
model in predicting consecutive data: relative root mean square error (RRMSE,
cutoff < 10%); R squared, slope and intercept of the least squares line of best
fit. The final values of RRMSE were averaged among the 100 random forest
replicates, with four ASVs for HRT bioindicators and five for non-HRT

bioindicators randomly sampled at each replicate.
Results and discussion

Effects of HRT decrease on process performance and microbial diversity.
The progressive HRT decrease from 8 to 2 days increased the C6 and C8
productivities and yields in two independent bioreactors (Figure 1). We first
shortened the HRT to 6 days and then to 4 days in bioreactor A, which allowed
the reactor microbiota to adapt to the new conditions and improved
productivities of C4, C6 and C8 (Figure 1a). Further HRT decrease to 2 days
confirmed the increasing trend in productivity. At the end of the 2-day HRT
period in bioreactor A, we achieved the highest productivities (mmol C L d?)
of C4, C6 and C8 up to 115.0, 64.1 and 5.9, respectively. To confirm the
observed effects of HRT shortening on the CE process and reactor microbiota,
we executed a fast transition mode in bioreactor B and generated a different
dataset from the parallel system. Comparable increases in productivity were
observed (Figure 1b). We obtained maximum productivities (mmol C L d1) of
C4upto102.4, C6 upto 62.9 and C8 up to 7.0. The C6 and C8 yields (in terms
of C mole product to transferred substrate ratio) increased along with
decreasing HRT at the cost of C4 yield. Compared with yields at the 8-day HRT,
C6 and C8 yields were higher and the C4 yield was lower in both bioreactors at
the 2-day HRT (Figure 1 and Additional file 1. Table S4). Our results suggest
that the shorter HRT favoured lactate-based CE producing C6 and C8 over C4
production. C4 can be produced by CE of acetate but also from sugars by
butyric acid fermentation [61]. Decreasing the HRT to 2 days led to the
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accumulation of lactate and fluctuations of the C4, C6 and C8 production, which
lasted longer than 22 HRTSs in bioreactor A (Figure 1a). Lactate concentrations
were highly correlated with C4 fluctuations (Spearman Rho = -0.90, P < 0.05)
and C6 concentrations (Rho =-0.89, P < 0.05), which reflects how lactate was
produced and converted by the reactor microbiota. The HRT reduction resulted
in higher gas production and hydrogen content (Additional file 1: Figure S4).
Besides, an increase in cell mass production (Additional file 1: Figure S5)
suggests a facilitating effect of short HRT on the growth of enriched populations
with desirable activities, i.e. more biocatalysts were available in the high C6/C8

production phase.

Decreasing the HRT affected the composition and diversity of the reactor
microbiota. Changes in relative abundance of ASVs categorised from phylum
to genus between the HRT of 8 days and 2 days are shown in Additional file 1:
Figure S6. Alpha diversity metrics showed significantly lower observed ASV
counts (pairwise t-test, P < 0.05) and higher Shannon index values (pairwise
t-test, P < 0.05) for HRT of 8 days compared with 2 days (Additional file 1:
Figure S7). Beta diversity analysis revealed a significant difference between the
communities at different HRTs (PERMANOVA,; Pseudo-F = 103.1, P < 0.001)
but no significant difference between the communities in both reactors at the
same HRT (Pseudo-F = 3.3, P > 0.05) (Figure 2).

HRT bioindicators predicting process performance. To determine HRT
bioindicators, we used HRT of 8 days and 2 days as classes for the random
forest classification model and relative abundances of ASVs as the features.
To delineate the model prediction strength, we used one reactor dataset to train
the model while testing predictions with the other and vice versa. Feature
selection based on the random forest classifier with its associated Gini index
has shown abilities to identify optimal feature subsets in high-dimensional data
[62]. Based on higher than 1% of the mean decrease in Gini scores for both
reactors in the prediction accuracy of HRT phases, we selected 15 top-ranked
ASVs that would give the best discrimination between HRT phases. The 15
ASVs most relevant to HRT changes were defined as “A- or
B-HRT bioindicators”, potentially reflecting the key species correlating with
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HRT changes in either bioreactor (feature importance in Figure 3). The two

bioreactors shared 11 HRT bioindicators.

To answer the question whether HRT bioindicators can be used to predict
process performance in terms of C6 and C8 production, we performed a
random forest regression analysis in two steps. HRT bioindicators were first
chosen as features to train the model. Considering community assembly
caused by time, we then determined 15 ASVs most relevant to each non-HRT
process parameter (i.e., concentrations of lactate, C4, C6 and C8; productivities
and yields of C4, C6 and C8; hereafter, non-HRT bioindicators). Datasets from
bioreactors A and B were trained and tested independently. When in both
reactors the HRT and non-HRT bioindicators accounted for more than 80% of
the variance in a process parameter, we proceeded only with those parameters.
In our case, the model could explain more than 80% of the variance in C6 and
C8 productivities (Additional file 1: Tables S5-S6).

We evaluated the prediction performance of the model by comparing the
predicted and measured values of process parameters. RRMSE was used as
the performance metric to reflect the model error in predicting quantitative data
of C6/C8 productivity. Our results showed that the C6 and C8 productivities of
both bioreactors at the HRT of 8 days and 2 days could be accurately predicted
(Figure 4 for HRT bioindicators and Additional file 1: Figure S8 for non-HRT
bioindicators). We further tested samples in all HRT phases with HRT and non-
HRT bioindicators. The C6 and C8 productivities were also accurately predicted
(RRMSE < 6%, Additional file 1: Figures S9-S10). Therefore, we considered
HRT bioindicators irrespective of time as the ASVs presented in HRT
bioindicators and not in non-HRT bioindicators (feature importance in Additional
file 1. Figures S11-S12). Interestingly, the same four ASVs assigned to the
genera Olsenella, Lactobacillus, Syntrophococcus and Clostridium IV were
identified for C6 and C8 productivity (Figure 5). We thus hypothesise that
species represented by these four ASVs determined the increased C6/C8
productivities in the CE process manipulated by changing operational

conditions — shortening the HRT.
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Functional role of HRT bioindicators. Combined with metagenomics,
species of HRT bioindicators irrespective of time indicated their roles in driving
the catabolism of xylan and lactate to C6/C8 (Figure 6). Among 108 MAGs
(dereplicated into 29 species; Figure 7 and Additional file 2), we recovered 12
species with similar phylogenies as the four genera (Table 1). In view of the
fermentation process, we annotated the genetic potential for xylan hydrolysis,
xylose fermentation and CE with lactate (Additional file 1: Figure S13 and
Additional files 3-6). Specifically, Clostridium IV species were reported as
lactate-based chain-elongating bacteria [63]. Our results suggest that four
Clostridium IV species (Acutalibacteraceae spp. according to GTDB-Tk) can
convert lactate to C6/C8. Two Syntrophococcus species (Eubacterium_H spp.
according to EZBioCloud [64]) are potential C6/C8-producers as they hold
complete gene sets encoding enzyme complexes that catalyse CE reactions.
This genetic potential was also found in genomes of closely related
Syntrophococcus species (Eubacterium cellulosolvens according to
EZBioCloud; Additional file 6), which was not described before. Lactate
formation from xylose by lactic acid bacteria can enhance CE by providing
additional electron donors [23,65-68]. A recent study reported an enriched
community dominated by Lactobacillus and chain-elongating species, and their
co-occurrence suggested lactate produced by Lactobacillus to be a key
intermediate for C6/C8 production [69]. Network analysis of our previous study
[10] revealed the co-occurrence of Olsenella with potential chain-elongating
species. Species of Lactobacillus and Olsenella are potential xylose-consuming
lactate producers (Figure 6b). Genes encoding xylanases were not found in
Lactobacillus MAGs but in those assigned to other bioindicators (Figure 6a).
Taken together, the delineated synergy effects between these bioindicator
species suggest a division of labour with mutual benefits, converting xylan and
lactate to C6/C8. A correlation network shows HRT, C6 and C8 productivity
being the most highly connected nodes (Additional file 1: Figure S14). Their co-
occurrence with ASVs assigned to Clostridium [V, Olsenella and
Syntrophococcus indicates strong associations among these taxa, the changed
environment and corresponding functions. The predictability of C6 and C8
productivities was relatively poor when using only the four HRT bioindicators

irrespective of time (Additional file 1: Figure S15). Besides, we found
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redundancy in the main functions of catabolising xylan and lactate to C4, C6
and C8 (Figure 6), with the relevant HRT bioindicators increasing in relative
abundances (Additional file 1: Figure S16). Thus, the involved metabolic
pathways can be strongly coupled to HRT decreases. The genetic potential
overlaps with other distinct taxa of the reactor microbiota, suggesting that HRT
bioindicators might be key species of the process, but ecological interactions
with other species are critical to ensure the C6/C8 production (functional
annotations of xylose fermentation and chain elongation in Additional files 5-6).

Conclusions

Our approach enabled the quantitative prediction of process performance in the
anaerobic bioreactor system (Figure 8). In artificial ecosystems with well-
controlled conditions (temperature, pH and no immigration of other microbes;
Figure 8a), HRT was the most influencing factor controlling community
assembly (Figure 8b). However, we cannot exclude the impact of other
deterministic factors like microbial interactions within temporal patterns,
particularly for such a long-term reactor operation. Effects of compositional
stochasticity on community assembly also need to be considered [70,71].
Further studies on these ecological principles will help manage reactor
microbiota towards beneficial traits, such as high specificities for C6/C8
production.

The continuous reactor systems with enrichment cultures enabled to select
communities with desired CE functions (i.e., high C6 and C8 productivities), and
to demonstrate that 16S rRNA amplicon sequencing data can be used to predict
CE process performance quantitatively (> 90% accuracy). The described
machine learning framework (Figure 8c) may be suitable for other ecosystem
processes and more complex communities. For that, it would be necessary to
design experiments with (i) sufficient temporal and/or spatial resolution, (ii)
parallel sampling for amplicon sequencing data and metadata from desired
ecosystem processes, and (iii) correlation of phylogenetic diversity with the
ecosystem processes. Our approach was based on phylogenetic diversity that
in some ecosystems may correlate with ecosystem processes where

microbiota perform key functions. Our general methodology can be adapted to
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other data types, such as metagenomes, metatranscriptomes, metaproteomes
or metabolomes, and it opens new doors for prediction and hypothesis testing

in microbial ecology.
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Figure 1. Performance of bioreactors. Concentrations of chain elongation
products and lactate, as well as productivities and yields of chain elongation
products in bioreactors A (a) and B (b) during the four HRT phases. Chain
elongation products: C4, n-butyrate; C6, n-caproate; C8, n-caprylate.
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Figure 2. Dissimilarities in bacterial community composition (beta-
diversity). Non-metric multidimensional scaling (NMDS) based on Bray-Curtis
dissimilarities of microbial community composition in bioreactors. a, All samples
in the four HRT phases were considered for dissimilarity calculation. b,
Samples in the 8-day HRT phase classified to the sampling interval 0-50 days
and in the 2-day HRT phase classified to the interval 141-211 days were
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a Mean decrease in Gini b Mean decrease in Gini
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Figure 3. Random forest feature importance of ASVs used to classify the
HRT phases (A-HRT bioindicators and B-HRT bioindicators). The top-
ranked 15 ASVs reducing the uncertainty in the prediction of HRT phases (HRT
of 8 days and 2 days). The order of features (from top to bottom) was based on
their mean decrease in Gini scores, according to their ASV abundances
distribution, with HRT as the response variable. a, Feature importance of A-
HRT bioindicators. The ASV importance was calculated using the relative
abundance data of bioreactor A as a training set and data of bioreactor B as a
test set. b, Feature importance of B-HRT bioindicators. Similar to A-HRT
bioindicators, ASV importance of B-HRT was calculated using the relative
abundance data of bioreactor B as a training set and data of bioreactor A as a
test set. The taxonomic classification of ASVs assigned at the genus level is

provided in parentheses.
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Figure 4. Prediction results of C6 and C8 productivities using HRT
bioindicators. a,b, Prediction performance of C6 productivity. c,d, Prediction
performance of C8 productivity. Results in a and ¢ were obtained by using
relative abundance data of bioreactor A for training the model and data of
bioreactor B for testing. Results using the data of bioreactor B for training and
bioreactor A for testing are shown in b and d. The red lines and grey shaded
areas depict the best-fit trendline and the 95% confidence interval of the least-
squares regression, respectively. C6, n-caproate; C8, n-caprylate; %Var.,
explains the variance (%) in C6/C8 productivity of the training set; RRMSE,

relative root mean square error.
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Figure 5. Phylogeny of HRT bioindicators and non-HRT bioindicators for
considering community assembly caused by time. a,b, A maximum
likelihood 16S rRNA gene tree showing the ASV species based on the rarefied
sequencing data. ASVs are coloured according to the class (a, first inner ring)
and family (b, second inner ring). ¢, The third inner ring shows the 11 HRT

77



Research chapter 2.2

bioindicators identified in both reactors for the prediction of HRT phases of 8
days and 2 days. The ASVs identified as HRT bioindicators are shown in bold.
Their taxonomic assignments at the genus level are provided in the legend. d,
The four ASVs of HRT bioindicators irrespective of time are shown in red in the
outer ring. The ASVs only present in non-HRT bioindicators of C6/C8
productivity are shown in pink in the outer ring. e, Relative abundance dynamics
of HRT bioindicators during the whole reactor operation period. In the legend,
A and B stand for bioreactors A and B, respectively. The four ASVs (in bold) of
HRT bioindicators, irrespective of time, assigned at the genus level are

indicated in parentheses. C6, n-caproate; C8, n-caprylate.
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Figure 6. Genetic potential of metagenome-assembled genomes (MAGS)
with the same taxonomy as HRT bioindicators driving the catabolism of
xylan and lactate to n-caproate and n-caprylate. These catabolic steps were
categorised into four main functions of the anaerobic mixed -culture
fermentation. a, Hydrolysis of xylan. b, Xylose fermentation producing acetate
and lactate. c, Butyrate formation from lactate and acetate. d, Chain elongation
with lactate as electron donor producing n-butyrate, n-caproate and n-
caprylate. Numbers represent the 18 different MAGs with similar phylogenies
as the HRT bioindicators at the genus level (details in Table 1). The enzyme
abbreviations are provided in red letters next to the pathways (solid lines).
Dashed lines represent multi-enzyme reactions between the two indicated
molecules. In (d), “cycle” refers to the reverse (B-oxidation cycle. The complete
metabolic pathways are depicted in Additional file 1: Figure S13. un.,
unclassified; XL, xylanase (EC 3.2.1.8); XyIT, xylose transporter (EC 7.5.2.10,
EC 7.5.2.13); LacP, lactate permease (TC 2.A.14); CoAT, butyryl-CoA:acetate
CoA-transferase (EC 2.8.3.-); PTB, phosphate butyryltransferase (EC
2.3.1.19); BUK, butyrate kinase (EC 2.7.2.7); ACT, acyl-CoA thioesterase (EC
3.1.2.20).
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Figure 7. Phylogenetic tree of the recovered metagenome-assembled
genomes (MAGs). a,b, A phylogenomic tree based on mash distances
showing the MAGs taxonomy determined by GTDB-Tk at phylum (a) and family
(b) levels. A total of 108 MAGs were recovered and differentiated into 29
species based on the ANI values. We defined the representative MAG for each
species as that showing high quality. Only the representative MAG for each
species is depicted in the tree. The ENA accession numbers of the
MAGs with similar

representative  MAGs are shown in parentheses.

phylogenies as HRT bioindicators are indicated by a star.
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Figure 8. Overview on the quantitative prediction of process performance
in the anaerobic bioreactor system. a, Anaerobic mixed culture fermentation
of lactate and xylan for the production of n-caproate (C6) and n-caprylate (C8)
by lactate-based chain elongation. Based on the recovery of metagenome-
assembled genomes, the left panel shows the bioindicators capable of
performing key steps of the fermentation. b, Reducing the hydraulic retention
time (HRT) as an operation-based strategy to optimise the process
performance and to manage the reactor microbiota towards desired functions.
Shortening the HRT from 8 days to 2 days enhanced productivities of C4, C6
and C8. The enriched reactor microbiota comprised functional groups involved
in xylan hydrolysis, xylose fermentation and chain elongation with lactate,
presented by a co-occurrence network of environmental factors (controlled
conditions with only reducing the HRT), ecosystem functioning (process
performance) and microbial community. The full network is shown in Additional

file: Figure S14. c, Predicting performance of ecosystem processes with
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random forest analysis. We developed a random forest two-step workflow to
gualitatively predict the HRT phases and to quantitatively predict carboxylate
production by using relative abundance data of the 16S rRNA-derived species
(ASVs, Amplicon Sequence Variants).

Table 1. Summary of metagenome-assembled genomes (MAGSs) with the

same taxonomy as HRT bioindicators.

Number of MAGs Taxcnomic classification Representative
HRT bicindicators MAG
High quality Medium quality Phylum Class Order Family Genus Species
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Taxonomy refers to the GTDB (Genome Taxonomy Database) phylogenomic
classification. ASVs in bold represent the four HRT bioindicators irrespective of
time. Sequence datasets of genomes in red letters were taken from the
databases of NCBI and EzBioCloud. These genomes (in red) were used to
affiliate the MAGs of Syntrophococcus, Clostridium IV and Clostridium sensu
stricto, since their genomes are not available in GTDB. See details of MAGSs in

Additional file 2: Dataset S1. ASV: amplicon sequencing variant.
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2.2.2 Supplementary information
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Figure S1. Alpha rarefaction curves. ASVs of all samples were rarefied to an
equal sequencing depth of 13,518 reads. Colours represent the different

samples.
/ HRT importance of ASVs analysis \
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a. Train model: Feature data-bioreactor A; Test: Feature data-bioreactor B Time: days since experiment started
b. Train model: Fealture data-bioreactor B; Test: Feature data-bioreactor A

Figure S2. Workflow of the random forest classification analysis. The
gualitative prediction of HRT phases of 8 days and 2 days. Letters in yellow
show the input (ASV frequency) and output (A/B-HRT bioindicators) of the

model.
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Figure S3. Workflow of a two-step random forest regression analysis. a, The
first step of quantitative predictions using HRT bioindicators. b, The second
step of quantitative predictions using non-HRT bioindicators for considering
community assembly caused by time. Lac, lactate; Conc., concentration; Prod.,
productivity; %Var., explains the variance (%) in process parameters of the
training set. RRMSE, relative root mean square error.
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Figure S4. Gas production of bioreactors. Daily gas production and
composition in bioreactors A (a) and B (b), respectively, during the four HRT

phases. Error bars indicate the standard deviation.
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Figure S5. Biomass production of bioreactors. Cell concentration, biomass
productivity and biomass vyield in bioreactors A (a) and B (b) during the four
HRT phases. The carbon number of cell biomass was calculated by assuming
an elemental biomass composition of CH1.800.5No.2 (molar mass = 24.6 g/mol).
Error bars represent the standard deviation.
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Relative abundance
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Figure S6. Microbial community composition profiles of bioreactors. Based on
amplicon sequencing of 16S rRNA genes, the taxonomic classification of
amplicon sequence variants (ASVs) was categorised at the phylum (a), class

(b), order (c), family (d) and genus (e) levels.
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Figure S7. Alpha diversity metrics of bioreactor communities. Based on the

relative abundance of ASVs, we calculated the alpha diversity represented by

observed ASV counts (a) and Shannon index (b).
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a C6 productivity — Training A, prediction B b C6 productivity — Training B, prediction A
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Figure S8. Prediction results of C6 and C8 productivities using non-HRT
bioindicators for considering community assembly caused by time. a,b,
Prediction performance using C6 productivity bioindicators of bioreactors A and
B. c,d, Prediction performance using C8 productivity bioindicators of
bioreactors A and B. Results in a and ¢ were obtained by using the relative
abundance data of bioreactor A for training the models and data of bioreactor
B for testing. Results using the data of bioreactor B for training and bioreactor
A for testing are shown in b and d. %Var., explains the variance (%) in C6/C8

productivity of the training set. RRMSE, relative root mean square error.

90



Research chapter 2.2

a C6 productivity — Training A, prediction B b C6 productivity — Training B, prediction A
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Figure S9. Prediction results of C6 and C8 productivities for all samples in the
four HRT phases using HRT bioindicators. a,b, Prediction performance of C6
productivity. c,d, Prediction performance of C8 productivity. Results in a and ¢
were obtained by using the relative abundance data of bioreactor A for training
the models and data of bioreactor B for testing. Results using data of bioreactor
B for training and bioreactor A for testing are shown in b and d. %Var., explains
the variance (%) in C6/C8 productivity of the training set. RRMSE, relative root

mean square error.
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a C6 productivity — Training A, prediction B b C6 productivity — Training B, prediction A
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Figure S10. Prediction results of C6 and C8 productivities for all samples in the
four HRT phases using non-HRT bioindicators for considering community
assembly caused by time. a,b, Prediction performance using C6 productivity
bioindicators of bioreactors A and B. c,d, Prediction performance using C8
productivity bioindicators of bioreactors A and B. Results in a and ¢ were
obtained by using the relative abundance data of bioreactor A for training the
models and data of bioreactor B for testing. Results using the data of bioreactor
B for training and bioreactor A for testing are shown in b and d. %Var., explains
the variance (%) in C6/C8 productivity of the training set. RRMSE, relative root

mean square error.
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Figure S11. Random forest feature importance of A-HRT bioindicators and B-

HRT bioindicators used to predict C6 and C8 productivities. a, Feature
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importance of A-HRT bioindicators in the prediction of C6 productivity. b,

Feature importance of B-HRT bioindicators in the prediction of C6 productivity.

c, Feature importance of A-HRT bioindicators in the prediction of C8

productivity. d, Feature importance of B-HRT bioindicators in the prediction of

C8 productivity. IncNodePurity, residual sum of squares.
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Figure S12. Random forest feature importance of the non-HRT bioindicators
used to predict C6 and C8 productivities. a,b, The feature importance of C6
productivity bioindicators of bioreactors A and B. c,d, The feature importance

C8 productivity bioindicators of bioreactors A and B. Relative abundance data

of bioreactor A were used as training set and that of bioreactor B as test set

(a,c); while data of bioreactor B for training and that of bioreactor A for testing

(b,d). IncNodePurity, residual sum of squares.
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Figure S13. Metabolic pathways involved in converting lactate and xylan to n-
caproate and n-caprylate. a, The pathways involved in the processes of
anaerobic mixed culture fermentation include hydrolysis of xylan (more than 95%
xylooligosaccharides), fermentation of xylose and chain elongation with lactate
as electron donor. The enzyme abbreviations are provided in red letters next to
the pathways (solid lines). b, Enzymes of the predicted functions related to
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xylan hydrolysis, xylose fermentation and pyruvate transformation. ¢, Enzymes
of the predicted functions related to chain elongation with lactate as electron
donor. Dashed lines represent multi-enzyme reactions between the two
indicated molecules. In (a), “cycle” refers to the reverse -oxidation cycle. The
functional annotation of metagenome-assembled genomes (MAGs) with the
same taxonomy as HRT bioindicators can be found in Additional file 3: Dataset
S2 (for xylan hydrolysis and xylose fermentation) and Additional file 4. Dataset
S3 (for chain elongation). The functional annotation of all MAGs can be found
in Additional file 5: Dataset S4 (for xylan hydrolysis and xylose fermentation)

and Additional file 6: Dataset S5 (for chain elongation).
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Figure S14. Correlation network of environmental factors, process
performance and microbial community. Edges indicate the Spearman
coefficient > 0.7 for positive correlations (blue edges) and < 0.7 for negative
correlations (red edges). Node size was scaled to represent its degree of
connectedness. Here, the environmental factors represent controlled

operational parameters with only reducing the HRT, and the process
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performance refers to the concentration, productivity and yield of the target

products. C4, n-butyrate; C6, n-caproate; C8, n-caprylate.
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Figure S15. Prediction results of C6 and C8 productivities for all samples in the
four HRT phases using the four ASVs of HRT bioindicators irrespective of time.
a,b, Prediction performance of C6 productivity. c,d, Prediction performance of
C8 productivity. Results in a and ¢ were obtained by using the relative
abundance data of bioreactor A for training the models and data of bioreactor
B for testing. Results using the data of bioreactor B for training and bioreactor
A for testing are shown in b and d. %Var., explains the variance (%) in C6/C8

productivity of the training set. RRMSE, relative root mean square error.
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Figure S16. Reducing HRT increases abundances of HRT bioindicators driving
the catabolism of xylan and lactate to n-caproate and n-caprylate. These
catabolic steps were categorized into four main functions of the anaerobic
mixed culture fermentation. a, Hydrolysis of xylan. Relevant HRT bioindicators
are Olsenella sp. ASV034, Olsenella sp. ASV057, Olsenella sp. ASV058,
unclassified Erysipelotrichaceae sp. ASV002, Bulleidia sp. ASV010,
Lachnospiracea incertae sedis ASV053, Syntrophococcus sp. ASV060 and
Clostridium 1V sp. ASV073. b, Xylose fermentation producing acetate and
lactate. Relevant HRT bioindicators are Olsenella sp. ASV034, Olsenella sp.
ASVO057, Olsenella sp. ASV058 and Lactobacillus sp. ASV074. c, Butyrate
formation from lactate and acetate. Relevant HRT bioindicators are

Syntrophococcus sp. ASV060 and Clostridium sensu stricto sp. ASV008. d,
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Chain elongation with lactate as electron donor producing n-butyrate, n-
caproate and n-caprylate. Relevant HRT bioindicators are Syntrophococcus sp.
ASVO060, Clostridium IV sp. ASV073 and Clostridium sensu stricto sp. ASV008.
The rarefied ASV abundances were calculated using 16S rRNA amplicon
sequencing data. Boxes represent the interquartile range between the 25th and
75th percentiles, respectively, the line inside denote the median value, and
asterisks indicate significant different mean values (adjusted P*** < 0.001 < **
< 0.01 < *<0.05), which is tested by permutational Student’s t-test with 9,999
simulations. On the horizontal axis, A and B stand for bioreactors A and B,

respectively.
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Table S1. Growth medium used for the reactor operation. The medium was
anoxic by flushing with nitrogen and adjusted to pH 5.5 with 1 M sodium

hydroxide solution.

Concentrations (all components were prepared completely sterile):

0.054 g/ MgCl, x 6 H,O
0.065 g/ CaCl, x 2 H,0
0.474 g/. NH,CI

0.5 g/L Yeast extract
10.94 g/ KH,PO,

20.83 g/ K,HPO,

0.032 g/ Na,CO,

0.03 g/ Cysteine-HCI

I mL/L Trace element solution I mL/L Vitamin solution
FeCl, x 4 H,0 1.5¢g/L Biotin 20 mg/L
CuCl, x 2 H,0O 2mg/L Folic acid 20 mg/L
CoCl, x 6 H,0 190 mg/L Pyridoxine 100 mg/L
MnCl, 100 mg/L Thiamine 50 mg/L
Na,MoO, x 2 H,0 36 mg/L Riboflavin 50 mg/L
NiCl, x 6 H,O 24 mg/L Nicotinic acid 50 mg/L
Na,WO, x 2 H,0 20 mg/L Calcium pantothenate 50 mg/L
Na, SeO; x 5 H,0 3 mg/L Vitamin B, 20 mg/L
ZnCl, 70 mg/L p-Amino benzoic acid 80 mg/L
H,BO, 6 mg/L Lipoic acid 50 mg/L

Table S2. Daily feeding of bioreactors A and B during the four HRT phases.

Daily medium feeding

Bioreactor _ Mineral Deioni_sed Daily
HRT Duration Lactate Xylan medium anoxic _effluenf[
(d) (d) (@) (@) (mL) water withdrawing

(mL) (mL)
8 0-51 1.47 1.25 11 114 125
A 6 52-80 1.96 1.67 15 152 167
4 81-106 2.94 2.50 23 227 250
2 107-211 5.88 5.00 45 455 500
8 0-123 1.47 1.25 11 114 125
B 6 124-130 1.96 1.67 15 152 167
4 131-137 2.94 2.50 23 227 250
2 138-211 5.88 5.00 45 455 500
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Table S3. Gini scores of all ASVs in the classification-based prediction of HRT
phases. The percentage was calculated by dividing the Gini score of certain
ASYV by the sum of the Gini scores of all ASVs.

Bioreactor A Bioreactor B
No. ASV name Mean decrease in Gini Percentage | ASV name Mean decrease in Gini Percentage
1 ASV073 1.59 16.0% ASV057 2.77 27.8%
2 ASV057 151 15.1% ASV073 1.26 12.6%
3 ASV002 1.36 13.7% ASV034 1.18 11.8%
4 ASV082 1.15 11.5% ASV040 0.63 6.3%
5 ASV008 0.68 6.9% ASV002 0.59 5.9%
6 ASV006 0.43 4.3% ASV008 0.59 5.9%
7 ASV015 0.37 3.8% ASV060 0.58 5.8%
8 ASV053 0.31 3.2% ASV074 0.34 3.4%
9 ASV058 0.29 3.0% ASV082 0.26 2.6%
10 ASV034 0.26 2.6% ASV058 0.24 2.4%
11 ASV060 0.24 2.5% ASV010 0.19 1.9%
12 ASV027 0.20 2.0% ASV053 0.17 1.8%
13 ASV074 0.17 1.7% ASV042 0.17 1.7%
14 ASV054 0.15 1.5% ASV066 0.16 1.6%
15 ASV010 0.14 1.4% ASV068 0.10 1.0%
16 ASV007 0.11 1.1% ASVO070 0.09 0.9%
17 ASV047 0.10 1.0% ASV076 0.08 0.8%
18 ASV065 0.09 0.9% ASV065 0.08 0.8%
19 ASV076 0.08 0.8% ASV079 0.06 0.6%
20 ASV046 0.07 0.7% ASV038 0.05 0.5%
21 ASV042 0.07 0.7% ASV047 0.05 0.5%
22 ASV066 0.07 0.7% ASV025 0.05 0.5%
23 ASV038 0.07 0.7% ASV007 0.05 0.5%
24 ASV033 0.06 0.6% ASV084 0.04 0.4%
25 ASV070 0.06 0.6% ASV006 0.03 0.3%
26 ASV030 0.05 0.5% ASV078 0.03 0.3%
27 ASV079 0.04 0.4% ASV033 0.03 0.3%
28 ASV040 0.04 0.4% ASV027 0.03 0.3%
29 ASV049 0.03 0.3% ASV031 0.02 0.2%
30 ASV026 0.03 0.3% ASV015 0.02 0.2%
31 ASV051 0.02 0.2% ASV041 0.01 0.1%
32 ASV068 0.02 0.2% ASV059 0.01 0.1%
33 ASV025 0.02 0.2% ASV030 0.01 0.1%
34 ASV031 0.02 0.2% ASV046 0.00 0.0%
35 ASV069 0.01 0.1% ASV049 0.00 0.0%
36 ASV084 0.01 0.1% ASV016 0.00 0.0%
37 ASV085 0.01 0.1% ASV051 0.00 0.0%
38 ASV014 0.01 0.1% ASV012 0.00 0.0%
39 ASV019 0.01 0.1% ASV001 0.00 0.0%
40 ASV003 0.00 0.0% ASV003 0.00 0.0%
41 ASV018 0.00 0.0% ASV005 0.00 0.0%
42 ASV011 0.00 0.0% ASV009 0.00 0.0%
43 ASV081 0.00 0.0% ASV011 0.00 0.0%
44 ASV001 0.00 0.0% ASV014 0.00 0.0%
45 ASV005 0.00 0.0% ASV017 0.00 0.0%
46 ASV009 0.00 0.0% ASV018 0.00 0.0%
47 ASV012 0.00 0.0% ASV019 0.00 0.0%
48 ASV016 0.00 0.0% ASV021 0.00 0.0%
49 ASV017 0.00 0.0% ASV023 0.00 0.0%
50 ASV021 0.00 0.0% ASV024 0.00 0.0%
51 ASV023 0.00 0.0% ASV026 0.00 0.0%
52 ASV024 0.00 0.0% ASV028 0.00 0.0%
53 ASV028 0.00 0.0% ASV029 0.00 0.0%
54 ASV029 0.00 0.0% ASV039 0.00 0.0%
55 ASV039 0.00 0.0% ASV043 0.00 0.0%
56 ASV041 0.00 0.0% ASV044 0.00 0.0%
57 ASV043 0.00 0.0% ASV045 0.00 0.0%
58 ASV044 0.00 0.0% ASV048 0.00 0.0%
59 ASV045 0.00 0.0% ASV054 0.00 0.0%
60 ASV048 0.00 0.0% ASV056 0.00 0.0%
61 ASV056 0.00 0.0% ASV062 0.00 0.0%
62 ASV059 0.00 0.0% ASV063 0.00 0.0%
63 ASV062 0.00 0.0% ASV064 0.00 0.0%
64 ASV063 0.00 0.0% ASV067 0.00 0.0%
65 ASV064 0.00 0.0% ASV069 0.00 0.0%
66 ASV067 0.00 0.0% ASV071 0.00 0.0%
67 ASV071 0.00 0.0% ASVO077 0.00 0.0%
68 ASV077 0.00 0.0% ASV080 0.00 0.0%
69 ASV078 0.00 0.0% ASV081 0.00 0.0%
70 ASV080 0.00 0.0% ASV085 0.00 0.0%
71 ASV086 0.00 0.0% ASV086 0.00 0.0%
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Table S4. Mean carboxylate yields (i.e. C mole product to substrate ratios) at

HRTs of 8 days and 2 days (stable production period).

Bioreactor HRT Duration c4 Cc6 Cc8
(d) (d) (mmol C/mmol C) (mmol C/mmol C) (mmol C/mmol C)
8 0-51 39.1 11.6 0.7

A 2 162-211 26.8 16.9 1.3
8 0-123 39.6 12.3 0.9

B 2 193-211 22.3 18.7 2.0

Table S5. Explained variances of the training set in the regression-based
prediction of process parameters using A-HRT bioindicators and B-HRT
bioindicators. Features (ASVs) explaining more than 80% of the variance in a
process parameter are indicated in green. A and B stand for bioreactors A and

B, respectively.

Training set Predicted variable Set of ASVs Number of ASVs | Explained variance (%3
c4 ASV_all 71 89.37 £0.48
A-HRT bioindicators 15 87.81+£054
6 ASV_all 71 67.66 +0.84
A-HRT bioindicators 15 68.06 £0.84
concentration
c8 ASV_all 71 58.43 +0.91
A-HRT bioindicators 15 59.30 £1.00
ASV_all 71 7730079
Lactate -

A-HRT bioindicators 15 7820077
ca ASV_all 71 88.61+0.41
A-HRT bioindicators 15 88.94 £0.35

Bioreactor A 71

+
productivity 6 ASV_all 093.80+045
A-HRT bioindicators 15 9587 £0.23
ca ASV_all 71 80.91+078
A-HRT bioindicators 15 86.62 +0.51
ca ASV_all 71 8539 +058
A-HRT bioindicators 15 8081073
yield c6 ASV_all 71 73.81+064
A-HRT bioindicators 15 5462+098
ce ASV_all 71 60.50 +0.81
A-HRT bioindicators 15 56.84 £0.92
c4 ASV_all 71 79.49+0.49
B-HRT biocindicators 15 7861+063
ch ASV_all 71 7394 +054
" B-HRT bioindicators 15 7711 +050
concentration
ca ASV_all 71 6237 +075
B-HRT biocindicators 15 6364 +0.83
ASV_all 71 6864 +085
Lactate -

B-HRT bicindicators 15 72.02+066
c4 ASV_all 71 65.90 + 063
’ B-HRT bioindicators 15 67.91+058

Bioreactor B 71

=
productivity ch ASV_all 9392 +0.36
B-HRT biocindicators 15 9344 +037
ca ASV _all 71 84 37 +0 68
B-HRT bicindicators 15 8565 +0.58
ca ASV_all 71 68 67 +0.82
B-HRT biocindicators 15 7099 +0.49
71 7357 +054
yield cs |BVval

B-HRT biocindicators 15 7817 +0.41
c8 ASV_all 71 6575+083
B-HRT biocindicators 15 67.19+093
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Table S6. Explained variances of the training set in the regression-based
prediction of process parameters using non-HRT bioindicators for considering
community assembly caused by time. Features (ASVs) explaining more than
80% of the variance in a process parameter are indicated in green. A and B

stand for bioreactors A and B, respectively.

Training set Predicted variable Setof ASVs |Nu11 ber of ASVs|Explained variance (%)
ca ASV_all 7 8937048
A-C4dc_bioindicators 15 9169+025
c6 ASV_all [l 67.66+ 084
) A-CBc_bioindicators 15 7072+ 057
concentration -
cs ASV_all 7 5843+ 091
A-C8c_bioindicators 15 6395+ 054
ASV_all [l 7730+ 079
Lactate -
A-LACc_bioindicators 15 7938+ 053
ca ASV_all 7 8861041
) A-C4p_biocindicators 15 8883+026
Bioreactor A -
productiity c6 ASV_all [l 9380+ 045
A-C6p_bicindicators 15 9564+ 020
cs ASV_all 7 8091+078
A-C8p_bivcindicators 15 8320+048
ca ASV_all m 8539+ 058
A-C4y_bioindicators 15 8707+036
vield c6 ASV_all [l 7381+ 064
A-CBy_bioindicators 15 7473+ 040
cs ASV_all 7 6050+ 081
A-C8y_bioindicators 15 6185+ 066
c4 ASV_all [l 7949+ 049
B-C4c_bioindicators 15 8150+033
CE ASV_all 7 7394+ 054
) B-C6c_bioindicators 15 7515+ 0.36
concentration -
cs ASV_all [l 62371075
B-C8c_bioindicators 15 6435+ 057
ASV_all 7 6864+ 085
Lactate -
B-LACc_bioindicators 15 7116+ 051
ca ASV_all m 6590+ 063
Bioreactor B B-C4p_bicindicators 15 6790+ 041
productivity cé ASV_all 71 9392+ 036
B-CEp_bioindicators 15 9525+ 024
cs ASV_all m 8437+ 068
B-C8p_bicindicators 15 8590+ 053
c4 ASV_all [l 6867+ 082
B-C4y bioindicators 15 7117+ 0486
vield CE ASV_all 7 73571054
B-CBy_bioindicators 15 7470+ 035
cs ASV_all [l 6575+ 083
B-C8y_bioindicators 15 6784+ 052
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2.3 Effects of pH increase on microbial chain elongation and

community dynamics in closed bioreactor ecosystems

In preparation for submission
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2.3.1 Main text

Abstract

As for microbial chain elongation in engineered systems, it is unclear how
alterations of pH can affect the abundance of key players, the responses of
microbial interactions and the community functioning in terms of medium-chain
carboxylate yields. Here, we explored its effect on the community dynamics
measured by sequencing 16S rRNA genes in continuous anaerobic bioreactors.
Increasing pH from 5.5 to 6.0 caused fluctuations in the yields of n-caproate
and n-caprylate. After the pH disturbance, the yields returned to the previous
values while the communities developed to a different state, observed as
decrease in diversity and evenness and increase in richness. By applying
Aitchison PCA clustering, linear mixed effect models and random forest
classification, the different pH preferences of potential chain elongators
Clostridium IV and Clostridium sensu stricto were identified. By constructing
networks for different pH levels, the cooperation of the chain elongator
Clostridium 1V with lactic acid bacteria switches from Olsenella to Lactobacillus
along the pH increase, revealing the plasticity of the food web of chain
elongation communities. pH increase induced dramatic shifts in the community
composition but exhibited no strong effects on medium-chain carboxylate yields.
High functional redundancy was indicated despite the reactors being long-term

closed systems.
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Introduction

In microbial ecology, it is important to understand the main environmental
factors driving the deterministic processes of microbial community assembly
and functioning [1-3]. Ecological selection exerted by abiotic and biotic factors
in deterministic processes influences the growth rates and interactions between
community members, and thereby determines the composition and functioning
of microbial communities [4-7]. For engineered systems, pH is frequently
indicated as a key parameter influencing microbial diversity and consequently

shaping the system for a specific function [8-12].

Here, we explored the effects of pH increase based on previously developed
model ecosystems, which use anaerobic fermentation reactors with enriched
mixed cultures under well-controlled abiotic conditions [13,14]. By preventing
continuous inoculation, such closed systems are simplified but still relatively
complex considering microbial interactions and metabolic processes.
Enrichment cultures can maintain their functional stability in a self-assembled
manner, which is challenging for synthetic communities [15]. In our model
ecosystem, we focus on the process of microbial chain elongation (CE) to
produce the carboxylates n-butyrate (C4), n-caproate (C6) and n-caprylate (C8)
[13]. Using xylan and lactate to simulate the feedstock conditions of anaerobic
fermentation of ensiled plant biomass [16], the lactate-based CE coupled with
in situ lactate formation holds promise to valorise organic wastes or biomass
residues within the carboxylate platform [17]. Efficient and stable CE processes
rely on trophic relationships among community members with diverse functions,
in our case including xylan hydrolysis, xylose fermentation and lactate-driven
CE, presenting diverse and parallel pathways for substrate metabolism in a
food web [13].

Next-generation sequencing data (e.g., 16S rRNA amplicon sequencing) allow
us to capture the dynamics of entire communities with a high phylogenetic
resolution over long-term experimentation [7]. Such microbiome datasets are
generated inherently with compositional bias in sparse sequencing count data
because of the fixed capacity of sequencing instruments, and the hypothesis
behind is that sequencing counts the number of molecules relevant to the
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bacteria in the population [18]. It is acknowledged that only a proportion of
counts per feature (e.g., amplicon sequencing variants — ASV) is available, thus
compositional approaches were developed to avoid the common pitfalls in the
analysis of relative abundance data. As reviewed by Gloor et al. [18], the
workflow normally starts with a log-ratio transformation, then different tools of
distancing for clustering and ordination, multivariate comparison and correlation
analysis are included [19-21]. The latter is commonly unveiled by association
network algorithms, inferring non-random co-occurrence patterns between
community members and assessing microbial responses to environmental
changes. In this study, both standard microbiome analysis and the
compositional replacements were implemented to achieve statistically more

robust results.

Besides the changed environmental factor pH, time needs to be considered as
an important component in this long-term experimental study. Regularly
frequent sampling with replicates over long time in microbial communities gives
insight into their stability, development or response to and recovery from
perturbation [9,22,23]. Linear mixed-effects models (LME) and variations
thereof are commonly used for modelling time-resolved 16S rRNA amplicon
data, thereby identifying temporal microbial interaction patterns [24,25]. We
hypothesised that the pH value predominantly determines the assembly of CE
reactor microbiota, but the impact of time needs to be disentangled by applying
LME. The identified taxa with their temporal patterns are key to understand their
roles in community assembly. Feature selection using random forest
classification was performed to denote bioindicators of pH changes, and the
genetic potential of these bioindicator taxa was investigated by functional
annotation of the accessible metagenome-assembled genomes (MAGS) [14].
As for CE, it is still unclear how the different microorganisms interact and what
conditions they thrive in. In this context, pH can be a critical parameter that
affects these relationships, and ultimately the end products of CE. In this study,
we focused on the effects of pH increase from three aspects: (i) the abundance
of identified key players, particularly potential chain-elongating species, (ii) the
responses of microbial interactions, and (iii) the CE community functioning

represented mainly by the production of C4, C6 and C8.
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Materials and methods
Reactor operation and sampling

The inoculum originated from a lab-scale caproate-producing bioreactor that
was operated with corn silage [16]. We enriched the microbial community in a
1-L bioreactor (BIOSTAT® A plus, Sartorius AG, Gottingen, Germany) fed with
mineral medium containing xylan and lactic acid over 150 days [13]. The
enriched community producing C4, C6 and C8 was further selected by reducing
the hydraulic retention time (HRT) in two parallel BIOSTAT bioreactors for
almost one year [14]. The present study continued to shape the reactor
microbiota by increasing the pH, with a fixed HRT of four days. Before starting
the experiment, the microbial communities of both bioreactors (A and B) were
equally distributed by pumping the content from A to B and back while keeping

it anoxic.

The reactor configuration was similar as before [13], with both bioreactors
operated at 38 + 1°C, constantly stirred at 150 rpm and the pH automatically
controlled by addition of 5 M NaOH. For daily feeding, 2.94 g lactic acid and
2.50 g water-soluble xylan were supplied in 0.25 L mineral medium. The starting
pH was 5.5 in both bioreactors A and B. After 42 days, we increased the pH of
bioreactor A from 5.5 to 6.0, and further to 6.5 from day 112 to day 238. By
considering the effect of time on community assembly, a different temporal
scheme of pH increase was applied in reactor B (pH 5.5: day 0-144, pH 6.0:
day 145-214, pH 6.5: day 215-238).

Gas samples and liquid samples of reactor effluent were collected twice per
week. The effluent was centrifuged and the supernatant was used for
measuring concentrations of xylan, carboxylates and alcohols. Pelleted cells

were stored at -20°C for DNA-based community analysis [13].
Analytical methods

Daily gas production was monitored on-line with a gas counter as described
[26]. Gas composition was determined in triplicate for H2, CO2, N2 and Oz by

gas chromatography [27]. Concentrations of carboxylates and alcohols were
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analysed in triplicate by gas chromatography, and xylan was measured by a
modified dinitrosalicylic acid reagent method as reported [13]. At the beginning
and the end of the experiment, cell mass concentration was calculated from
optical density (OD) values correlated with cell dry mass [13], with mean
correlation coefficients of 1 ODeoo = 0.641 g L™ for bioreactor A and 1 ODeoo =
0.632 g L* for bioreactor B.

Total DNA was isolated from frozen pellets using the NucleoSpin Microbial DNA
Kit (Macherey-Nagel, Duren, Germany). Methods for DNA quality control and
guantification were reported before [28]. 16S rRNA genes were PCR-amplified
using primers 341f and 785r [29], with high-throughput amplicon sequencing
performed on the Illlumina Miseq platform (Miseq Reagent Kit v3, 2 x 300 bp).

Microbiome data analysis

The QIIME 2 v2020.2 pipeline [30] with DADA2 plugin [31] was applied to
demultiplex sequences, filter phiX reads, denoising, merging read pairs,
trimming and removing chimeras of the sequences. A total of 6,855,572
sequences ranging from 21,389 to 66,272 pairs of reads per sample were
obtained, with a median of 50,439 in 136 samples. A feature table was created
indicating the frequency of each ASV clustered at 100% identity. ASVs with
frequencies lower than two in less than three samples were filtered out before
further analyses. Taxonomy was assigned with a naive Bayes classifier trained
on the database MIDAS 2.1 [32] and curated with RDP Classifier 2.2 [33]
(confidence threshold: 80%). The filtered ASV table was rarefied to a depth of
21,389 reads for the downstream analyses (rarefaction curve reached the
plateau, Figure S1). A total of 97 unique ASVs were retained.

Alpha diversity based on rarefied ASV data was evaluated by using the
ecological indices including diversity, evenness and richness as described [34].
The indices of order one (*D and 'E) quantify the diversity and evenness by
weighting all ASVs equally, while the indices of order two (°D and ?E) give more
weight to the dominant taxa. Considering the compositional nature of the high-
throughput sequencing data [18], we analysed the data with standard

approaches and their compositional replacements. For dissimilarities in
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community composition (beta diversity), we used both Bray-Curtis distance-
based principle coordinate analysis (PCoA) [35], and Aitchison principle
component analysis (PCA) via DEICODE that is robust to data sparsity [19].
The QIIME 2 plugin Qurro [36] was used to visualise and explore feature
rankings in the produced DEICODE biplot. PERMANOVA (“adonis” function in
R vegan package, v2.5.6; 999 permutations) [20] was used for statistical
analyses of beta-diversity, with P values adjusted by the false discovery rate
(FDR) method [37].

Statistical analysis of effects of pH increase on reactor microbiota time

series

A redundancy analysis-based variation partitioning analysis (VPA) was used to
provide a quantification of the relative contribution of individual process
parameters (pH and time) and their interactive effects on temporal variation in
microbial community composition. VPA was performed using “varpart” function
in R package vegan. For each process parameter, we performed a partial
Mantel test to examine its correlation with community composition represented
by Aitchison and Bray-Curtis distances, independent of time (9999

permutations) using vegan.

The QIIME 2 plugin g2-longitudinal with default settings was used to construct
the LME for regression analyses involving dependent data [25]. Random
intercepts models (REML method) were used to track longitudinal changes of
metrics including alpha- and beta-diversity and ASV abundances in microbial
communities. In brief, pH and time were designated as fixed effects and
bioreactor as a random effect, whereat values represent samples of a random
collection. The response variables are the following metrics: D, 2D, 'E, °E,

richness, PCL1 of Aitchison or Bray-Curtis and ASV abundance.

The Microbial Temporal Variability Linear Mixed Model (MTV-LMM) was used
to identify autoregressive taxa and predict their relative abundances at later
time points [24]. The model assumes that the temporal changes in relative
abundance of ASVs are a time-homogenous high-order Markov process. To

select the core time-dependent taxa, MTV-LMM was applied to each individual
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pH level, which generated a temporal kinship matrix representing the similarity
between every pair of normalised ASV abundances (a given time for a given
individual) across time. A concept of time-explainability was introduced to
guantify the temporal variance explained by the microbial community in

previous time points.
Random forest (RF) classification

Supervised classification of pH levels on community compositions was
performed using QIIME 2 g2-sample-classifier with default settings [38].
Rarefied ASV data were used as features to train and test the classifier. First,
a nested cross-validation of the RF model was applied to overview the
classification of the pH levels for all samples. For model optimisation, a second
layer of cross validation (outer loop) was incorporated to split the dataset into
training and test sets five times, and therefore each sample ended up in a test
set once. During each iteration of the outer loop, the training set is split again
five times in an inner loop to optimise parameter settings for estimation of that
fold. Five different final models were trained, with each sample receiving a
predicted value. The overall accuracy was calculated by comparing the

predicted values to the true values.

Next we performed a feature selection by randomly picking 80% of the samples
to train a RF classifier, and the remaining 20% of the samples were used to test
classification accuracy of the classifier. K-fold cross-validation (K = 5) was
performed during automatic feature selection and parameter optimisation steps
to tune the model. As determined by using recursive feature elimination, the
most important features that maximised model accuracy were selected. Model
accuracy and predictions were based on the classifier that utilised the reduced

feature set.
Network analysis

Co-occurrence networks based on rarefied ASV data and process parameter
data were inferred by using the FlashWeave v0.16 implemented in Julia [21].
FlashWeave uses the centred log-ratio approach for the correction of

compositional microbial abundances, and it infers direct associations. Three
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networks were constructed from the data of the three individual pH levels, which
featured a correlation coefficient below -0.5 or above 0.5. Another network was
constructed from the entire data of all pH levels. All networks were visualised
in Cytoscape v3.8.0 [39], with topological features analysed.

Results
Fluctuation and recovery of reactor performance

The pH increase from 5.5 to 6.0 caused fluctuations in the concentrations of CE
products and lactate, which were not observed upon further increase to pH 6.5
(Figure 1). First we applied this pH increase in bioreactor A, which immediately
presented an increased concentration (mmol C/L) of C8 up to 29.1,
corresponding to a yield (C mole product to the transferred substrate ratio) of
5.2, and a relatively stable yield of C6 (mean of 16.0 £ 1.5 at pH 6.0). Lactate
accumulated to a concentration of 147.5 while C4 concentration dropped to
69.1, with a yield of 12.1 (Figure 1a). The pH increase caused no effects on the
fast consumption of xylan (Figure S2). Soon afterwards the accumulated lactate
was consumed and C4 returned to the previous concentration of 273.9 on day
95 at pH 6.0. Interestingly, a further increase to pH 6.5 did not result in any
fluctuations of the production of C4, C6 and C8 (Figure 1a). Later we replicated
the pH increase from 5.5 to 6.5 in bioreactor B to confirm the observed impacts
of pH increase on CE. With a longer operation at pH 5.5 for 144 days,
comparable fluctuations in concentrations of lactate, C4 and C8 were observed,
but presenting a delay of 38 days after the pH increase to 6.0. Concentrations
of lactate, C4, C6 and C8 were relatively stable when bioreactor B was operated
at pH 6.5. No propionate was detected in both bioreactors. The pH increase
also resulted in fluctuations of daily gas production and gas composition
including CO2 and H2 (Figure S3). Besides, a general upward trend of cell mass
production suggests a facilitating effect of higher pH on the growth of enriched
populations with CE functions (Figure S4).

Emergence of rare species and development in microbial community

composition
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As shown in Figure S5, the relative abundance of ASVs categorised from
phylum to genus varied along with the pH gradients in such closed microbial
systems. For example, the genera Actinomyces and Prevotella became
apparent at pH 6.5, along with increasing abundance of Clostridium sensu
stricto and decreasing abundances of Clostridium IV and Eubacterium (Figure
S5e). After the pH increase, alpha diversity metrics showed decreases in
diversity (*D) and evenness (*E), but increase in richness (Figure 2; similar
results for 2D and 2E as shown in Figure S6). We used LME models to test
whether these indices were impacted by pH and time. Three separate LME
models were fitted to examine 1D, 'E and richness across pH gradients because
the trajectories appear nearly linear. Diversity was significantly impacted by pH
(P < 0.001) and time (P < 0.001), indicating that diversity was reduced much
stronger by a factor of 6.188 by pH increase than by time with a factor of 0.209
(Table S1). Evenness and richness were also significantly associated with pH
and time, although pH presented much stronger impacts on both indices
(Tables S2-S3).

Beta diversity analysis including Aitchison distance-based PCA and Bray-Curtis
distance-based PCoA revealed that the bacterial communities differed
significantly between the three pH levels (PERMANOVA; P < 0.001) (Figure 3a
and Figure S7). ASVs belonging to Clostridium IV, Oscillibacter, Olsenella and
Syntrophococcus were strongly associated with the communities of pH 5.5 and
6.0 while Clostridium sensu stricto sp. ASV009 was most strongly associated
with the community of pH 6.5 (Figure 3a). Based on the association with
dissimilarities in community composition, ASVs represented by Clostridium 1V
sp. ASV008 (the lowest ranked taxa) and Clostridium sensu stricto sp. ASV009
(the highest ranked taxa) correspond to the most influential taxa driving the
Aitchison PCA clustering (Figure 3b). Fitting LME models to their dynamics in
relative abundance (Figure 3c), results showed that the relative abundance of
ASV008 was significantly impacted by pH (P < 0.001) and time (P = 0.002),
whereas only pH (P < 0.001) significantly impacted the abundance of ASV009,
and time exhibited no significant effects (P = 0.091) (Tables S4-S5). In both
cases, pH presented a much stronger impact than time. By applying LME

models, we examined how beta diversity changed over time in each bioreactor
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(Figure 3d-3e). Results indicated that pH was the most influencing factor,
although time had significant effects as well (Tables S6-S7). The impact of pH
on microbial community assembly was further confirmed by partial Mantel test.
We correlated the time-corrected dissimilarities of community composition with
pH, and the results show their strong, significant correlations based on
Aitchison distance (rm = 0.61, P < 0.001) and Bray-Curtis distance (rm =0.72, P
< 0.001) (Table 1). Evaluating the overall contributions of pH and time by VPA,
they together could explain 61% of the microbial community variations based
on Bray-Curtis (Figure S8). 24% and 3% variations were independently
explained by pH and time, respectively. These results support those inferred

from the LME models.
pH bioindicators and time-dependent taxa

Overall, the nested cross-validation of RF classification represented an
accuracy of 97.8% in prediction of the pH levels for all 136 samples (Figure S9),
by using ASV data to follow community composition dynamics. We carried out
recursive feature elimination with cross-validation, 18 most important features
were selected that gave a perfect discrimination between three pH levels
(Figure 4). These ASVs were defined as pH bioindicators, belonging to the
genera Clostridium IV, Syntrophococcus, Lactobacillus, Olsenella, Bulleidia,
Clostridium sensu stricto, Eubacterium, Lachnospiraceae incertae sedis,
Sporanaerobacter and Actinomyces (Figure 4b). Among these pH bioindicators,
four showed increases while 14 showed decreases in abundance along the pH
increase. Interestingly, the most influential ASVs driving the Aitchison PCA
clustering were also exhibited as pH bioindicators, including the abundant taxa
Clostridium 1V sp. ASV008 and Clostridium sensu stricto sp. ASV009 (Figure
4b).

By using MTV-LMM, we identified time-dependent taxa, whose abundance can
be predicted based on the previous community composition. In this longitudinal
study, 32, 25 and 40 ASVs were predicted to be significantly (P < 0.05) affected
by the past composition of the community at pH 5.5, 6.0 and 6.5, respectively,
with the time-explainability ranging from 17% to 80%, 17% to 83% and 13% to
96%, respectively (Figure S10). Inferring microbial interactions of these taxa
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deserves more attention in understanding the dynamics of composition and

functions of the community.
Microbial interaction patterns

Partial Mantel test showed the community composition significantly correlated
with process performance and the changing conditions (Table 1). We
consequently constructed an overall network and three separate networks for
each pH level, to discern the succession of microbial interactions and to reveal
potential metabolic functions. After the disturbance of pH increase to 6.0, more
nodes and edges, as well as higher average clustering coefficient and
heterogeneity were found, suggesting that the overall interaction intensity was
higher at pH 6.5 (Table S8). In agreement with Aitchison PCA analysis, pH was
significantly correlated with pH bioindicators ASV008 and ASV009 (Figure S11).
Changes of interaction patterns over pH were shown in Figure 5. At the family
level, Ruminococcaceae co-occurred with Lachnospiraceae and
Erysipelotrichaceae at all pH levels, while it co-occurred with Coriobacteriaceae
only at pH 5.5 (e.g., Clostridium IV sp. ASV090 with Olsenella sp. ASV049) and
with Actinomycetaceae only at pH 6.5 (Clostridium IV sp. ASV037 with
Actinomyces sp. ASV019), and with Lactobacillus at pH 6.0 and 6.5.
Clostridiaceae 1 co-occurred with Clostridiales Incertae Sedis XI (Clostridium
sensu stricto sp. ASV009 with Sporanaerobacter sp. ASV029) and
Erysipelotrichaceae only after the pH increase to 6.0. Erysipelotrichaceae
presented positive correlations with Lactobacillus at pH 6.0 and 6.5, where its
negative correlation with Coriobacteriaceae vanished. Interestingly, the positive
correlation of Erysipelotrichaceae (Bulleidia sp. ASV004) with Lachnospiraceae
(Syntrophococcus sp. ASV001) vanished at pH 6.0. The positive correlation
between C6 yield and Eubacterium sp. ASV015 was presented in the networks
of overall, pH 5.5 and pH 6.0, but not pH 6.5 (Figures S11 and 5). In general,
more relatively strong correlations (|r| > 0.5) emerged at pH 6.5, including the
negative correlation of Prevotella sp. ASV041 with Bulleidia sp. ASV017.
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Discussion

pH niches of chain elongators Clostridium IV and Clostridium sensu

stricto

We recovered MAGs of Clostridium IV and Clostridium sensu stricto presenting
the genetic potential of CE in our previous study [14], the communities of which
were further shaped by gradual pH increase. Based on the statistically robust
results of Aitchison PCA clustering coupled with LME models and RF
classification, a clear conclusion can be drawn: mildly acidic pH values (lower
than 6.0) are favourable for Clostridium IV while more neutral pH 6.5 is suitable
for Clostridium sensu stricto. MAGs classification of Clostridium 1V sp. ASV008
showed highest similarity to the lactate-based chain elongator
Ruminococcaceae bacterium CPB6 (Acutalibacteraceae UBA4871 according
to the Genome Taxonomy Database [40]), which was described to prefer mildly
acidic pH (i.e. 5.5 - 6.0) and to suffer from low growth rates and long lag times
at pH values above 6.0 [41]. MAGs of Clostridium sensu stricto sp. ASV009
showed highest similarity to Clostridium luticellarii (Clostridium_B luticellarii
according to the Genome Taxonomy Database [40]), which presented optimal
growth at pH 6.5 [42] and the ability of CE [43-46], but it needs to be
investigated whether this species uses lactate as electron donor for CE.
Particularly, these two ASVs represent time-dependent taxa that are key to
understand the community assembly and can be used to characterise the
temporal trajectories of the community. The pH preferences of Clostridium IV
ASV008 and Clostridium sensu stricto ASV009 tie together with concepts in
niche theory suggesting that microorganisms are able to live within a
designated range of pH values, and outside this range, they are outcompeted
by other, better adapted organisms [47]. Due to the growth optima of different
populations, alteration of pH is an important tool to shape and control CE

reactor microbiota.
pH as a key determinant of microbial community assembly

Regular and sufficiently dense sampling with replicates is crucial to capture

compositional patterns of communities inferred from time series data [7,22].
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Microbial interaction is a main factor affecting such time-dependent patterns.
Given that pH had a much stronger association with community assembly than
time did, we concluded that pH increase mainly determined variations in
microbial interactions along pH gradients. Our former studies indicated that
lactate-based CE driven by Olsenella is an essential feature when maintaining
the pH at 5.5 [13,14]. Along with increasing pH, the lactic acid bacteria
Olsenella cooperating with the chain elongator Clostridium IV was replaced by
Lactobacillus. Both genera are xylose-consuming lactate producers according
to the functional annotation of their MAGs (Table 2). An enriched community
dominated by the co-occurrence of CE species and Lactobacillus was reported
in a recent study [48], which also suggested inherent benefits of in situ lactate
formation in CE [13]. The shift in a mutualism of lactate-consuming chain
elongator and lactate producer revealed the plasticity of the CE microbiota food
web. Additionally, the co-occurrence of phylogenetically closely related taxa
may indicate their overlapping metabolic niches, such as the appearance of
Lactobacillus spp. ASV003 and ASV011, Syntrophococcus spp. ASV001 and
ASVO013, Clostridium IV spp. ASV002 and ASVO005 at all pH ranges.

As suggested by the storage effect, dormant rare taxa can germinate and
become dominant under proper conditions [49,50]. In this study, the increase
in richness can be explained by an abundance shift of some taxa from rare to
abundant, reflecting strong inhibition effects of lower pH on these taxa. With the
increased number of microbial interactions and increasing interaction intensity
strongly coupled to these taxa at higher pH, the factor pH shaping the
community assembly was revealed by considering the growth and interactions

of community members in such long-term closed systems.

Besides, indirect effects of pH cannot be ignored. At higher pH, the
concentrations of undissociated carboxylic acids (e.g., C6/C8) are lower, which
are known growth inhibitors of the CE community members [11,51-54]. The
effects of pH on proton concentration changes and CO2-HCOs™ equilibrium in a
lactate conversion (e.g., 3 lactate” + 2 H20 — caproate” + 3 HCO3z + H* + 2 Hy)
can cause the actual Gibbs energy change and further the energy release
during CE with lactate [55].
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Community changes do not always affect community functioning

We assumed that increase in pH would induce shifts in the community and
consequently in community functioning. However, unlike in a complex, open CE
system [16], increasing pH exhibited no strong effects on CE community
functioning, which means those changes in community composition did not
necessarily lead to the improvement in carboxylate production during long-term
reactor operation. This agrees with the rare associations we observed for the
ASVs to process parameters in the networks. Without introducing new
microorganisms by inoculation, the emergence of rare species indicated high
functional redundancy despite the reactors being closed systems. The reactor
performance returned to the previous state after the fluctuation in carboxylate
production along pH gradients, reflecting those coexisting rare taxa can
increase functional resilience to environmental disturbances. Interestingly, the
disturbance caused dramatic but transient increases of C6 and C8 yields. How
to maintain such disturbance effects needs to be investigated systematically.
Indeed, improving functional redundancy deserves equal importance as
maximising the carboxylate production, because the presented parallel
pathways of substrate conversion are essential to guarantee the functional

stability during perturbation [9,11,56].

Other studies reported that low pH values favour CE in mixed culture
fermentation, mainly because higher pH would support competing processes,
such as methanogenesis [57] and the acrylate pathway for propionate
production [10,58]. Results showed that our communities possibly lack these
pathways and the corresponding functional species. Although pH is not an
effective tool to manage the reactor microbiota towards beneficial traits of high
specificities of C6/C8 production, it is clear that effects of alterations in pH are
not universal for all reactor microbiota simply because of the difference in initial

community composition.
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Data availability

All data described in this manuscript are present in the paper and/or the
Supplementary material. Amplicon sequencing data (ERR4450775 to
ERR4450910) have been deposited to the ENA database under study no.
PRJEB39808.

Supplementary information
Supplementary Figures and Tables: Figures S1-S11 and Tables S1-S8.
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Figure 1. Performance of bioreactors. Concentrations of chain elongation
products and lactate, as well as yields of chain elongation products in
bioreactors A (a) and B (b) at three pH levels. Chain elongation products: C4,
n-butyrate; C6, n-caproate; C8, n-caprylate.
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strength of the relationship of that ASV to community composition. ASVs are
coloured by family. b, ASV ranks estimated from Aitchison distance-based PCA
(PC1) with Clostridium IV and Clostridium sensu stricto highlighted. c,
Longitudinal changes in relative abundances of Clostridium IV sp. ASV008 and
Clostridium sensu stricto sp. ASV009 at the three pH levels. Results of linear
mixed-effects model can be found in Tables S4-S5. d,e, Longitudinal changes
in bacterial community composition at the three pH levels, based on Aitchison
(d) and Bray-Curtis (e) dissimilarities. Results of linear mixed-effects model can
be found in Tables S6-S7.
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Figure 4. pH bioindicators determined by random forest classification
accurately predict the different pH levels. a, A recursive feature elimination
plot illuminates the model accuracy changes as a function of ASV count. The
top-ranked 18 ASVs (pH bioindicators) that maximise accuracy are
automatically selected for optimising the model, based on their mean decrease
in Gini scores, according to their ASV abundance distribution, with pH as the

response variable. b, A heatmap shows dynamics of the mean abundance of

129



Research chapter 2.3

pH bioindicators at the different pH levels. ASVs shown in Aitchison PCA biplot
are indicated by a star. ¢, Confusion matrix for the optimal classifier of samples
at different pH levels. The classifier was trained on the randomly picked 80% of
the samples, which was then tested on the remaining 20%. Overall accuracy
was calculated by comparing the predicted values to the true values. d, The
Receiver Operating Characteristic (ROC) and Area Under the Curve (AUC)
curves represent the classification accuracy of random forest. The ROC curve
plots the relationship between the true positive rate and the false positive rate
at various threshold settings. The AUC indicates the probability that the
classifier ranks a randomly chosen sample of the given class higher than other
classes. The random chance is represented as a diagonal line extending from
the lower-left to the upper-right corner. In addition to show the ROC curves for
each class, average ROCs and AUCs were calculated. "Micro-averaging"
calculates metrics globally by averaging across each sample; hence class
imbalance impacts this metric. "Macro-averaging" gives equal weight to the

classification of each sample.

130



Research chapter 2.3

{_ Clostridiaceae 1

Coriobacteriaceae
. Erysipelotrichaceae

. Lachnaspiraceae

@ Lactobacillaceae
Prevotellaceae
Ruminococcaceas

. Others

. Process parameter

— Positive correlation
Negative correlation

f_. Time-dependent taxa

Figure 5. Co-occurrence networks for the three individual pH levels. Edges
indicate a coefficient > 0.5 for positive correlations and < -0.5 for negative
correlations. Edge thickness reflects the strength of the correlation. The size of
each ASV node is proportional to the mean relative abundance over the
corresponding pH level. ASV nodes are coloured and grouped by family. ASV
nodes with grey dash borders are those time-dependent taxa of each individual
pH level, whose abundance can be predicted based on the previous microbial
community composition. pH bioindicators identified by random forest
classification are shown with green letters. “Others” include the ASVs belonging
to families Eubacteriaceae (ASV015), Actinomycetaceae (ASV019),
Clostridiales Incertae Sedis Xl (ASV029), Microbacteriaceae (ASV048),
Veillonellaceae (ASV052, ASV054) and Nocardiaceae (ASV055). Lac, lactate
concentration; C2, acetate yield; C4, n-butyrate yield; C6, n-caproate yield; C8,

n-caprylate yield.
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Table 1. Partial Mantel tests showing significant correlations between the
time-corrected dissimilarities of microbial community composition and

process parameters.

Aitchison distance Bray-Curtis distance
Process parameter
Fm@ pb 'm P

pH 0.61 < 0.001 0.72 < 0.001
Conc. C2¢ 0.27 < 0.001 0.18 < 0.001
Conc. C4 0.07 0.013 -0.01 0.569
Conc. C6 0.29 < 0.001 0.48 < 0.001
Conc. C8 0.25 < 0.001 0.16 < 0.001
Conc. lactate 0.02 0.258 0.01 0.401
Conc. biomass 0.16 <0.001 0.11 0.002
Yield C2 0.27 < 0.001 0.15 < 0.001
Yield C4 0.09 0.004 0.00 0.448
Yield C6 0.38 < 0.001 0.40 < 0.001
Yield C8 0.22 < 0.001 0.13 0.003
Yield biomass 0.09 0.001 0.06 0.037
0> 0.43 < 0.001 0.44 < 0.001
CO2 0.14 < 0.001 0.18 < 0.001
H> 0.19 < 0.001 0.16 < 0.001
Time 0.14 < 0.001 0.33 < 0.001

arm, the correlation coefficient based on partial Mantel test, in which time was
controlled. The permutation test compares the original rm to rm computed in

9999 random permutations.
®The reported P value is one-tailed.

¢Conc., concentration
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2.3.2 Supplementary information
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Figure S1. Alpha rarefaction curves. ASVs of all samples were rarefied to an

equal sequencing depth of 21,389 reads. Colours represent the different

samples.
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Figure S2. Daily consumption of xylan in bioreactors. During the
fluctuations at pH 6.0 (day 67), an intensive sampling shows the fed water-
soluble xylan was fast consumed in both bioreactors. A and B stand for

bioreactors A and B. Error bars represent the standard deviation.
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Figure S3. Gas production of bioreactors. Daily gas production and
composition in bioreactors A (a) and B (b), respectively, at three pH levels. Error
bars indicate the standard deviation.
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Figure S4. Biomass production of bioreactors. Cell concentration and
biomass yield in bioreactors A (a) and B (b) at three pH levels. The carbon
number of cell biomass was calculated by assuming an elemental biomass
composition of CH1.800.5No.2 (molar mass = 24.6 g mol?). Error bars represent

the standard deviation.
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Figure S5. Microbial community composition profiles of bioreactors.
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Based on amplicon sequencing of 16S rRNA genes, the taxonomic
classification of amplicon sequence variants (ASVs) was categorised at the
phylum (a), class (b), order (c), family (d) and genus (e) levels.
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Figure S6. Longitudinal changes in diversity and evenness of order two
of bioreactor communities. Based on the relative abundance of ASVs, we
calculated the alpha diversity represented by diversity of order two (°D) and
evenness of order two (°E), which give more weight to the dominant types than

to the rare types. A and B stand for bioreactors A and B.
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Figure S7. Dissimilarities in bacterial community composition (beta-
diversity). Principal coordinates analysis (PCoA) based on Bray-Curtis
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named according to sampling days. Ellipses of 95% confidence intervals were

added to each individual pH levels of the bioreactors.
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Figure S8. Variation partitioning analysis (VPA) showing the relative
importance of pH and time on microbial community variations. VPA was
used with redundancy analysis (RDA), and multiple partial RDAs were ran to
determine the partial, linear effect of each explanatory matrix in the response

data. Numbers represent adjusted coefficients of determination (Adj. R? values).
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Figure S9. Nested cross-validation of random forest classification in the
prediction of pH levels for each sample. a, Confusion matrix for the random
forest classifier of all samples at three pH levels. For model optimisation, two
layers of K-fold (K = 5) cross validation was incorporated to split the dataset
into training and test set. Five different final models were trained, each sample
received a predicted value and feature importance scores were averaged
across each iteration. Overall accuracy was calculated by comparing the
predicted values to the true values. b, The Receiver Operating Characteristic
(ROC) and Area Under the Curve (AUC) curves represent the classification
accuracy of the random forest. The ROC curve plots the relationship between
the true positive rate and the false positive rate at various threshold settings.
The AUC indicates the probability that the classifier ranks a randomly chosen
sample of the given class higher than other classes. The random chance is
represented as a diagonal line extending from the lower-left to the upper-right
corner. In addition to show the ROC curves for each class, average ROCs and
AUCs were calculated. "Micro-averaging” calculates metrics globally by
averaging across each sample; hence class imbalance impacts this metric.

"Macro-averaging" gives equal weight to the classification of each sample.
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Figure S10. The core time-dependent taxa of individual pH levels. Using
relative abundance data of ASVs of both bioreactors, a Microbial Temporal
Variability Linear Mixed Model (MTV-LMM) was applied to identify time-
dependent taxa of each individual pH level, whose abundance can be predicted
based on the previous microbial community composition. As described, the
time-explainability is denoted as the temporal variance explained by the
microbial community in the previous time points. The time-explainability P-
values: P*** < 0.001 <** < 0.01 <*<0.05.

142



Research chapter 2.3
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Figure S11. Co-occurrence network for the entire period of reactor
operation. Edges indicate the significant (P < 0.05) correlations. Edge
thickness reflects the strength of the correlation. Size of each ASV node is
proportional to the mean relative abundance over the whole period. ASV nodes
are coloured and grouped by family. “Others” include the ASVs belonging to
families Eubacteriaceae (ASV015), Actinomycetaceae (ASV019), Clostridiales
Incertae Sedis Xl (ASV029), Microbacteriaceae (ASV048), Veillonellaceae
(ASV052, ASV054) and Nocardiaceae (ASV055). pH bioindicators identified by
random forest classification are shown with green letters. Lac, lactate
concentration; C2, acetate yield; C4, n-butyrate yield; C6, n-caproate yield; C8,

n-caprylate yield.
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Table S1. Linear mixed-effects model results for diversity of order one
(D). We consider time and pH as the fixed effects, and bioreactor as the

random effect.

Variable or parameter Coefficient Standard error  Z-score P value

(Intercept) 50.883 7.718 6.593 <0.001
Time -0.209 0.021 -9.743 <0.001
pH -6.188 1.327 -4.663 < 0.001
Time:pH 0.035 0.004 9.777 <0.001
Var. pH? 0.396 1.071

Var. Bioreactor [T.B]° 0.217

Cov. (pH, bioreactor)® 0.953

aVariance of pH
bVariance of bioreactor [treatment of bioreactor B]

¢Covariance of pH and bioreactor (random intercept)

Table S2. Linear mixed-effects model results for evenness of order one
(*E). We consider time and pH as the fixed effects, and bioreactor as the

random effect.

Variable or parameter Coefficient Standard error Z-score P value
(Intercept) 0.808 0.128 6.322 <0.001
Time 0.002 0.001 2.709 0.007
pH -0.061 0.022 -2.720 0.007
Time:pH <-0.001 <0.001 -2.741 0.006
Var. pH2 <0.001 0.002

Var. Bioreactor [T.B]P < 0.001

Cov. (pH, bioreactor)° <0.001

aVariance of pH
bvariance of bioreactor [treatment of bioreactor B]

¢Covariance of pH and bioreactor (random intercept)
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Table S3. Linear mixed-effects model results for Richness. We consider

time and pH as the fixed effects, and bioreactor as the random effect.

Variable or parameter Coefficient Standard error Z-score P value
(Intercept) 85.190 12.733 6.690 <0.001
Time 0.674 0.073 9.179 <0.001
pH 9.045 2.227 4.062 <0.001
Time:pH 0.116 0.012 9.344 <0.001
Var. pH?2 0.466 0.620

Var. Bioreactor [T.B]P 1.024

Cov. (pH, bioreactor)° 13.738

aVariance of pH

bvariance of bioreactor [treatment of bioreactor B]

¢Covariance of pH and bioreactor (random intercept)

Table S4. Linear mixed-effects model results for the relative abundance

of Clostridium IV sp. ASV008 at the different pH levels. We consider time

and pH as the fixed effects, and bioreactor as the random effect.

Variable or parameter Coefficient Standard error Z-score P value
(Intercept) 0.499 0.108 4.599 <0.001
Time 0.002 0.001 3.119 0.002
pH -0.077 0.019 -4.123 <0.001
Time:pH <-0.001 <0.001 -2.864 0.004
Var. pH?2 <0.001 0.008

Var. Bioreactor [T.B]P <-0.001

Cov. (pH, bioreactor)° <0.001

aVariance of pH

bVariance of bioreactor [treatment of bioreactor B]

¢Covariance of pH and bioreactor (random intercept)
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Table S5. Linear mixed-effects model results for the relative abundance

of Clostridium sensu stricto sp. ASV009 at the different pH levels. We

consider time and pH as the fixed effects, and bioreactor as the random effect.

Variable or parameter Coefficient Standard error Z-score P value
(Intercept) -0.081 0.220 -4.003 <0.001
Time 0.001 <0.001 1.691 0.091
pH 0.156 0.037 4.252 <0.001
Time:pH <-0.001 <0.001 -1.804 0.071
Var. pH2 0.002 0.114

Var. Bioreactor [T.B]P <-0.001

Cov. (pH, bioreactor)c <0.001

aVariance of pH
bVariance of bioreactor [treatment of bioreactor B]

¢Covariance of pH and bioreactor (random intercept)

Table S6. Linear mixed-effects model results for microbial community

composition that is represented by the PC1 from the Aitchison distance-

based principal component analysis.

Variable or parameter Coefficient Standard error Z-score P value
(Intercept) -1.033 0.254 -4.059 <0.001
Time 0.001 0.001 1.683 0.092
pH 0.169 0.043 3.909 < 0.001
Time:pH <-0.001 <0.001 -1.387 0.165
Var. pH? 0.002 0.070

Var. Bioreactor [T.B]P -0.001

Cov. (pH, bioreactor)° <0.001

aVariance of pH
bvariance of bioreactor [treatment of bioreactor B]

¢Covariance of pH and bioreactor (random intercept)
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Table S7. Linear mixed-effects model results for microbial community
composition that is represented by the PC1 from the Bray-Curtis distance-

based principal coordinate analysis.

Variable or parameter Coefficient Standard error Z-score P value
(Intercept) -2.216 0.235 -9.428 <0.001
Time 0.004 0.001 3.161 0.002
pH 0.369 0.041 9.081 <0.001
Time:pH -0.001 <0.001 -2.952 0.003
Var. pH? <0.001 0.014

Var. Bioreactor [T.B]P <-0.001

Cov. (pH, bioreactor)° 0.001

aVariance of pH
bvariance of bioreactor [treatment of bioreactor B]

¢Covariance of pH and bioreactor (random intercept)

Table S8. Summary statistics of networks.

Dataset No. of No. of avgN® avgCCP Density Heterogeneity Centralisation

Nodes Edges

Entire 100 151 3.256  0.062 0.038 0.469 0.057
pH5.5 70 77 2612 0.039 0.054 0.512 0.074
pH 6.0 60 63 2.455  0.029 0.057 0.447 0.062
pH 6.5 86 99 2.528 0.078 0.036 0.559 0.065

aavgN, average number of neighbours

bavgCC, average clustering coefficient
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ABSTRACT Hitherto, few spedes hawve been reported to conwvert lactate to n-Caproate.
Here, we report the high-guality draft genomes of three Clostridia strains isolated on
lactate as the sole carbon source. The genomes were assembled wsing a hybrid
short- and long-read sequencing approach. The genes involved in lactate-based
chain elongation were identified.

ecently, we repored reactor microbiota that produce n-caproate from corn silage

by anaerobic farmentation (1). To enrich the lactate-consuming bacteria involved in
this process, anaerobic batch cultures in liquid minaral medium with lactate as the sole
carbon source were inoculated with sieved reactor broth (mesh size, 2 mm; inoculation
ratio, 1:10) from a lab-scale continuous stirred tank reactor (fermenting corn silage at
38°C; pH, 5.5; hydraulic retention time, 4 days) and incubated at 37°C. Pure strains from
single colonies were isolated on agar medium DSM 104c with 5 g/liter [actate; their
fermentation products were analyzed in liquid cultura. Strains were identified by PCR
and Sanger sequendcing using 165 rRNA-spadific primers (2). Three caproate-producing
isolates designated BL-3, BL-4, and BL-6 representad new species based on their 165
rANA gene sequences (3) and were selected for whole-genome sequencing (WGS).

Genomic DMA was extracted from the cell pellets using a NudleoSpin microbial DNA
kit (Macherey-Nagel, Germanyl. WG5S was performed with both long and short reads to
obtain accurate sequences and complete scaffolds. Short-read sequencing using the
llumina MextSeq 500 system (MEBMext Ultra Il FS DNA library prep kit; 2 = 150 bpl was
performed by StarSEQG GmbH (Mainz, Germany). FASTO data generation, demultiplex-
ing, and adapter trimming of the raw sequencing reads were automatically performed
by the llumina software. The sequence quality was analyzed using FastQC v0.11.9 (4).
For long-read sequencing, the library was prepared using the ligation sequencing kit
(10 5QK-L5K109) and the native barcoding kit (10 EXP-NBD104) on an R2.4 SpotON
flow cell with a MinlON MK1B device from Oxford Manopore Technologies (ONT; UK.
MinlOM was controlled with MinKENOW v3.1.19 (ONT). Base calling with the high-
acouracy model and demultiplexing were accomplished by Guppy v3.1.5 (ONT) using
default parameters. Porechop v0.2.3 (5) was used to trim adapters, applying default
parameters, with additional internal adapter removal using 3 90% identity thrashold.
Long-read sequencing of BL-3, BL-4, and BL-6 produced 465 840 reads (1.1 Gb of data,
270x coverage, N, value of 9 kb, 186,991 reads (1.2 Gb, 500 coverage, N, value of
11 kD), and 75620 reads (0.5 Gb, 145 coverage, Ny, value of 12 kb), respectively.
Short-read sequencing of BL-2, BL-4, and BL-6 generatad 2,272,799 roads (6.9 Gb, 180
coverage), 2,172,274 reads (6.6 Gb, 284 coverage), and 1,574,086 reads (4.8 Gb, 140x
coverage), respectivaly.

Hybrid de novo genome assembly based on short and long reads was performed
using Unicycler v0.4.8 with default parameters (6). The genome assembly of strain BL-3
resulted in seven contigs. For strains EL<4 and BL-6, single drcular contigs were
assembled. Putative gene coding sequences (CDSs) were identified and annotated
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Liu et al ek

TABLE 1 Genome features of isolates BL-3, BL4, and EL-6

Data for strain:
Feature BL-3 BL-4 BL-&
Genus assignment? Clostridivm_B LEASET] Clostridiurm_E
BioSample accession no. SAMEAESET 123 SAMEAGSETI24  SAMEAGSET1ZS
Run accession no. ERR3950273, ERR305G274, ERR3054275,

ERR3950415 ERR3950415 ERR3950417

WGS or chromosome accession no.  CADDXCO10000000  LR778134 LR778135
Genome size (bp) 3855601 13315857 3435520
GC content (%) 3432 4275 5463
Mo, of contigs 7 1 1
Completenass® (&) 086 9ra oa.0
Contamination® (%) 1.0 03 13
Mo. of ODSs 3857 1319 3,480
Mo. of tRMNA genes 67 (21 types) 54 (20 types) 63 (21 types)
Mo. of rANA genes (55, 165, 235) 14{4, 5 5 93,33 93, 3,3

Mo. of miscellaneous RNA genes 524 24 32
MNo. of tmRMNA® genes 1 1 1

“Genus assignment refers to the Genome Taxonomy Detabase [B) phylogenomic dassfication.
b Genome complsteness and contamination as cakoulated b_-,r CheckM [9).
*tmAMA, transfer-messenger RNA

using the MicroScope automatic anmotation platform via external submission (7). The
genome sizes, GC contents, numbers of predicted CDSs, and genome quality param-
aters are listed in Table 1. The new isolates and their genomes are valuable resources
for exploring the metabolic features of chain-elongating bacteria.

Data avallabllity. The sequence data are available in the European Nucleotide
Archive (EMA) database under accession number PRIEB36835; see Table 1 for the
BioSample, WG5S or chromosome, and run accession numbers.

ACKNOWLEDGMENTS

Thiis work was funded by the China Scholarship Council (2016063500100, the BMBF-
German Federal Ministry of Education and Resaarch (031803898 and 01DQ17016), and the
Helmholtz Association (Program Renewable Energies). The funding agencies had no
influence on the design of the study, the collection, analysis, and interpretation of the
data, or the writing of the manuscript. This work was supported by BMBF-funded de NEI
Cloud within the German Network for Biginformatics Infrastructure (de.MBI) (031A537B,
034145334, 031AS38A, 031A533E, 03143534, 031A537C, 031A5344, and 031A5328).
The LABGeM (CEA/Genoscope and CNRS UMRS030) and the France Génomigue and
Franch Bioinformatics Institute national infrastructures (funded as part of the program
Investissement d’Avenir, managed by Agence Mationale pour la Recherche; confracts
ANR-10-INB5-09 and ANR-11-INB5-0013) are acknowledged for their support within the
MicroScope annotation platform.

REFERENCES

1. Lambrecht ), Cichockl N, Schattenberg F, Kleinsteuber 5, Harms H, Moller
5, Strauber H. 2019. Key sub-community dynamics of medium-chain
carbowylate production. Microb Cell Fact 1892, hitpsy/dolorg/10. 188/
512934-019-1143-8

2 Lane DA 1991, 1657235 rRNA sequendng. p 177-203. in Stackbrandt E,
Goodfellow M (ed), Nucleic acid techniques In bacterial systematics, John
Wiley and Sons, Chichester, United Kingdom.

3. Stackebrandt E, Ebers 1 2006 Tanonomic parameters revisied: tamished
gold standards. Microbiol 'I'I:Id.aj' B:152-155

4. Andrews 5. 2000, FastQC: a qualiy control tool for high throwghput s=-
quence data. hitpe/wenwbioinformatics babraham.ac uk/projectsfastge.

5. wick R. 2017. Porechop. hitpy/github.comriwick/Porachop.

6. 'Wick RR, Judd LM, Gome CL, Holt KE. 2017, unlcyclen resalving bacterial
genome assemitlies from shom and long sequencing reads. PLOS Comiput
Biol 13:21005595. https:/do.org/10.1371/joumal.pebl. 1005595,

Volume 9 |ssue 32 =00673-20

7. vallenet D, Calteau A, Dubols M, Amours P, Bazin A, Beuvin M, Burlot
L, Bussall ¥, Fouteau 5, Gautreau G, Lajus &, Langlols ), Planel B, Roche
o, Rollin J, Z, sabatet v, Madigue C. 2020, MicroScope an Integrated
platform for the annotation and exploration of microblzl gene func-
tlons through genomic, pangenomic and metabolic comparaties anal-
ysls. Muclelc Acds Res 48:0579-D589. https:‘dolorg/10.1093/nar/
gkzI26.

B Parks DH, Chwvoching M, Waite DW, Rinke C, Skarshewskl A, Chaumell
P-4, Hugenholiz P. 2018. A standardized bacterial Exonomy based on
genome phylogeny substantialty revises the tree of life. Nat Blotachingl
36:996 -1004. hitps/ydolorg/10,1038/nbt 4229

9. Parks DH, imeifort M, Skennerton CT, Hugenhaolz P, Tyson GW. 2015
CheckM: assessing the quality of microblal genomes recovered from
lsolates, single cells, and metagenomes. Genome Res 25:1043-1055
https:/fdolorg/10.1101/gr.1 850721 14.

mra.asmaorg 2

150



Research chapter 2.5

2.5 Three novel Clostridia isolates produce n-caproate and iso-
butyrate from lactate: comparative genomics of chain-

elongating bacteria

Bin Liu 1, Denny Popp %, Nicolai Miiller 2, Heike Strauber !, Hauke Harms !

and Sabine Kleinsteuber 1*

! Department of Environmental Microbiology, Helmholtz Centre for
Environmental Research — UFZ, 04318 Leipzig, Germany; liu.bin@ufz.de
(B.L.); denny.popp@ufz.de (D.P.); heike.straeuber@ufz.de (H.S.);
hauke.harms@ufz.de (H.H.); sabine.kleinsteuber@ufz.de (S.K.)

2 Department of Biology, University of Konstanz, D-78457 Konstanz,

Germany; nicolai.mueller@uni-konstanz.de (N.M.)

* Correspondence: sabine.kleinsteuber@ufz.de; Tel: +49-341-235-1325

Acetate 51%
n-Butyrate

[-Butyrate
n-Caproate |

Submitted (November 2020)

151



Research chapter 2.5

2.5.1 Main text

Abstract: The platform chemicals n-caproate and iso-butyrate can be
produced by anaerobic fermentation from agro-industrial residues in a process
known as microbial chain elongation. Few lactate-consuming chain-elongating
species have been isolated and knowledge on their shared genetic features is
still limited. Recently we isolated three novel clostridial strains (BL-3, BL-4 and
BL-6) that convert lactate to n-caproate and iso-butyrate. Here, we analysed
the genetic background of lactate-based chain elongation in these isolates and
other chain-elongating species by comparative genomics. The three strains
produced n-caproate, n-butyrate, iso-butyrate, and acetate from lactate, with
the highest proportions of n-caproate (18%) for BL-6 and of iso-butyrate (23%)
for BL-4 in batch cultivation at pH 5.5. The three genomes show low
conservation of organisation and a relatively small core-genome size. They
contain highly conserved genes involved in lactate oxidation, reverse -
oxidation, hydrogen formation and either of two types of energy conservation
systems (Rnf and Ech). Including genomes of another eleven experimentally
validated chain-elongating strains, we found that the chain elongation-specific
core-genome encodes the pathways for reverse [-oxidation, hydrogen
formation and energy conservation, while displaying substantial genome
heterogeneity. Metabolic features of these isolates may be interesting for
biotechnological applications in n-caproate and iso-butyrate production.

Keywords: Novel clostridial species; Carboxylate platform; Medium-chain
carboxylates; Branched-chain carboxylates; Anaerobic fermentation; Reverse
[-oxidation

1. Introduction

Speciality chemicals such as n-caproate and iso-butyrate are valuable products
of the carboxylate platform, with a broad range of potential applications in
agriculture and industry [1-3]. For example, n-caproate can be used as
promoter of plant growth and feed additive, or as precursor for the production
of biofuels, lubricants and fragrances [1,4—7]. Currently, n-caproate is mainly

produced from vegetable oils such as palm kernel oil [8], though it can be
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produced from more sustainable feedstocks such as agro-industrial waste by
anaerobic fermentation and microbial chain elongation [9,10]. Compared to
linear carboxylates, branched-chain carboxylates such as iso-butyrate are of
special interest for alternative applications due to their different physical
properties, including higher viscosity, higher oxidative stability, and a lower
boiling point [11]. For example, iso-butyrate can be used for the synthesis of
texanol, which is a widely used coalescent for latex paints [2]. Currently, iso-
butyrate is manufactured by acid-catalyzed Koch carbonylation of propylene,
which is derived from fossil feedstock [2]. Microbial production of iso-butyrate
from organic wastes or biomass residues is a more sustainable alternative as

demonstrated by recent studies [12,13].

The metabolic process to produce n-caproate by anaerobic fermentation is
called microbial chain elongation, also known as reverse -oxidation. Some
strictly anaerobic bacteria are known as chain elongators that use ethanol as
electron donor providing reducing equivalents and acetyl-CoA for the
elongation of acyl-CoA units, thereby increasing the chain length of
carboxylates by two carbons with each cycle [1]. For example, Clostridium
kluyveri has been well described to elongate short-chain carboxylates (e.qg.,
acetate) to n-caproate through reverse B-oxidation with ethanol and acetate as
sole carbon and energy sources [14]. The review paper of Angenent et al.
highlighted the importance of the ethanol-based chain elongation pathway in
biotechnology studies [1]. Additionally, chain elongation with lactate is getting
increasing attention because some feedstocks (e.g., ensiled plant biomass) are
rich in lactate, which is an important intermediate in the anaerobic breakdown
of carbohydrates. To date, only few chain-elongating bacteria have been
isolated that utilise lactate to produce n-caproate, including strains of
Megasphaera elsdenii, Megasphaera hexanoica, Pseudoramibacter
alactolyticus and Ruminococcaceae bacterium CPB6. It has been assumed
that the mechanism of chain elongation with lactate is similar to that described
for chain elongation with ethanol [10,15]. However, insufficient knowledge has
been generated yet on the physiology of lactate-based chain elongation from
pure culture studies, and there is a lack of genome-level information to explore

the genetic characteristics shared by chain-elongating bacteria. Previous
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studies have shown that iso-butyrate can be produced in methanol-based chain
elongation [3,12,13]. The results suggested that Clostridium luticellarii might be
responsible for the iso-butyrate formation during mixed culture fermentation,
which was further tested by pure culture study of C. luticellarii, showing its ability
to convert acetate and methanol to iso-butyrate [16]. However, the physiological
reason for iso-butyrate formation in a chain elongation process has not been

fully elucidated, particularly when lactate is the electron donor.

Recently, we reported on a complex bioreactor community that produced n-
caproate from lactate-rich corn silage [17], and later a mixed culture producing
n-caproate was enriched with lactate and xylan in a daily-fed bioreactor [18].
To investigate functional key species involved in n-caproate formation, we
isolated several strains that are capable of converting lactate to n-caproate and
iso-butyrate. For three isolates that turned out to represent novel species
according to their 16S rRNA gene sequences, we performed whole genome
sequencing and assembled the genomes with a short- and long-read
sequencing hybrid approach as recently announced [19]. Further insight into
the genomic and metabolic features of these strains may facilitate detailed

understanding of lactate-based chain elongation.

The objectives of this study were to investigate the product spectrum of the
three new lactate-consuming strains and to give insights into their metabolism
based on their genomes. Batch experiments were conducted to explore the
fermentation profiles with lactate. Functional genome annotation and
phylogenomic analysis aimed at elucidating the genetic background of n-
caproate and iso-butyrate production and the genetic heterogeneity between
the three strains. To analyse the genomic diversity of the entire repertoire of
chain-elongating species and to identify the core genes of chain elongation-
related pathways and their conservation, we performed a comparative genome
analysis by including eleven more genomes of experimentally validated chain-

elongating species.
2. Materials and Methods

2.1 Enrichment, isolation and identification of lactate-consuming strains
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Anaerobic fermentation broth from a caproate-producing reactor (38°C, pH 5.5
and hydraulic retention time of 4 d) fed with corn silage was initially taken as
the inoculum. Serum bottles (120 mL) with 45 mL mineral medium [18]
containing 5 g/L lactic acid (initial pH 5.5) were inoculated with 5 mL of the
sieved reactor broth (mesh size 2 mm). After replacing the headspace by
N2/COz2 (80:20 in volume ratio, 100 kPa), the bottles were statically incubated
at 37°C in the dark. Liquid samples were collected every two weeks at the
beginning, and later lactic acid was replenished when it had been consumed.
Four successive transfers (1:10 dilution in fresh medium) were done spanning

more than 700 days.

A single bottle of the fourth transfer was used to isolate lactate-consuming
strains. The culture was plated on complex agar (medium DSM104c with
additional 5 g/L lactic acid) and incubated in an anaerobic chamber at 37°C for
two weeks. Colonies were picked and re-streaked three times for purification,
and then transferred to liquid mineral medium bottles to determine their product
spectrum. Further, the isolates that produced iso-butyrate and n-caproate were
identified by Sanger sequencing of the 16S rRNA gene (details in
Supplementary Methods). Based on 16S rRNA gene identity with their closest
relatives, potential new species including the isolates designated as strains BL-
3, BL-4 and BL-6 were selected for whole genome sequencing.

2.2 Lactate utilisation in batch cultivation

Batch cultures of isolates BL-3, BL-4 and BL-6 were run in mineral medium with
lactate as sole carbon source and 0.05% yeast extract as described above. The
bottles were inoculated with 5 mL seed cultures (optical density at 600 nm
[ODsoo] ~ 2), which were routinely cultivated in a complex medium (DSM 104c
with extra 5 g/L of lactic acid added). The pH was adjusted to 5.5 with 1 M
NaOH or 1 M H2SO4 after adding 50 mM lactic acid (85%, FCC grade; Sigma
Aldrich, St. Louis, USA) to the bottles. The cultivation bottles were statically
incubated at 37°C. Liquid samples were collected twice per week. After one
week, lactic acid (75 mM) was added again to each bottle, and the pH was
adjusted to 5.5 accordingly. All batch tests were carried out in duplicate. For
further investigation of the growth of isolate BL-4, anoxic, bicarbonate buffered
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freshwater medium at pH 7.3 reduced with cysteine was used. The basal
medium consisted of NaCl (1 g/L), MgClz (0.4 g/L), KH2PO4 (0.2 g/L), NH4ClI
(0.25 g/L), KCI (0.5 g/L), CaCl2 (0.15 g/L) and Na2S0O4 x 10 H20 (0.16 g/L) and
was autoclaved for at least 30 min at 121°C and 1 bar overpressure in a Widdel-
flask. After cooling to room temperature under a stream of N2/CO2 (80:20), a
separately autoclaved solution of NaHCO3s was added to a final concentration
of 30 mM. Then each 1 mL of trace element solution SL13, 7-Vitamin solution
and selenite-tungstate solution were added per liter medium (modified after [20-
23]). Finally, the medium was amended with 0.4 mg/L resazurin as a redox
indicator and filter-sterilized cysteine-HCI (3 mM final concentration) as
reducing agent. In case the redox indicator of the medium did not turn colorless
within 30 min of stirring under N2/CO2, 25 pM to 50 pM titanium(lll)-
nitrilotriacetic acid was added from a filter-sterilized stock solution to aid in
establishing reduced conditions. This was the case for all pH 7.3-media used
in this study. After the medium turned colorless, the pH of the medium was
adjusted to pH 7.3 and the medium was thereafter dispensed into the cultivation
vessels under N2/CO2. Where indicated, 0.05% yeast extract was added as an
additional source of vitamins and amino acids. Strain BL-4 was cultivated in 25-
mL tubes closed with rubber stoppers and filled with 10 mL medium at 37°C.
The ODeoo was monitored over time with a Camspec tube photometer as
described before [24].

2.3 Analytical techniques

Liquid samples of the batch cultures were centrifuged for 10 min at 20,817 x g
(Centrifuge 5417R; Eppendorf, Hamburg, Germany). Acetate, lactate,
propionate, iso-butyrate, n-butyrate, n-valerate, n-caproate, n-caprylate and
ethanol concentrations of the supernatant were determined in triplicate by high
performance liquid chromatography (HPLC; Shimadzu Corporation, Kyoto,
Japan) equipped with a refractive index detector RID-10A and a HiPlex H
column together with a pre-column (Agilent Technologies) as previously
described [25]. For further investigation of the growth of BL-4, HPLC samples
were withdrawn with syringes and needles, acidified with 20 pL of 1 M H2SO4,
centrifuged to remove cells, and the supernatant analysed by refractive index
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detection after separation on a Rezex RHM monosaccharide column with 30
mM sulfuric acid at 40°C as described [24].

2.4 Gene prediction and annotation

We sequenced the genomes of the three isolates with the Oxford Nanopore
Technologies MinlION and the Illumina NextSeq platforms, and three complete
genomes were constructed using a hybrid assembly approach as described
previously [19]. Prediction and functional annotation of coding sequences
(CDSs) was accomplished by the MicroScope automatic annotation pipeline
[26]. Automatic annotations of selected CDSs were manually curated by
comparing the protein sequences with the PkGDB, Swiss-Prot, TrEMBL, COG
(Clusters of Orthologous Groups), EGGNOG. (Evolutionary Genealogy of
Genes: Non-supervised Orthologous Groups), FIGfams and InterPro
databases [26—31] by using the following methods: MaGe/Curated annotation,
Syntonome RefSeq, Similarities SwissProt, Similarities TrEMBL, UniFIRE
SAAS, UniFIRE UniRules, PRIAM EC number, FigFam, InterProScan and
PsortB. COGNITOR [32] was used to classify the CDSs into COG functional
categories. CDSs classification into EGGNOG (v4.5.1) was performed by
eggNOG-mapper v1.0.3 [29]. All these databases and tools are integrated in
the MicroScope platform as described by Vallenet et al. [26]. Genomes of
Clostridium jeddahense JCD, Ruminococcaceae bacterium CPB6, Clostridium
merdae Marseille-P2935, Megasphaera elsdenii 14-14, Eubacterium
pyruvativorans i6, Megasphaera hexanoica MH, Caproiciproducens sp. NJN-
50, Caproiciproducens galactitolivorans BS-1, Eubacterium limosum KIST612,
Candidatus Weimeria bifida, Candidatus Pseudoramibacter fermentans and
Pseudoramibacter alactolyticus ATCC 23263 were submitted to the
MicroScope platform. The genome annotation of these strains available in the

MicroScope PkGDB database was done by following the same procedures.
2.5 Phylogenetic analysis and taxonomic classification

Phylogenetic analysis of 16S rRNA gene sequences was performed on the
Phylogeny.fr platform [33]. According to the Nucleotide BLAST (Basic Local

Alignment Search Tool) comparison result against the rRNA/ITS databases
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(16S ribosomal RNA sequences (Bacteria and Archaea)) of NCBI (National
Center for Biotechnology Information) [34], the ten hits with the highest BLAST
score for each isolate were selected. The 16S rRNA gene sequences of all
selected strains were aligned using MUSCLE v3.8.31 with default settings [35].
After alignment, Gblocks v0.91b was used to remove ambiguous regions (i.e.
containing gaps and/or poorly aligned) as described by Castresana [36]. The
phylogenetic tree was reconstructed using the maximum likelihood method
contained in PhyML v3.1 [37,38]. Robustness of tree topology was assessed
by 100 bootstrap replicates. Finally, the tree was visualised by using TreeDyn
v198.3 [39]. Besides the taxonomic classification of the genomes in
MicroScope, GTDB-Tk v1.0.2 was used for taxonomic assignment to GTDB
(Genome Taxonomy Database) [40] and the corresponding NCBI taxonomy.

A phylogenomic tree of strains BL-3, BL-4, BL-6 and other chain-elongating
bacteria was calculated based on genomic similarity. The genomic similarity
was estimated using Mash [41], which computes the distance between two
genomes. This distance D is correlated to the average nucleotide identity (ANI)
like: D = 1-ANIl. A neighbor-joining tree with clustering annotations was
constructed. This clustering was calculated from all-pairs distances < 0.06 (=
94% ANI) corresponding to the ANI standard to define a species group. The
Louvain method for community detection was used for computing the clustering
[42]. The ANI (OrthoANIu value) comparison of the genomes of the isolates to
related genomes was calculated by an ANI calculator that improved the original
OrthoANI (Average Nucleotide Identity by Orthology) algorithm by applying
USEARCH instead of BLAST as described by Yoon et al. [43].

Default settings were used for all tools unless otherwise specified.
2.6 Pan-genome analysis

The interface Comparative Genomics of the MicroScope platform was
employed to analyze the pan-genome, core-genome and variable genome for
our newly sequenced genomes and for all the available genomes of chain-

elongating bacteria in the comparison. The MicroScope homologous gene
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families (MICFAM, protein sequence pairs with at least 80% amino-acid identity

and 80% alignment coverage) [44] were considered for these analyses.
2.7 Data availability

All data generated or analysed during this study are included in this published
article and its additional files. The full-length 16S rRNA gene sequences of the
three isolates have been deposited in the European Nucleotide Archive (ENA,
https://www.ebi.ac.uk/ena/browser/home) under BioProject PRJEB39379, with
the accession numbers LR861112, LR861113, and LR861114. The genome
data of the three isolates have been deposited in ENA under BioProject
PRJEB36835, with Whole Genome Sequencing or Chromosome accession
numbers CADDXC010000000, LR778134, and LR778135.

3. Results and Discussion
3.1 Isolation and identification of lactate-consuming strains

After incubation and several transfers of fermentation broth from a corn silage
reactor with lactate as substrate, we enriched a mixed culture that produced
acetate, n-butyrate, iso-butyrate and n-caproate (Figure S1). Isolation of
lactate-consuming strains was achieved by plating the mixed culture on
complex agar to isolate single colonies. Eleven pure cultures were obtained as
confirmed by 16S rRNA gene sequencing. In liquid culture using mineral
medium, three strains (designated as BL-3, BL-4 and BL-6) were found to
convert lactate to iso-butyrate and n-caproate. The 16S rRNA gene sequence
of BL-3 was 96.8% identical to that of Clostridium luticellarii FW431, BL-4 was
93.8% identical to that of Ruminococcaceae bacterium CPB6, and BL-6 was
96.3% identical to that of Clostridium jeddahense JCD. According to the current
species threshold (98.7%) based on 16S rRNA gene identity (Erko and Ebers,
2006), these three strains can be assumed to represent novel species and were

consequently selected for whole genome sequencing.
3.2 Conversion of lactate to n-caproate and iso-butyrate in batch cultivation

The pure culture batch experiments showed that all three newly isolated strains
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can convert lactate into acetate, n-butyrate, iso-butyrate and n-caproate
(Figure 1). Started at an initial pH 5.5, the three strains displayed different
product spectra even though growing in the same mineral medium with lactate
as the sole carbon source. Specifically, all three strains produced a large share
of acetate (23% to 43%) and n-butyrate (35% to 57%), whereas propionate and
n-caprylate were not detected. Based on the final concentrations (mmol C/L),
strain BL-6 produced the highest proportion of n-caproate (18% for BL-6, 10%
for BL-4 and 4% for BL-3) and strain BL-4 produced the highest proportion of
iso-butyrate (23% for BL-4, 2% for BL-3 and 2% for BL-6). As shown in Figure
1, the n-butyrate production rate decreased in cultures of BL-4 and BL-6 after
the second spiking with lactate but was constant in the culture of BL-3.
Simultaneously, the iso-butyrate production rate increased in BL-4 and the n-
caproate production rate increased in BL-6. This indicates that further chain
elongation of n-butyrate to n-caproate was catalyzed by strain BL-6 while strain

BL-4 might convert n-butyrate to iso-butyrate.
3.3 Genomic heterogeneity of strains BL-3, BL-4, and BL-6

The genomes of all three isolates were sequenced to better understand the
genetic background of their metabolism, particularly of n-caproate and iso-
butyrate formation from lactate. Based on the hybrid genome assembly of short
reads (lllumina) and long reads (Oxford Nanopore Technologies), we recently
announced high-quality genomes of these strains with CheckM completeness
of 98.6%, 97.9% and 98% and contamination of 1.0%, 0.3% and 1.3% for BL-
3, BL-4 and BL-6, respectively [19]. The genome sizes are depicted in Figure
2 and detailed in Table 1. According to the taxonomic classification of GTDB,
BL-3 was assigned to the genus Clostridium_B (Clostridiaceae), whereas BL-4
and BL-6 were assigned to the genera UBA4871 and Clostridium_E,
respectively, both belonging to the Acutalibacteraceae (Ruminococcaceae
according to the NCBI taxonomy). The number of predicted gene CDSs ranges
from around 2,300 to almost 3,900 in the three genomes (Table 1). For all three
genomes, most of the CDSs could be classified in COG functional categories
(76% for BL-3, 75% for BL-4 and 73% for BL-6; see details in Table S1) and
EGGNOG categories (86% for BL-3, 85% for BL-4 and 83% for BL-6; see
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details in Table S2). Comparative genome analysis revealed a total of 6,654
homologous gene families with 9,508 genes identified in all three genomes and
indicates a relatively small core-genome size of 504 homologous gene families
(Figure 2). As for the 2,064 genes conserved in the core-genome, proportions
of 27.2%, 20.9% and 19.1% can be considered core CDSs of strains BL-3, BL-
4 and BL-6, respectively. The core CDSs include all necessary genes involved
in bioprocesses of lactate oxidation to acetyl-CoA, reverse [-oxidation,
hydrogen formation and energy conservation (see Table 2 and details in
Supplemental file 2). According to the pairwise comparison of the three
genomes, a few synteny groups on nucleotide level are shared (Figure S2),
which indicates the low conservation of genome organisation and underlines

the genomic heterogeneity of the three isolates.
3.4 Genomic diversity of the reported chain-elongating bacterial strains

In addition to our newly isolated strains, we included eleven strains that have
been experimentally validated of microbial chain elongation (Table 1). Two
metagenome-assembled genomes (MAGs; Candidatus Pseudoramibacter
fermentans and Candidatus Weimeria bifida) were also included in the
comparative genome analysis because their chain elongation traits were
evident from metatranscriptome analyses [46]. These 14 obligate anaerobes
isolated from various environments all belong to the phylum Firmicutes, class
Clostridia and its closest phylogenetic neighbor — Negativicutes (here including
species Megasphaera elsdenii and Megasphaera hexanoica). The genome
sizes of the strains range from 2.1 Mbp to 4.7 Mbp, and the GC content varies
from 32% to 55% (Table 1).

We constructed a phylogenomic tree to understand the evolutionary
relationships between our isolates and other chain-elongating species (Figure
3a). The two main branches delineate that strain BL-3 is evolutionary distant
from BL-4 and BL-6, as the latter were placed in the other main cluster. BL-3
belongs to a Clostridiaceae cluster and is closely related to two chain-
elongating species of the genus Clostridium: C. kluyveri and C. luticellarii, with
the latter having the highest OrthoANIu (average nucleotide identity by
orthology with USEARCH) value of 83.88% to BL-3 (Figure 3b). The closest
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chain-elongating relatives of BL-4 and BL-6 are Ruminococcaceae bacterium
CPB6 and Caproiciproducens galactitolivorans BS-1, both affiliated to the
family Acutalibacteraceae (according to GTDB taxonomy). BL-6 formed a
separate cluster together with Clostridium jeddahense and Clostridium merdae,
for which chain elongation functions have not been described. However, BL-4
and BL-6 have relatively low OrthoANIu values (£ 75%) and low genome
coverages (< 25%, referring to the aligned genome fraction) with their closest
relatives (Figure 3b). For all three isolates, the synteny groups on nucleotide
level delineate a low conservation of genome organization when aligned to the

closest relative.

The number of predicted CDSs in the chain-elongating bacteria ranges from
less than 2,000 to more than 4,600 (Table 1), which suggests substantial
heterogeneity of their genomes. The pan-genome analysis of the genomes of
all 14 strains revealed a total of 20,790 homologous gene families with 40,582
genes identified (Figure 4a). The core-genome presented in all 14 strains
consists of only 237 conserved homologous gene families corresponding to
4775 core CDSs, which were distributed in a range of 9% to 15% for each strain
(Figure 4b). Interestingly, the number of pan-CDSs positively correlated with
the genome size, whereas the number of strain-specific CDSs did not correlate
with the genome size. For example, C. kluyveri DSM 555 holds the second
largest genome (4.02 Mbp) with a number of 4288 pan-CDSs, but it has the
lowest number of strain-specific CDS (287 CDSs). The above-mentioned
patterns also apply to the comparison of the three isolates as shown in Figure
4b.

Functional distribution of homologous gene families in the core-genome shows
that the majority encode components of well-conserved housekeeping genes
for the basic metabolism of bacteria, including DNA and RNA metabolism,
protein processing, folding and secretion, cellular processes as well as
intermediary and energy metabolism (details in Supplemental file 3) [60]. The
chain elongation-specific core-genome also comprises genes involved in

reverse [-oxidation, hydrogen formation and energy conservation (Table 2 and
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details in Supplemental file 4). These genes are highly conserved in all 14

strains and can be considered hallmarks of chain-elongating bacteria.
3.5 Genetic basis of lactate conversion to n-caproate and iso-butyrate

To elucidate the genetic background of lactate metabolism and fermentation
pathways leading to the formation of n-caproate, n-butyrate and iso-butyrate,
we manually curated the functional annotation of genes involved in the following
bioprocesses: acetyl-CoA formation from lactate and ethanol, reverse [3-
oxidation cycle, energy conservation and hydrogen formation. Besides our
newly isolated strains, we also included the other eleven chain elongators in
this analysis. Especially for those strains reported to use lactate as electron
donor, corresponding genes of lactate oxidation were also considered in the

manual curation.
3.5.1 Lactate oxidation to acetyl-CoA

Lactate can serve as carbon and energy source for chain-elongating bacteria.
As shown in Figure 5, first lactate needs to be transported into the cell, which
is facilitated by lactate permease (LacP). Genomes of BL-3 and BL-6 were
predicted to harbor the corresponding CDSs, which are located in a gene
cluster encoding lactate racemase (LacR) (Figures 6a and 6c¢). The gene
cluster encoding LacP and LacR was also found in all other lactate-based chain
elongators (Figures 6d-6h). The fermentation starts with the oxidation of
lactate via pyruvate to acetyl-CoA catalyzed by an NAD-dependent lactate
dehydrogenase (LDH) and a pyruvate ferredoxin oxidoreductase (PFOR). All
three genomes encode predicted LDH proteins that are highly similar to each
other. Specifically, the BL-3 genome was predicted to have four LDH genes,
one of which is located in a gene cluster (Figure 6a, CDS labels: 11486-11488)
comprising also genes for the electron transfer flavoprotein (EtfAB). The BL-4
genome harbors four LDH genes with one located in the gene cluster (Figure
6b, CDS labels: 2199-2205) encoding the membrane-associated energy-
converting NADH:ferredoxin oxidoreductase (RnfABCDEG). The BL-6 genome
has three LDH genes with one found in a cluster (Figure 6¢, CDS labels: 3216-
3223) including genes for butyryl-CoA dehydrogenase (BCD), EtfAB, LacR and
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LacP. A similar gene cluster (Figure 6e, CDS labels: 01775-01795) containing
genes for LacR, LDH, EtfAB and BCD was found in the genome of
Ruminococcaceae bacterium CPB6. As for the enzyme PFOR or its synonym
pyruvate synthase, all three genomes contain the corresponding genes,
enabling the oxidation of pyruvate to acetyl-CoA. Acetyl-CoA then enters the
reverse [3-oxidation cycles. CDSs for LDH and PFOR were found in all other

lactate-based chain-elongating species (Figure 6d-6h).
3.5.2 Ethanol oxidation to acetyl-CoA

The ethanol-based chain elongation pathway is well elucidated in C. kluyveri
[14] and of particular biotechnological importance as shown in several studies
[61-63]. Genome data of BL-3 and BL-6 suggest that these strains are capable
of utilizing ethanol as additional or alternative substrate. Small, uncharged
molecules like ethanol diffuse through the cytoplasmic membrane and can be
oxidized via acetaldehyde to acetyl-CoA. NAD-dependent alcohol
dehydrogenase (ADH) and NAD(P)-dependent acetaldehyde dehydrogenase
(ADA) catalyze this conversion (Figure 5). The corresponding CDSs were
found in the genomes of BL-3 and BL-6, but not in the BL-4 genome.

3.5.3 n-Butyrate and n-caproate formation

Transformation of acetyl-CoA to butyryl-CoA includes three intermediates:
acetoacetyl-CoA, 3-hydroxybutyryl-CoA and crotonyl-CoA. The involved
enzymes are acetyl-CoA acetyltransferase (ACAT), NAD- and NADP-
dependent 3-hydroxyacyl-CoA dehydrogenase (HAD), enoyl-CoA hydratase
(ECH) and NAD-dependent butyryl-CoA dehydrogenase complex (BCD/EtfAB)
(Figure 5). The formation of n-butyrate further requires butyryl-CoA:acetate
CoA transferase (CoAT) to catalyse the reaction of butyryl-CoA and acetate to
yield acetyl-CoA and the corresponding fatty acid. Transformation of butyryl-
CoA to caproyl-CoA may happen with the same set of enzymes (ACAT, HAD,
ECH and BCD/EtfAB) and a CoAT to remove the CoA from caproyl-CoA,
resulting in the formation of n-caproate. We came up with the same assumption
as described for the ethanol-based chain elongation mechanism of C. kluyveri

[14] — caproyl-CoA can be a further elongated acyl-CoA when a second
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analogous cycle proceeds, and CoAT was reported to have a broad substrate
specificity [64,65]. All three genomes contain the genes encoding ACAT, HAD,
ECH, BCD, EtfAB and CoAT (Supplemental file 4 including the summary of
all related CDSs). As for BL-3, three sets of ACAT, HAD, ECH, BCD and EtfAB
genes are present in the genome, with one cluster encoding CoAT, ACAT, ECH
and HAD (Figure 6a, CDS labels: 13110-13113) as well as one cluster
encoding ECH, BCD, EtfAB and HAD (Figure 6a, CDS labels: 20308-20313);
other CDSs are scattered in the genome. As for BL-4, one gene cluster
encoding all six enzymes is present in the genome (Figure 6b, CDS labels:
1867-1873). Two similar clusters were found in the genomes of Eubacterium
limosum (Figure 6k, CDS labels: 21760-21785) and Eubacterium
pyruvativorans (Figure 6i, CDS labels: 280031-280037). Another set of HAD,
ACAT, ECH and CoAT genes clusters together with the genes for acetyl-
CoA:oxalate CoA-transferase (ACOCT) and (R)-2-hydroxyisocaproyl-CoA
dehydratase (HadABC) (Figure 6b, CDS labels: 1158-1165). The genome of
BL-6 harbors two sets of the ACAT, HAD, ECH, BCD and EtfAB genes
separated into several sub-clusters, with one comprising genes for HAD, ACAT,
ECH, CoAT and HadABC (Figure 6c, CDS labels: 0555-0562) and two sub-
clusters of genes encoding the BCD/EtfAB complex. One set of genes encoding
the BCD/EtfAB complex is located in the same cluster with genes for LDH, LacR
and LacP (Figure 6¢, CDS labels: 3216-3223) as mentioned above. We found
that the genes encoding BCD are located in close vicinity to the genes of EtfAB
in the genomes of all three isolates (Figure 6a-6¢), which is commonly
conserved as a key feature among all genomes of other chain-elongating

bacteria (Figure 6d-6n).

Besides CoAT, the acyl-CoA thioesterase (ACT) may also catalyse the
formation of n-butyrate and n-caproate from the terminal acyl-CoA (Figure 5).
Our data suggest that the genome of BL-3 may encode the predicted proteins
annotated as thioesterase superfamily proteins. We further compared their
protein sequences in all the databases used (see the results in Supplemental
file 5) and confirmed that these thioesterase proteins were not involved in the
terminal step of reverse (B-oxidation (see CDS labels and final annotations in

Supplemental file 4, sheets BL-3). Genomes of BL-4 and BL-6 both contain

165



Research chapter 2.5

the CDSs for ACT (see CDS labels in Supplemental file 4, sheets BL-4 and
BL-6), but presenting a low identity (< 40%) to proteins in the databases (see
alignment details in Supplemental files 6-7). Further experiments are required
to assess the functionality of these CDSs and if the predicted enzymes play a
role as terminal enzymes in reverse [(-oxidation. A recent study on lactate-
based chain elongation in mixed cultures using guild-based metabolic models
suggested that butyrate is formed by CoAT, whereas caproate and caprylate
are formed by ACT [66]. As pointed out by the authors, this might depend on
the organisms, and the affinities of COAT and ACT enzymes for different chain

lengths need to be assessed.

Besides CoAT and ACT, a third pathway potentially contributing to n-butyrate
formation from n-butyryl-CoA was identified in the genome of BL-3. As
illustrated in Figure 5, a phosphate butyryltransferase (PTB) forms butyryl
phosphate that is further converted to butyrate by a butyrate kinase (BUK). The
latter step leads to the formation of one ATP, in contrast to the CoOAT route,
which conserves energy in the form of acetyl-CoA. The PTB/BUK route might
favor butyrate production at the cost of caproate yield, i.e. butyrate is not further
elongated due to acetyl-CoA shortage and possibly due to higher growth rates.
In our previous study on a mixed culture growing on xylan and lactate under
constant conditions [18], co-occurrence network analysis predicted a
Clostridium sensu stricto (closely related to C. luticellarii) as key butyrate
producer that outcompeted caproate producers as reflected by higher microbial
biomass production and a drop in caproate and caprylate concentrations. The
lack of BUK genes in the genomes of strains BL-4 and BL-6 is consistent with
the previously reported progressive loss of BUK genes found in some clostridial
lineages [67]. From the biotechnological perspective, strains BL-4 and BL-6
seem to be more beneficial than BL-3 as they yield more caproate and less
acetate compared with strain BL-3. However, detailed experiments are required
to characterise the kinetics of lactate conversion and product formation in the

strains under different growth conditions and in pure and mixed culture settings.

3.5.4 iso-Butyrate formation
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The formation of iso-butyrate as a product of lactate-based chain elongation
was experimentally proven in all three isolates. The genome analysis revealed
hints on the assumed pathway, i.e. reversible n-butyrate/iso-butyrate
isomerization [68,69]. As described by Matthies and Schink [69], the conversion
of n-butyrate to iso-butyrate first requires activation to n-butyryl-CoA. Next, the
isomerisation of n-butyryl-CoA via iso-butyryl-CoA to iso-butyrate is catalysed
by a butyryl-CoA:isobutyryl-CoA mutase (BM) and an isobutyryl-CoA:acetate
CoA transferase (CoAT) as shown in Figure 5. At the first glance, none of the
three genomes seems to encode a BM, but we found a BM homologue in the
genome of BL-3 that might have been misannotated as methylmalonyl-CoA
mutase. As reported by Cracan et al. [70], the fusion protein IcmF (isobutyryl-
CoA mutase fused) composed of the small subunit of BM, a GTPase domain
and the large subunit of BM has been widely misannotated as methylmalonyl-
CoA mutase in other bacterial genomes. CDSs for a putative IcmF were found
in the genomes of BL-3 and of the iso-butyrate producer C. luticellarii (see the
CDS labels in Supplemental file 4). A CoA transferase gene located next to
these CDSs may confirm the prediction function in isomerisation. BMs catalyse
the rearrangement of carboxyl groups as migration to the adjacent carbon atom,
in which enzyme activities depend on coenzyme Bz [71]. One possible reason
for the conversion of n-butyrate to iso-butyrate is that bacteria can maintain the
pool of iso-butyrate for synthesising valine during growth in amino acid-deficient
medium [72]. As this isomerisation step does not release any free energy,
another possible explanation is that bacteria try to overcome inhibition effects
of the accumulated n-butyrate, because the corresponding fatty acid of the
unbranched form is more toxic than the branched form. As suggested for a
methanol-based CE process [3,12], the formation of iso-butyrate may facilitate

bacteria to further obtain energy from chain elongation.

The genomes of BL-4 and BL-6 lack CDSs for BM, but the formation of iso-
butyrate from lactate is also conceivable via methylmalonyl-CoA and
methylmalonate-semialdehyde, representing a reverse process of anaerobic
iso-butyrate degradation by Desulfococcus multivorans [73]. At first sight, not
all candidate genes predicted for this hypothetical pathway were found in strain
BL-4 (Figure S4,) and other reported iso-butyrate-producing CE species
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(Supplemental file 4), thus physiological experiments are needed to elucidate
the mechanism of iso-butyrate formation in CE strains. In order to find
indications of the presence of the anticipated methylmalonyl-CoA pathway,
strain BL-4 was cultivated with 50 mM sodium succinate (Figure 7). The culture
reached an ODsoo of around 0.2 while concomitantly consuming 39 mM
succinate and producing propionate (37 mM) and minor amounts of acetate
(4.2 mM), formate (0.3 mM), iso-butyrate (0.2 mM), butyrate (0.1 mM) and 1-
propanol (0.8 mM). Therefore, succinate was decarboxylated to propionate in
an almost 1:1 stoichiometric ratio. The latter reaction, to our knowledge, is only
catalysed with the enzymes of propionic acid fermentation, i.e. via
methylmalonyl-CoA as an intermediate. This indicates that BL-4 has the
enzymes necessary for the conversion of organic acids to propionyl-CoA and
could theoretically produce iso-butyrate through a reversal of the iso-butyrate
degradation pathway in Desulfococcus multivorans [73].

We hypothesise that pyruvate derived from lactate oxidation is carboxylated to
oxaloacetate with concomitant decarboxylation of methylmalonyl-CoA to
propionyl-CoA by a transcarboxylase. The genes for a transcarboxylase could
not be identified at first sight. However, a BLAST-search of the amino acid
sequence of the genes of the respective enzyme complex in Propionibacterium
freudenreichii DSM 20271 against the genome of BL-4 revealed three potential
homologs. The three major methylmalonyl-CoA carboxyltransferase subunits of
P. freudenreichii DSM 20271 12S, 5S and 1.3S (IMG-locus tags
Ga0077868_111809, Ga0077868 111810 and Ga0077868 111807) are
similar to a carboxyltransferase (CLOSBL4 v1 1895, 33% identities), an
oxaloacetate decarboxylase (CLOSBL4 vl 1897, 52% identities) and a
glutaconyl-CoA decarboxylase subunit gamma (CLOSBL4 vl 1896, 39%
identities) respectively, and similarly arranged in one gene cluster. These genes
therefore possibly constitute a methylmalonyl-CoA transcarboxylase. Yet, a
gene candidate for a methylmalonyl-CoA mutase could not be identified. As a
consequence of the ability to decarboxylate succinate to propionate, strain BL-
4 might also be able to convert lactate to propionyl-CoA, which in turn could be
carboxylated to methylmalonate-semialdehyde (MMS). MMS could then be
reduced to 3-hydroxy-isobutyrate (3-HIB), which then might be activated to 3-
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hydroxyisobutyryl-CoA (3-HIB-CoA) by a CoA-transferase. The pathway could
proceed with the dehydration of 3-HIB-CoA to 3-enoyl-isobutyryl-CoA (a.k.a.
methylacrylyl-CoA) and reduction of the latter to isobutyryl-CoA. Finally, iso-
butyrate could be produced either by another CoA-transferase or by
phosphorylation and dephosphorylation by a phosphotransferase and an iso-
butyrate kinase. The genes responsible for the conversion of propionyl-CoA to
iso-butyrate could not be completely identified in the genome of strain BL-4.
However, inferring from the fact that valine is degraded to acetate and iso-
butyrate, strain BL-4 should at least have the biochemical machinery for the
conversion of iso-butyrate to 3-hydroxyisobutyrate and methylmalonyl-CoA and
vice versa (Figure 8) [74]. Otherwise, the production of acetate from valine
cannot be easily explained. Acetate was always produced in media with 0.05%
yeast extract (4.2 mM acetate during growth with succinate, Figure 7) and
could therefore result from the degradation of other organic compounds in yeast
extract. However, acetate concentrations in valine-grown cultures were twice
as high (9 mM, Figure 8b). Possibly, valine could also be co-fermented in a
Stickland-reaction, i.e. fermentation of pairs of amino acids such as valine and
glycine, yet this would also lead to accumulation of amounts of iso-butyrate in
a 2:1 acetate to iso-butyrate ratio, which was not the case (15 mM iso-butyrate
produced, Figure 8b). It is hence questionable where the reducing equivalents
derived from valine oxidation to iso-butyrate ended up and possibly, these
reducing equivalents were used to generate the various other side products
present in the valine-grown cultures (Figure 8b). Alternatively, pyruvate, and
subsequently acetate, could be produced by the enzymes of the valine
biosynthesis pathway acting in reverse, i.e. acetohydroxy-acid synthase (ilvB,
CLOSBL4 vl 0646), acetolactate synthase (ilvH, CLOSBL4 vl 0647) and
acetohydroxy-acid isomeroreductase (ilvC, CLOSBL4 vl 0648). Yet, it is
doubtful whether the thermodynamic equilibrium allows for such a reversal of
these enzyme reactions as the latter pathway usually favours valine production

and as at least the reaction of acetohydroxy-acid synthase is irreversible [75].

A comprehensive metabolic pathway of lactate conversion to iso-butyrate is not
available to date for strain BL-4 and the former might be a combined variation

of the known pathways of propionic acid fermentation and branched chain
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amino acid degradation. It appears that iso-butyrate is only formed in large
amounts, when butyrate accumulation levels out and might also depend on the
pH of the culture (Figure 1). Moreover, the amount of iso-butyrate formed is too
high to be explained by degradation of branched-chain amino acids alone. The
proposed methylmalonyl-CoA pathway could be a plausible explanation for iso-
butyrate production from lactate, yet it remains enigmatic why strain BL-4 does
not convert lactate into propionate as end-product by classical propionic acid
fermentation instead of iso-butyrate, i.e. the question remains what are the

advantages of proceeding degradation to the level of iso-butyrate.
3.5.5 Energy conservation and hydrogen formation

As shown in Figure 5, the cytoplasmic BCD/EtfAB complex catalyses the
transformation of crotonyl-CoA (hexenoyl-CoA) to butyryl-CoA (caproyl-CoA)
and simultaneously transfers electrons from NADH to ferredoxin, a mechanism
that has been described as flavin-based electron bifurcation [76]. ATP can be
produced by the ATP synthase using the ion motive force that is generated by
a membrane-associated, proton-translocating ferredoxin:NAD* oxidoreductase
(Rnf complex) in the oxidation of ferredoxin [77]. The genomes of BL-3 and BL-
4 contain the operon arranged as rnfCDGEAB encoding the six subunits of the
Rnf complex as shown in Figures 6a and 6b. This gene organization (shown
as rnfBAEGDC in the other DNA strand) was also found in other genomes of
chain-elongating bacteria (Figures 6d-n). For BL-6, we could only find four
genes for subunits of the Rnf complex during the functional annotation (see
CDS labels in the Supplemental file 4, sheet BL-6), but it contains the CDSs
encoding the analogous membrane-associated energy-converting
hydrogenase (Ech complex), which was proposed to generate hydrogen for
maintaining the cytoplasmic redox balance caused by the oxidation of
ferredoxin [78,79]. The Ech uses reduced ferredoxin as electron donor and
reduces protons, not NAD* like Rnf. As shown in Figure 6¢, CDS labels 2699-
2708, a cluster encoding six subunits of the Ech complex and CDSs for the
hydrogenase maturation were found. The Ech complex was also identified in
the MAG of Candidatus Weimeria bifida (Figure 6m). Additional hydrogenases
include hydrogen:ferredoxin oxidoreductase (H2ase), which was found in the
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genomes of all three isolates, and the bifurcating [Fe-Fe]-hydrogenase
(HydABC) using electrons from NADH and reduced ferredoxin, of which no
homologous genes were detected (see CDS labels in Supplemental file 4,
sheets BL-3, BL-4 and BL-6).

Apart from the BCD/EtfAB complex, the predicted EtfAB-containing complexes
for energy coupling may also include the LDH/EtfAB complex. The redox
potential of the pyruvate/lactate pair (Eo’ = -190 mV) is much higher than that
of the NAD*/NADH pair (Eo’ = -320 mV), which introduces a thermodynamic
bottleneck of the lactate oxidation coupled to NAD* reduction. Our annotation
results show that strains BL-3, BL-6 and Ruminococcaceae bacterium CPB6
have LDH genes next to EtfAB genes (Figure 6a, CDS labels: 11486-11488;
Figure 6¢, CDS labels: 3217-3220; Figure 6e, CDS labels: 01780-01790).
Therefore, similar like the mode of lactate metabolism in the strict anaerobic
acetogen Acetobacterium woodii, we assume that the LDH/EtfAB complex of
these species can also use flavin-based electron confurcation to solve the
energetic enigma: driving electron flow from lactate to NAD" at the cost of

exergonic electron flow from reduced ferredoxin to NAD* [77,80].

The manually curated annotation of all above-mentioned CDSs in the genomes
of other lactate-based chain-elongating strains is provided in Supplemental
file 8.

4. Conclusions

Our results suggest three novel Clostridia species, represented by the strains
BL-3, BL-4 and BL-6 that are able to convert lactate to n-caproate and iso-
butyrate in batch cultivation, with the confirmation of their genetic background
of lactate-based chain elongation and using CoA transferase as the terminal
enzyme. Further research is needed to elucidate the pathways for iso-butyrate
formation in these strains. By comparative genome analysis including further
eleven experimentally validated chain-elongating bacteria, we found a
substantial genetic heterogeneity but highly conserved genes related to chain
elongation, hydrogen formation, and energy conservation, which can be

considered hallmarks of chain-elongating bacteria. Based on the genomic

171



Research chapter 2.5

features, chain-elongating species may contain two types of energy
conservation systems in the re-oxidation of reduced ferredoxin — proton-
translocating ferredoxin:NAD+ oxidoreductase (Rnf complex) and energy-
converting hydrogenase (Ech complex). Besides the proposed BCD/EtfAB
complex for flavin-based electron bifurcation, energy coupling may also include
the LDH/EtfAB complex in the oxidation of lactate and the supply of acetyl-CoA
for chain elongation. Overall, the genomic and metabolic features of the three
novel chain-elongating isolates might be interesting for further research and
biotechnological applications with regard to n-caproate and iso-butyrate

production.
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Figure 1. Fermentation products of strains BL-3, BL-4 and BL-6 during growth
on lactate. 75 mM lactic acid was added to each bottle on day 7. Mean values
of six measurements of duplicate batch cultures are given and error bars

represent the standard deviation.
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Figure 2. Genomic heterogeneity of strains BL-3, BL-4 and BL-6. Venn diagram
showing the shared and unique gene families of the three isolates, and
numbers of CDSs presenting the pan-genome and core-genome as well as
variable and strain-specific genes. Families refer to the MicroScope
homologous gene families (MICFAM), in which the protein-coding genes share
at least 80% amino acid sequence identity and 80% alignment coverage.
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Figure 3. Phylogenomic analysis of the three isolates. (a) Neighbor-joining tree
showing the genome similarity between 14 chain-elongating bacterial strains.
The newly isolated strains are highlighted in pink and all experimentally
validated chain-elongating strains are indicated in bold. Additional related
species based on 16S rRNA phylogenetic analysis were included (see the
phylogenetic tree in Figure S3). GTDB taxonomic assignments at the family
level are shown in parentheses. The NCBI/ENA accession numbers of the
genomes are shown in brackets. Distances indicated at the branches correlate
to the average nucleotide identity (ANI) according to: D = 1-ANI. (b) USEARCH
OrthoANI comparison for strains BL-3, BL-4 and BL-6 to related genomes. The
line plots give an overview of the conservation of synteny groups on nucleotide
level. Strand conservations are depicted in purple and strand inversions in blue.

The synton size was selected with higher than three genes for the analysis.
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Number of gene families

Figure 4. Pan-genome analysis of the 14 chain-elongating bacterial strains. (a)
Pan-genome and core-genome sizes and their changes for the increasing
genome set. Families refer to the MicroScope homologous gene families
(MICFAM), in which the protein-coding genes share at 80% of amino acid

sequence identity and 80% of alignment coverage. (b) Summary of gene counts
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Strain Pan-CDSs Core-CDSs  Variable CDSs Strain-specific CDSs
BL-3 3778 380 3388 922
BL-4 2290 322 1968 934
BL-6 3440 392 3048 1546
Megasphaera efsdenii 14-14 2319 306 2013 647
Ruminococcaceae bacterium CPBG 2076 302 1774 696
Megasphaera hexanoica MH 2762 334 2428 1039
Pseudoramibacter alactolyticus ATCC 23263 2290 319 1971 938
Candidatus Pseudoramibacter fermentans 2166 287 1869 808
Clostridium kluyver DSM 555 4288 392 3896 287
Caproiciproducens galactitolivorans BS-1 2502 334 2168 945
Euvbacterium fimosum KISTG12 4535 388 4147 2864
Eubacterium pyruvativorans ié 1905 293 1612 1016
Candidatus Weimeria bifida 2439 308 213 1462
Clostridium luticellari DSM 29923 3740 305 3395 a0s

for each strain. CDS: gene coding sequence.
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Figure 5. Metabolic pathways involved in lactate-based or ethanol-based chain
elongation and production of acetate, n-butyrate, iso-butyrate and n-caproate
as predicted from the genome annotation of strains BL-3, BL-4 and BL-6.
Enzyme abbreviations (see Table 2 for full names) are provided in red letters
next to the pathways (solid lines). The numbers below the enzyme names
indicate the strains that were predicted to harbour the corresponding CDSs, i.e.
“3” refers to strain BL-3, “4” refers to strain BL-4 and “6” refers to strain BL-6.
The dashed line represents multi-enzyme reactions between the two indicated
molecules, and “cycle” refers to the reverse p-oxidation. The conversion of the
terminal acyl-CoA to the corresponding fatty acid can be catalysed by CoAT or
alternatively by ACT as shown at the example of butyrate. A third way of
butyrate formation from butyryl-CoA proceeds via PTB and BUK. The predicted
pathway of iso-butyrate formation via isomerisation of n-butyryl-CoA by BM is
shown; an alternative hypothetical pathway for iso-butyrate formation from

lactate is depicted in Figure S4 (Supplemental File 1).
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Figure 6. Arrangement of predicted CDSs in genomes of strains BL-3 (a), BL-
4 (b), BL-6 (c), other bacterial strains reported of chain elongation with lactate
(d-h), and with other reduced substrates (i-n). Numbers in the arrows denote
the corresponding CDS labels. Abbreviations above the arrow refer to the

enzyme names (see Table 2 for full names). Scale bar: 1,000 nucleotides (nt).
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Figure 7. Fermentation kinetics of strain BL-4 during growth on 50 mM
succinate and 0.05% yeast extract. Shown are mean values of triplicates. Error
bars represent the standard deviation. Some error bars are smaller than symbol
size. Small amounts (< 2 mM) of formate, butyrate, iso-butyrate, and 1-propanol

were also formed, but omitted in the figure for clarity.
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Figure 8. Fermentation kinetics of strain BL-4 during growth on 50 mM L-valine
and 0.05% yeast extract. Shown are mean values of triplicates. Error bars
represent the standard deviation. Some error bars are smaller than symbol size.
a: optical density at 600 nm b: difference of fermentation products identified

and quantified by HPLC (tend — to values).
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Table 1. Genomic characteristics of all chain elongation strains included in this

study

Strain GTDB taxonomy Isolation source Genome size  GCcontent  No. of predicted Reference
(bp) (%) CDSs
BL-3 Clostridium_B Anaerobic bioreactor 3,855,691 3432 3,875 [19]
BL4 Acutalibacteraceae UBA4871 Anaerobic bioreactor 2,335,857 42.75 2,323 [19]
BL-6 Clostridium_E sp002397663 Anaerobic bioreactor 3,433,529 54.63 3,496 [19]
Megasphaera elsdenii 14-14 Megasphaera elsdenii Human gut 2,504,349 5275 2,359 [47,48]
Acutalibacteraceas UBA4871 Sludge of a caproate-
Ruminococcaceae bacterium CPB6 2,069,994 50.58 2,116 [15,49]
sp002119603 produding reactor
Megasphaera hexanoica MH Caecibacter massiliensis Cow tumen 2,877,851 49.00 2,799 [50]
Pseudoramibacter alactolyticus ATCC 23263 Pseudoramibacter alactolyticus Human oral cavity 2,366,982 51.63 2,327 [51,52]
Candidatus Pseud ibacter fermentan: Pseud sp002396065 Anaerobic bioreactor 2,288,358 50.15 2,209 [46]
Clostridium Kluyveri DSM 535 Clostridium_B Kuyveri Canal mud 4,023,800 32.02 4,371 [14]
Caproiciproducens galactitolivorans BS-1 Acutalibacteraceae M54 Anaerobic digester sludge 2,578,839 48.10 2,539 [53,54]
Eubacterium limosum KIST612 Eubacterium limosum Sheep rumen 4,740,532 46.86 4,605 [51,55]
Eubacterium pyruvativorans i6 Eubacterium_A pyruvativorans Sheep rumen 2,164,212 54.84 1,954 [56,57]
Candidatus Weimeria bifida» Lachnospiraceas UBA2727 Anaerobic bioreactor 2,395,883 45.93 2477 48]
Clostridium luticellarii DSM 29923 Clostridium_B luficellarii Mud cellar 3,771,178 3497 3,874 [58,59]

* metagenome-assembled genome (MAG)

Table 2. List of enzymes considered for the manual functional annotation

Predicted function No. Enzyme abbreviation EC number Enzyme
1 LacR 5.12.1 Lactate racemase
2 LacP 2.A14 Lactate permease
3 LDH 1.1.1.27 Lactate dehydrogenase
Acetyl-CoA formation L
4 PFOR 1271 Pyruvate ferredoxin oxidoreductase
5 ADH 1111 Alcohol dehydrogenase
6 ADA 1.2.1.10 Acetaldehyde dehydrogenase
7 ACAT 2.3.1.9,23.116 Acetyl-CoA acetyltransferase
8 HAD 1.1.1.157, 1.1.1.35 3-Hydroxvacyl-CoA dehydrogenase
9 ECH 4.2.1.150,4.2.1.55 Enoyl-CoA hydratase
Reverse f-oxidation 10 BCD 1381 Butyryl-CoA dehydrogenase
11 EHAB Electron transfer flavoprotein A,B
12 CoAT 2.83.- Butyryl-CoA:acetate CoA-transferase
13 ACT 3.1.220 Acyl-CoA thioesterase
14 RnfABCDEG 7111 Energy-converting NADH:ferredoxin oxidoreductase
Eriergy conservation 15 EchABCDEF Energy-converting hydrogenase
H; formation 16 H2lase 11272 Hydrogen:ferredoxin oxidoreductase
17 PTB 23.1.19 Phosphate butyryltransferase
Butyrate formation
) 18 BUK 2727 Butyrate kinase
19 BM 5.4.99.13 Butyryl-CoAisobutyryl-CoA mutase
20 ACOCT 2.83.19 Acetyl-CoA:oxalate CoA-transferase
Others 21 HadABC 4.2.1.157 (R)-2-hydroxyisocaproyl-CoA dehydratase
22 CarC 1.3.1.108 Caffeyl-CoA reductase-Etf complex subunit CarC
23 HypCDEF Hydrogenase maturation factor
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2.5.2 Supplementary information
Supplementary methods: Sanger sequencing of 16S rRNA genes

Genomic DNA was extracted from fresh cell pellets of the isolates and purified
using the NucleoSpin Microbial DNA kit (Macherey-Nagel, Germany). The
concentration and quality of DNA were determined by NanoDrop™ UV-Vis
spectrophotometer (NanoDrop™ ONE, Thermo Scientific, Waltham, USA) and
by agarose gel electrophoresis. Amplification of bacterial 16S rRNA genes by
PCR using MyTag™ Mix (Bioline, Germany) and sequencing were carried out
as described previously [81], with few modifications. For almost complete
sequencing of 16S rRNA genes, sequencing primers 27f, 357f, 519r, 530f, 927r,
1104r, 1114f and 1492r were used [82]. Amplicons were purified using the
SureClean Kit (Bioline, Germany) and quantified using the NanoDrop. The DNA
sequence analysis software Sequencher® v5.4.6 (Gene Codes Corporation,
Ann Arbor, MI USA) was used for trimming and aligning the forward and reverse
sequences and assembling contigs. The sequences were compared against
the National Center for Biotechnology Information (NCBI) rRNA/ITS databases
(16S ribosomal RNA sequences (Bacteria and Archaea)) using the nucleotide
BLAST (Basic Local Alignment Search Tool) web interface [34].

Table S1. COG (Clusters of Orthologous Groups) classification

BL-3 BL4 BL-6
Class

Process [»] Description cDs % cDs % cDs %

Cellular processes and signaling n] Cell eycle control, cell division, chromasame partitioning 65 168 32 1.38 44 128
Cellular processes and signaling M Cell wall! brar pe biog i 171 441 116 498 128 368
Cellular processes and signaling N Cell motility kil 183 9 039 &3 1.95
Cellular processes and signaling Q Pasttranslational modification, protein tumover, chaperones 86 222 47 202 T4 212
Cellular processes and signaling T Signal transduction mechanisms 200 5186 82 353 148 418
Cellular processes and signaling u Intracellular trafficking, secretion, and vesicular transport 66 1.70 30 1.29 59 1.69
Cellular processes and signaling W Defense mechanisms T2 186 61 283 65 1.88
Cellular processes and signaling W Extracellular structures 3 0.08 & 028 1 0.03
Information storage and processing B Chromatin structure and dynamics 1 0.03 1 0.04 1 0.03
Information storage and processing J Translation, ribosomal structure and biogenesis 1681 415 148 B6.37 153 438
Information storage and processing K Transcription 324 838 198 244 287 821
Information storage and processing L Replication, recombination and repair 246 636 113 4.88 259 741
Metabaolism c Energy production and conversion 27 599 120 517 168 4.81
Metabolism E Amine acid transport and metabolism 389 10.04 241 10.37 308 875
Metabolism F Nucleatid and metabolism 75 184 56 241 64 183
Metabalism G Carbohydrate transpart and metabolism 177 457 126 542 263 752
Metabolism H Coenzyme transport and metabolism 131 338 52 224 108 312
Metabolism | Lipid transport and metabolism 86 222 81 283 70 200
Meatabaolism F Inzrganic ion transport and metabaolism 218 583 105 452 182 521
Metabolism Q Secondary metabolites biesynthesis, transport and catabolism T0 181 23 0.9 41 147
Poorly characterized R General function prediction enly 483 1246 271 1167 348 298
Poorly characterized 5 Function unknown 250 645 154 683 178 5.01
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Table S2. EGGNOG (Evolutionary Genealogy of Gene: Non-supervised

Orthologous Groups) classification

BL-3 BL-4 BL-6
Class
Process 1D Description cDs % cDs % cDs Y
Cellular processes and signaling [»] Cell cycle contrel, cell division, chromosome partitioning 3 0.85 25 1.08 28 0.80
Cellular processes and signaling M Cell wall L /s lope bic i 168 434 134 577 126 380
Cellular processes and signaling N Call metility 45 1.19 4 017 37 1.08
Cellular processes and signaling o Posttranslational modification, protein tumover, chaperones 9 235 43 2.07 B85 188
Cellular processes and signaling T Signal transduction mechanisms 143 389 &7 288 105 3.00
Cellular processes and signaling u [ llular traficking, tion, and icular transport 38 0.98 23 0.59 37 1.08
Cellular processes and signaling v Defense mechanisms 72 1.88 s56 241 &7 192
Cellular processes and signaling w Extracellular structures 1 0.03 o 4] 0 0
Infarmation storage and processing B Chromatin structure and dynamics 1 0.03 1 0.04 1 0.03
Information storage and processing J Translaticn, ribosomal structure and biogenesis 157 4.05 147 B5.33 148 418
Infarmation storage and processing K Transcription 267 6.89 158 6.84 230 6.58
Information storage and processing L Replicaticn, recombination and repair 221 5.70 111 4.78 281 7.47
Metabolism c Energy production and conversion 2867 689 112 4.82 150 4.29
Metabolism E Amino acid transport and metabolism M5 813 188 8.57 261 7.47
Metabaolism F Muclectide transport and metabolism 78 186 59 254 65 1.86
Metabalism G Carbohydrate transport and metabalism 128 333 a2 386 204 5.84
Metabalism H Coenzyme transport and metabolism 08 281 38 184 83 2.66
Metabolism I Lipid transport and metabolism 75 184 56 24 62 177
Metabalism F Inorganic ion transport and metabolism 158 408 2] 383 185 5.28
Metabalism Q Secondary metabolites biosynthesis, transport and catabolism 41 1.06 14 0.80 18 0.54
Poorly characterized S Function unknown a78 2526 558 2406 782 2237
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Figure S1. Fermentation products of the enrichment culture (a single bottle of

the fourth transfer) during growth on lactate. Mean values of three

measurements are given and error bars represent the standard deviation.
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BL-3
i

strand conservation
strand inversion

BL-6
BL-6

T
BL-4

Figure S2. Pairwise comparison of the conservation of the synteny groups in
the three new isolates. Strand conservations are depicted in purple and strand

inversions in blue. The synton size was selected higher than three genes.

100 | Clostridium autoethanogenum DSM 10061 (NR_121758)
Clostridium ljungdahlii DSM 13528 (NR_117113)
Clostridium algifaecis MB9-7 (NR_134004)
Clostridium pabulibutyricum MJC39 (NR_159224)
Clostridium luticellarii Fw431 (NR_145907)
BL-3 (LR861112)
Clostridium kluyveri DSM 555 (NR_074165)
99 Ethanoligenens harbinense YUAN-3 (NR_074333)
— Clostridium cellulosi AS 1.1777 (NR_044624)
71 Ruminococcus albus JCM 14654 (NR_113032)
100 _| Ruthenibacterium lactatiformans 585-1 (NR_151900)
Clostridium leptum DSM 753 (NR_114789)
Acutalibacter muris KB18 (NR_144605)
Neglecta timonensis SN17 (NR_144736)
Caproiciproducens galactitolivorans BS-1 (NR_145929)

100 BL-6 (LR861114)
o8 Clostridium merdae Marseille-P2953 (NR_147400)
2 4% Clostridium sporosphaeroides DSM 1294 (NR_044835)
Clostridium jeddahense JCD (NR_144697)

95 Ruminococcaceae bacterium CPB6 (KM454167)
BL-4 (LR861113)
Anaeromassilibacillus senegalensis mt9 (NR_144727)
Ruminococcus bromii ATCC 27255 (NR_025930)

Figure S3. Maximum likelihood tree of the three new strains and closest

100

|m

0.08

relatives based on 16S rRNA gene sequences. Bootstrap values above 50%
are shown at the node. GenBank or European Nucleotide Archive (ENA)
accession numbers of 16S rRNA sequences are presented in parentheses.

Scale bar = 8% nucleotide substitution.
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in Supplementary file 4.
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3 General discussion

3.1 Understanding microbial community assembly in model

ecosystems

The interactions of microorganisms shape the composition and function of the
microbial community in an ecosystem (Zengler and Zaramela, 2018). The
ecosystem also consists of various species that interact with the environment,
making it more difficult to explore. Currently, we still lack a deeper
understanding of the rules governing microbial community assembly (Faust,
2019). The contributions of deterministic and stochastic processes in the
assembly of microbial communities are generally accepted, but characterising
these processes in natural systems is a grand challenge (Wu et al., 2019a). In
engineered systems such as bioreactors, by developing ecosystem models, we
could have the opportunity to understand the complexity of community
assembly. In this PhD thesis, by enriching self-assembled chain-elongating
microbiota in continuous reactors, | explored microbial ecosystem models with
a top-down approach. Here, the top-down approach refers to look at the
enriched consortia as a whole while the bottom-up approach focuses more on
synthetic communities. Through ecological selection, the top-down approach is
used to understand how the manipulation of environmental factors (e.qg.,
alterations of pH and hydraulic retention time) would force the existing
microbiota to reassemble in order to maximise the growth yield. Afterwards,
different mathematical models can be applied to capture community functioning
by representing different functional groups of species, and to infer the potential
reasons in the explanation of the microbial community dynamics. In other words,
these investigations by using 16S rRNA gene analysis or metagenomics
coupled to modelling or machine learning are valuable for generating different
hypotheses in the field of microbial ecology, although most theories are in a
rational way transferred from ecology of macroorganisms, such as the
community assembly mechanisms controlling diversity patterns (Zhou and Ning,
2017; Ning et al., 2019). On the one hand, with rapid advances in sequencing

technologies, categorising microbial diversity becomes relatively easy. On the
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other hand, due to the dynamics of microbial ecosystems with numerous
interacting species, it is still not possible to disentangle the factors controlling
community assembly. For our chain-elongating reactor systems with highly
enriched mixed cultures, a number of around 100 taxa (ASVs) is more than
enough for any confirmed conclusions drawn from such advanced data
analyses (Chapters 2.1, 2.2 and 2.3). As it is common to almost all kind of top-
down studies, the ecological questions cannot be answered clearly (Prosser et
al., 2007).

Going back to the starting point in understanding microbial community
assembly, | anticipate boldly that defined mixed cultures with a reasonable
number of species under well-controlled conditions in many replicates hold the
promise for a holistic mechanistic understanding of community assembly
(Vrancken et al., 2019). Most of the synthetic communities used for studying
their dynamics are based on simple consortia with selected model
microorganisms for a specific environment. There are some limitations for the
approach of bottom-up design. First, it trades clarity by the sacrifices of
reflecting the realism of the communities. According to my knowledge, no truly
representative systems have been developed that exactly mimic in situ
environments. Second, most microorganisms relevant for environmental
processes resist cultivation, not to mention the low availability of well-
documented strains regarding their ecophysiology and metabolism (Lawson et
al., 2019). The CE process is a good example. Not many chain-elongating
bacterial strains have been isolated for utilising lactate, ethanol or
monosaccharides (Chapter 2.5). Other mysteries of CE include the unclearness
of reverse (B-oxidation pathway regarding the substrate fluxes and flexibility, as
well as enzymology (e.g., the missing of trans-2-enoyl-CoA reductase in the
chain elongator Ruminococcaceae bacterium CPB6; and terminal enzymes for
controlling the carbon length) and the pathway using acyl carrier protein (ACP)
as opposed to CoA in the fatty acid biosynthesis (Liao et al., 2016; Tao et al.,
2017; Han et al.,, 2018). The knowledge in understanding membrane and
enzyme processes of the toxicity of carboxylic acids is missing. The difficult

maintenance of cultures is also challenging to construct synthetic communities.
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Given the truth that many species need to be characterised, at the moment,
exploration in the simplified and well-controlled systems is the most viable
option to start unveiling the metabolic and ecological interactions within
community members. Many studies have shown promise in this way, including
the classical co-cultivation of syntrophic communities (Stams and Plugge,
2009), the competitive exclusion of the Gause principle (Connell and Sousa,
1983), the huge numbers of settings of defined communities showing the initial
evenness of the community influences ecosystem function (Wittebolle et al.,
2009) and a groundbreaking study of dynamics of three interacting species in
closed ecosystems with many replicates, showing the effects of geometric
random walks in a system are clearly contingent (Hekstra and Leibler, 2012).
As for CE, the proposed mutualism of chain-elongating species and lactic acid
bacteria (e.g., Olsenella and Lactobacillus) was mentioned in many CE studies
(Contreras-Davila et al., 2020; Liu et al., 2020a), but this symbiotic interaction
has never been proved systemically in co-cultivation or any bottom-up designs.
Sequencing of microbial communities is really convenient but its generated data
are overwhelming compared with cultivation studies, which are important to

prove those findings from sequencing studies.

High-throughput cultivation techniques would be a perfect match for parallel
tests in defined mixed culture fermentation. The system of mini-bioreactor
arrays is one of the examples, in which a continuous-flow mode with reactors
miniaturised in volume and operated up to 48 in parallel was developed
(Auchtung et al., 2015). A future combination with microsensor devices that
determine chemical properties, community structure and functioning and
ecophysiological parameters can be developed as an in-line monitoring system.
The acquired high quality data would be important for any kind of model
development to test and prove ecological theories. Besides the high-throughput
feature, affordability and easy usability also need be considered. In this case,
droplet-based microfluidics is also promising in the characterisation of microbial

communities (Kehe et al., 2019).
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3.2 Linking microbial community structure to functioning

A critical topic in ecology is to understand the relationship between diversity
and ecosystem functioning (Prosser et al., 2007). How are microbial diversity
and interactions relevant to ecosystem functioning, stability and resilience? For
this PhD thesis, | found that decreasing the hydraulic retention time can shape
the reactor microbiota resulting in the improvement of CE process performance
in terms of C6/C8 productivity (Chapter 2.2). However, when testing the
increase in pH gradient (Chapter 2.3), the reactor performance returned to the
previous state while the communities developed to a different state (i.e.,
decreases in diversity and evenness but increase in richness). Since the CE
bioreactors are engineered systems, | assumed that there would be a strong
link between the reactor microbiota and its functions regarding C6/C8
production. Thus, it is important to understand the complexity of the microbial
communities with parallel pathways of an enormous number of coexisting but
taxonomically distinct species, and the changes to communities are not
necessary reflected by the most relevant functioning (Agler et al., 2012b;
Vanwonterghem et al., 2016; Louca et al., 2017). That is to say, the taxonomic
composition of communities appears decoupled from functional composition.
Then coming up with the open questions: how to completely decouple certain
functions from the community assembly of metabolically overlapping
microorganisms with functional redundancy, in particular of those in resource
competition with the target processes, and what determines the degree of
functional redundancy in microbial systems? Acquiring more knowledge on
physiological, genomic and metabolic features of species themselves is of
particular importance in answering these questions. In addition, functional
redundancy is critical for maintaining the stability of community functioning
against environmental perturbations. Hewn in stone is that functional
redundancy always exists in microbial open systems (Louca et al., 2018). To
be practical, promoting functional redundancy in systems dealing with organic
wastes or biomass residues is an important aspect in microbial resource

management.
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3.3 Moving from intriguing science to real-world practice —

Microbiota-based biotechnology

Ecological theories are particularly crucial to provide predictions on microbial
community functioning. Making it predictable is an important step to leverage
fundamental scientific principles and quantitative design to manage the
communities performing desired functions. Microbiota-based biotechnologies
are relevant to the fields of environmental technology, agriculture, human health,

energy and many others (Figure 3.1).
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Figure 3.1 The application of microbiota. Figure was adapted from Jiang et al.,
2017.

Biotechnological processes using pure culture fermentation are economically
attractive due to their high titers and production rates (Angenent et al., 2020).
However, considering the utilisation of waste streams or biomass residues,
mixed culture fermentation is a wiser option with inherent advantages. It can be
operated in nonsterile conditions to perform multiple functions with robust
redundancy in the utilisation of complex substrates. Anaerobic digestion is the
most successful application to date aiming at producing renewable energy in
the form of methane. Now it is evolving to the production of MCCs (e.g., C6 and
C8), which are ways more valuable than methane. However, the low product

concentration and selectivity are still a challenge for any downstream processes.
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To my knowledge, for open-culture biotechnology, manipulation of
environmental conditions of the reactor microbiota is the only way for process
control. In this context, process design with spatial organisation can be a
promising way to reduce the complexity of reactor microbiota, aiming at steering
microbial pathways towards the production of the corresponding desired
products. For example, the study of Xu et al., 2018 demonstrated a
temperature-phased bioreactor system in converting acid whey into MCCs via
lactate. Without the addition of external electron donors, they integrated lactic
acid fermentation in a first phase (thermophilic and mildly acidic conditions) with
CE in a second (mesophilic conditions), showing lactate-based CE within
carboxylate platform to be a promising waste stream recovery strategy. This
PhD thesis also emphasised the importance of in situ lactate formation in the
lactate-based CE process, by taking initiatives to valorise carbohydrate-rich

waste streams in a maximal way.

Another example for the exploration of spatial organisation came to the defined
mixed culture fermentation in a biofilm membrane reactor system (Shahab et
al., 2020). By adopting strategies of synthetic ecology and process engineering,
they constructed an artificial food chain with cross-kingdom microbial consortia
including an aerobic fungus, lactic acid bacteria and lactate-based chain-
elongating bacteria, which can convert the complex substrate lignocellulose to
valuable platform chemicals such as butyrate, valerate and caproate. This
groundbreaking study successfully presented the possibility of engineering
stable and controllable synthetic communities with the utilisation of their

ecological niches.

Despite our broad scientific interest in knowing microbiota from multiple
environments, a way to synthesise all the gained knowledge into best practice
would advance the microbiota-based biotechnologies to diminish our
dependence on fossil resources. Given our nascent knowledge of microbial
ecology at the moment, it is a long and hard way of microbiota engineering.
Thus, working together with multidisciplinary experts is essential to turn the
challenge into opportunities and to finally realise the dream of a circular

economy.
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	Zusammenfassung
	Offene Mischkulturen in anaeroben Reaktorsystemen wandeln organische Abfälle oder Biomasse-Rückstände in hauptsächlich kurzkettige Carboxylate mit zwei bis fünf Kohlenstoffatomen um. Kurzkettige Carboxylate können von methanogenen Konsortien in der an...
	Für Verfahren der mikrobiellen Kettenverlängerung wird üblicherweise die Mischkulturfermentation eingesetzt. Die verschiedenen mikrobiellen Gemeinschaften enthalten unterschiedliche funktionelle Gruppen, die an der Hydrolyse und Fermentation der verfü...
	Das erste Kapitel beschreibt die Entwicklung eines Modell-Ökosystems mit reduzierter Komplexität, indem Laktat und Xylan als definierte Kohlenstoffquellen verwendet wurden, um die Substratbedingungen bei der anaeroben Fermentation von Maissilage zu Ca...
	Im zweiten Abschnitt wurden die Auswirkungen einer Verkürzung der hydraulischen Verweilzeit auf den Aufbau und die Funktion der mikrobiellen Gemeinschaften in den Modell-Ökosystemen getestet, mit dem Ziel, ökophysiologische Funktionen im Hinblick auf ...
	Das dritte Kapitel beschreibt Untersuchungen zu Auswirkungen des pH-Werts auf den Aufbau und die Funktionsweise der mikrobiellen Gemeinschaften auf der Grundlage der entwickelten Modell-Ökosysteme. Der Anstieg des pH-Wertes von 5,5 auf 6,0 verursachte...
	Parallel zu den Reaktorexperimenten wurden Reinkulturen von kettenverlängernden Clostridienstämmen isoliert, die drei neue Spezies repräsentieren. Ihre Genome wurden mit Hilfe eines hybriden Short- und Long-Read-Sequenzierungsverfahrens rekonstruiert....
	Zusammenfassend lässt sich sagen, dass Modellgemeinschaften für die mikrobielle Kettenverlängerung durch Wechsel von pH-Wert und hydraulischer Verweilzeit in Langzeit-Bioreaktorversuchen angereichert und weiter geformt wurden. Der Metabolismus und die...

	Summary
	Open cultures of anaerobic reactor systems convert organic wastes or biomass residues into mainly short-chain carboxylates with two to five carbon atoms. The short-chain carboxylates can be converted into the highly reduced end product methane by meth...
	Mixed culture fermentation is commonly employed for the chain elongation processes. The diverse microbial chain elongation communities contain different functional groups involved in the processes of hydrolysis and fermentation of available organic co...
	In the first chapter, a model ecosystem with reduced complexity was developed by using lactate and xylan as defined carbon sources to simulate the feedstock conditions of caproate-producing bioreactors operated with corn silage. Feeding defined carbon...
	The second chapter tested the effects of shortening the hydraulic retention time on the community assembly and functioning in the model ecosystems, aiming to quantitatively predict ecophysiological functions of the microbial communities. For the proce...
	In the third chapter, the effects of pH increase on the chain elongation community assembly and functioning were tested based on the developed model ecosystems. The increase in pH from 5.5 to 6.0 caused fluctuations in the yields of n-butyrate, n-capr...
	In parallel to the reactor experiments, pure cultures of chain-elongating clostridial strains were isolated, representing three novel species. Their genomes were assembled using a hybrid short and long read sequencing approach. The three novel strains...
	In summary, model communities of chain elongation processes were enriched and further shaped by alternations of pH and hydraulic retention time in long-term bioreactor experiments. The metabolism and ecological interactions of reactor microbiota invol...

	1 Introduction
	1.1 Reactor microbiota
	As proposed, the term microbiota refers to the assemblage of microorganisms present in a defined environment (Marchesi and Ravel, 2015). Reactor microbiota used in this study refers to the biologically active environment of reactors, represented as op...

	1.2 Carboxylate platform
	Using reactor microbiota for producing biogas (mainly methane) in anaerobic digestion is a mature technology that has been developed and widely implemented for decades all over the world (Angenent et al., 2016). While it is a well-known waste-to-energ...

	1.3 Microbial chain elongation
	The communities of anaerobic digestion contain different trophic groups involved in four main processes: hydrolysis, acidogenesis, acetogenesis and methanogenesis. Short-chain carboxylates (SCCs, two to five carbon atoms) are key intermediates in the ...
	Figure 1.1 The metabolic pathways of reverse ꞵ-oxidation with lactate or ethanol as electron donor. Cycle refers to the reverse ꞵ-oxidation cycle; the dashed lines represent multi-enzyme reactions between the two indicated molecules.
	Energy-rich, reduced molecules such as ethanol and lactate are suitable as electron donor to be oxidised to provide metabolic energy (ATP) via substrate level phosphorylation and reducing equivalents (NADH) for the reverse ꞵ-oxidation. Similar to CE w...
	On the one hand, MCCs are the end products of chain-elongating species in the reactor microbiota. On the other hand, the toxicity of MCCs can inhibit the growth of many community members, possibly leading to the collapse of the production of MCCs (Liu...

	1.4 Methods for investigating reactor microbiota
	A lot of methods have been developed and are still in development for gaining insights into the complexity of microbial communities. Briefly, these can be sorted into culture-independent and culture-dependent techniques. Here, a short overview of thos...
	1.4.1 PCR-based methods
	After the DNA extraction procedure, polymerase chain reactions (PCR) are commonly applied for the amplification of 16S rRNA genes (prokaryotic small subunit rRNA genes) or functional marker genes (e.g., mcrA for methanogens). Terminal restriction frag...
	Next-generation sequencing (NGS) delivers the information of microbiome profiling by directly obtaining it from the presence and abundance of certain sequences, which is fundamentally different from that of fingerprinting. The amplicon NGS circumvents...

	1.4.2 Metagenomics
	Metagenome analysis provides more detailed genomic information and taxonomic resolution by sequencing all microbial genomes within a sample, and it allows the detection of functional genes and the construction of whole pathways (Knight et al., 2018). ...
	Figure 1.2 Schematic examples of first (a), second (b) and third (c) generation sequencing technologies. Figure was adapted from Shendure et al., 2017.

	1.4.3 Culture-dependent methods
	The high-throughput DNA-based sequencing approaches generated a countless number of sequences that have not been assigned to any known microorganism (Lagier et al., 2016). We microbiologists should realise that the field of microbial isolation cannot ...


	1.5 Aims of this study
	The carboxylate platform has shown to be an effective way to produce medium-chain carboxylates and it created an opportunity to substitute fossil-based fuels and chemicals. However, characterising the chain elongation processes in existing open reacto...
	1. to develop a closed model ecosystem by operating a continuous bioreactor with an enriched mixed culture, and to clarify how ecological interactions influence the chain elongation process performance and shape the community structure during a long-t...
	2. to investigate how environmental manipulations affect chain elongation community assembly and functioning in the closed model ecosystems during long-term reactor operation (Chapters 2.2 and 2.3),
	3. to identify the shared metabolic features and genomic diversity of the entire repertoire of experimentally validated chain-elongating bacterial species (Chapters 2.4 and 2.5).
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	2.1.2 Supplementary information
	Figure S1 Bacterial community dynamics in the four succession stages, illustrated by nonmetric multidimensional scaling (NMDS) of T-RFLP profiles (16S rRNA gene amplicons, restriction enzyme MspI). Data points are named according to sampling days. Pro...
	Figure S2 Alpha diversity metrics (richness, diversity and evenness) in the four succession stages based on the relative abundance of amplicon sequence variants (ASV) (A) and of terminal restriction fragments (T-RF) of 16S rRNA gene amplicons for rest...
	Table S1 Electron-equivalent balance in stages I and II showing mean values obtained from different sampling points in both stages, represented by 95% confidence intervals. The electron balance calculation was based on the number of electrons and the ...
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	Table S2 COD balances in stage I and stage II. By using COD kit, one point was selected per week in stage I and stage II, results are shown below. The “Input” means measured results of mineral medium with lactate and xylan added. The “Output” means me...


	2.2 Machine learning-assisted identification of bioindicators predicts medium-chain carboxylate production performance of an anaerobic mixed culture
	Bin Liu1, Heike Sträuber1, João Saraiva1, Hauke Harms1, Sandra Godinho Silva2, Sabine Kleinsteuber1* and Ulisses Nunes da Rocha1*
	* Authors followed by an asterisk contributed equally to this work
	1Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
	2Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico Universidade de Lisboa, Lisbon, Portugal
	Corresponding Authors: sabine.kleinsteuber@ufz.de / ulisses.rocha@ufz.de (ordered alphabetically according to last name).
	2.2.1 Main text
	Abstract
	Background: The ability to quantitatively predict ecophysiological functions of microbial communities provides an important step to engineer microbiota for desired functions related to specific biochemical conversions. Here, we present the quantitativ...
	Results: By progressively shortening the hydraulic retention time from 8 days to 2 days with different temporal schemes in both bioreactors operated for 211 days, we achieved higher productivities and yields of the target products n-caproate and n-cap...
	Conclusions: Shortening the hydraulic retention time of the continuous bioreactor systems allows to shape the communities with desired chain elongation functions. Machine-learning predictive analytics demonstrates that 16S rRNA amplicon sequencing dat...
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	Background
	Microbes form complex communities that play essential roles in ecosystem functioning. Identifying bioindicators derived from community analysis and using them to predict process performance may delineate potential cause-effect relationships with ecosy...
	Our goals were to investigate how environmental manipulations affect ecosystem functioning and to predict performance metrics of the quantifiable biological processes by following microbial community dynamics. Model ecosystems offer the opportunity to...
	Methods
	Reactor operation and process monitoring. The inoculum was initially taken from a continuous lab-scale bioreactor that produced C6 and C8 by anaerobic fermentation of lactate-rich corn silage [11]. Enrichment was performed in a reactor that was daily ...
	We employed semi-continuous stirred tank reactors for anaerobic fermentation, which were operated at 38 ± 1 C and constantly stirred at 150 rpm. The pH of the reactor broth was automatically controlled at 5.5 by addition of 1 M NaOH. For each bioreact...
	In the beginning, both bioreactors were operated as replicates with an equal HRT of 8 days. For daily feeding, 1.47 g lactic acid and 1.25 g xylan were supplied in mineral medium. After 51 days, we gradually decreased the HRT of bioreactor A from 8 da...
	Gas samples were taken through the septum twice per week. Samples for determining cell mass concentrations were collected from the reactor effluent. Concentrations of xylan, carboxylates and alcohols were measured in the effluent supernatants [10]. In...
	Analytical methods. Daily produced gas volume was monitored with the MGC-1 and normalised to standard pressure and temperature [23]. Gas composition (H2, CO2, N2, O2 and CH4) was determined by gas chromatography in triplicate [24]. Concentrations of c...
	Microbial community analysis. Total DNA was isolated from frozen cell pellets using the NucleoSpin® Microbial DNA Kit (Macherey-Nagel, Düren, Germany). Methods for DNA quantification and quality control were as described before [25]. For high-throughp...
	The demultiplexed sequence data were processed with the QIIME 2 v2019.7 pipeline [27] using the DADA2 plugin [28]. The DADA2 parameters were set as follows: trim-left-f 0, trim-left-r 0, trunc-len-f 270, trunc-len-r 230, max-ee 2 and chimera-method co...
	Alpha diversity based on rarefied ASV data was evaluated by the observed ASV counts and the Shannon index [31], which were determined using the R package phyloseq v1.30.0 [32]. Dissimilarities in bacterial community composition (beta-diversity) were c...
	Network analysis. The co-occurrence network analysis was performed using the method described by Ju et al. [36]. Briefly, we constructed a correlation matrix by computing possible pairwise Spearman’s rank correlations using the rarefied ASV abundances...
	16S rRNA phylogenetic analysis. The 16S rRNA gene sequences of ASVs were aligned using the SINA alignment algorithm [38] via the SILVA web interface [39]. We additionally used SINA to search and classify the sequences with the least common ancestor me...
	Metagenomic analysis. Six samples were selected for whole-genome sequencing, which was performed by StarSEQ GmbH (Mainz, Germany), using the Illumina NextSeq 500 system (NEBNext Ultra II FS DNA library prep kit; 2 × 150 bp) with at a minimum of 20 mil...
	Determining bioindicators of HRT changes. The HRT bioindicators were determined using the random forest algorithm (randomForest R package, v4.6-14) [59]. ASV relative abundances were used as features to train and test the random forest classifier. Con...
	The random forest classifier was trained on the training set, with 2,000 trees and 40 variables (with lowest out-of-bag estimated error rates achieved) being selected randomly for each tree. Explained variance (% Var. explained in R) was used to measu...
	Quantitative predictions based on HRT and non-HRT bioindicators. The process parameters specified as concentrations of lactate, C4, C6 and C8, and productivities as well as yields of C4, C6 and C8 were the prediction objects. Here, the relevance of th...
	We performed the quantitative prediction by applying a two-step regression analysis (workflow in Additional file 1: Figure S3). First, HRT bioindicators were used to predict the data of different process parameters in the sampling intervals of 0-50 da...
	Considering community assembly caused by time, we determined the ASVs (non-HRT bioindicators) that could predict the numeric values of each process parameter, using data of samples in the intervals of 0-50 days and 141-211 days. For each process param...
	Evaluating prediction accuracy. When in both training sets the HRT bioindicators and non-HRT bioindicators explained more than 80% of the variance in a process parameter, we proceeded only with those parameters. To compare the predicted and measured v...
	Results and discussion
	Effects of HRT decrease on process performance and microbial diversity. The progressive HRT decrease from 8 to 2 days increased the C6 and C8 productivities and yields in two independent bioreactors (Figure 1). We first shortened the HRT to 6 days and...
	Decreasing the HRT affected the composition and diversity of the reactor microbiota. Changes in relative abundance of ASVs categorised from phylum to genus between the HRT of 8 days and 2 days are shown in Additional file 1: Figure S6. Alpha diversity...
	HRT bioindicators predicting process performance. To determine HRT bioindicators, we used HRT of 8 days and 2 days as classes for the random forest classification model and relative abundances of ASVs as the features. To delineate the model prediction...
	To answer the question whether HRT bioindicators can be used to predict process performance in terms of C6 and C8 production, we performed a random forest regression analysis in two steps. HRT bioindicators were first chosen as features to train the m...
	We evaluated the prediction performance of the model by comparing the predicted and measured values of process parameters. RRMSE was used as the performance metric to reflect the model error in predicting quantitative data of C6/C8 productivity. Our r...
	Functional role of HRT bioindicators. Combined with metagenomics, species of HRT bioindicators irrespective of time indicated their roles in driving the catabolism of xylan and lactate to C6/C8 (Figure 6). Among 108 MAGs (dereplicated into 29 species;...
	Conclusions
	Our approach enabled the quantitative prediction of process performance in the anaerobic bioreactor system (Figure 8). In artificial ecosystems with well-controlled conditions (temperature, pH and no immigration of other microbes; Figure 8a), HRT was ...
	The continuous reactor systems with enrichment cultures enabled to select communities with desired CE functions (i.e., high C6 and C8 productivities), and to demonstrate that 16S rRNA amplicon sequencing data can be used to predict CE process performa...
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	Figure 1. Performance of bioreactors. Concentrations of chain elongation products and lactate, as well as yields of chain elongation products in bioreactors A (a) and B (b) at three pH levels. Chain elongation products: C4, n-butyrate; C6, n-caproate;...
	Figure 2. Longitudinal changes in alpha diversity at three pH levels. Based on the relative abundance of ASVs, we calculated the alpha diversity represented by diversity of order one (1D) (a), evenness of order one (1E) (b) and richness (c). Diversity...
	Figure 3. Effects of pH increase and time on bacterial community composition. a, A variance-based compositional principle component analysis (PCA) biplot based on Aitchison distance. Dots are named according to sampling days. Ellipses of 95% confidenc...
	Figure 4. pH bioindicators determined by random forest classification accurately predict the different pH levels. a, A recursive feature elimination plot illuminates the model accuracy changes as a function of ASV count. The top-ranked 18 ASVs (pH bio...
	Figure 5. Co-occurrence networks for the three individual pH levels. Edges indicate a coefficient > 0.5 for positive correlations and < -0.5 for negative correlations. Edge thickness reflects the strength of the correlation. The size of each ASV node ...
	Table 1. Partial Mantel tests showing significant correlations between the time-corrected dissimilarities of microbial community composition and process parameters.
	arm, the correlation coefficient based on partial Mantel test, in which time was controlled. The permutation test compares the original rm to rm computed in 9999 random permutations.
	bThe reported P value is one-tailed.
	cConc., concentration
	Table 2. Metagenome-assembled genomes (MAGs) with the same taxonomy as ASVs.
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	Figure S1. Alpha rarefaction curves. ASVs of all samples were rarefied to an equal sequencing depth of 21,389 reads. Colours represent the different samples.
	Figure S2. Daily consumption of xylan in bioreactors. During the fluctuations at pH 6.0 (day 67), an intensive sampling shows the fed water-soluble xylan was fast consumed in both bioreactors. A and B stand for bioreactors A and B. Error bars represen...
	Figure S3. Gas production of bioreactors. Daily gas production and composition in bioreactors A (a) and B (b), respectively, at three pH levels. Error bars indicate the standard deviation.
	Figure S4. Biomass production of bioreactors. Cell concentration and biomass yield in bioreactors A (a) and B (b) at three pH levels. The carbon number of cell biomass was calculated by assuming an elemental biomass composition of CH1.8O0.5N0.2 (molar...
	Figure S5. Microbial community composition profiles of bioreactors. Based on amplicon sequencing of 16S rRNA genes, the taxonomic classification of amplicon sequence variants (ASVs) was categorised at the phylum (a), class (b), order (c), family (d) a...
	Figure S6. Longitudinal changes in diversity and evenness of order two of bioreactor communities. Based on the relative abundance of ASVs, we calculated the alpha diversity represented by diversity of order two (2D) and evenness of order two (2E), whi...
	Figure S7. Dissimilarities in bacterial community composition (beta-diversity). Principal coordinates analysis (PCoA) based on Bray-Curtis dissimilarities of microbial community composition in bioreactors. Dots are named according to sampling days. El...
	Figure S8. Variation partitioning analysis (VPA) showing the relative importance of pH and time on microbial community variations. VPA was used with redundancy analysis (RDA), and multiple partial RDAs were ran to determine the partial, linear effect ...
	Figure S9. Nested cross-validation of random forest classification in the prediction of pH levels for each sample. a, Confusion matrix for the random forest classifier of all samples at three pH levels. For model optimisation, two layers of K-fold (K ...
	Figure S10. The core time-dependent taxa of individual pH levels. Using relative abundance data of ASVs of both bioreactors, a Microbial Temporal Variability Linear Mixed Model (MTV-LMM) was applied to identify time-dependent taxa of each individual p...
	Figure S11. Co-occurrence network for the entire period of reactor operation. Edges indicate the significant (P < 0.05) correlations. Edge thickness reflects the strength of the correlation. Size of each ASV node is proportional to the mean relative a...
	Table S1. Linear mixed-effects model results for diversity of order one (1D). We consider time and pH as the fixed effects, and bioreactor as the random effect.
	aVariance of pH
	bVariance of bioreactor [treatment of bioreactor B]
	cCovariance of pH and bioreactor (random intercept)
	Table S2. Linear mixed-effects model results for evenness of order one (1E). We consider time and pH as the fixed effects, and bioreactor as the random effect.
	aVariance of pH
	bVariance of bioreactor [treatment of bioreactor B]
	cCovariance of pH and bioreactor (random intercept)
	Table S3. Linear mixed-effects model results for Richness. We consider time and pH as the fixed effects, and bioreactor as the random effect.
	Table S4. Linear mixed-effects model results for the relative abundance of Clostridium IV sp. ASV008 at the different pH levels. We consider time and pH as the fixed effects, and bioreactor as the random effect.
	Table S5. Linear mixed-effects model results for the relative abundance of Clostridium sensu stricto sp. ASV009 at the different pH levels. We consider time and pH as the fixed effects, and bioreactor as the random effect.
	Table S6. Linear mixed-effects model results for microbial community composition that is represented by the PC1 from the Aitchison distance-based principal component analysis.
	Table S7. Linear mixed-effects model results for microbial community composition that is represented by the PC1 from the Bray-Curtis distance-based principal coordinate analysis.
	Table S8. Summary statistics of networks.
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	1. Introduction
	Speciality chemicals such as n-caproate and iso-butyrate are valuable products of the carboxylate platform, with a broad range of potential applications in agriculture and industry [1–3]. For example, n-caproate can be used as promoter of plant growth...
	The metabolic process to produce n-caproate by anaerobic fermentation is called microbial chain elongation, also known as reverse β-oxidation. Some strictly anaerobic bacteria are known as chain elongators that use ethanol as electron donor providing ...
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	The objectives of this study were to investigate the product spectrum of the three new lactate-consuming strains and to give insights into their metabolism based on their genomes. Batch experiments were conducted to explore the fermentation profiles w...
	2. Materials and Methods
	2.1 Enrichment, isolation and identification of lactate-consuming strains
	Anaerobic fermentation broth from a caproate-producing reactor (38 C, pH 5.5 and hydraulic retention time of 4 d) fed with corn silage was initially taken as the inoculum. Serum bottles (120 mL) with 45 mL mineral medium [18] containing 5 g/L lactic a...
	A single bottle of the fourth transfer was used to isolate lactate-consuming strains. The culture was plated on complex agar (medium DSM104c with additional 5 g/L lactic acid) and incubated in an anaerobic chamber at 37 C for two weeks. Colonies were ...
	2.2 Lactate utilisation in batch cultivation
	Batch cultures of isolates BL-3, BL-4 and BL-6 were run in mineral medium with lactate as sole carbon source and 0.05% yeast extract as described above. The bottles were inoculated with 5 mL seed cultures (optical density at 600 nm [OD600] ~ 2), which...
	2.3 Analytical techniques
	Liquid samples of the batch cultures were centrifuged for 10 min at 20,817 × g (Centrifuge 5417R; Eppendorf, Hamburg, Germany). Acetate, lactate, propionate, iso-butyrate, n-butyrate, n-valerate, n-caproate, n-caprylate and ethanol concentrations of t...
	2.4 Gene prediction and annotation
	We sequenced the genomes of the three isolates with the Oxford Nanopore Technologies MinION and the Illumina NextSeq platforms, and three complete genomes were constructed using a hybrid assembly approach as described previously [19]. Prediction and f...
	2.5 Phylogenetic analysis and taxonomic classification
	Phylogenetic analysis of 16S rRNA gene sequences was performed on the Phylogeny.fr platform [33]. According to the Nucleotide BLAST (Basic Local Alignment Search Tool) comparison result against the rRNA/ITS databases (16S ribosomal RNA sequences (Bact...
	A phylogenomic tree of strains BL-3, BL-4, BL-6 and other chain-elongating bacteria was calculated based on genomic similarity. The genomic similarity was estimated using Mash [41], which computes the distance between two genomes. This distance D is c...
	Default settings were used for all tools unless otherwise specified.
	2.6 Pan-genome analysis
	The interface Comparative Genomics of the MicroScope platform was employed to analyze the pan-genome, core-genome and variable genome for our newly sequenced genomes and for all the available genomes of chain-elongating bacteria in the comparison. The...
	2.7 Data availability
	All data generated or analysed during this study are included in this published article and its additional files. The full-length 16S rRNA gene sequences of the three isolates have been deposited in the European Nucleotide Archive (ENA, https://www.eb...
	3. Results and Discussion
	3.1 Isolation and identification of lactate-consuming strains
	After incubation and several transfers of fermentation broth from a corn silage reactor with lactate as substrate, we enriched a mixed culture that produced acetate, n-butyrate, iso-butyrate and n-caproate (Figure S1). Isolation of lactate-consuming s...
	3.2 Conversion of lactate to n-caproate and iso-butyrate in batch cultivation
	The pure culture batch experiments showed that all three newly isolated strains can convert lactate into acetate, n-butyrate, iso-butyrate and n-caproate (Figure 1). Started at an initial pH 5.5, the three strains displayed different product spectra e...
	3.3 Genomic heterogeneity of strains BL-3, BL-4, and BL-6
	The genomes of all three isolates were sequenced to better understand the genetic background of their metabolism, particularly of n-caproate and iso-butyrate formation from lactate. Based on the hybrid genome assembly of short reads (Illumina) and lon...
	3.4 Genomic diversity of the reported chain-elongating bacterial strains
	In addition to our newly isolated strains, we included eleven strains that have been experimentally validated of microbial chain elongation (Table 1). Two metagenome-assembled genomes (MAGs; Candidatus Pseudoramibacter fermentans and Candidatus Weimer...
	We constructed a phylogenomic tree to understand the evolutionary relationships between our isolates and other chain-elongating species (Figure 3a). The two main branches delineate that strain BL-3 is evolutionary distant from BL-4 and BL-6, as the la...
	The number of predicted CDSs in the chain-elongating bacteria ranges from less than 2,000 to more than 4,600 (Table 1), which suggests substantial heterogeneity of their genomes. The pan-genome analysis of the genomes of all 14 strains revealed a tota...
	Functional distribution of homologous gene families in the core-genome shows that the majority encode components of well-conserved housekeeping genes for the basic metabolism of bacteria, including DNA and RNA metabolism, protein processing, folding a...
	3.5 Genetic basis of lactate conversion to n-caproate and iso-butyrate
	To elucidate the genetic background of lactate metabolism and fermentation pathways leading to the formation of n-caproate, n-butyrate and iso-butyrate, we manually curated the functional annotation of genes involved in the following bioprocesses: ace...
	3.5.1 Lactate oxidation to acetyl-CoA
	Lactate can serve as carbon and energy source for chain-elongating bacteria. As shown in Figure 5, first lactate needs to be transported into the cell, which is facilitated by lactate permease (LacP). Genomes of BL-3 and BL-6 were predicted to harbor ...
	3.5.2 Ethanol oxidation to acetyl-CoA
	The ethanol-based chain elongation pathway is well elucidated in C. kluyveri [14] and of particular biotechnological importance as shown in several studies [61–63]. Genome data of BL-3 and BL-6 suggest that these strains are capable of utilizing ethan...
	3.5.3 n-Butyrate and n-caproate formation
	Transformation of acetyl-CoA to butyryl-CoA includes three intermediates: acetoacetyl-CoA, 3-hydroxybutyryl-CoA and crotonyl-CoA. The involved enzymes are acetyl-CoA acetyltransferase (ACAT), NAD- and NADP-dependent 3-hydroxyacyl-CoA dehydrogenase (HA...
	Besides CoAT, the acyl-CoA thioesterase (ACT) may also catalyse the formation of n-butyrate and n-caproate from the terminal acyl-CoA (Figure 5). Our data suggest that the genome of BL-3 may encode the predicted proteins annotated as thioesterase supe...
	Besides CoAT and ACT, a third pathway potentially contributing to n-butyrate formation from n-butyryl-CoA was identified in the genome of BL-3. As illustrated in Figure 5, a phosphate butyryltransferase (PTB) forms butyryl phosphate that is further co...
	3.5.4 iso-Butyrate formation
	The formation of iso-butyrate as a product of lactate-based chain elongation was experimentally proven in all three isolates. The genome analysis revealed hints on the assumed pathway, i.e. reversible n-butyrate/iso-butyrate isomerization [68,69]. As ...
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	4. Conclusions
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