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The carboxylate platform is an alternative way of anaerobic digestion to valorise 

organic wastes or biomass residues, in the form of medium-chain carboxylates (e.g., 

n-caproate and n-caprylate). Some anaerobic bacteria are known to produce medium-

chain carboxylates through microbial chain elongation. Mixed culture fermentation is 

commonly employed for the chain elongation processes. However, a systematic 

investigation of the metabolism and ecological interactions of the chain elongation 

communities was missing so far. This thesis focuses on the chain elongation 

communities in closed model ecosystems. First, a model ecosystem was developed 

by operating a continuous bioreactor with an enriched mixed culture. During long-term 

reactor operation under constant conditions, the results suggested that the chain-

elongating bacteria were outcompeted by butyrate-producing bacteria, leading to the 

increase of butyrate yield at the cost of n-caproate and n-caprylate yields. Second, 

effects of environmental manipulations on chain elongation community assembly and 

functioning were investigated in the model ecosystems. Shortening the hydraulic 

retention time shaped the communities towards higher n-caproate and n-caprylate 

productivities, which were accurately predicted by using machine learning. The 

developed machine learning framework to quantitatively predict process performance 

is transferable to other microbial systems. Increasing pH induced dramatic shifts in the 

community assembly but exhibited no strong effects on medium-chain carboxylate 

yields. High functional redundancy was indicated despite the reactors being long-term 

closed systems. Last, three novel chain-elongating species were isolated, which can 

convert lactate to n-caproate and iso-butyrate. The shared metabolic features and 

genomic diversity of the entire repertoire of chain-elongating species were indicated. 

In summary, this thesis sparkles new insights into the relationship between chain 

elongation community diversity and functioning, and it extends the metabolic 

knowledge of chain elongation bacteria. 
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“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you 

are. If it doesn’t agree with experiment, it’s wrong. In that simple statement is 

the key to science”. 

(Richard Feynman, 1964) 
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Abbreviations 
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ACT   Acyl-CoA thioesterase (EC 3.1.2.20) 
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ANI   Average nucleotide identity 

ARISA   Automated ribosomal intergenic spacer analysis 

ASV   Amplicon sequence variant 

AUC   Area under the curve 

BCD   Butyryl-CoA dehydrogenase (EC 1.3.8.1) 

BLAST   Basic local alignment search tool 

BM   Butyryl-CoA:isobutyryl-CoA mutase (EC 5.4.99.13) 

BUK   Butyrate kinase (EC 2.7.2.7) 

C2   Acetate  

C4   n-Butyrate 

C6   n-Caproate  

C8   n-Caprylate  

CDSs   Coding sequences 

CE   Chain elongation 

CoA   Coenzyme A 

CoAT   CoA transferase (EC 2.8.3.-) 

COD   Chemical oxygen demand 

COG   Clusters of orthologous groups 

1D/2D   Diversity of order one/Diversity of order two 

DGGE   Denaturing gradient gel electrophoresis 
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EGGNOG  Evolutionary genealogy of genes: non-supervised orthologous groups 

ENA   European nucleotide archive 

FDR   False discovery rate 

GC   Gas chromatography 

GTDB   Genome Taxonomy Database 

HAD   3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.157, EC 1.1.1.35) 

HIB   Hydroxy-isobutyrate 

HPLC   High performance liquid chromatography 

HRT   Hydraulic retention time 

InterPro  Integrative protein signature database 

LAB   Lactic acid bacteria 

LacP   Lactate permease (TC 2.A.14) 

LDH   Lactate dehydrogenase (EC 1.1.1.27) 

LME   Linear mixed-effects models 

MAGs   Metagenome-assembled genomes 

MALDI-TOF  Matrix-assisted laser desorption/ionization-time of flight 

MCCs   Medium-chain carboxylates 

MICFAM  MicroScope homologous gene families 

MMS   Methylmalonate-semialdehyde 

MTV-LMM  Microbial Temporal Variability Linear Mixed Model 

NCBI   National center for biotechnology information 

NGS   Next-generation sequencing 

NMDS   Non-metric multidimensional scaling 

OD   Optical density 

ONT   Oxford Nanopore Technologies 

OrthoANIu  Average nucleotide identity by orthology with USEARCH 
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PCA   Principle component analysis 

PCoA   Principle coordinate analysis 

PCR   Polymerase chain reactions 

PERMANOVA  Permutational multivariate analysis of variance 

PFOR   Pyruvate ferredoxin oxidoreductase (EC 1.2.7.1) 

PkGDB  Prokaryotic genome database 

PTB   Phosphate butyryltransferase (EC 2.3.1.19) 

RDA   Redundancy analysis 

RRMSE  Relative root mean square error 

rRNA   Ribosomal RNA 

ROC curve  Receiver operating characteristic curve 

SCCs   Short-chain carboxylates 

SSCP   Single strand conformation polymorphism 

TAN   Total ammonia nitrogen 

TGGE   Temperature gradient gel electrophoresis 

TrEMBL  Translated EMBL 

TRFLP   Terminal restriction fragment length polymorphism 

T-RFs   Terminal restriction fragments 

VPA   Variation partitioning analysis 

WGS   Whole-genome sequencing 

XL   Xylanase (EC 3.2.1.8) 
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Zusammenfassung 

Offene Mischkulturen in anaeroben Reaktorsystemen wandeln organische 

Abfälle oder Biomasse-Rückstände in hauptsächlich kurzkettige Carboxylate 

mit zwei bis fünf Kohlenstoffatomen um. Kurzkettige Carboxylate können von 

methanogenen Konsortien in der anaeroben Vergärung in das stark reduzierte 

Endprodukt Methan umgewandelt werden. Die mikrobielle Kettenverlängerung, 

z.B. über die reverse ꞵ-Oxidation, ist eine alternative Elektronensenke in 

solchen anaeroben Reaktormikrobiota. In natürlichen Ökosystemen wie dem 

Pansen sind bestimmte anaerobe Bakterien bekannt, die mittelkettige 

Carboxylate (z.B. n-Caproat und n-Caprylat) durch reverse ꞵ-Oxidation 

produzieren. Die Carboxylat-Plattform zielt darauf ab, Kohlenstoff aus 

Abfallströmen oder Biomasse-Rückständen durch anaerobe Fermentation in 

Form von mittelkettigen Carboxylaten zurückzugewinnen. Sie bietet die 

Möglichkeit Chemikalien zu ersetzen, die aus nicht nachhaltigen Quellen wie 

fossilen Rohstoffen stammen. 

Für Verfahren der mikrobiellen Kettenverlängerung wird üblicherweise die 

Mischkulturfermentation eingesetzt. Die verschiedenen mikrobiellen 

Gemeinschaften enthalten unterschiedliche funktionelle Gruppen, die an der 

Hydrolyse und Fermentation der verfügbaren organischen Verbindungen sowie 

an der Konversion von Intermediaten in mittelkettige Carboxylate beteiligt sind. 

Im Allgemeinen sind die zugrunde liegenden Stoffwechselwege und 

ökologischen Wechselwirkungen der mikrobiellen Gemeinschaften nicht gut 

verstanden. Diese Doktorarbeit behandelt die mikrobielle Kettenverlängerung 

mit Laktat, insbesondere den Metabolismus und die ökologischen 

Wechselwirkungen der beteiligten mikrobiellen Gemeinschaften in 

geschlossenen Modell-Ökosystemen, d.h. in anaeroben Bioreaktoren. 

Das erste Kapitel beschreibt die Entwicklung eines Modell-Ökosystems mit 

reduzierter Komplexität, indem Laktat und Xylan als definierte 

Kohlenstoffquellen verwendet wurden, um die Substratbedingungen bei der 

anaeroben Fermentation von Maissilage zu Caproat zu simulieren. Die 

Fütterung mit definierten Kohlenstoffquellen ermöglichte die Bilanzierung der 
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Elektronen- und Kohlenstoffflüsse. Durch die Vermeidung einer Kintinuierlichen 

Inokulation konnten der Metabolismus und die Dynamik dieser vereinfachten 

mikrobiellen Gemeinschaft gezielter untersucht werden als in offenen 

Reaktorsystemen. Während eines Langzeit-Reaktorversuchs wurden vier 

aufeinanderfolgende Stadien beobachtet: Anpassungsphase, Stadium I 

(Periode hoher Produktivität von mittelkettigen Carboxylaten), 

Übergangsphase und Stadium II (Periode hoher Butyrat-Produktion). Auf der 

Basis von 16S rRNA-Amplikonsequenzen und Korrelationen mit 

Prozessparametern wurden Netzwerkanalysen durchgeführt, um auf 

potenzielle Stoffwechselfunktionen der beteiligten Spezies und deren 

ökologische Interaktionen zu schließen. Die Ergebnisse legten nahe, dass der 

Prozess verschiedene Funktionen der Xylan-Hydrolyse, der Xylose-

Fermentation und der Kettenverlängerung mit Laktat als Elektronendonor 

umfasste. Die geschlussfolgerten Interaktionen, wie die Kooperation zwischen 

Milchsäurebakterien und kettenverlängernden Bakterien sowie die Konkurrenz 

zwischen Bakterien, die mittelkettige Carboxylate bilden, und 

butyratproduzierenden Bakterien, erklärten die Entwicklung der mikrobiellen 

Gemeinschaft über vier Sukzessionsstadien. In diesem geschlossenen Modell-

Ökosystem wurden die kettenverlängernden Bakterien unter konstanten 

Bedingungen von Butyrat-Produzenten auskonkurriert, was zu einer Erhöhung 

der Butyrat-Ausbeute auf Kosten der n-Caproat- und n-Caprylat-Ausbeuten 

führte. 

Im zweiten Abschnitt wurden die Auswirkungen einer Verkürzung der 

hydraulischen Verweilzeit auf den Aufbau und die Funktion der mikrobiellen 

Gemeinschaften in den Modell-Ökosystemen getestet, mit dem Ziel, 

ökophysiologische Funktionen im Hinblick auf die Prozessleistung quantitativ 

vorherzusagen. Durch die Verkürzung der hydraulischen Verweilzeit von 8 

Tagen auf 2 Tage in zwei kontinuierlichen Reaktoren wurden höhere 

Produktivitäten und Ausbeuten von n-Caproat und n-Caprylat erreicht. Für die 

Vorhersage wurde ein Modell durch Anwendung des Random-Forest-Ansatzes 

unter Verwendung von 16S rRNA-Amplikon-Sequenzierungsdaten erstellt. Es 

wurde eine Genauigkeit von mehr als 90% bei der quantitativen Vorhersage 

der n-Caproat- und n-Caprylat-Produktivität erreicht. Vier abgeleitete 
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Bioindikatoren, die zu den Gattungen Olsenella, Lactobacillus, 

Syntrophococcus und Clostridium IV gehören, deuteten auf deren Relevanz für 

die höhere Carboxylatproduktivität bei kürzerer hydraulischer Verweilzeit hin. 

Die Rekonstruktion von Populationsgenomen dieser Bioindikatoren aus 

Metagenomdaten bestätigte das genetische Potenzial dieser Indikatorspezies, 

Schlüsselschritte der Carboxylatproduktion durchzuführen. Außerdem wurde 

eine funktionelle Redundanz bei der Konversion von Xylan und Laktat zu n-

Butyrat, n-Caproat und n-Caprylat beobachtet, wobei die relevanten 

Bioindikatoren in ihrer relativen Abundanz zunahmen. Dies zeigt, dass die 

beteiligten Stoffwechselwege stark an die Verkürzung der hydraulischen 

Verweilzeit gekoppelt waren. Im Allgemeinen ist das entwickelte Konzept des 

maschinellen Lernens zur Identifizierung von Bioindikatoren und zur 

quantitativen Vorhersage der Prozessleistung auf andere Ökosystemprozesse 

und mikrobielle Systeme übertragbar, bei denen die Gemeinschaftsdynamik 

mit Schlüsselfunktionen verknüpft ist. 

Das dritte Kapitel beschreibt Untersuchungen zu Auswirkungen des pH-Werts 

auf den Aufbau und die Funktionsweise der mikrobiellen Gemeinschaften auf 

der Grundlage der entwickelten Modell-Ökosysteme. Der Anstieg des pH-

Wertes von 5,5 auf 6,0 verursachte Schwankungen in den Erträgen von n-

Butyrat, n-Caproat und n-Caprylat. Nach der pH-Störung kehrten die 

Carboxylat-Ausbeuten zu den vorherigen Werten zurück, während sich die 

mikrobiellen Gemeinschaften in ihrer Zusammensetzung änderten, was als 

Abnahme der Diversität und Äquität (Evenness) und Zunahme des 

Artenreichtums (Richness) beobachtet wurde. Einige zuvor seltene Taxa 

wurden dominant, was starke selektive Effekte des pH-Werts auf die mikrobielle 

Diversität widerspiegelt. Durch Anwendung von Aitchison PCA-Clustering, 

linearen Mischwirkungsmodellen und Random-Forest-Klassifizierung wurden 

die unterschiedlichen pH-Präferenzen der potenziellen Kettenverlängerer 

Clostridium IV und Clostridium sensu stricto identifiziert. Co-occurrence- 

Netzwerke für verschiedene pH-Werte zeigten, dass die mit dem 

Kettenverlängerer Clostridium IV kooperierenden Milchsäurebakterien infolge 

des pH-Anstiegs von Olsenella zu Lactobacillus wechselten, was die Plastizität 

des Nahrungsnetzes der mikrobiellen Gemeinschaften zeigt. Im Vergleich zu 
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den oben genannten Ergebnissen zur Verkürzung der hydraulischen 

Verweilzeit führte der pH-Anstieg zu dramatischen Verschiebungen in der 

Zusammensetzung der mikrobiellen Gemeinschaften, zeigte aber keine 

starken Auswirkungen auf die metabolischen Funktionen im Hinblick auf die 

Produktion von Carboxylaten mittlerer Kettenlänge. Es zeigte sich eine hohe 

funktionelle Redundanz, obwohl es sich bei den Reaktoren um langfristig 

geschlossene Systeme handelte. 

Parallel zu den Reaktorexperimenten wurden Reinkulturen von 

kettenverlängernden Clostridienstämmen isoliert, die drei neue Spezies 

repräsentieren. Ihre Genome wurden mit Hilfe eines hybriden Short- und Long-

Read-Sequenzierungsverfahrens rekonstruiert. Die drei neuartigen Stämme 

produzierten n-Caproat, n-Butyrat, Iso-Butyrat und Acetat aus Laktat in Batch-

Kultivierung bei pH 5,5. Der genetische Hintergrund der Kettenverlängerung mit 

Laktat wurde analysiert, wobei die CoA-Transferase als terminales Enzym der 

reversen ꞵ-Oxidation identifiziert wurde. Die Genome weisen eine beträchtliche 

genetische Heterogenität auf, enthalten jedoch hochkonservierte Gene, die an 

der Laktatoxidation, der reversen ꞵ-Oxidation, der Wasserstoffbildung und 

einer von zwei Arten von Energieerhaltungssystemen (Rnf und Ech) beteiligt 

sind. Der genetische Hintergrund der Laktat-basierten Kettenverlängerung in 

diesen Isolaten und anderen experimentell validierten kettenverlängernden 

Stämmen wurde durch vergleichende Genomik analysiert. Es zeigte sich, dass 

das für die Kettenverlängerung spezifische Kerngenom die Wege für die 

reverse ꞵ-Oxidation, Wasserstoffbildung und Energieerhaltung kodiert und 

gleichzeitig kettenverlängernde Spezies eine beträchtliche 

Genomheterogenität aufweisen. Weitere Experimente sind erforderlich, um die 

Stoffwechselwege für die Iso-Butyrat-Bildung in diesen Stämmen aufzuklären. 

Zusammenfassend lässt sich sagen, dass Modellgemeinschaften für die 

mikrobielle Kettenverlängerung durch Wechsel von pH-Wert und hydraulischer 

Verweilzeit in Langzeit-Bioreaktorversuchen angereichert und weiter geformt 

wurden. Der Metabolismus und die ökologischen Interaktionen der 

Mikroorganismen, die an der mikrobiellen Kettenverlängerung mit Laktat 

beteiligt sind, wurden mit Hilfe von 16S rRNA-Amplikonsequenzierung und 
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Metagenomik in Verbindung mit Netzwerkanalyse, statistischer Modellierung 

und maschinellem Lernen aufgeklärt, was auch zu neuen Erkenntnissen über 

die Beziehung zwischen der Diversität der mikrobiellen Gemeinschaften und 

ihrer Funktionsweise führte. Die Isolierung neuer Spezies erweitert unser 

Wissen über den Metabolismus der mikrobiellen Kettenverlängerung. 

Schließlich ist ein besseres Verständnis der Mechanismen, die der Etablierung 

von Reaktoremikrobiomen zugrunde liegen, der Schlüssel zur 

Weiterentwicklung von auf Mikrobiota basierenden Biotechnologien. 
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Summary 

Open cultures of anaerobic reactor systems convert organic wastes or biomass 

residues into mainly short-chain carboxylates with two to five carbon atoms. 

The short-chain carboxylates can be converted into the highly reduced end 

product methane by methanogenic consortia in anaerobic digestion. Microbial 

chain elongation such as via the reverse ꞵ-oxidation pathway was found as an 

alternative electron sink with the same anaerobic reactor microbiota. In natural 

ecosystems such as rumen microbial ecosystem, some anaerobic bacteria are 

known to produce medium-chain carboxylates (e.g., n-caproate and n-caprylate) 

through reverse ꞵ-oxidation. The carboxylate platform aims to recover carbon 

from waste streams or biomass residues by anaerobic fermentation in the form 

of medium-chain carboxylates. It has created great opportunities to replace 

chemicals derived from non-sustainable sources such as fossil feedstock. 

Mixed culture fermentation is commonly employed for the chain elongation 

processes. The diverse microbial chain elongation communities contain 

different functional groups involved in the processes of hydrolysis and 

fermentation of available organic compounds as well as the conversion of 

intermediates to medium-chain carboxylates. In general, the underlying 

metabolism and ecological interactions of the chain elongation communities are 

not well understood. This PhD thesis centres on the metabolism and ecological 

interactions in closed model ecosystems (i.e., anaerobic bioreactors) involved 

in microbial chain elongation with lactate. 

In the first chapter, a model ecosystem with reduced complexity was developed 

by using lactate and xylan as defined carbon sources to simulate the feedstock 

conditions of caproate-producing bioreactors operated with corn silage. 

Feeding defined carbon sources enabled balancing of electron and carbon 

flows. By preventing continuous inoculation, the simplified community of 

enrichment cultures allowed to study the metabolic and community dynamics 

in a clearer manner than open reactor systems. During a long-term reactor 

experiment, four succession stages including adaptation, stage I (high medium-

chain carboxylate-producing period), transition and stage II (high butyrate-
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producing period) were observed. Co-occurrence networks of species based 

on 16S rRNA amplicon sequences and associations with process parameters 

were analysed to infer potential metabolic functions and microbial interactions. 

The results suggested that the process included diverse functions of xylan 

hydrolysis, xylose fermentation and chain elongation with lactate as electron 

donor. The inferred interactions such as cooperation between lactic acid 

bacteria and chain-elongating bacteria, as well as competition between 

medium-chain carboxylate-producing bacteria and butyrate-producing bacteria, 

resulted in the community development over four succession stages. In this 

closed model ecosystem, the chain-elongating bacteria were outcompeted by 

butyrate-producing bacteria under constant conditions, leading to the increase 

of butyrate yield at the cost of n-caproate and n-caprylate yields. 

The second chapter tested the effects of shortening the hydraulic retention time 

on the community assembly and functioning in the model ecosystems, aiming 

to quantitatively predict ecophysiological functions of the microbial communities. 

For the process performance, higher productivities and yields of n-caproate and 

n-caprylate were achieved by reducing the hydraulic retention time from 8 days 

to 2 days in two continuous reactors. A predictive model was generated by 

applying the random forest approach using 16S rRNA amplicon sequencing 

data. More than 90% accuracy in the quantitative prediction of n-caproate and 

n-caprylate productivities was achieved. Four inferred bioindicators belonging 

to the genera Olsenella, Lactobacillus, Syntrophococcus and Clostridium IV 

suggested their relevance to the higher carboxylate productivity at shorter 

hydraulic retention time. Combined with metagenomics, the recovery of 

metagenome-assembled genomes of these bioindicators confirmed their 

genetic potential to perform key steps of carboxylate production. Besides, 

functional redundancy in the conversion of xylan and lactate to n-butyrate, n-

caproate and n-caprylate was revealed, with the relevant bioindicators 

increasing in relative abundance. Thus, the involved metabolic pathways were 

strongly coupled to the decrease in hydraulic retention time. In general, the 

developed machine learning framework to identify bioindicators and to 

quantitatively predict process performance is transferable to other ecosystem 
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processes and microbial systems where community dynamics is linked to key 

functions. 

In the third chapter, the effects of pH increase on the chain elongation 

community assembly and functioning were tested based on the developed 

model ecosystems. The increase in pH from 5.5 to 6.0 caused fluctuations in 

the yields of n-butyrate, n-caproate and n-caprylate. After the pH disturbance, 

the carboxylate yields returned to the previous values while the communities 

developed to a different state, observed as decrease in diversity and evenness 

and increase in richness. Some taxa shifted from rare to abundant, reflecting 

strong selective effects of lower pH values. By applying Aitchison PCA 

clustering, linear mixed effect models and random forest classification, the 

different pH preferences of the potential chain elongators Clostridium IV and 

Clostridium sensu stricto were identified. By constructing networks for different 

pH levels, the cooperation of the chain elongator Clostridium IV with lactic acid 

bacteria switches from Olsenella to Lactobacillus along the pH increase, 

revealing the plasticity of the food web of chain elongation communities. 

Compared with the previously observed results of decreasing the hydraulic 

retention time, pH increase induced dramatic shifts in the community assembly 

but exhibited no strong effects on community functioning in terms of medium-

chain carboxylate production. High functional redundancy was indicated 

despite the reactors being long-term closed systems. 

In parallel to the reactor experiments, pure cultures of chain-elongating 

clostridial strains were isolated, representing three novel species. Their 

genomes were assembled using a hybrid short and long read sequencing 

approach. The three novel strains produced n-caproate, n-butyrate, iso-

butyrate and acetate from lactate in batch cultivation at pH 5.5, with the 

confirmation of their genetic background of lactate-based chain elongation and 

using CoA transferase as the terminal enzyme. Their genomes show 

substantial genetic heterogeneity but contain highly conserved genes involved 

in lactate oxidation, reverse ꞵ-oxidation, hydrogen formation and either of two 

types of energy conservation systems (Rnf and Ech). The genetic background 

of lactate-based chain elongation in these isolates and other experimentally 
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validated chain-elongating strains was analysed by comparative genomics. The 

chain elongation-specific core-genome was indicated to encode the pathways 

for reverse ꞵ-oxidation, hydrogen formation and energy conservation while 

chain-elongating species displayed substantial genome heterogeneity. Further 

research is needed to elucidate the pathways for iso-butyrate formation in these 

strains. 

In summary, model communities of chain elongation processes were enriched 

and further shaped by alternations of pH and hydraulic retention time in long-

term bioreactor experiments. The metabolism and ecological interactions of 

reactor microbiota involved in microbial chain elongation with lactate were 

elucidated by using 16S rRNA amplicon sequencing and metagenomics 

coupled to network analysis, statistical modelling and machine learning, which 

also sparkled new insights into the relationship between microbial chain 

elongation community diversity and functioning. The isolation of novel chain-

elongating species further expands our knowledge on the metabolism of chain 

elongation bacteria. Finally, a better understanding of the rules governing 

community assembly is key to accelerate the development of microbiota-based 

biotechnologies. 
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1 Introduction 

1.1 Reactor microbiota 

As proposed, the term microbiota refers to the assemblage of microorganisms 

present in a defined environment (Marchesi and Ravel, 2015). Reactor 

microbiota used in this study refers to the biologically active environment of 

reactors, represented as open cultures of anaerobic microbial consortia. 

Employing microbial communities in bioreactors provides the opportunity to 

recover valuable resources from organic wastes or biomass residues. Within 

the reactor microbiota, diverse microbial species may cooperate or compete 

with each other, presenting a broad metabolic capacity for the utilisation of 

complex substrates. Understanding the metabolism and ecological interactions 

of reactor microbiota, and designing effective control strategies for key players 

hold promise to engineer communities towards the desired bioprocesses, 

providing a window for potential applications of microbiota-based 

biotechnologies (Verstraete et al., 2007; Koch et al., 2014; Lawson et al., 2019). 

1.2 Carboxylate platform 

Using reactor microbiota for producing biogas (mainly methane) in anaerobic 

digestion is a mature technology that has been developed and widely 

implemented for decades all over the world (Angenent et al., 2016). While it is 

a well-known waste-to-energy process, the economics of anaerobic digestion 

are less favourable due to the low value of biogas (Agler et al., 2011). The 

carboxylate platform is an alternative way to recover carbon from wastes with 

anaerobic fermenters, in the form of medium-chain carboxylates (MCCs). 

Hereafter, their dissociated and undissociated forms are subsumed as 

carboxylates. MCCs are defined as monocarboxylates of six to twelve carbon 

atoms, here mostly focusing on n-caproate (C6) and n-caprylate (C8). MCCs 

are attractive bio-based products in the context of biorefinery platforms. 

Currently, MCCs are mainly produced from vegetable oils (e.g., refinery of 

coconut and palm kernel oils). Due to the limited supply and the high demands 

in industry, they have relatively high values in the market. The reported prices 
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of C6 and C8 are 2,880 and 5,060 US dollars per metric ton in 2018, 

respectively (Scarborough, 2019). Additionally, the solubility of the carboxylate 

in water decreases along with the increase in carbon chain length. This means 

the longer-chain carboxylates are easier to extract from water due to their 

hydrophobic carbon-chains (Angenent et al., 2016). Therefore, 

biomanufacturing valuable chemicals such as MCCs in a sustainable way can 

meet the industrial needs and contribute to further evolve current production 

schemes into a circular economy. 

1.3 Microbial chain elongation  

The communities of anaerobic digestion contain different trophic groups 

involved in four main processes: hydrolysis, acidogenesis, acetogenesis and 

methanogenesis. Short-chain carboxylates (SCCs, two to five carbon atoms) 

are key intermediates in the conversion of organic wastes or biomass residues 

to biogas, resulting from the main fermentation of hydrolysis products (Agler et 

al., 2011). Strategies for inhibiting methanogenesis include the operation at 

acidic pH in the range of 5.0 to 6.5 and addition of chemical inhibitors (e.g., 2-

bromoethanosulfonic acid), which can promote carboxylate production. In 

anaerobic bacteria, the formation of MCCs from SCCs is known as a metabolic 

process termed microbial chain elongation (CE). It has been described since 

the early 1940s, when Clostridium kluyveri (Barker et al., 1945) was isolated 

and characterised for the production of C6. Some specialists in the anaerobic 

communities are involved in the elongation of fermentation products such as 

acetate (C2) or n-butyrate (C4) to MCCs via reverse ꞵ-oxidation. In reverse ꞵ-

oxidation, acyl-CoA molecules are condensed and reduced, thereby increasing 

the chain length of carboxylates by two carbon atoms within each cycle (Spirito 

et al., 2014). As shown in Figure 1.1, initiated with acetyl-CoA, C4, C6 and C8 

are all potential end products. In the CE process, ethanol or lactate can serve 

as electron donor providing energy for coupling acetyl-CoA formation and 

elongating acyl-CoA units; thioesterase or CoA transferase can act as terminal 

enzymes resulting in carboxylate formation. Besides acetyl-CoA being 

proposed as a primary source for reverse ꞵ-oxidation, propionyl-CoA can also 

be elongated for the production of odd-chain products (e.g., n-valerate and n-
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heptanoate) (Jeon et al., 2016). Branched MCCs were also reported to be 

produced in CE, such as the formation of iso-caproate via iso-butyrate 

elongation with ethanol (De Leeuw et al., 2019). 

 

Figure 1.1 The metabolic pathways of reverse ꞵ-oxidation with lactate or 

ethanol as electron donor. Cycle refers to the reverse ꞵ-oxidation cycle; the 

dashed lines represent multi-enzyme reactions between the two indicated 

molecules.  

Energy-rich, reduced molecules such as ethanol and lactate are suitable as 

electron donor to be oxidised to provide metabolic energy (ATP) via substrate 

level phosphorylation and reducing equivalents (NADH) for the reverse ꞵ-

oxidation. Similar to CE with ethanol, CE with lactate can occur without the 

presence of short-chain carboxylates such as C2 (Zhu et al., 2015), although 

an extra addition of electron acceptors was reported to increase the production 

rate of C6 (Zhu et al., 2017). Monosaccharides can also serve as direct electron 

donors for CE. The chain-elongating bacteria using carbohydrates include: 

Megasphaera elsdenii, Megasphaera hexanoica, Megasphaera indica, 

Pseudoramibacter alactolyticum, Caproiciproducens galactitolivorans (D-
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galactitol, sugar alcohol) and Caproiciproducens sp. 7D4C2 (Marounek et al., 

1989; Willems and Collins, 1996; Kim et al., 2015; Jeon et al., 2017; Esquivel-

Elizondo et al., 2020). However, the detailed mechanism of the sugar-driven 

CE needs to be further studied. 

On the one hand, MCCs are the end products of chain-elongating species in 

the reactor microbiota. On the other hand, the toxicity of MCCs can inhibit the 

growth of many community members, possibly leading to the collapse of the 

production of MCCs (Liu et al., 2020a). MCCs cause pH-dependent microbial 

inhibition that can damage the integrity of bacterial cell membranes (Andersen 

et al., 2017). For example, Escherichia coli was described to be inhibited at an 

acidic pH of 4.3 whereas not inhibited at pH 7 in the presence of C6 and C8 

(Yang et al., 2010; Royce et al., 2013). The inhibition needs to be managed 

because CE is often performed under acidic conditions to prevent 

methanogenesis. Effective ways include in-line extraction (pertraction), 

operation at neutral pH level and maintaining low concentrations of MCCs by 

attentive organic loading, which should be considered for a stable MCC 

production.   

1.4 Methods for investigating reactor microbiota 

A lot of methods have been developed and are still in development for gaining 

insights into the complexity of microbial communities. Briefly, these can be 

sorted into culture-independent and culture-dependent techniques. Here, a 

short overview of those methods employed in this thesis is given.  

1.4.1 PCR-based methods 

After the DNA extraction procedure, polymerase chain reactions (PCR) are 

commonly applied for the amplification of 16S rRNA genes (prokaryotic small 

subunit rRNA genes) or functional marker genes (e.g., mcrA for methanogens). 

Terminal restriction fragment length polymorphism (T-RFLP) is relatively simple 

to be applied to analyse the microbial community composition and dynamics. 

Suitable combination of primers and restriction enzymes can be chosen in order 

to obtain the best resolution at the desired taxonomic level (Talbot et al., 2008). 
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Other fingerprinting techniques such as denaturing gradient gel electrophoresis 

(DGGE), single strand conformation polymorphism (SSCP), temperature 

gradient gel electrophoresis (TGGE) and automated ribosomal intergenic 

spacer analysis (ARISA) were also commonly used. Fingerprinting cannot 

provide any sequence-dependent information, but only allows to quantify 

community diversity and compare community structure between different 

samples. Combined with cloning and Sanger sequencing of clone libraries, it is 

possible to identify some members (usually the most abundant ones) of the 

microbial community. 

Next-generation sequencing (NGS) delivers the information of microbiome 

profiling by directly obtaining it from the presence and abundance of certain 

sequences, which is fundamentally different from that of fingerprinting. The 

amplicon NGS circumvents the cloning step that is needed to sequence 

amplicons based on Sanger technology. The first commercial NGS platform 

was released by Roche 454 in 2005; with new platforms emerged meanwhile, 

now the market is dominated by Illumina platforms. For example, Illumina 

MiSeq and HiSeq can target phylogenetic and functional marker genes, 

obtaining a higher depth in community analysis than fingerprinting techniques 

(Cabezas et al., 2015). 

1.4.2 Metagenomics 

Metagenome analysis provides more detailed genomic information and 

taxonomic resolution by sequencing all microbial genomes within a sample, and 

it allows the detection of functional genes and the construction of whole 

pathways (Knight et al., 2018). Given adequate sequencing depth, it may go 

deeply into strain-level resolution. Shotgun sequencing is commonly used to 

profile taxonomic composition and genetic potential of communities, and to 

recover whole genome sequences. The lack of reference genome data is a 

main issue of metagenome analyses, particularly for environmental samples 

with high microbial diversity (Quince et al., 2017). As for the technology itself, 

long-read sequencing (third generation sequencing, Figure 1.2) holds promise 

to significantly improve genome reconstruction from metagenomes. PacBio for 

de novo assembly and Oxford Nanopore Technologies (ONT) for portable 
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sequencing both may successfully occupy the commercial market. The hybrid 

genome assembly approach that combines the short-read accurate sequencing 

data (Illumina) with long-read less accurate (PacBio or ONT) sequencing data 

has shown its ability in the recovery of high-quality genomes (Liu et al., 2020b; 

Esquivel-Elizondo et al., 2020; Scarborough et al., 2020). At the moment, the 

complexity of computational analyses and further interpretation are limitations 

for metagenomics. Compared with 16S rRNA amplicon sequencing analysis, 

the cost of metagenome analysis including sequencing itself and training 

computational scientists to analyse the complex datasets is still high. 

 

Figure 1.2 Schematic examples of first (a), second (b) and third (c) generation 

sequencing technologies. Figure was adapted from Shendure et al., 2017. 
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1.4.3 Culture-dependent methods 

The high-throughput DNA-based sequencing approaches generated a 

countless number of sequences that have not been assigned to any known 

microorganism (Lagier et al., 2016). We microbiologists should realise that the 

field of microbial isolation cannot be completely abandoned, because pure 

cultures remain essential to elucidate the functions of those unknown 

microorganisms. The important physiological and biochemical features need to 

be studied by cultivation methods. For pure cultures, defined mixed cultures 

and self-assembled undefined mixed cultures, special efforts need to be made 

under anaerobic conditions using systems like batch, continuous, microtiter well 

plate format and the recently developed lab-on-a chip model (Vrancken et al., 

2019). At the moment, it is still challenging to cultivate most of the 

microorganisms from natural environments under lab conditions, and isolating 

anaerobes is even more difficult. Culturomics is a promising culture-dependent 

method, because of the application of high-throughput culture conditions in the 

investigation of the microbial community, the use of matrix-assisted laser 

desorption/ionization-time of flight (MALDI-TOF) and 16S rRNA amplicon 

sequencing for the colony identification (Lagier et al., 2016). It can be expected 

that culturomics will bring an exponential increase of the microbial repertoire in 

the near future (Lagier et al., 2015). The identification of the rare species and 

new species might allow to extend our knowledge to levels equivalent to those 

of sequencing. 
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1.5 Aims of this study 

The carboxylate platform has shown to be an effective way to produce medium-

chain carboxylates and it created an opportunity to substitute fossil-based fuels 

and chemicals. However, characterising the chain elongation processes in 

existing open reactor systems is a grand challenge, due to the complexity 

regarding microbial interactions and involved metabolic processes. Systematic 

investigations of the metabolism and ecological interactions of reactor 

microbiota involved in lactate-based chain elongation were missing so far. 

Knowledge on the genetic features and metabolism of lactate-consuming 

chain-elongating species is limited. The goals of this dissertation were therefore: 

1. to develop a closed model ecosystem by operating a continuous bioreactor 

with an enriched mixed culture, and to clarify how ecological interactions 

influence the chain elongation process performance and shape the community 

structure during a long-term reactor operation under constant conditions 

(Chapter 2.1),  

2. to investigate how environmental manipulations affect chain elongation 

community assembly and functioning in the closed model ecosystems during 

long-term reactor operation (Chapters 2.2 and 2.3), 

3. to identify the shared metabolic features and genomic diversity of the entire 

repertoire of experimentally validated chain-elongating bacterial species 

(Chapters 2.4 and 2.5).
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2.1.1 Main text 
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2.1.2 Supplementary information 

 

Figure S1 Bacterial community dynamics in the four succession stages, 

illustrated by nonmetric multidimensional scaling (NMDS) of T-RFLP profiles 

(16S rRNA gene amplicons, restriction enzyme MspI). Data points are named 

according to sampling days. Proximity of data points represents community 

similarity based on the Bray-Curtis index. Colored polygons indicate sampling 

days of each succession stage. The vector shows community shifts within the 

temporal dynamics (P < 0.01, significance calculated by Monte-Carlo test with 

999 permutations).   
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Figure S2 Alpha diversity metrics (richness, diversity and evenness) in the four 

succession stages based on the relative abundance of amplicon sequence 

variants (ASV) (A) and of terminal restriction fragments (T-RF) of 16S rRNA 

gene amplicons for restriction enzymes RsaI (B) and MspI (C). D1: diversity of 

order one (q = 1), D2: diversity of order two (q = 2); E1: evenness of order one 

(q = 1), E2: evenness of order two (q = 2) 

 

 

 

 

 

 

 

 

 

 

 



Research chapter 2.1 
 

45 
 

Table S1 Electron-equivalent balance in stages I and II showing mean values 

obtained from different sampling points in both stages, represented by 95% 

confidence intervals. The electron balance calculation was based on the 

number of electrons and the molar mass of the reduced compounds.  

 
 Stage I Stage II 

(mol/L) Mean Standard deviation Mean Standard deviation 

Acetate1 0.13138 0.01259 0.16870 0.03952 

iso-Butyrate2 0.00000 0.00000 0.00068 0.00014 

n-Butyrate3 0.89421 0.09115 1.28598 0.11784 

iso-Valerate4 0.00038 0.00009 0.00073 0.00018 

n-Valerate5 0.00345 0.00026 0.01763 0.00193 

n-Caproate6 1.00428 0.07569 0.49796 0.04068 

n-Heptanoate7 0.00124 0.00008 0.00630 0.00028 

n-Caprylate8 0.22191 0.01219 0.06714 0.00303 

n-Nonanoate9 0.00011 0.00002 0.00020 0.00004 

n-Decanoate10 0.00042 0.00010 0.00037 0.00006 

Lactate11 0.12843 0.03005 0.19604 0.04347 

Phenyl acetate12 0.00106 0.00147 0.00345 0.00112 

Phenyl propionate13 0.00000 0.00000 0.00855 0.00175 

Ethanol14 0.02892 0.00208 0.01566 0.00795 

2-Butanol15 0.00000 0.00000 0.00017 0.00020 

1-Propanol16 0.00152 0.00058 0.00370 0.00073 

1-Butanol17 0.00825 0.00058 0.01835 0.00270 

Biomass18 0.13511 0.00464 0.23645 0.01400 

H2
19 0.01850 0.00341 0.01257 0.00584 

Xylan20 0.04061 0.03988 0.00455 0.01016 

Total Output 2.61978 0.07519 2.54884 0.12050 

Total Input 2.84848 0 2.84848 0 

Electron Balance 92% 3% 89% 4% 

Number of electrons (mol mol-1): 1Acetate 8, 2iso-Butyrate 20, 3n-Butyrate 20, 
4iso-Valerate 26, 5n-Valerate 26, 6n-Caproate 32, 7n-Heptanoate 38, 8n-

Caprylate 44, 9n-Nonanoate 50, 10n-Decanoate 56, 11Lactate 12, 12Phenyl 

acetate 36, 13Phenyl propionate 42, 14Ethanol 12, 152-Butanol 24, 161-Propanol 
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18, 171-Butanol 24, 18Biomass 6 × n, 19H2 2, 20Xylan 20 × n; “n” stands for the 

degree of polymerization. The electron number of cell biomass was calculated 

by using a theoretical molecular composition; the empirical formula of 

microorganisms was assumed as CH1.8O0.5N0.2 (molar mass = 24.6 g mol-1). 

The molar mass (g mol-1): 1Acetate 60, 2iso-Butyrate 88, 3n-Butyrate 88, 4iso-

Valerate 102, 5n-Valerate 102, 6n-Caproate 116, 7n-Heptanoate 130, 8n-

Caprylate 144, 9n-Nonanoate 158, 10n-Decanoate 172, 11Lactate 90, 12Phenyl 

acetate 136, 13Phenyl propionate 150, 14Ethanol 46, 152-Butanol 74, 161-

Propanol 60, 171-Butanol 74, 18Biomass 24.6 × n, 19H2 1/22.4, 20Xylan 132 × n; 

“n” stands for the degree of polymerization. 

 

Table S2 COD balances in stage I and stage II. By using COD kit, one point 

was selected per week in stage I and stage II, results are shown below. The 

“Input” means measured results of mineral medium with lactate and xylan 

added. The “Output” means measured results of effluents. COD balance was 

calculated from the quotient of “Output” divided by “Input”. Within 95% 

confidence intervals, standard deviation was calculated from three measured 

values.   

 

Time 
(d) 

Input 
(gCOD L-1) 

Standard 
deviation 

Output 
(gCOD L-1) 

Standard 
deviation 

COD 
balance 

(%) 

Standard 
deviation 

Stage I 

36 23.48 0.31 20.37 0.14 92.0 0.7 
43 23.48 0.31 19.94 0.09 90.0 0.4 
50 23.48 0.31 20.25 0.15 91.4 0.7 
57 23.48 0.31 19.94 0.08 90.0 0.3 
64 23.48 0.31 20.38 0.17 92.0 0.8 

        

Stage II 

120 23.48 0.31 20.52 0.15 92.7 0.7 
127 23.48 0.31 20.02 0.13 90.4 0.6 
134 23.48 0.31 20.96 0.13 94.6 0.6 
141 23.48 0.31 20.38 0.08 92.0 0.3 
148 23.48 0.31 20.19 0.36 91.2 1.6 
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2.2.1 Main text 

Abstract 

Background: The ability to quantitatively predict ecophysiological functions of 

microbial communities provides an important step to engineer microbiota for 

desired functions related to specific biochemical conversions. Here, we present 

the quantitative prediction of medium-chain carboxylate production in two 

continuous anaerobic bioreactors from 16S rRNA gene dynamics in enrichment 

cultures. 

Results: By progressively shortening the hydraulic retention time from 8 days 

to 2 days with different temporal schemes in both bioreactors operated for 211 

days, we achieved higher productivities and yields of the target products n-

caproate and n-caprylate. The datasets generated from each bioreactor were 

applied independently for training and testing in machine learning. A predictive 

model was generated by employing the random forest algorithm using 16S 

rRNA amplicon sequencing data. More than 90% accuracy in the prediction of 

n-caproate and n-caprylate productivities was achieved. Four inferred 

bioindicators belonging to the genera Olsenella, Lactobacillus, 

Syntrophococcus and Clostridium IV suggest their relevance to the higher 

carboxylate productivity at shorter hydraulic retention time. The recovery of 

metagenome-assembled genomes of these bioindicators confirmed their 

genetic potential to perform key steps of medium-chain carboxylate production. 

Conclusions: Shortening the hydraulic retention time of the continuous 

bioreactor systems allows to shape the communities with desired chain 

elongation functions. Machine-learning predictive analytics demonstrates that 

16S rRNA amplicon sequencing data can be used to predict the model process 

performance in a quantitative and accurate way. Characterising and harnessing 

bioindicators holds promise to manage reactor microbiota towards selection of 

the target processes, as such taxa can be used to predict ecosystem 

performance. Our mathematical framework is transferrable to other ecosystem 

processes and microbial systems where community dynamics is linked to key 
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functions. The general methodology can be adapted to data types of other 

functional categories such as genes, transcripts, proteins or metabolites. 

Keywords: Predictive biology, carboxylate platform, model ecosystems, 

reactor microbiota, microbial chain elongation 

Background 

Microbes form complex communities that play essential roles in ecosystem 

functioning. Identifying bioindicators derived from community analysis and 

using them to predict process performance may delineate potential cause-

effect relationships with ecosystem functioning [1,2]. The knowledge gained 

from prediction can be used to generate hypotheses on the role of key species. 

At ecosystem level, designing effective control strategies for key species holds 

promise to manage the community towards selection of the target processes, 

which is crucial for microbiota-based biotechnologies [3-5]. 

Our goals were to investigate how environmental manipulations affect 

ecosystem functioning and to predict performance metrics of the quantifiable 

biological processes by following microbial community dynamics. Model 

ecosystems offer the opportunity to link microbial diversity and ecosystem 

functioning in a quantifiable and predictable way [6-8]. Such simplified 

ecosystems can be still complex regarding microbial interactions and involved 

metabolic processes [6]. Here, we used anaerobic fermentation reactors as 

model ecosystems and considered microbial chain elongation (CE) as the 

quantifiable model ecosystem process. CE is a microbial process that produces 

medium-chain carboxylates (6 to 8 carbon atoms) through reverse ꞵ-oxidation 

[9]. Recently we enriched a mixed culture that produces n-butyrate (C4), n-

caproate (C6) and n-caprylate (C8) from xylan and lactate in a daily-fed reactor 

system [10], to simulate the feedstock conditions of anaerobic fermentation of 

ensiled plant biomass [11]. For this bioprocess to be viable, it needs to include 

diverse functions such as xylan hydrolysis, xylose fermentation and CE with 

lactate as electron donor. Mixed culture fermentation is characterised by 

different trophic groups that may cooperate or compete with each other to 

metabolise complex substrates [9]. Species involved in these interactions can 
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drive shifts in community structure and function [1]. During the long-term stable 

reactor operation, the community developed towards predominating C4 and 

biomass production at the cost of C6/C8 production [10]. We wanted to explore 

how process parameter changes shape the existing microbiota to optimise the 

process towards the target products C6 and C8. The current study was 

conducted on the enriched chain-elongating microbiota in two parallel 

bioreactors. To promote C6 and C8 production and enrich the functional groups 

relevant to process performance, we reduced the hydraulic retention time 

(HRT). HRT refers to the average time soluble compounds reside in the 

bioreactor. Shortening the HRT is a common operation-based strategy for 

increasing C6/C8 production [12-16] and a key factor influencing microbial 

diversity [17]. It is relevant to the microbial growth rate in reactors without 

biomass retention, and it affects biomass concentration and community 

composition [18]. Following variations in diversity induced by HRT reduction, 

we tested if productivity and yield of the target products (C6 and C8) could be 

predicted by using machine learning. To provide insight into the dynamics of 

community structure and function, we measured process performance and 

collected samples for community analysis using high-throughput sequencing of 

the 16S rRNA gene. Community analysis using 16S rRNA amplicon sequencing 

data combined with environmental variables can reveal relationships between 

microbial communities and ecosystem functioning. For example, Werner et al. 

demonstrated strong relationships between the phylogenetic community 

structure, reflected by time-resolved 16S rRNA amplicon data, and the 

methanogenic activity in full-scale anaerobic digesters, by applying constrained 

ordination [19]. Predictive analytics using machine learning has shown promise 

in microbiota-based biotechnologies [6,20,21]. We chose the random forest 

algorithm because it runs efficiently and accurately on high-dimensional 

datasets with multi-features, and it avoids overfitting, particularly when using 

different training and test datasets [22]. Our random forest analysis consisted 

of two parts. First, we performed feature selection identifying Amplicon 

Sequence Variants (ASVs) that would be relevant to community dynamics 

caused by HRT reduction. Next, we trained the algorithm with these features 

(hereafter, HRT bioindicators) that later were used to predict the production of 

C6 and C8. 
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Methods 

Reactor operation and process monitoring. The inoculum was initially taken 

from a continuous lab-scale bioreactor that produced C6 and C8 by anaerobic 

fermentation of lactate-rich corn silage [11]. Enrichment was performed in a 

reactor that was daily fed with mineral medium (pH 5.5; Additional file 1: Table 

S1) containing water-soluble xylan (more than 95% xylooligosaccharides, from 

corncob; Roth, Karlsruhe, Germany) and lactic acid (85%, FCC grade; Sigma 

Aldrich, St. Louis, USA) as defined carbon sources and produced C4, C6 and 

C8 over 150 days [10]. For the present study, two 1-L bioreactors (A and B; 

BIOSTAT® A plus, Sartorius AG, Göttingen, Germany) were filled up with 0.5 

L of the enriched culture. Both bioreactors were daily fed with 0.125 L medium 

containing 1.47 g lactic acid and 1.25 g xylan, without withdrawing effluent. 

After four days the contents of both bioreactors were mixed by pumping them 

three times from bioreactor A to B and back while keeping anoxic conditions. 

Eventually, they were equally distributed to both bioreactors, which is 

considered the starting point (day 0) of the experiment. 

We employed semi-continuous stirred tank reactors for anaerobic fermentation, 

which were operated at 38 ± 1°C and constantly stirred at 150 rpm. The pH of 

the reactor broth was automatically controlled at 5.5 by addition of 1 M NaOH. 

For each bioreactor, the produced gas was collected in a coated aluminium foil 

bag that also served for compensating underpressure in the reactor system. 

The bag was connected after a MilliGascounter® (MGC-1; Ritter, Bochum, 

Germany) that measured on-line the volume of the produced gas. A gas-sample 

septum was placed in the gas pipe of each bioreactor. 

In the beginning, both bioreactors were operated as replicates with an equal 

HRT of 8 days. For daily feeding, 1.47 g lactic acid and 1.25 g xylan were 

supplied in mineral medium. After 51 days, we gradually decreased the HRT of 

bioreactor A from 8 days to 6 days, and further to 4 days and 2 days as shown 

in Additional file 1: Table S2. Next, we shortened the HRT of bioreactor B from 

8 days to 2 days in a fast transition mode and with the same substrate load as 

in bioreactor A. Considering the effect of time on community assembly, we 

conducted unequal HRT changes in two bioreactors and aimed to delineate the 
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model prediction strength with the two different datasets. Finally, both 

bioreactors were operated at an HRT of 2 days until day 211. 

Gas samples were taken through the septum twice per week. Samples for 

determining cell mass concentrations were collected from the reactor effluent. 

Concentrations of xylan, carboxylates and alcohols were measured in the 

effluent supernatants [10]. In total, samples were collected on 59 time points 

for each bioreactor. At the beginning and the end of the experiment, pelleted 

biomass from the effluent was used to determine the cell dry mass as previously 

described [10]. For microbial community analysis, pelleted cells from 2 mL 

effluent were washed with 100 mM Tris-HCl pH 8.5 and stored at -20˚C until 

DNA extraction. 

Analytical methods. Daily produced gas volume was monitored with the MGC-

1 and normalised to standard pressure and temperature [23]. Gas composition 

(H2, CO2, N2, O2 and CH4) was determined by gas chromatography in triplicate 

[24]. Concentrations of carboxylates and alcohols were analysed in triplicate by 

gas chromatography [10]. Concentration of xylan was measured by a modified 

dinitrosalicylic acid reagent method [10]. Cell mass concentration was 

calculated from optical density (OD) values that were correlated with the cell 

dry mass [10]. The calculated mean correlation coefficients were 1 OD600 = 

0.548 g L-1 for bioreactor A and 1 OD600 = 0.537 g L -1 for bioreactor B. 

Microbial community analysis. Total DNA was isolated from frozen cell 

pellets using the NucleoSpin® Microbial DNA Kit (Macherey-Nagel, Düren, 

Germany). Methods for DNA quantification and quality control were as 

described before [25]. For high-throughput amplicon sequencing, V3-V4 

regions of the 16S rRNA genes were PCR-amplified using primers 341f and 

785r [26]. Sequencing was performed on the Illumina Miseq platform (Miseq 

Reagent Kit v3; 2 × 300 bp). A total of 12,168,404 sequences ranging from 

57,612 to 389,963 pairs of reads per sample (mean: 135,205; median: 122,367) 

were obtained.  

The demultiplexed sequence data were processed with the QIIME 2 v2019.7 

pipeline [27] using the DADA2 plugin [28]. The DADA2 parameters were set as 
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follows: trim-left-f 0, trim-left-r 0, trunc-len-f 270, trunc-len-r 230, max-ee 2 and 

chimera-method consensus. A total of 4,194,700 sequences ranging from 

13,518 to 138,498 reads per sample were retained, with a mean of 46,608 

reads per sample. The generated feature table indicates the frequency of each 

ASV clustered at 100% identity. Taxonomic assignment was done with a naïve 

Bayes classifier trained on 16S rRNA gene sequences of the database MiDAS 

2.1 [29], and curated using the RDP Classifier 2.2 with a confidence threshold 

of 80% [30]. For downstream analyses, ASVs of all samples were rarefied to a 

sequencing depth of 13,518 reads (rarefaction curve reached the plateau, 

Additional file 1: Figure S1). We obtained a total of 71 unique ASVs in 90 

samples. 

Alpha diversity based on rarefied ASV data was evaluated by the observed ASV 

counts and the Shannon index [31], which were determined using the R 

package phyloseq v1.30.0 [32]. Dissimilarities in bacterial community 

composition (beta-diversity) were calculated using Bray-Curtis distance [33] 

based on rarefied ASV abundances and visualised as nonmetric 

multidimensional scaling (NMDS) plots. Statistical analyses of beta-diversity 

results were performed using permutational multivariate analysis of variance 

(PERMANOVA) [34] in the R package “vegan” (v2.5.6, “adonis” function, 

Monto-Carlo test with 1000 permutations); P values were adjusted for multiple 

comparisons using the false discovery rate (FDR) method [35]. 

Network analysis. The co-occurrence network analysis was performed using 

the method described by Ju et al. [36]. Briefly, we constructed a correlation 

matrix by computing possible pairwise Spearman’s rank correlations using the 

rarefied ASV abundances and abiotic parameters (HRT; concentrations of C4, 

C6, C8 and lactate; productivities and yields of C4, C6 and C8). Correlation 

coefficients below -0.7 or above 0.7 and adjusted P-values (FDR method) lower 

than 0.05 were considered statistically robust. Network visualisation and 

topological features analysis were conducted in Gephi (v0.9.2) [37]. 

16S rRNA phylogenetic analysis. The 16S rRNA gene sequences of ASVs 

were aligned using the SINA alignment algorithm [38] via the SILVA web 

interface [39]. We additionally used SINA to search and classify the sequences 
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with the least common ancestor method based on the SILVA taxonomy. For 

each query sequence, the minimum identity was set to 0.95 and the five nearest 

neighbours were considered. The tree was reconstructed based on the aligned 

sequences and their neighbours, with RAxML using the GTRCAT model of 

evolution. Later only ASV species of this study were kept in the generated tree 

for an easier viewing. The tree was visualised using iTOL [40]. 

Metagenomic analysis. Six samples were selected for whole-genome 

sequencing, which was performed by StarSEQ GmbH (Mainz, Germany), using 

the Illumina NextSeq 500 system (NEBNext Ultra II FS DNA library prep kit; 2 

× 150 bp) with at a minimum of 20 million reads per library generated. Quality 

checking and reads trimming were performed using metaWRAP (v0.7, raw read 

QC module) [41] and TrimGalore (v0.4.3) [42]. Reads of human origin were 

discriminated from microbial reads using BMTagger (v3.101) [43]. All adapters 

were removed and the resulting reads were assembled using metaSPAdes 

(v3.11.1) [44]. Paired-end reads were aligned back to the assembly using BWA 

(v0.7.15, mem algorithm) [45]. Binning of assembled contigs was performed 

using the metaWRAP modules metaBAT (2.12.1) [46], MaxBin (2.2.4) [47] and 

CONCOCT (1.0.0) [48]. The metaWRAP-Bin_refinement module was applied 

to separate the overlaps between two bins. Quality of metagenome-assembled 

genomes (MAGs) was checked using CheckM (v1.0.7) [49]. MAGs were 

classified in high or medium quality regarding completeness, contamination, 

quality score (completeness - 5 × contamination) and strain heterogeneity [50]. 

The following thresholds were used for high quality: quality score > 50, 

completeness > 80, contamination < 5 and strain heterogeneity < 50; and for 

medium quality: quality score > 50, completeness > 50 and contamination < 10. 

One bin with lower quality was removed from the analysis. The taxonomy was 

assigned using GTDB-Tk (v0.3.2) [51]. Genome metrics were calculated with 

the statswrapper tool in the BBTools suite [52]. A phylogenomic tree based on 

Mash distances was generated with Mashtree (V1.1.2) [53] and visualised in 

iTOL [40]. Miscellaneous visualisations of the dataset metrics were performed 

in R with the packages ggplot2 (v3.3.0) and DataExplorer (v0.8.1). Species 

differentiation was performed using fastANI [54] and aniSplitter.R 

(http://github.com/felipborim789/aniSplitter/). Genomes were annotated with 
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Prokka (v1.14.6) [55]. Functional annotation of genes relevant to xylan 

hydrolysis, xylose fermentation and chain elongation was curated using Swiss-

Prot, COG and GenBank [56-58]. 

Determining bioindicators of HRT changes. The HRT bioindicators were 

determined using the random forest algorithm (randomForest R package, v4.6-

14) [59]. ASV relative abundances were used as features to train and test the 

random forest classifier. Considering how we replicated the HRT changing 

mode in both bioreactors (Additional file 1: Table S2), the whole operation 

period was divided into four sampling intervals: 0-50 days, 51-100 days, 101-

140 days and 141-211 days. Based on the results of community analysis, we 

chose the ASV data of both bioreactors in the sampling intervals of 0-50 days 

and 141-211 days to determine the HRT bioindicators, and we used data of all 

samples in the four HRT phases as controls. To evaluate the robustness of the 

predictions, we trained the classifier with ASV data of one bioreactor and tested 

in the other bioreactor and vice versa. For random forest classification analysis, 

importance of the different features (ASVs) was measured by the Gini index 

(mean decrease in Gini, default in randomForest R package; where larger 

values indicate a variable to be more important for accurate classification [60]). 

The random forest classifier was trained on the training set, with 2,000 trees 

and 40 variables (with lowest out-of-bag estimated error rates achieved) being 

selected randomly for each tree. Explained variance (% Var. explained in R) 

was used to measure the model performance on the training set [59]. We 

predicted the accuracy by measuring how well the features can classify the 

HRT phases on the test set [60]. We first computed the feature importance of 

all 71 ASVs. Then at each step, the ASVs having the smallest importance were 

eliminated and a new forest was built with the remaining ASVs. For both 

bioreactors, the features were selected when their Gini scores were higher than 

1% of the sum of the Gini scores of all ASVs (Additional file 1: Table S3). Finally, 

we selected the 15 top-ranked ASVs leading to the model of smallest error rate 

for classifying the HRT phases of 8 days and 2 days. In each bioreactor, the 15 

ASVs that best discriminated between HRT phases were referred to as A-HRT 

bioindicators or B-HRT bioindicators (bioreactors A and B, respectively). ASVs 
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common to both sets were defined as HRT bioindicators (workflow of random 

forest classification in Additional file 1: Figure S2). 

Quantitative predictions based on HRT and non-HRT bioindicators. The 

process parameters specified as concentrations of lactate, C4, C6 and C8, and 

productivities as well as yields of C4, C6 and C8 were the prediction objects. 

Here, the relevance of the different ASVs to the prediction was determined by 

residual sum of squares (IncNodePurity, default in randomForest) for the 

regressions. Explained variance (% Var. explained in R) was used to measure 

the model performance on the training set [59]. We predicted the accuracy by 

measuring how well the features can explain the variance of these process 

parameters on the test set [60]. 

We performed the quantitative prediction by applying a two-step regression 

analysis (workflow in Additional file 1: Figure S3). First, HRT bioindicators were 

used to predict the data of different process parameters in the sampling 

intervals of 0-50 days and 141-211 days. Data of all samples in the four HRT 

phases were considered as controls. Random forest regressors were trained 

as follows: relative abundance dataset of bioreactor A was used as training set 

and that of bioreactor B was used as test set and vice versa; 2,000 trees and 

four out of 11 features were selected randomly for each tree.  

Considering community assembly caused by time, we determined the ASVs 

(non-HRT bioindicators) that could predict the numeric values of each process 

parameter, using data of samples in the intervals of 0-50 days and 141-211 

days. For each process parameter, we started with computing the feature 

importance of all ASVs and further selected the 15 top-rated ASVs as the 

bioindicators of this non-HRT parameter. The model was trained as follows: 

datasets of bioreactors A and B were independently used for training and 

testing; 2,000 trees and five out of 15 features were selected randomly for each 

tree. As controls, we used the non-HRT bioindicators of each parameter to 

predict the corresponding data of all samples in the four HRT phases. The final 

set of ASVs presented in HRT bioindicators and not in non-HRT bioindicators 

were considered HRT bioindicators irrespective of time. 
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Evaluating prediction accuracy. When in both training sets the HRT 

bioindicators and non-HRT bioindicators explained more than 80% of the 

variance in a process parameter, we proceeded only with those parameters. To 

compare the predicted and measured values for these process parameters, we 

considered the following performance metrics for reflecting the error of the 

model in predicting consecutive data: relative root mean square error (RRMSE, 

cutoff < 10%); R squared, slope and intercept of the least squares line of best 

fit. The final values of RRMSE were averaged among the 100 random forest 

replicates, with four ASVs for HRT bioindicators and five for non-HRT 

bioindicators randomly sampled at each replicate. 

Results and discussion 

Effects of HRT decrease on process performance and microbial diversity. 
The progressive HRT decrease from 8 to 2 days increased the C6 and C8 

productivities and yields in two independent bioreactors (Figure 1). We first 

shortened the HRT to 6 days and then to 4 days in bioreactor A, which allowed 

the reactor microbiota to adapt to the new conditions and improved 

productivities of C4, C6 and C8 (Figure 1a). Further HRT decrease to 2 days 

confirmed the increasing trend in productivity. At the end of the 2-day HRT 

period in bioreactor A, we achieved the highest productivities (mmol C L-1 d-1) 

of C4, C6 and C8 up to 115.0, 64.1 and 5.9, respectively. To confirm the 

observed effects of HRT shortening on the CE process and reactor microbiota, 

we executed a fast transition mode in bioreactor B and generated a different 

dataset from the parallel system. Comparable increases in productivity were 

observed (Figure 1b). We obtained maximum productivities (mmol C L-1 d-1) of 

C4 up to 102.4, C6 up to 62.9 and C8 up to 7.0. The C6 and C8 yields (in terms 

of C mole product to transferred substrate ratio) increased along with 

decreasing HRT at the cost of C4 yield. Compared with yields at the 8-day HRT, 

C6 and C8 yields were higher and the C4 yield was lower in both bioreactors at 

the 2-day HRT (Figure 1 and Additional file 1: Table S4). Our results suggest 

that the shorter HRT favoured lactate-based CE producing C6 and C8 over C4 

production. C4 can be produced by CE of acetate but also from sugars by 

butyric acid fermentation [61]. Decreasing the HRT to 2 days led to the 
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accumulation of lactate and fluctuations of the C4, C6 and C8 production, which 

lasted longer than 22 HRTs in bioreactor A (Figure 1a). Lactate concentrations 

were highly correlated with C4 fluctuations (Spearman Rho = -0.90, P < 0.05) 

and C6 concentrations (Rho = -0.89, P < 0.05), which reflects how lactate was 

produced and converted by the reactor microbiota. The HRT reduction resulted 

in higher gas production and hydrogen content (Additional file 1: Figure S4). 

Besides, an increase in cell mass production (Additional file 1: Figure S5) 

suggests a facilitating effect of short HRT on the growth of enriched populations 

with desirable activities, i.e. more biocatalysts were available in the high C6/C8 

production phase. 

Decreasing the HRT affected the composition and diversity of the reactor 

microbiota. Changes in relative abundance of ASVs categorised from phylum 

to genus between the HRT of 8 days and 2 days are shown in Additional file 1: 

Figure S6. Alpha diversity metrics showed significantly lower observed ASV 

counts (pairwise t-test, P < 0.05) and higher Shannon index values (pairwise 

t-test, P < 0.05) for HRT of 8 days compared with 2 days (Additional file 1: 

Figure S7). Beta diversity analysis revealed a significant difference between the 

communities at different HRTs (PERMANOVA; Pseudo-F = 103.1, P < 0.001) 

but no significant difference between the communities in both reactors at the 

same HRT (Pseudo-F = 3.3, P > 0.05) (Figure 2). 

HRT bioindicators predicting process performance. To determine HRT 

bioindicators, we used HRT of 8 days and 2 days as classes for the random 

forest classification model and relative abundances of ASVs as the features. 

To delineate the model prediction strength, we used one reactor dataset to train 

the model while testing predictions with the other and vice versa. Feature 

selection based on the random forest classifier with its associated Gini index 

has shown abilities to identify optimal feature subsets in high-dimensional data 

[62]. Based on higher than 1% of the mean decrease in Gini scores for both 

reactors in the prediction accuracy of HRT phases, we selected 15 top-ranked 

ASVs that would give the best discrimination between HRT phases. The 15 

ASVs most relevant to HRT changes were defined as “A- or 

B-HRT bioindicators”, potentially reflecting the key species correlating with 
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HRT changes in either bioreactor (feature importance in Figure 3). The two 

bioreactors shared 11 HRT bioindicators. 

To answer the question whether HRT bioindicators can be used to predict 

process performance in terms of C6 and C8 production, we performed a 

random forest regression analysis in two steps. HRT bioindicators were first 

chosen as features to train the model. Considering community assembly 

caused by time, we then determined 15 ASVs most relevant to each non-HRT 

process parameter (i.e., concentrations of lactate, C4, C6 and C8; productivities 

and yields of C4, C6 and C8; hereafter, non-HRT bioindicators). Datasets from 

bioreactors A and B were trained and tested independently. When in both 

reactors the HRT and non-HRT bioindicators accounted for more than 80% of 

the variance in a process parameter, we proceeded only with those parameters. 

In our case, the model could explain more than 80% of the variance in C6 and 

C8 productivities (Additional file 1: Tables S5-S6). 

We evaluated the prediction performance of the model by comparing the 

predicted and measured values of process parameters. RRMSE was used as 

the performance metric to reflect the model error in predicting quantitative data 

of C6/C8 productivity. Our results showed that the C6 and C8 productivities of 

both bioreactors at the HRT of 8 days and 2 days could be accurately predicted 

(Figure 4 for HRT bioindicators and Additional file 1: Figure S8 for non-HRT 

bioindicators). We further tested samples in all HRT phases with HRT and non-

HRT bioindicators. The C6 and C8 productivities were also accurately predicted 

(RRMSE < 6%, Additional file 1: Figures S9-S10). Therefore, we considered 

HRT bioindicators irrespective of time as the ASVs presented in HRT 

bioindicators and not in non-HRT bioindicators (feature importance in Additional 

file 1: Figures S11-S12). Interestingly, the same four ASVs assigned to the 

genera Olsenella, Lactobacillus, Syntrophococcus and Clostridium IV were 

identified for C6 and C8 productivity (Figure 5). We thus hypothesise that 

species represented by these four ASVs determined the increased C6/C8 

productivities in the CE process manipulated by changing operational 

conditions – shortening the HRT. 
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Functional role of HRT bioindicators. Combined with metagenomics, 

species of HRT bioindicators irrespective of time indicated their roles in driving 

the catabolism of xylan and lactate to C6/C8 (Figure 6). Among 108 MAGs 

(dereplicated into 29 species; Figure 7 and Additional file 2), we recovered 12 

species with similar phylogenies as the four genera (Table 1). In view of the 

fermentation process, we annotated the genetic potential for xylan hydrolysis, 

xylose fermentation and CE with lactate (Additional file 1: Figure S13 and 

Additional files 3-6). Specifically, Clostridium IV species were reported as 

lactate-based chain-elongating bacteria [63]. Our results suggest that four 

Clostridium IV species (Acutalibacteraceae spp. according to GTDB-Tk) can 

convert lactate to C6/C8. Two Syntrophococcus species (Eubacterium_H spp. 

according to EZBioCloud [64]) are potential C6/C8-producers as they hold 

complete gene sets encoding enzyme complexes that catalyse CE reactions. 

This genetic potential was also found in genomes of closely related 

Syntrophococcus species (Eubacterium cellulosolvens according to 

EZBioCloud; Additional file 6), which was not described before. Lactate 

formation from xylose by lactic acid bacteria can enhance CE by providing 

additional electron donors [23,65-68]. A recent study reported an enriched 

community dominated by Lactobacillus and chain-elongating species, and their 

co-occurrence suggested lactate produced by Lactobacillus to be a key 

intermediate for C6/C8 production [69]. Network analysis of our previous study 

[10] revealed the co-occurrence of Olsenella with potential chain-elongating 

species. Species of Lactobacillus and Olsenella are potential xylose-consuming 

lactate producers (Figure 6b). Genes encoding xylanases were not found in 

Lactobacillus MAGs but in those assigned to other bioindicators (Figure 6a). 

Taken together, the delineated synergy effects between these bioindicator 

species suggest a division of labour with mutual benefits, converting xylan and 

lactate to C6/C8. A correlation network shows HRT, C6 and C8 productivity 

being the most highly connected nodes (Additional file 1: Figure S14). Their co-

occurrence with ASVs assigned to Clostridium IV, Olsenella and 

Syntrophococcus indicates strong associations among these taxa, the changed 

environment and corresponding functions. The predictability of C6 and C8 

productivities was relatively poor when using only the four HRT bioindicators 

irrespective of time (Additional file 1: Figure S15). Besides, we found 
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redundancy in the main functions of catabolising xylan and lactate to C4, C6 

and C8 (Figure 6), with the relevant HRT bioindicators increasing in relative 

abundances (Additional file 1: Figure S16). Thus, the involved metabolic 

pathways can be strongly coupled to HRT decreases. The genetic potential 

overlaps with other distinct taxa of the reactor microbiota, suggesting that HRT 

bioindicators might be key species of the process, but ecological interactions 

with other species are critical to ensure the C6/C8 production (functional 

annotations of xylose fermentation and chain elongation in Additional files 5-6). 

Conclusions 

Our approach enabled the quantitative prediction of process performance in the 

anaerobic bioreactor system (Figure 8). In artificial ecosystems with well-

controlled conditions (temperature, pH and no immigration of other microbes; 

Figure 8a), HRT was the most influencing factor controlling community 

assembly (Figure 8b). However, we cannot exclude the impact of other 

deterministic factors like microbial interactions within temporal patterns, 

particularly for such a long-term reactor operation. Effects of compositional 

stochasticity on community assembly also need to be considered [70,71]. 

Further studies on these ecological principles will help manage reactor 

microbiota towards beneficial traits, such as high specificities for C6/C8 

production. 

The continuous reactor systems with enrichment cultures enabled to select 

communities with desired CE functions (i.e., high C6 and C8 productivities), and 

to demonstrate that 16S rRNA amplicon sequencing data can be used to predict 

CE process performance quantitatively (> 90% accuracy). The described 

machine learning framework (Figure 8c) may be suitable for other ecosystem 

processes and more complex communities. For that, it would be necessary to 

design experiments with (i) sufficient temporal and/or spatial resolution, (ii) 

parallel sampling for amplicon sequencing data and metadata from desired 

ecosystem processes, and (iii) correlation of phylogenetic diversity with the 

ecosystem processes. Our approach was based on phylogenetic diversity that 

in some ecosystems may correlate with ecosystem processes where 

microbiota perform key functions. Our general methodology can be adapted to 



Research chapter 2.2 
 

62 
 

other data types, such as metagenomes, metatranscriptomes, metaproteomes 

or metabolomes, and it opens new doors for prediction and hypothesis testing 

in microbial ecology. 
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Figures 

 

 

Figure 1. Performance of bioreactors. Concentrations of chain elongation 

products and lactate, as well as productivities and yields of chain elongation 

products in bioreactors A (a) and B (b) during the four HRT phases. Chain 

elongation products: C4, n-butyrate; C6, n-caproate; C8, n-caprylate. 
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Figure 2. Dissimilarities in bacterial community composition (beta-
diversity). Non-metric multidimensional scaling (NMDS) based on Bray-Curtis 

dissimilarities of microbial community composition in bioreactors. a, All samples 

in the four HRT phases were considered for dissimilarity calculation. b, 
Samples in the 8-day HRT phase classified to the sampling interval 0-50 days 

and in the 2-day HRT phase classified to the interval 141-211 days were 

included. 
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Figure 3. Random forest feature importance of ASVs used to classify the 
HRT phases (A-HRT bioindicators and B-HRT bioindicators). The top-

ranked 15 ASVs reducing the uncertainty in the prediction of HRT phases (HRT 

of 8 days and 2 days). The order of features (from top to bottom) was based on 

their mean decrease in Gini scores, according to their ASV abundances 

distribution, with HRT as the response variable. a, Feature importance of A-

HRT bioindicators. The ASV importance was calculated using the relative 

abundance data of bioreactor A as a training set and data of bioreactor B as a 

test set. b, Feature importance of B-HRT bioindicators. Similar to A-HRT 

bioindicators, ASV importance of B-HRT was calculated using the relative 

abundance data of bioreactor B as a training set and data of bioreactor A as a 

test set. The taxonomic classification of ASVs assigned at the genus level is 

provided in parentheses. 
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Figure 4. Prediction results of C6 and C8 productivities using HRT 
bioindicators. a,b, Prediction performance of C6 productivity. c,d, Prediction 

performance of C8 productivity. Results in a and c were obtained by using 

relative abundance data of bioreactor A for training the model and data of 

bioreactor B for testing. Results using the data of bioreactor B for training and 

bioreactor A for testing are shown in b and d. The red lines and grey shaded 

areas depict the best-fit trendline and the 95% confidence interval of the least-

squares regression, respectively. C6, n-caproate; C8, n-caprylate; %Var., 

explains the variance (%) in C6/C8 productivity of the training set; RRMSE, 

relative root mean square error. 
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Figure 5. Phylogeny of HRT bioindicators and non-HRT bioindicators for 
considering community assembly caused by time. a,b, A maximum 

likelihood 16S rRNA gene tree showing the ASV species based on the rarefied 

sequencing data. ASVs are coloured according to the class (a, first inner ring) 

and family (b, second inner ring). c, The third inner ring shows the 11 HRT 
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bioindicators identified in both reactors for the prediction of HRT phases of 8 

days and 2 days. The ASVs identified as HRT bioindicators are shown in bold. 

Their taxonomic assignments at the genus level are provided in the legend. d, 

The four ASVs of HRT bioindicators irrespective of time are shown in red in the 

outer ring. The ASVs only present in non-HRT bioindicators of C6/C8 

productivity are shown in pink in the outer ring. e, Relative abundance dynamics 

of HRT bioindicators during the whole reactor operation period. In the legend, 

A and B stand for bioreactors A and B, respectively. The four ASVs (in bold) of 

HRT bioindicators, irrespective of time, assigned at the genus level are 

indicated in parentheses. C6, n-caproate; C8, n-caprylate. 
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Figure 6. Genetic potential of metagenome-assembled genomes (MAGs) 
with the same taxonomy as HRT bioindicators driving the catabolism of 
xylan and lactate to n-caproate and n-caprylate. These catabolic steps were 

categorised into four main functions of the anaerobic mixed culture 

fermentation. a, Hydrolysis of xylan. b, Xylose fermentation producing acetate 

and lactate. c, Butyrate formation from lactate and acetate. d, Chain elongation 

with lactate as electron donor producing n-butyrate, n-caproate and n-

caprylate. Numbers represent the 18 different MAGs with similar phylogenies 

as the HRT bioindicators at the genus level (details in Table 1). The enzyme 

abbreviations are provided in red letters next to the pathways (solid lines). 

Dashed lines represent multi-enzyme reactions between the two indicated 

molecules. In (d), “cycle” refers to the reverse β-oxidation cycle. The complete 

metabolic pathways are depicted in Additional file 1: Figure S13. un., 

unclassified; XL, xylanase (EC 3.2.1.8); XylT, xylose transporter (EC 7.5.2.10, 

EC 7.5.2.13); LacP, lactate permease (TC 2.A.14); CoAT, butyryl-CoA:acetate 

CoA-transferase (EC 2.8.3.-); PTB, phosphate butyryltransferase (EC 

2.3.1.19); BUK, butyrate kinase (EC 2.7.2.7); ACT, acyl-CoA thioesterase (EC 

3.1.2.20). 
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Figure 7. Phylogenetic tree of the recovered metagenome-assembled 
genomes (MAGs). a,b, A phylogenomic tree based on mash distances 

showing the MAGs taxonomy determined by GTDB-Tk at phylum (a) and family 

(b) levels. A total of 108 MAGs were recovered and differentiated into 29 

species based on the ANI values. We defined the representative MAG for each 

species as that showing high quality. Only the representative MAG for each 

species is depicted in the tree. The ENA accession numbers of the 

representative MAGs are shown in parentheses. MAGs with similar 

phylogenies as HRT bioindicators are indicated by a star. 
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Figure 8. Overview on the quantitative prediction of process performance 
in the anaerobic bioreactor system. a, Anaerobic mixed culture fermentation 

of lactate and xylan for the production of n-caproate (C6) and n-caprylate (C8) 

by lactate-based chain elongation. Based on the recovery of metagenome-

assembled genomes, the left panel shows the bioindicators capable of 

performing key steps of the fermentation. b, Reducing the hydraulic retention 

time (HRT) as an operation-based strategy to optimise the process 

performance and to manage the reactor microbiota towards desired functions. 

Shortening the HRT from 8 days to 2 days enhanced productivities of C4, C6 

and C8. The enriched reactor microbiota comprised functional groups involved 

in xylan hydrolysis, xylose fermentation and chain elongation with lactate, 

presented by a co-occurrence network of environmental factors (controlled 

conditions with only reducing the HRT), ecosystem functioning (process 

performance) and microbial community. The full network is shown in Additional 

file: Figure S14. c, Predicting performance of ecosystem processes with 
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random forest analysis. We developed a random forest two-step workflow to 

qualitatively predict the HRT phases and to quantitatively predict carboxylate 

production by using relative abundance data of the 16S rRNA-derived species 

(ASVs, Amplicon Sequence Variants). 

Table 1. Summary of metagenome-assembled genomes (MAGs) with the 
same taxonomy as HRT bioindicators. 

 

Taxonomy refers to the GTDB (Genome Taxonomy Database) phylogenomic 

classification. ASVs in bold represent the four HRT bioindicators irrespective of 

time. Sequence datasets of genomes in red letters were taken from the 

databases of NCBI and EzBioCloud. These genomes (in red) were used to 

affiliate the MAGs of Syntrophococcus, Clostridium IV and Clostridium sensu 

stricto, since their genomes are not available in GTDB. See details of MAGs in 

Additional file 2: Dataset S1. ASV: amplicon sequencing variant. 
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2.2.2 Supplementary information 

 

  

Figure S1. Alpha rarefaction curves. ASVs of all samples were rarefied to an 

equal sequencing depth of 13,518 reads. Colours represent the different 

samples. 

 

 

Figure S2. Workflow of the random forest classification analysis. The 

qualitative prediction of HRT phases of 8 days and 2 days. Letters in yellow 

show the input (ASV frequency) and output (A/B-HRT bioindicators) of the 

model. 
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Figure S3. Workflow of a two-step random forest regression analysis. a, The 

first step of quantitative predictions using HRT bioindicators. b, The second 

step of quantitative predictions using non-HRT bioindicators for considering 

community assembly caused by time. Lac, lactate; Conc., concentration; Prod., 

productivity; %Var., explains the variance (%) in process parameters of the 

training set. RRMSE, relative root mean square error. 
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Figure S4. Gas production of bioreactors. Daily gas production and 

composition in bioreactors A (a) and B (b), respectively, during the four HRT 

phases. Error bars indicate the standard deviation. 

 

 

Figure S5. Biomass production of bioreactors. Cell concentration, biomass 

productivity and biomass yield in bioreactors A (a) and B (b) during the four 

HRT phases. The carbon number of cell biomass was calculated by assuming 

an elemental biomass composition of CH1.8O0.5N0.2 (molar mass = 24.6 g/mol). 

Error bars represent the standard deviation. 
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Figure S6. Microbial community composition profiles of bioreactors. Based on 

amplicon sequencing of 16S rRNA genes, the taxonomic classification of 

amplicon sequence variants (ASVs) was categorised at the phylum (a), class 

(b), order (c), family (d) and genus (e) levels. 
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Figure S7. Alpha diversity metrics of bioreactor communities. Based on the 

relative abundance of ASVs, we calculated the alpha diversity represented by 

observed ASV counts (a) and Shannon index (b). 
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Figure S8. Prediction results of C6 and C8 productivities using non-HRT 

bioindicators for considering community assembly caused by time. a,b, 
Prediction performance using C6 productivity bioindicators of bioreactors A and 

B. c,d, Prediction performance using C8 productivity bioindicators of 

bioreactors A and B. Results in a and c were obtained by using the relative 

abundance data of bioreactor A for training the models and data of bioreactor 

B for testing. Results using the data of bioreactor B for training and bioreactor 

A for testing are shown in b and d. %Var., explains the variance (%) in C6/C8 

productivity of the training set. RRMSE, relative root mean square error. 
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Figure S9. Prediction results of C6 and C8 productivities for all samples in the 

four HRT phases using HRT bioindicators. a,b, Prediction performance of C6 

productivity. c,d, Prediction performance of C8 productivity. Results in a and c 

were obtained by using the relative abundance data of bioreactor A for training 

the models and data of bioreactor B for testing. Results using data of bioreactor 

B for training and bioreactor A for testing are shown in b and d. %Var., explains 

the variance (%) in C6/C8 productivity of the training set. RRMSE, relative root 

mean square error. 
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Figure S10. Prediction results of C6 and C8 productivities for all samples in the 

four HRT phases using non-HRT bioindicators for considering community 

assembly caused by time. a,b, Prediction performance using C6 productivity 

bioindicators of bioreactors A and B. c,d, Prediction performance using C8 

productivity bioindicators of bioreactors A and B. Results in a and c were 

obtained by using the relative abundance data of bioreactor A for training the 

models and data of bioreactor B for testing. Results using the data of bioreactor 

B for training and bioreactor A for testing are shown in b and d. %Var., explains 

the variance (%) in C6/C8 productivity of the training set. RRMSE, relative root 

mean square error. 

  

 

 



Research chapter 2.2 
 

93 
 

 

 

Figure S11. Random forest feature importance of A-HRT bioindicators and B-

HRT bioindicators used to predict C6 and C8 productivities. a, Feature 

importance of A-HRT bioindicators in the prediction of C6 productivity. b, 
Feature importance of B-HRT bioindicators in the prediction of C6 productivity. 

c, Feature importance of A-HRT bioindicators in the prediction of C8 

productivity. d, Feature importance of B-HRT bioindicators in the prediction of 

C8 productivity. IncNodePurity, residual sum of squares. 
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Figure S12. Random forest feature importance of the non-HRT bioindicators 

used to predict C6 and C8 productivities. a,b, The feature importance of C6 

productivity bioindicators of bioreactors A and B. c,d, The feature importance 

C8 productivity bioindicators of bioreactors A and B. Relative abundance data 

of bioreactor A were used as training set and that of bioreactor B as test set 

(a,c); while data of bioreactor B for training and that of bioreactor A for testing 

(b,d). IncNodePurity, residual sum of squares. 
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Figure S13. Metabolic pathways involved in converting lactate and xylan to n-

caproate and n-caprylate. a, The pathways involved in the processes of 

anaerobic mixed culture fermentation include hydrolysis of xylan (more than 95% 

xylooligosaccharides), fermentation of xylose and chain elongation with lactate 

as electron donor. The enzyme abbreviations are provided in red letters next to 

the pathways (solid lines). b, Enzymes of the predicted functions related to 
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xylan hydrolysis, xylose fermentation and pyruvate transformation. c, Enzymes 

of the predicted functions related to chain elongation with lactate as electron 

donor. Dashed lines represent multi-enzyme reactions between the two 

indicated molecules. In (a), “cycle” refers to the reverse β-oxidation cycle. The 

functional annotation of metagenome-assembled genomes (MAGs) with the 

same taxonomy as HRT bioindicators can be found in Additional file 3: Dataset 

S2 (for xylan hydrolysis and xylose fermentation) and Additional file 4: Dataset 

S3 (for chain elongation). The functional annotation of all MAGs can be found 

in Additional file 5: Dataset S4 (for xylan hydrolysis and xylose fermentation) 

and Additional file 6: Dataset S5 (for chain elongation). 

 

 

Figure S14. Correlation network of environmental factors, process 

performance and microbial community. Edges indicate the Spearman 

coefficient > 0.7 for positive correlations (blue edges) and < 0.7 for negative 

correlations (red edges).  Node size was scaled to represent its degree of 

connectedness. Here, the environmental factors represent controlled 

operational parameters with only reducing the HRT, and the process 
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performance refers to the concentration, productivity and yield of the target 

products. C4, n-butyrate; C6, n-caproate; C8, n-caprylate. 

 

 

Figure S15. Prediction results of C6 and C8 productivities for all samples in the 

four HRT phases using the four ASVs of HRT bioindicators irrespective of time. 

a,b, Prediction performance of C6 productivity. c,d, Prediction performance of 

C8 productivity. Results in a and c were obtained by using the relative 

abundance data of bioreactor A for training the models and data of bioreactor 

B for testing. Results using the data of bioreactor B for training and bioreactor 

A for testing are shown in b and d. %Var., explains the variance (%) in C6/C8 

productivity of the training set. RRMSE, relative root mean square error. 
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Figure S16. Reducing HRT increases abundances of HRT bioindicators driving 

the catabolism of xylan and lactate to n-caproate and n-caprylate. These 

catabolic steps were categorized into four main functions of the anaerobic 

mixed culture fermentation. a, Hydrolysis of xylan. Relevant HRT bioindicators 

are Olsenella sp. ASV034, Olsenella sp. ASV057, Olsenella sp. ASV058, 

unclassified Erysipelotrichaceae sp. ASV002, Bulleidia sp. ASV010, 

Lachnospiracea incertae sedis ASV053, Syntrophococcus sp. ASV060 and 

Clostridium IV sp. ASV073. b, Xylose fermentation producing acetate and 

lactate. Relevant HRT bioindicators are Olsenella sp. ASV034, Olsenella sp. 

ASV057, Olsenella sp. ASV058 and Lactobacillus sp. ASV074. c, Butyrate 

formation from lactate and acetate. Relevant HRT bioindicators are 

Syntrophococcus sp. ASV060 and Clostridium sensu stricto sp. ASV008. d, 
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Chain elongation with lactate as electron donor producing n-butyrate, n-

caproate and n-caprylate. Relevant HRT bioindicators are Syntrophococcus sp. 

ASV060, Clostridium IV sp. ASV073 and Clostridium sensu stricto sp. ASV008. 

The rarefied ASV abundances were calculated using 16S rRNA amplicon 

sequencing data. Boxes represent the interquartile range between the 25th and 

75th percentiles, respectively, the line inside denote the median value, and 

asterisks indicate significant different mean values (adjusted P*** < 0.001 < ** 

< 0.01 < * < 0.05), which is tested by permutational Student’s t-test with 9,999 

simulations. On the horizontal axis, A and B stand for bioreactors A and B, 

respectively. 
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Table S1. Growth medium used for the reactor operation. The medium was 

anoxic by flushing with nitrogen and adjusted to pH 5.5 with 1 M sodium 

hydroxide solution. 

 

Table S2. Daily feeding of bioreactors A and B during the four HRT phases. 

   Daily medium feeding  
Bioreactor 

HRT 
(d) 

Duration 
(d) 

Lactate 
(g) 

Xylan 
(g) 

Mineral 
medium 

(mL) 

Deionised 
anoxic 
water 
(mL) 

Daily 
effluent  

withdrawing 
(mL) 

A 

8 0-51 1.47 1.25 11 114 125 
6 52-80 1.96 1.67 15 152 167 
4 81-106 2.94 2.50 23 227 250 
2 107-211 5.88 5.00 45 455 500 

B 

8 0-123 1.47 1.25 11 114 125 
6 124-130 1.96 1.67 15 152 167 
4 131-137 2.94 2.50 23 227 250 
2 138-211 5.88 5.00 45 455 500 
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Table S3. Gini scores of all ASVs in the classification-based prediction of HRT 

phases. The percentage was calculated by dividing the Gini score of certain 

ASV by the sum of the Gini scores of all ASVs. 

 

No. ASV name Mean decrease in Gini Percentage ASV name Mean decrease in Gini Percentage
1 ASV073 1.59 16.0% ASV057 2.77 27.8%
2 ASV057 1.51 15.1% ASV073 1.26 12.6%
3 ASV002 1.36 13.7% ASV034 1.18 11.8%
4 ASV082 1.15 11.5% ASV040 0.63 6.3%
5 ASV008 0.68 6.9% ASV002 0.59 5.9%
6 ASV006 0.43 4.3% ASV008 0.59 5.9%
7 ASV015 0.37 3.8% ASV060 0.58 5.8%
8 ASV053 0.31 3.2% ASV074 0.34 3.4%
9 ASV058 0.29 3.0% ASV082 0.26 2.6%

10 ASV034 0.26 2.6% ASV058 0.24 2.4%
11 ASV060 0.24 2.5% ASV010 0.19 1.9%
12 ASV027 0.20 2.0% ASV053 0.17 1.8%
13 ASV074 0.17 1.7% ASV042 0.17 1.7%
14 ASV054 0.15 1.5% ASV066 0.16 1.6%
15 ASV010 0.14 1.4% ASV068 0.10 1.0%
16 ASV007 0.11 1.1% ASV070 0.09 0.9%
17 ASV047 0.10 1.0% ASV076 0.08 0.8%
18 ASV065 0.09 0.9% ASV065 0.08 0.8%
19 ASV076 0.08 0.8% ASV079 0.06 0.6%
20 ASV046 0.07 0.7% ASV038 0.05 0.5%
21 ASV042 0.07 0.7% ASV047 0.05 0.5%
22 ASV066 0.07 0.7% ASV025 0.05 0.5%
23 ASV038 0.07 0.7% ASV007 0.05 0.5%
24 ASV033 0.06 0.6% ASV084 0.04 0.4%
25 ASV070 0.06 0.6% ASV006 0.03 0.3%
26 ASV030 0.05 0.5% ASV078 0.03 0.3%
27 ASV079 0.04 0.4% ASV033 0.03 0.3%
28 ASV040 0.04 0.4% ASV027 0.03 0.3%
29 ASV049 0.03 0.3% ASV031 0.02 0.2%
30 ASV026 0.03 0.3% ASV015 0.02 0.2%
31 ASV051 0.02 0.2% ASV041 0.01 0.1%
32 ASV068 0.02 0.2% ASV059 0.01 0.1%
33 ASV025 0.02 0.2% ASV030 0.01 0.1%
34 ASV031 0.02 0.2% ASV046 0.00 0.0%
35 ASV069 0.01 0.1% ASV049 0.00 0.0%
36 ASV084 0.01 0.1% ASV016 0.00 0.0%
37 ASV085 0.01 0.1% ASV051 0.00 0.0%
38 ASV014 0.01 0.1% ASV012 0.00 0.0%
39 ASV019 0.01 0.1% ASV001 0.00 0.0%
40 ASV003 0.00 0.0% ASV003 0.00 0.0%
41 ASV018 0.00 0.0% ASV005 0.00 0.0%
42 ASV011 0.00 0.0% ASV009 0.00 0.0%
43 ASV081 0.00 0.0% ASV011 0.00 0.0%
44 ASV001 0.00 0.0% ASV014 0.00 0.0%
45 ASV005 0.00 0.0% ASV017 0.00 0.0%
46 ASV009 0.00 0.0% ASV018 0.00 0.0%
47 ASV012 0.00 0.0% ASV019 0.00 0.0%
48 ASV016 0.00 0.0% ASV021 0.00 0.0%
49 ASV017 0.00 0.0% ASV023 0.00 0.0%
50 ASV021 0.00 0.0% ASV024 0.00 0.0%
51 ASV023 0.00 0.0% ASV026 0.00 0.0%
52 ASV024 0.00 0.0% ASV028 0.00 0.0%
53 ASV028 0.00 0.0% ASV029 0.00 0.0%
54 ASV029 0.00 0.0% ASV039 0.00 0.0%
55 ASV039 0.00 0.0% ASV043 0.00 0.0%
56 ASV041 0.00 0.0% ASV044 0.00 0.0%
57 ASV043 0.00 0.0% ASV045 0.00 0.0%
58 ASV044 0.00 0.0% ASV048 0.00 0.0%
59 ASV045 0.00 0.0% ASV054 0.00 0.0%
60 ASV048 0.00 0.0% ASV056 0.00 0.0%
61 ASV056 0.00 0.0% ASV062 0.00 0.0%
62 ASV059 0.00 0.0% ASV063 0.00 0.0%
63 ASV062 0.00 0.0% ASV064 0.00 0.0%
64 ASV063 0.00 0.0% ASV067 0.00 0.0%
65 ASV064 0.00 0.0% ASV069 0.00 0.0%
66 ASV067 0.00 0.0% ASV071 0.00 0.0%
67 ASV071 0.00 0.0% ASV077 0.00 0.0%
68 ASV077 0.00 0.0% ASV080 0.00 0.0%
69 ASV078 0.00 0.0% ASV081 0.00 0.0%
70 ASV080 0.00 0.0% ASV085 0.00 0.0%
71 ASV086 0.00 0.0% ASV086 0.00 0.0%

Bioreactor BBioreactor A
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Table S4. Mean carboxylate yields (i.e. C mole product to substrate ratios) at 

HRTs of 8 days and 2 days (stable production period). 

Bioreactor HRT  Duration C4 C6 C8 
(d)  (d) (mmol C/mmol C) (mmol C/mmol C) (mmol C/mmol C) 

A 
8  0-51 39.1 11.6 0.7 
2  162-211 26.8 16.9 1.3 

B 
8  0-123 39.6 12.3 0.9 
2  193-211 22.3 18.7 2.0 

 

Table S5. Explained variances of the training set in the regression-based 

prediction of process parameters using A-HRT bioindicators and B-HRT 

bioindicators. Features (ASVs) explaining more than 80% of the variance in a 

process parameter are indicated in green. A and B stand for bioreactors A and 

B, respectively. 
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Table S6. Explained variances of the training set in the regression-based 

prediction of process parameters using non-HRT bioindicators for considering 

community assembly caused by time. Features (ASVs) explaining more than 

80% of the variance in a process parameter are indicated in green. A and B 

stand for bioreactors A and B, respectively. 
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2.3 Effects of pH increase on microbial chain elongation and 
community dynamics in closed bioreactor ecosystems 
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2.3.1 Main text 

Abstract 

As for microbial chain elongation in engineered systems, it is unclear how 

alterations of pH can affect the abundance of key players, the responses of 

microbial interactions and the community functioning in terms of medium-chain 

carboxylate yields. Here, we explored its effect on the community dynamics 

measured by sequencing 16S rRNA genes in continuous anaerobic bioreactors. 

Increasing pH from 5.5 to 6.0 caused fluctuations in the yields of n-caproate 

and n-caprylate. After the pH disturbance, the yields returned to the previous 

values while the communities developed to a different state, observed as 

decrease in diversity and evenness and increase in richness. By applying 

Aitchison PCA clustering, linear mixed effect models and random forest 

classification, the different pH preferences of potential chain elongators 

Clostridium IV and Clostridium sensu stricto were identified. By constructing 

networks for different pH levels, the cooperation of the chain elongator 

Clostridium IV with lactic acid bacteria switches from Olsenella to Lactobacillus 

along the pH increase, revealing the plasticity of the food web of chain 

elongation communities. pH increase induced dramatic shifts in the community 

composition but exhibited no strong effects on medium-chain carboxylate yields. 

High functional redundancy was indicated despite the reactors being long-term 

closed systems. 
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Introduction 

In microbial ecology, it is important to understand the main environmental 

factors driving the deterministic processes of microbial community assembly 

and functioning [1–3]. Ecological selection exerted by abiotic and biotic factors 

in deterministic processes influences the growth rates and interactions between 

community members, and thereby determines the composition and functioning 

of microbial communities [4–7]. For engineered systems, pH is frequently 

indicated as a key parameter influencing microbial diversity and consequently 

shaping the system for a specific function [8–12]. 

Here, we explored the effects of pH increase based on previously developed 

model ecosystems, which use anaerobic fermentation reactors with enriched 

mixed cultures under well-controlled abiotic conditions [13,14]. By preventing 

continuous inoculation, such closed systems are simplified but still relatively 

complex considering microbial interactions and metabolic processes. 

Enrichment cultures can maintain their functional stability in a self-assembled 

manner, which is challenging for synthetic communities [15]. In our model 

ecosystem, we focus on the process of microbial chain elongation (CE) to 

produce the carboxylates n-butyrate (C4), n-caproate (C6) and n-caprylate (C8) 

[13]. Using xylan and lactate to simulate the feedstock conditions of anaerobic 

fermentation of ensiled plant biomass [16], the lactate-based CE coupled with 

in situ lactate formation holds promise to valorise organic wastes or biomass 

residues within the carboxylate platform [17]. Efficient and stable CE processes 

rely on trophic relationships among community members with diverse functions, 

in our case including xylan hydrolysis, xylose fermentation and lactate-driven 

CE, presenting diverse and parallel pathways for substrate metabolism in a 

food web [13]. 

Next-generation sequencing data (e.g., 16S rRNA amplicon sequencing) allow 

us to capture the dynamics of entire communities with a high phylogenetic 

resolution over long-term experimentation [7]. Such microbiome datasets are 

generated inherently with compositional bias in sparse sequencing count data 

because of the fixed capacity of sequencing instruments, and the hypothesis 

behind is that sequencing counts the number of molecules relevant to the 
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bacteria in the population [18]. It is acknowledged that only a proportion of 

counts per feature (e.g., amplicon sequencing variants – ASV) is available, thus 

compositional approaches were developed to avoid the common pitfalls in the 

analysis of relative abundance data. As reviewed by Gloor et al. [18], the 

workflow normally starts with a log-ratio transformation, then different tools of 

distancing for clustering and ordination, multivariate comparison and correlation 

analysis are included [19–21]. The latter is commonly unveiled by association 

network algorithms, inferring non-random co-occurrence patterns between 

community members and assessing microbial responses to environmental 

changes. In this study, both standard microbiome analysis and the 

compositional replacements were implemented to achieve statistically more 

robust results. 

Besides the changed environmental factor pH, time needs to be considered as 

an important component in this long-term experimental study. Regularly 

frequent sampling with replicates over long time in microbial communities gives 

insight into their stability, development or response to and recovery from 

perturbation [9,22,23]. Linear mixed-effects models (LME) and variations 

thereof are commonly used for modelling time-resolved 16S rRNA amplicon 

data, thereby identifying temporal microbial interaction patterns [24,25]. We 

hypothesised that the pH value predominantly determines the assembly of CE 

reactor microbiota, but the impact of time needs to be disentangled by applying 

LME. The identified taxa with their temporal patterns are key to understand their 

roles in community assembly. Feature selection using random forest 

classification was performed to denote bioindicators of pH changes, and the 

genetic potential of these bioindicator taxa was investigated by functional 

annotation of the accessible metagenome-assembled genomes (MAGs) [14]. 

As for CE, it is still unclear how the different microorganisms interact and what 

conditions they thrive in. In this context, pH can be a critical parameter that 

affects these relationships, and ultimately the end products of CE. In this study, 

we focused on the effects of pH increase from three aspects: (i) the abundance 

of identified key players, particularly potential chain-elongating species, (ii) the 

responses of microbial interactions, and (iii) the CE community functioning 

represented mainly by the production of C4, C6 and C8. 
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Materials and methods 

Reactor operation and sampling 

The inoculum originated from a lab-scale caproate-producing bioreactor that 

was operated with corn silage [16]. We enriched the microbial community in a 

1-L bioreactor (BIOSTAT® A plus, Sartorius AG, Göttingen, Germany) fed with 

mineral medium containing xylan and lactic acid over 150 days [13]. The 

enriched community producing C4, C6 and C8 was further selected by reducing 

the hydraulic retention time (HRT) in two parallel BIOSTAT bioreactors for 

almost one year [14]. The present study continued to shape the reactor 

microbiota by increasing the pH, with a fixed HRT of four days. Before starting 

the experiment, the microbial communities of both bioreactors (A and B) were 

equally distributed by pumping the content from A to B and back while keeping 

it anoxic.  

The reactor configuration was similar as before [13], with both bioreactors 

operated at 38 ± 1°C, constantly stirred at 150 rpm and the pH automatically 

controlled by addition of 5 M NaOH. For daily feeding, 2.94 g lactic acid and 

2.50 g water-soluble xylan were supplied in 0.25 L mineral medium. The starting 

pH was 5.5 in both bioreactors A and B. After 42 days, we increased the pH of 

bioreactor A from 5.5 to 6.0, and further to 6.5 from day 112 to day 238. By 

considering the effect of time on community assembly, a different temporal 

scheme of pH increase was applied in reactor B (pH 5.5: day 0-144, pH 6.0: 

day 145-214, pH 6.5: day 215-238). 

Gas samples and liquid samples of reactor effluent were collected twice per 

week. The effluent was centrifuged and the supernatant was used for 

measuring concentrations of xylan, carboxylates and alcohols. Pelleted cells 

were stored at -20˚C for DNA-based community analysis [13]. 

Analytical methods 

Daily gas production was monitored on-line with a gas counter as described 

[26]. Gas composition was determined in triplicate for H2, CO2, N2 and O2 by 

gas chromatography [27]. Concentrations of carboxylates and alcohols were 
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analysed in triplicate by gas chromatography, and xylan was measured by a 

modified dinitrosalicylic acid reagent method as reported [13]. At the beginning 

and the end of the experiment, cell mass concentration was calculated from 

optical density (OD) values correlated with cell dry mass [13], with mean 

correlation coefficients of 1 OD600 = 0.641 g L-1 for bioreactor A and 1 OD600 = 

0.632 g L-1 for bioreactor B.  

Total DNA was isolated from frozen pellets using the NucleoSpin Microbial DNA 

Kit (Macherey-Nagel, Düren, Germany). Methods for DNA quality control and 

quantification were reported before [28]. 16S rRNA genes were PCR-amplified 

using primers 341f and 785r [29], with high-throughput amplicon sequencing 

performed on the Illumina Miseq platform (Miseq Reagent Kit v3, 2 × 300 bp). 

Microbiome data analysis 

The QIIME 2 v2020.2 pipeline [30] with DADA2 plugin [31] was applied to 

demultiplex sequences, filter phiX reads, denoising, merging read pairs, 

trimming and removing chimeras of the sequences. A total of 6,855,572 

sequences ranging from 21,389 to 66,272 pairs of reads per sample were 

obtained, with a median of 50,439 in 136 samples. A feature table was created 

indicating the frequency of each ASV clustered at 100% identity. ASVs with 

frequencies lower than two in less than three samples were filtered out before 

further analyses. Taxonomy was assigned with a naïve Bayes classifier trained 

on the database MiDAS 2.1 [32] and curated with RDP Classifier 2.2 [33] 

(confidence threshold: 80%). The filtered ASV table was rarefied to a depth of 

21,389 reads for the downstream analyses (rarefaction curve reached the 

plateau, Figure S1). A total of 97 unique ASVs were retained. 

Alpha diversity based on rarefied ASV data was evaluated by using the 

ecological indices including diversity, evenness and richness as described [34]. 

The indices of order one (1D and 1E) quantify the diversity and evenness by 

weighting all ASVs equally, while the indices of order two (2D and 2E) give more 

weight to the dominant taxa. Considering the compositional nature of the high-

throughput sequencing data [18], we analysed the data with standard 

approaches and their compositional replacements. For dissimilarities in 
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community composition (beta diversity), we used both Bray-Curtis distance-

based principle coordinate analysis (PCoA) [35], and Aitchison principle 

component analysis (PCA) via DEICODE that is robust to data sparsity [19]. 

The QIIME 2 plugin Qurro [36] was used to visualise and explore feature 

rankings in the produced DEICODE biplot. PERMANOVA (“adonis” function in 

R vegan package, v2.5.6; 999 permutations) [20] was used for statistical 

analyses of beta-diversity, with P values adjusted by the false discovery rate 

(FDR) method [37]. 

Statistical analysis of effects of pH increase on reactor microbiota time 
series 

A redundancy analysis-based variation partitioning analysis (VPA) was used to 

provide a quantification of the relative contribution of individual process 

parameters (pH and time) and their interactive effects on temporal variation in 

microbial community composition. VPA was performed using “varpart” function 

in R package vegan. For each process parameter, we performed a partial 

Mantel test to examine its correlation with community composition represented 

by Aitchison and Bray-Curtis distances, independent of time (9999 

permutations) using vegan. 

The QIIME 2 plugin q2-longitudinal with default settings was used to construct 

the LME for regression analyses involving dependent data [25]. Random 

intercepts models (REML method) were used to track longitudinal changes of 

metrics including alpha- and beta-diversity and ASV abundances in microbial 

communities. In brief, pH and time were designated as fixed effects and 

bioreactor as a random effect, whereat values represent samples of a random 

collection. The response variables are the following metrics: 1D, 2D, 1E, 2E, 

richness, PC1 of Aitchison or Bray-Curtis and ASV abundance. 

The Microbial Temporal Variability Linear Mixed Model (MTV-LMM) was used 

to identify autoregressive taxa and predict their relative abundances at later 

time points [24]. The model assumes that the temporal changes in relative 

abundance of ASVs are a time-homogenous high-order Markov process. To 

select the core time-dependent taxa, MTV-LMM was applied to each individual 
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pH level, which generated a temporal kinship matrix representing the similarity 

between every pair of normalised ASV abundances (a given time for a given 

individual) across time. A concept of time-explainability was introduced to 

quantify the temporal variance explained by the microbial community in 

previous time points. 

Random forest (RF) classification 

Supervised classification of pH levels on community compositions was 

performed using QIIME 2 q2-sample-classifier with default settings [38]. 

Rarefied ASV data were used as features to train and test the classifier. First, 

a nested cross-validation of the RF model was applied to overview the 

classification of the pH levels for all samples. For model optimisation, a second 

layer of cross validation (outer loop) was incorporated to split the dataset into 

training and test sets five times, and therefore each sample ended up in a test 

set once. During each iteration of the outer loop, the training set is split again 

five times in an inner loop to optimise parameter settings for estimation of that 

fold. Five different final models were trained, with each sample receiving a 

predicted value. The overall accuracy was calculated by comparing the 

predicted values to the true values.  

Next we performed a feature selection by randomly picking 80% of the samples 

to train a RF classifier, and the remaining 20% of the samples were used to test 

classification accuracy of the classifier. K-fold cross-validation (K = 5) was 

performed during automatic feature selection and parameter optimisation steps 

to tune the model. As determined by using recursive feature elimination, the 

most important features that maximised model accuracy were selected. Model 

accuracy and predictions were based on the classifier that utilised the reduced 

feature set. 

Network analysis 

Co-occurrence networks based on rarefied ASV data and process parameter 

data were inferred by using the FlashWeave v0.16 implemented in Julia [21]. 

FlashWeave uses the centred log-ratio approach for the correction of 

compositional microbial abundances, and it infers direct associations. Three 
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networks were constructed from the data of the three individual pH levels, which 

featured a correlation coefficient below -0.5 or above 0.5. Another network was 

constructed from the entire data of all pH levels. All networks were visualised 

in Cytoscape v3.8.0 [39], with topological features analysed. 

Results 

Fluctuation and recovery of reactor performance 

The pH increase from 5.5 to 6.0 caused fluctuations in the concentrations of CE 

products and lactate, which were not observed upon further increase to pH 6.5 

(Figure 1). First we applied this pH increase in bioreactor A, which immediately 

presented an increased concentration (mmol C/L) of C8 up to 29.1, 

corresponding to a yield (C mole product to the transferred substrate ratio) of 

5.2, and a relatively stable yield of C6 (mean of 16.0 ± 1.5 at pH 6.0). Lactate 

accumulated to a concentration of 147.5 while C4 concentration dropped to 

69.1, with a yield of 12.1 (Figure 1a). The pH increase caused no effects on the 

fast consumption of xylan (Figure S2). Soon afterwards the accumulated lactate 

was consumed and C4 returned to the previous concentration of 273.9 on day 

95 at pH 6.0. Interestingly, a further increase to pH 6.5 did not result in any 

fluctuations of the production of C4, C6 and C8 (Figure 1a). Later we replicated 

the pH increase from 5.5 to 6.5 in bioreactor B to confirm the observed impacts 

of pH increase on CE. With a longer operation at pH 5.5 for 144 days, 

comparable fluctuations in concentrations of lactate, C4 and C8 were observed, 

but presenting a delay of 38 days after the pH increase to 6.0. Concentrations 

of lactate, C4, C6 and C8 were relatively stable when bioreactor B was operated 

at pH 6.5. No propionate was detected in both bioreactors. The pH increase 

also resulted in fluctuations of daily gas production and gas composition 

including CO2 and H2 (Figure S3). Besides, a general upward trend of cell mass 

production suggests a facilitating effect of higher pH on the growth of enriched 

populations with CE functions (Figure S4). 

Emergence of rare species and development in microbial community 
composition 
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As shown in Figure S5, the relative abundance of ASVs categorised from 

phylum to genus varied along with the pH gradients in such closed microbial 

systems. For example, the genera Actinomyces and Prevotella became 

apparent at pH 6.5, along with increasing abundance of Clostridium sensu 

stricto and decreasing abundances of Clostridium IV and Eubacterium (Figure 

S5e). After the pH increase, alpha diversity metrics showed decreases in 

diversity (1D) and evenness (1E), but increase in richness (Figure 2; similar 

results for 2D and 2E as shown in Figure S6). We used LME models to test 

whether these indices were impacted by pH and time. Three separate LME 

models were fitted to examine 1D, 1E and richness across pH gradients because 

the trajectories appear nearly linear. Diversity was significantly impacted by pH 

(P < 0.001) and time (P < 0.001), indicating that diversity was reduced much 

stronger by a factor of 6.188 by pH increase than by time with a factor of 0.209 

(Table S1). Evenness and richness were also significantly associated with pH 

and time, although pH presented much stronger impacts on both indices 

(Tables S2-S3). 

Beta diversity analysis including Aitchison distance-based PCA and Bray-Curtis 

distance-based PCoA revealed that the bacterial communities differed 

significantly between the three pH levels (PERMANOVA; P < 0.001) (Figure 3a 

and Figure S7). ASVs belonging to Clostridium IV, Oscillibacter, Olsenella and 

Syntrophococcus were strongly associated with the communities of pH 5.5 and 

6.0 while Clostridium sensu stricto sp. ASV009 was most strongly associated 

with the community of pH 6.5 (Figure 3a). Based on the association with 

dissimilarities in community composition, ASVs represented by Clostridium IV 

sp. ASV008 (the lowest ranked taxa) and Clostridium sensu stricto sp. ASV009 

(the highest ranked taxa) correspond to the most influential taxa driving the 

Aitchison PCA clustering (Figure 3b). Fitting LME models to their dynamics in 

relative abundance (Figure 3c), results showed that the relative abundance of 

ASV008 was significantly impacted by pH (P < 0.001) and time (P = 0.002), 

whereas only pH (P < 0.001) significantly impacted the abundance of ASV009, 

and time exhibited no significant effects (P = 0.091) (Tables S4-S5). In both 

cases, pH presented a much stronger impact than time. By applying LME 

models, we examined how beta diversity changed over time in each bioreactor 
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(Figure 3d-3e). Results indicated that pH was the most influencing factor, 

although time had significant effects as well (Tables S6-S7). The impact of pH 

on microbial community assembly was further confirmed by partial Mantel test. 

We correlated the time-corrected dissimilarities of community composition with 

pH, and the results show their strong, significant correlations based on 

Aitchison distance (rm = 0.61, P < 0.001) and Bray-Curtis distance (rm = 0.72, P 

< 0.001) (Table 1). Evaluating the overall contributions of pH and time by VPA, 

they together could explain 61% of the microbial community variations based 

on Bray-Curtis (Figure S8). 24% and 3% variations were independently 

explained by pH and time, respectively. These results support those inferred 

from the LME models. 

pH bioindicators and time-dependent taxa 

Overall, the nested cross-validation of RF classification represented an 

accuracy of 97.8% in prediction of the pH levels for all 136 samples (Figure S9), 

by using ASV data to follow community composition dynamics. We carried out 

recursive feature elimination with cross-validation, 18 most important features 

were selected that gave a perfect discrimination between three pH levels 

(Figure 4). These ASVs were defined as pH bioindicators, belonging to the 

genera Clostridium IV, Syntrophococcus, Lactobacillus, Olsenella, Bulleidia, 

Clostridium sensu stricto, Eubacterium, Lachnospiraceae incertae sedis, 

Sporanaerobacter and Actinomyces (Figure 4b). Among these pH bioindicators, 

four showed increases while 14 showed decreases in abundance along the pH 

increase. Interestingly, the most influential ASVs driving the Aitchison PCA 

clustering were also exhibited as pH bioindicators, including the abundant taxa 

Clostridium IV sp. ASV008 and Clostridium sensu stricto sp. ASV009 (Figure 

4b). 

By using MTV-LMM, we identified time-dependent taxa, whose abundance can 

be predicted based on the previous community composition. In this longitudinal 

study, 32, 25 and 40 ASVs were predicted to be significantly (P < 0.05) affected 

by the past composition of the community at pH 5.5, 6.0 and 6.5, respectively, 

with the time-explainability ranging from 17% to 80%, 17% to 83% and 13% to 

96%, respectively (Figure S10). Inferring microbial interactions of these taxa 
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deserves more attention in understanding the dynamics of composition and 

functions of the community. 

Microbial interaction patterns 

Partial Mantel test showed the community composition significantly correlated 

with process performance and the changing conditions (Table 1). We 

consequently constructed an overall network and three separate networks for 

each pH level, to discern the succession of microbial interactions and to reveal 

potential metabolic functions. After the disturbance of pH increase to 6.0, more 

nodes and edges, as well as higher average clustering coefficient and 

heterogeneity were found, suggesting that the overall interaction intensity was 

higher at pH 6.5 (Table S8). In agreement with Aitchison PCA analysis, pH was 

significantly correlated with pH bioindicators ASV008 and ASV009 (Figure S11). 

Changes of interaction patterns over pH were shown in Figure 5. At the family 

level, Ruminococcaceae co-occurred with Lachnospiraceae and 

Erysipelotrichaceae at all pH levels, while it co-occurred with Coriobacteriaceae 

only at pH 5.5 (e.g., Clostridium IV sp. ASV090 with Olsenella sp. ASV049) and 

with Actinomycetaceae only at pH 6.5 (Clostridium IV sp. ASV037 with 

Actinomyces sp. ASV019), and with Lactobacillus at pH 6.0 and 6.5. 

Clostridiaceae 1 co-occurred with Clostridiales Incertae Sedis XI (Clostridium 

sensu stricto sp. ASV009 with Sporanaerobacter sp. ASV029) and 

Erysipelotrichaceae only after the pH increase to 6.0. Erysipelotrichaceae 

presented positive correlations with Lactobacillus at pH 6.0 and 6.5, where its 

negative correlation with Coriobacteriaceae vanished. Interestingly, the positive 

correlation of Erysipelotrichaceae (Bulleidia sp. ASV004) with Lachnospiraceae 

(Syntrophococcus sp. ASV001) vanished at pH 6.0. The positive correlation 

between C6 yield and Eubacterium sp. ASV015 was presented in the networks 

of overall, pH 5.5 and pH 6.0, but not pH 6.5 (Figures S11 and 5). In general, 

more relatively strong correlations (|r| > 0.5) emerged at pH 6.5, including the 

negative correlation of Prevotella sp. ASV041 with Bulleidia sp. ASV017. 
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Discussion 

pH niches of chain elongators Clostridium IV and Clostridium sensu 
stricto 

We recovered MAGs of Clostridium IV and Clostridium sensu stricto presenting 

the genetic potential of CE in our previous study [14], the communities of which 

were further shaped by gradual pH increase. Based on the statistically robust 

results of Aitchison PCA clustering coupled with LME models and RF 

classification, a clear conclusion can be drawn: mildly acidic pH values (lower 

than 6.0) are favourable for Clostridium IV while more neutral pH 6.5 is suitable 

for Clostridium sensu stricto. MAGs classification of Clostridium IV sp. ASV008 

showed highest similarity to the lactate-based chain elongator 

Ruminococcaceae bacterium CPB6 (Acutalibacteraceae UBA4871 according 

to the Genome Taxonomy Database [40]), which was described to prefer mildly 

acidic pH (i.e. 5.5 - 6.0) and to suffer from low growth rates and long lag times 

at pH values above 6.0 [41]. MAGs of Clostridium sensu stricto sp. ASV009 

showed highest similarity to Clostridium luticellarii (Clostridium_B luticellarii 

according to the Genome Taxonomy Database [40]), which presented optimal 

growth at pH 6.5 [42] and the ability of CE [43–46], but it needs to be 

investigated whether this species uses lactate as electron donor for CE. 

Particularly, these two ASVs represent time-dependent taxa that are key to 

understand the community assembly and can be used to characterise the 

temporal trajectories of the community. The pH preferences of Clostridium IV 

ASV008 and Clostridium sensu stricto ASV009 tie together with concepts in 

niche theory suggesting that microorganisms are able to live within a 

designated range of pH values, and outside this range, they are outcompeted 

by other, better adapted organisms [47]. Due to the growth optima of different 

populations, alteration of pH is an important tool to shape and control CE 

reactor microbiota. 

pH as a key determinant of microbial community assembly 

Regular and sufficiently dense sampling with replicates is crucial to capture 

compositional patterns of communities inferred from time series data [7,22]. 
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Microbial interaction is a main factor affecting such time-dependent patterns. 

Given that pH had a much stronger association with community assembly than 

time did, we concluded that pH increase mainly determined variations in 

microbial interactions along pH gradients. Our former studies indicated that 

lactate-based CE driven by Olsenella is an essential feature when maintaining 

the pH at 5.5 [13,14]. Along with increasing pH, the lactic acid bacteria 

Olsenella cooperating with the chain elongator Clostridium IV was replaced by 

Lactobacillus. Both genera are xylose-consuming lactate producers according 

to the functional annotation of their MAGs (Table 2). An enriched community 

dominated by the co-occurrence of CE species and Lactobacillus was reported 

in a recent study [48], which also suggested inherent benefits of in situ lactate 

formation in CE [13]. The shift in a mutualism of lactate-consuming chain 

elongator and lactate producer revealed the plasticity of the CE microbiota food 

web. Additionally, the co-occurrence of phylogenetically closely related taxa 

may indicate their overlapping metabolic niches, such as the appearance of 

Lactobacillus spp. ASV003 and ASV011, Syntrophococcus spp. ASV001 and 

ASV013, Clostridium IV spp. ASV002 and ASV005 at all pH ranges. 

As suggested by the storage effect, dormant rare taxa can germinate and 

become dominant under proper conditions [49,50]. In this study, the increase 

in richness can be explained by an abundance shift of some taxa from rare to 

abundant, reflecting strong inhibition effects of lower pH on these taxa. With the 

increased number of microbial interactions and increasing interaction intensity 

strongly coupled to these taxa at higher pH, the factor pH shaping the 

community assembly was revealed by considering the growth and interactions 

of community members in such long-term closed systems. 

Besides, indirect effects of pH cannot be ignored. At higher pH, the 

concentrations of undissociated carboxylic acids (e.g., C6/C8) are lower, which 

are known growth inhibitors of the CE community members [11,51–54]. The 

effects of pH on proton concentration changes and CO2-HCO3- equilibrium in a 

lactate conversion (e.g., 3 lactate- + 2 H2O → caproate- + 3 HCO3- + H+ + 2 H2) 

can cause the actual Gibbs energy change and further the energy release 

during CE with lactate [55]. 
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Community changes do not always affect community functioning 

We assumed that increase in pH would induce shifts in the community and 

consequently in community functioning. However, unlike in a complex, open CE 

system [16], increasing pH exhibited no strong effects on CE community 

functioning, which means those changes in community composition did not 

necessarily lead to the improvement in carboxylate production during long-term 

reactor operation. This agrees with the rare associations we observed for the 

ASVs to process parameters in the networks. Without introducing new 

microorganisms by inoculation, the emergence of rare species indicated high 

functional redundancy despite the reactors being closed systems. The reactor 

performance returned to the previous state after the fluctuation in carboxylate 

production along pH gradients, reflecting those coexisting rare taxa can 

increase functional resilience to environmental disturbances. Interestingly, the 

disturbance caused dramatic but transient increases of C6 and C8 yields. How 

to maintain such disturbance effects needs to be investigated systematically. 

Indeed, improving functional redundancy deserves equal importance as 

maximising the carboxylate production, because the presented parallel 

pathways of substrate conversion are essential to guarantee the functional 

stability during perturbation [9,11,56]. 

Other studies reported that low pH values favour CE in mixed culture 

fermentation, mainly because higher pH would support competing processes, 

such as methanogenesis [57] and the acrylate pathway for propionate 

production [10,58]. Results showed that our communities possibly lack these 

pathways and the corresponding functional species. Although pH is not an 

effective tool to manage the reactor microbiota towards beneficial traits of high 

specificities of C6/C8 production, it is clear that effects of alterations in pH are 

not universal for all reactor microbiota simply because of the difference in initial 

community composition. 
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Data availability 

All data described in this manuscript are present in the paper and/or the 

Supplementary material. Amplicon sequencing data (ERR4450775 to 

ERR4450910) have been deposited to the ENA database under study no. 

PRJEB39808. 

Supplementary information 

Supplementary Figures and Tables: Figures S1-S11 and Tables S1-S8. 
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Figures 

 

 

Figure 1. Performance of bioreactors. Concentrations of chain elongation 

products and lactate, as well as yields of chain elongation products in 

bioreactors A (a) and B (b) at three pH levels. Chain elongation products: C4, 

n-butyrate; C6, n-caproate; C8, n-caprylate. 
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Figure 2. Longitudinal changes in alpha diversity at three pH levels. Based 

on the relative abundance of ASVs, we calculated the alpha diversity 

represented by diversity of order one (1D) (a), evenness of order one (1E) (b) 

and richness (c). Diversity and evenness of order one were quantified by 

weighting all present types equally. Results of linear mixed-effects model for 

alpha diversity can be found in Tables S1-S3. A and B stand for bioreactors A 

and B. 
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Figure 3. Effects of pH increase and time on bacterial community 
composition. a, A variance-based compositional principle component analysis 

(PCA) biplot based on Aitchison distance. Dots are named according to 

sampling days. Ellipses of 95% confidence intervals were added to each 

individual pH levels of the bioreactors. The size of an ASV arrow indicate the 
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strength of the relationship of that ASV to community composition. ASVs are 

coloured by family. b, ASV ranks estimated from Aitchison distance-based PCA 

(PC1) with Clostridium IV and Clostridium sensu stricto highlighted. c, 
Longitudinal changes in relative abundances of Clostridium IV sp. ASV008 and 

Clostridium sensu stricto sp. ASV009 at the three pH levels. Results of linear 

mixed-effects model can be found in Tables S4-S5. d,e, Longitudinal changes 

in bacterial community composition at the three pH levels, based on Aitchison 

(d) and Bray-Curtis (e) dissimilarities. Results of linear mixed-effects model can 

be found in Tables S6-S7. 

 

 

Figure 4. pH bioindicators determined by random forest classification 
accurately predict the different pH levels. a, A recursive feature elimination 

plot illuminates the model accuracy changes as a function of ASV count. The 

top-ranked 18 ASVs (pH bioindicators) that maximise accuracy are 

automatically selected for optimising the model, based on their mean decrease 

in Gini scores, according to their ASV abundance distribution, with pH as the 

response variable. b, A heatmap shows dynamics of the mean abundance of 
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pH bioindicators at the different pH levels. ASVs shown in Aitchison PCA biplot 

are indicated by a star. c, Confusion matrix for the optimal classifier of samples 

at different pH levels. The classifier was trained on the randomly picked 80% of 

the samples, which was then tested on the remaining 20%. Overall accuracy 

was calculated by comparing the predicted values to the true values. d, The 
Receiver Operating Characteristic (ROC) and Area Under the Curve (AUC) 

curves represent the classification accuracy of random forest. The ROC curve 

plots the relationship between the true positive rate and the false positive rate 

at various threshold settings. The AUC indicates the probability that the 

classifier ranks a randomly chosen sample of the given class higher than other 

classes. The random chance is represented as a diagonal line extending from 

the lower-left to the upper-right corner. In addition to show the ROC curves for 

each class, average ROCs and AUCs were calculated. "Micro-averaging" 

calculates metrics globally by averaging across each sample; hence class 

imbalance impacts this metric. "Macro-averaging" gives equal weight to the 

classification of each sample. 
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Figure 5. Co-occurrence networks for the three individual pH levels. Edges 

indicate a coefficient > 0.5 for positive correlations and < -0.5 for negative 

correlations. Edge thickness reflects the strength of the correlation. The size of 

each ASV node is proportional to the mean relative abundance over the 

corresponding pH level. ASV nodes are coloured and grouped by family. ASV 

nodes with grey dash borders are those time-dependent taxa of each individual 

pH level, whose abundance can be predicted based on the previous microbial 

community composition. pH bioindicators identified by random forest 

classification are shown with green letters. “Others” include the ASVs belonging 

to families Eubacteriaceae (ASV015), Actinomycetaceae (ASV019), 

Clostridiales Incertae Sedis XI (ASV029), Microbacteriaceae (ASV048), 

Veillonellaceae (ASV052, ASV054) and Nocardiaceae (ASV055). Lac, lactate 

concentration; C2, acetate yield; C4, n-butyrate yield; C6, n-caproate yield; C8, 

n-caprylate yield. 
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Table 1. Partial Mantel tests showing significant correlations between the 
time-corrected dissimilarities of microbial community composition and 
process parameters. 

Process parameter Aitchison distance Bray-Curtis distance 
rma Pb rm P 

pH 0.61 < 0.001 0.72 < 0.001 
Conc. C2c 0.27 < 0.001 0.18 < 0.001 
Conc. C4 0.07 0.013 -0.01 0.569 
Conc. C6 0.29 < 0.001 0.48 < 0.001 
Conc. C8 0.25 < 0.001 0.16 < 0.001 
Conc. lactate 0.02 0.258 0.01 0.401 
Conc. biomass 0.16 < 0.001 0.11 0.002 
Yield C2 0.27 < 0.001 0.15 < 0.001 
Yield C4 0.09 0.004 0.00 0.448 
Yield C6 0.38 < 0.001 0.40 < 0.001 
Yield C8 0.22 < 0.001 0.13 0.003 
Yield biomass 0.09 0.001 0.06 0.037 
O2 0.43 < 0.001 0.44 < 0.001 
CO2 0.14 < 0.001 0.18 < 0.001 
H2 0.19 < 0.001 0.16 < 0.001 
Time 0.14 < 0.001 0.33 < 0.001 

arm, the correlation coefficient based on partial Mantel test, in which time was 

controlled. The permutation test compares the original rm to rm computed in 

9999 random permutations. 

bThe reported P value is one-tailed. 

cConc., concentration 
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Table 2. Metagenome-assembled genomes (MAGs) with the same 
taxonomy as ASVs. 
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2.3.2 Supplementary information 

 

 

Figure S1. Alpha rarefaction curves. ASVs of all samples were rarefied to an 

equal sequencing depth of 21,389 reads. Colours represent the different 

samples. 

 

Figure S2. Daily consumption of xylan in bioreactors. During the 

fluctuations at pH 6.0 (day 67), an intensive sampling shows the fed water-

soluble xylan was fast consumed in both bioreactors. A and B stand for 

bioreactors A and B. Error bars represent the standard deviation. 
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Figure S3. Gas production of bioreactors. Daily gas production and 

composition in bioreactors A (a) and B (b), respectively, at three pH levels. Error 

bars indicate the standard deviation. 
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Figure S4. Biomass production of bioreactors. Cell concentration and 

biomass yield in bioreactors A (a) and B (b) at three pH levels. The carbon 

number of cell biomass was calculated by assuming an elemental biomass 

composition of CH1.8O0.5N0.2 (molar mass = 24.6 g mol-1). Error bars represent 

the standard deviation. 
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Figure S5. Microbial community composition profiles of bioreactors. 
Based on amplicon sequencing of 16S rRNA genes, the taxonomic 

classification of amplicon sequence variants (ASVs) was categorised at the 

phylum (a), class (b), order (c), family (d) and genus (e) levels. 
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Figure S6. Longitudinal changes in diversity and evenness of order two 
of bioreactor communities. Based on the relative abundance of ASVs, we 

calculated the alpha diversity represented by diversity of order two (2D) and 

evenness of order two (2E), which give more weight to the dominant types than 

to the rare types. A and B stand for bioreactors A and B.  
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Figure S7. Dissimilarities in bacterial community composition (beta-
diversity). Principal coordinates analysis (PCoA) based on Bray-Curtis 

dissimilarities of microbial community composition in bioreactors. Dots are 

named according to sampling days. Ellipses of 95% confidence intervals were 

added to each individual pH levels of the bioreactors. 

 

 

Figure S8. Variation partitioning analysis (VPA) showing the relative 
importance of pH and time on microbial community variations. VPA was 

used with redundancy analysis (RDA), and multiple partial RDAs were ran to 

determine the partial, linear effect of each explanatory matrix in the response 

data. Numbers represent adjusted coefficients of determination (Adj. R2 values). 
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Figure S9. Nested cross-validation of random forest classification in the 
prediction of pH levels for each sample. a, Confusion matrix for the random 

forest classifier of all samples at three pH levels. For model optimisation, two 

layers of K-fold (K = 5) cross validation was incorporated to split the dataset 

into training and test set. Five different final models were trained, each sample 

received a predicted value and feature importance scores were averaged 

across each iteration. Overall accuracy was calculated by comparing the 

predicted values to the true values. b, The Receiver Operating Characteristic 

(ROC) and Area Under the Curve (AUC) curves represent the classification 

accuracy of the random forest. The ROC curve plots the relationship between 

the true positive rate and the false positive rate at various threshold settings. 

The AUC indicates the probability that the classifier ranks a randomly chosen 

sample of the given class higher than other classes. The random chance is 

represented as a diagonal line extending from the lower-left to the upper-right 

corner. In addition to show the ROC curves for each class, average ROCs and 

AUCs were calculated. "Micro-averaging" calculates metrics globally by 

averaging across each sample; hence class imbalance impacts this metric. 

"Macro-averaging" gives equal weight to the classification of each sample. 



Research chapter 2.3 
 

142 
 

 

 

Figure S10. The core time-dependent taxa of individual pH levels. Using 

relative abundance data of ASVs of both bioreactors, a Microbial Temporal 

Variability Linear Mixed Model (MTV-LMM) was applied to identify time-

dependent taxa of each individual pH level, whose abundance can be predicted 

based on the previous microbial community composition. As described, the 

time-explainability is denoted as the temporal variance explained by the 

microbial community in the previous time points. The time-explainability P-

values: P*** < 0.001 < ** < 0.01 < * < 0.05. 
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Figure S11. Co-occurrence network for the entire period of reactor 
operation. Edges indicate the significant (P < 0.05) correlations. Edge 

thickness reflects the strength of the correlation. Size of each ASV node is 

proportional to the mean relative abundance over the whole period. ASV nodes 

are coloured and grouped by family. “Others” include the ASVs belonging to 

families Eubacteriaceae (ASV015), Actinomycetaceae (ASV019), Clostridiales 

Incertae Sedis XI (ASV029), Microbacteriaceae (ASV048), Veillonellaceae 

(ASV052, ASV054) and Nocardiaceae (ASV055). pH bioindicators identified by 

random forest classification are shown with green letters. Lac, lactate 

concentration; C2, acetate yield; C4, n-butyrate yield; C6, n-caproate yield; C8, 

n-caprylate yield. 
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Table S1. Linear mixed-effects model results for diversity of order one 
(1D). We consider time and pH as the fixed effects, and bioreactor as the 

random effect. 

Variable or parameter Coefficient Standard error Z-score P value 

(Intercept) 50.883 7.718 6.593 < 0.001 

Time -0.209 0.021 -9.743 < 0.001 

pH -6.188 1.327 -4.663 < 0.001 

Time:pH 0.035 0.004 9.777 < 0.001 

Var. pHa 0.396 1.071   

Var. Bioreactor [T.B]b 0.217    

Cov. (pH, bioreactor)c 0.953    

aVariance of pH 
bVariance of bioreactor [treatment of bioreactor B] 
cCovariance of pH and bioreactor (random intercept) 

 

Table S2. Linear mixed-effects model results for evenness of order one 
(1E). We consider time and pH as the fixed effects, and bioreactor as the 

random effect. 

Variable or parameter Coefficient Standard error Z-score P value 

(Intercept) 0.808 0.128 6.322 < 0.001 

Time 0.002 0.001 2.709 0.007 

pH -0.061 0.022 -2.720 0.007 

Time:pH < -0.001 < 0.001 -2.741 0.006 

Var. pHa < 0.001 0.002   

Var. Bioreactor [T.B]b < 0.001    

Cov. (pH, bioreactor)c < 0.001    

aVariance of pH 
bVariance of bioreactor [treatment of bioreactor B] 
cCovariance of pH and bioreactor (random intercept) 
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Table S3. Linear mixed-effects model results for Richness. We consider 

time and pH as the fixed effects, and bioreactor as the random effect. 

Variable or parameter Coefficient Standard error Z-score P value 

(Intercept) 85.190 12.733 6.690 < 0.001 

Time 0.674 0.073 9.179 < 0.001 

pH 9.045 2.227 4.062 < 0.001 

Time:pH 0.116 0.012 9.344 < 0.001 

Var. pHa 0.466 0.620   

Var. Bioreactor [T.B]b 1.024    

Cov. (pH, bioreactor)c 13.738    

aVariance of pH 
bVariance of bioreactor [treatment of bioreactor B] 
cCovariance of pH and bioreactor (random intercept) 

 

 

Table S4. Linear mixed-effects model results for the relative abundance 
of Clostridium IV sp. ASV008 at the different pH levels. We consider time 

and pH as the fixed effects, and bioreactor as the random effect. 

Variable or parameter Coefficient Standard error Z-score P value 

(Intercept) 0.499 0.108 4.599 < 0.001 

Time 0.002 0.001 3.119 0.002 

pH -0.077 0.019 -4.123 < 0.001 

Time:pH < -0.001 < 0.001 -2.864 0.004 

Var. pHa < 0.001 0.008   

Var. Bioreactor [T.B]b < -0.001    

Cov. (pH, bioreactor)c < 0.001    

aVariance of pH 
bVariance of bioreactor [treatment of bioreactor B] 
cCovariance of pH and bioreactor (random intercept) 
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Table S5. Linear mixed-effects model results for the relative abundance 
of Clostridium sensu stricto sp. ASV009 at the different pH levels. We 

consider time and pH as the fixed effects, and bioreactor as the random effect. 

Variable or parameter Coefficient Standard error Z-score P value 

(Intercept) -0.081 0.220 -4.003 < 0.001 

Time 0.001 < 0.001 1.691 0.091 

pH 0.156 0.037 4.252 < 0.001 

Time:pH < -0.001 < 0.001 -1.804 0.071 

Var. pHa 0.002 0.114   

Var. Bioreactor [T.B]b < -0.001    

Cov. (pH, bioreactor)c < 0.001    

aVariance of pH 
bVariance of bioreactor [treatment of bioreactor B] 
cCovariance of pH and bioreactor (random intercept) 

 

Table S6. Linear mixed-effects model results for microbial community 
composition that is represented by the PC1 from the Aitchison distance-
based principal component analysis.  

Variable or parameter Coefficient Standard error Z-score P value 

(Intercept) -1.033 0.254 -4.059 < 0.001 

Time 0.001 0.001 1.683 0.092 

pH 0.169 0.043 3.909 < 0.001 

Time:pH < -0.001 < 0.001 -1.387 0.165 

Var. pHa 0.002 0.070   

Var. Bioreactor [T.B]b -0.001    

Cov. (pH, bioreactor)c < 0.001    

aVariance of pH 
bVariance of bioreactor [treatment of bioreactor B] 
cCovariance of pH and bioreactor (random intercept) 
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Table S7. Linear mixed-effects model results for microbial community 
composition that is represented by the PC1 from the Bray-Curtis distance-
based principal coordinate analysis. 

Variable or parameter Coefficient Standard error Z-score P value 

(Intercept) -2.216 0.235 -9.428 < 0.001 

Time 0.004 0.001 3.161 0.002 

pH 0.369 0.041 9.081 < 0.001 

Time:pH -0.001 < 0.001 -2.952 0.003 

Var. pHa < 0.001 0.014   

Var. Bioreactor [T.B]b < -0.001    

Cov. (pH, bioreactor)c 0.001    

aVariance of pH 
bVariance of bioreactor [treatment of bioreactor B] 
cCovariance of pH and bioreactor (random intercept) 

 

Table S8. Summary statistics of networks.  

Dataset No. of 

Nodes 

No. of 

Edges 

avgNa avgCCb Density Heterogeneity Centralisation 

Entire 100 151 3.256 0.062 0.038 0.469 0.057 

pH 5.5 70 77 2.612 0.039 0.054 0.512 0.074 

pH 6.0 60 63 2.455 0.029 0.057 0.447 0.062 

pH 6.5 86 99 2.528 0.078 0.036 0.559 0.065 

aavgN, average number of neighbours 
bavgCC, average clustering coefficient 
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2.5.1 Main text 

Abstract: The platform chemicals n-caproate and iso-butyrate can be 

produced by anaerobic fermentation from agro-industrial residues in a process 

known as microbial chain elongation. Few lactate-consuming chain-elongating 

species have been isolated and knowledge on their shared genetic features is 

still limited. Recently we isolated three novel clostridial strains (BL-3, BL-4 and 

BL-6) that convert lactate to n-caproate and iso-butyrate. Here, we analysed 

the genetic background of lactate-based chain elongation in these isolates and 

other chain-elongating species by comparative genomics. The three strains 

produced n-caproate, n-butyrate, iso-butyrate, and acetate from lactate, with 

the highest proportions of n-caproate (18%) for BL-6 and of iso-butyrate (23%) 

for BL-4 in batch cultivation at pH 5.5. The three genomes show low 

conservation of organisation and a relatively small core-genome size. They 

contain highly conserved genes involved in lactate oxidation, reverse β-

oxidation, hydrogen formation and either of two types of energy conservation 

systems (Rnf and Ech). Including genomes of another eleven experimentally 

validated chain-elongating strains, we found that the chain elongation-specific 

core-genome encodes the pathways for reverse β-oxidation, hydrogen 

formation and energy conservation, while displaying substantial genome 

heterogeneity. Metabolic features of these isolates may be interesting for 

biotechnological applications in n-caproate and iso-butyrate production. 

Keywords: Novel clostridial species; Carboxylate platform; Medium-chain 

carboxylates; Branched-chain carboxylates; Anaerobic fermentation; Reverse 

β-oxidation 

1. Introduction 

Speciality chemicals such as n-caproate and iso-butyrate are valuable products 

of the carboxylate platform, with a broad range of potential applications in 

agriculture and industry [1–3]. For example, n-caproate can be used as 

promoter of plant growth and feed additive, or as precursor for the production 

of biofuels, lubricants and fragrances [1,4–7]. Currently, n-caproate is mainly 

produced from vegetable oils such as palm kernel oil [8], though it can be 
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produced from more sustainable feedstocks such as agro-industrial waste by 

anaerobic fermentation and microbial chain elongation [9,10]. Compared to 

linear carboxylates, branched-chain carboxylates such as iso-butyrate are of 

special interest for alternative applications due to their different physical 

properties, including higher viscosity, higher oxidative stability, and a lower 

boiling point [11]. For example, iso-butyrate can be used for the synthesis of 

texanol, which is a widely used coalescent for latex paints [2]. Currently, iso-

butyrate is manufactured by acid-catalyzed Koch carbonylation of propylene, 

which is derived from fossil feedstock [2]. Microbial production of iso-butyrate 

from organic wastes or biomass residues is a more sustainable alternative as 

demonstrated by recent studies [12,13]. 

The metabolic process to produce n-caproate by anaerobic fermentation is 

called microbial chain elongation, also known as reverse β-oxidation. Some 

strictly anaerobic bacteria are known as chain elongators that use ethanol as 

electron donor providing reducing equivalents and acetyl-CoA for the 

elongation of acyl-CoA units, thereby increasing the chain length of 

carboxylates by two carbons with each cycle [1]. For example, Clostridium 

kluyveri has been well described to elongate short-chain carboxylates (e.g., 

acetate) to n-caproate through reverse β-oxidation with ethanol and acetate as 

sole carbon and energy sources [14]. The review paper of Angenent et al. 

highlighted the importance of the ethanol-based chain elongation pathway in 

biotechnology studies [1]. Additionally, chain elongation with lactate is getting 

increasing attention because some feedstocks (e.g., ensiled plant biomass) are 

rich in lactate, which is an important intermediate in the anaerobic breakdown 

of carbohydrates. To date, only few chain-elongating bacteria have been 

isolated that utilise lactate to produce n-caproate, including strains of 

Megasphaera elsdenii, Megasphaera hexanoica, Pseudoramibacter 

alactolyticus and Ruminococcaceae bacterium CPB6. It has been assumed 

that the mechanism of chain elongation with lactate is similar to that described 

for chain elongation with ethanol [10,15]. However, insufficient knowledge has 

been generated yet on the physiology of lactate-based chain elongation from 

pure culture studies, and there is a lack of genome-level information to explore 

the genetic characteristics shared by chain-elongating bacteria. Previous 
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studies have shown that iso-butyrate can be produced in methanol-based chain 

elongation [3,12,13]. The results suggested that Clostridium luticellarii might be 

responsible for the iso-butyrate formation during mixed culture fermentation, 

which was further tested by pure culture study of C. luticellarii, showing its ability 

to convert acetate and methanol to iso-butyrate [16]. However, the physiological 

reason for iso-butyrate formation in a chain elongation process has not been 

fully elucidated, particularly when lactate is the electron donor. 

Recently, we reported on a complex bioreactor community that produced n-

caproate from lactate-rich corn silage [17], and later a mixed culture producing 

n-caproate was enriched with lactate and xylan in a daily-fed bioreactor [18]. 

To investigate functional key species involved in n-caproate formation, we 

isolated several strains that are capable of converting lactate to n-caproate and 

iso-butyrate. For three isolates that turned out to represent novel species 

according to their 16S rRNA gene sequences, we performed whole genome 

sequencing and assembled the genomes with a short- and long-read 

sequencing hybrid approach as recently announced [19]. Further insight into 

the genomic and metabolic features of these strains may facilitate detailed 

understanding of lactate-based chain elongation. 

The objectives of this study were to investigate the product spectrum of the 

three new lactate-consuming strains and to give insights into their metabolism 

based on their genomes. Batch experiments were conducted to explore the 

fermentation profiles with lactate. Functional genome annotation and 

phylogenomic analysis aimed at elucidating the genetic background of n-

caproate and iso-butyrate production and the genetic heterogeneity between 

the three strains. To analyse the genomic diversity of the entire repertoire of 

chain-elongating species and to identify the core genes of chain elongation-

related pathways and their conservation, we performed a comparative genome 

analysis by including eleven more genomes of experimentally validated chain-

elongating species. 

2. Materials and Methods  

2.1 Enrichment, isolation and identification of lactate-consuming strains 
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Anaerobic fermentation broth from a caproate-producing reactor (38°C, pH 5.5 

and hydraulic retention time of 4 d) fed with corn silage was initially taken as 

the inoculum. Serum bottles (120 mL) with 45 mL mineral medium [18] 

containing 5 g/L lactic acid (initial pH 5.5) were inoculated with 5 mL of the 

sieved reactor broth (mesh size 2 mm). After replacing the headspace by 

N2/CO2 (80:20 in volume ratio, 100 kPa), the bottles were statically incubated 

at 37°C in the dark. Liquid samples were collected every two weeks at the 

beginning, and later lactic acid was replenished when it had been consumed. 

Four successive transfers (1:10 dilution in fresh medium) were done spanning 

more than 700 days. 

A single bottle of the fourth transfer was used to isolate lactate-consuming 

strains. The culture was plated on complex agar (medium DSM104c with 

additional 5 g/L lactic acid) and incubated in an anaerobic chamber at 37°C for 

two weeks. Colonies were picked and re-streaked three times for purification, 

and then transferred to liquid mineral medium bottles to determine their product 

spectrum. Further, the isolates that produced iso-butyrate and n-caproate were 

identified by Sanger sequencing of the 16S rRNA gene (details in 

Supplementary Methods). Based on 16S rRNA gene identity with their closest 

relatives, potential new species including the isolates designated as strains BL-

3, BL-4 and BL-6 were selected for whole genome sequencing. 

2.2 Lactate utilisation in batch cultivation 

Batch cultures of isolates BL-3, BL-4 and BL-6 were run in mineral medium with 

lactate as sole carbon source and 0.05% yeast extract as described above. The 

bottles were inoculated with 5 mL seed cultures (optical density at 600 nm 

[OD600] ~ 2), which were routinely cultivated in a complex medium (DSM 104c 

with extra 5 g/L of lactic acid added). The pH was adjusted to 5.5 with 1 M 

NaOH or 1 M H2SO4 after adding 50 mM lactic acid (85%, FCC grade; Sigma 

Aldrich, St. Louis, USA) to the bottles. The cultivation bottles were statically 

incubated at 37°C. Liquid samples were collected twice per week. After one 

week, lactic acid (75 mM) was added again to each bottle, and the pH was 

adjusted to 5.5 accordingly. All batch tests were carried out in duplicate. For 

further investigation of the growth of isolate BL-4, anoxic, bicarbonate buffered 
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freshwater medium at pH 7.3 reduced with cysteine was used. The basal 

medium consisted of NaCl (1 g/L), MgCl2 (0.4 g/L), KH2PO4 (0.2 g/L), NH4Cl 

(0.25 g/L), KCl (0.5 g/L), CaCl2 (0.15 g/L) and Na2SO4 × 10 H2O (0.16 g/L) and 

was autoclaved for at least 30 min at 121°C and 1 bar overpressure in a Widdel-

flask. After cooling to room temperature under a stream of N2/CO2 (80:20), a 

separately autoclaved solution of NaHCO3 was added to a final concentration 

of 30 mM. Then each 1 mL of trace element solution SL13, 7-Vitamin solution 

and selenite-tungstate solution were added per liter medium (modified after [20-

23]). Finally, the medium was amended with 0.4 mg/L resazurin as a redox 

indicator and filter-sterilized cysteine-HCl (3 mM final concentration) as 

reducing agent. In case the redox indicator of the medium did not turn colorless 

within 30 min of stirring under N2/CO2, 25 µM to 50 µM titanium(III)-

nitrilotriacetic acid was added from a filter-sterilized stock solution to aid in 

establishing reduced conditions. This was the case for all pH 7.3-media used 

in this study. After the medium turned colorless, the pH of the medium was 

adjusted to pH 7.3 and the medium was thereafter dispensed into the cultivation 

vessels under N2/CO2. Where indicated, 0.05% yeast extract was added as an 

additional source of vitamins and amino acids. Strain BL-4 was cultivated in 25-

mL tubes closed with rubber stoppers and filled with 10 mL medium at 37°C. 

The OD600 was monitored over time with a Camspec tube photometer as 

described before [24]. 

2.3 Analytical techniques 

Liquid samples of the batch cultures were centrifuged for 10 min at 20,817 × g 

(Centrifuge 5417R; Eppendorf, Hamburg, Germany). Acetate, lactate, 

propionate, iso-butyrate, n-butyrate, n-valerate, n-caproate, n-caprylate and 

ethanol concentrations of the supernatant were determined in triplicate by high 

performance liquid chromatography (HPLC; Shimadzu Corporation, Kyoto, 

Japan) equipped with a refractive index detector RID-10A and a HiPlex H 

column together with a pre-column (Agilent Technologies) as previously 

described [25]. For further investigation of the growth of BL-4, HPLC samples 

were withdrawn with syringes and needles, acidified with 20 µL of 1 M H2SO4, 

centrifuged to remove cells, and the supernatant analysed by refractive index 
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detection after separation on a Rezex RHM monosaccharide column with 30 

mM sulfuric acid at 40°C as described [24]. 

2.4 Gene prediction and annotation 

We sequenced the genomes of the three isolates with the Oxford Nanopore 

Technologies MinION and the Illumina NextSeq platforms, and three complete 

genomes were constructed using a hybrid assembly approach as described 

previously [19]. Prediction and functional annotation of coding sequences 

(CDSs) was accomplished by the MicroScope automatic annotation pipeline 

[26]. Automatic annotations of selected CDSs were manually curated by 

comparing the protein sequences with the PkGDB, Swiss-Prot, TrEMBL, COG 

(Clusters of Orthologous Groups), EGGNOG. (Evolutionary Genealogy of 

Genes: Non-supervised Orthologous Groups), FIGfams and InterPro 

databases [26–31] by using the following methods: MaGe/Curated annotation, 

Syntonome RefSeq, Similarities SwissProt, Similarities TrEMBL, UniFIRE 

SAAS, UniFIRE UniRules, PRIAM EC number, FigFam, InterProScan and 

PsortB. COGNiTOR [32] was used to classify the CDSs into COG functional 

categories. CDSs classification into EGGNOG (v4.5.1) was performed by 

eggNOG-mapper v1.0.3 [29]. All these databases and tools are integrated in 

the MicroScope platform as described by Vallenet et al. [26]. Genomes of 

Clostridium jeddahense JCD, Ruminococcaceae bacterium CPB6, Clostridium 

merdae Marseille-P2935, Megasphaera elsdenii 14-14, Eubacterium 

pyruvativorans i6, Megasphaera hexanoica MH, Caproiciproducens sp. NJN-

50, Caproiciproducens galactitolivorans BS-1, Eubacterium limosum KIST612, 

Candidatus Weimeria bifida, Candidatus Pseudoramibacter fermentans and 

Pseudoramibacter alactolyticus ATCC 23263 were submitted to the 

MicroScope platform. The genome annotation of these strains available in the 

MicroScope PkGDB database was done by following the same procedures. 

2.5 Phylogenetic analysis and taxonomic classification 

Phylogenetic analysis of 16S rRNA gene sequences was performed on the 

Phylogeny.fr platform [33]. According to the Nucleotide BLAST (Basic Local 

Alignment Search Tool) comparison result against the rRNA/ITS databases 
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(16S ribosomal RNA sequences (Bacteria and Archaea)) of NCBI (National 

Center for Biotechnology Information) [34], the ten hits with the highest BLAST 

score for each isolate were selected. The 16S rRNA gene sequences of all 

selected strains were aligned using MUSCLE v3.8.31 with default settings [35]. 

After alignment, Gblocks v0.91b was used to remove ambiguous regions (i.e. 

containing gaps and/or poorly aligned) as described by Castresana [36]. The 

phylogenetic tree was reconstructed using the maximum likelihood method 

contained in PhyML v3.1 [37,38]. Robustness of tree topology was assessed 

by 100 bootstrap replicates. Finally, the tree was visualised by using TreeDyn 

v198.3 [39]. Besides the taxonomic classification of the genomes in 

MicroScope, GTDB-Tk v1.0.2 was used for taxonomic assignment to GTDB 

(Genome Taxonomy Database) [40] and the corresponding NCBI taxonomy. 

A phylogenomic tree of strains BL-3, BL-4, BL-6 and other chain-elongating 

bacteria was calculated based on genomic similarity. The genomic similarity 

was estimated using Mash [41], which computes the distance between two 

genomes. This distance D is correlated to the average nucleotide identity (ANI) 

like: D ≈ 1-ANI. A neighbor-joining tree with clustering annotations was 

constructed. This clustering was calculated from all-pairs distances ≤ 0.06 (≈ 

94% ANI) corresponding to the ANI standard to define a species group. The 

Louvain method for community detection was used for computing the clustering 

[42]. The ANI (OrthoANIu value) comparison of the genomes of the isolates to 

related genomes was calculated by an ANI calculator that improved the original 

OrthoANI (Average Nucleotide Identity by Orthology) algorithm by applying 

USEARCH instead of BLAST as described by Yoon et al. [43]. 

Default settings were used for all tools unless otherwise specified. 

2.6 Pan-genome analysis 

The interface Comparative Genomics of the MicroScope platform was 

employed to analyze the pan-genome, core-genome and variable genome for 

our newly sequenced genomes and for all the available genomes of chain-

elongating bacteria in the comparison. The MicroScope homologous gene 
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families (MICFAM, protein sequence pairs with at least 80% amino-acid identity 

and 80% alignment coverage) [44] were considered for these analyses. 

2.7 Data availability 

All data generated or analysed during this study are included in this published 

article and its additional files. The full-length 16S rRNA gene sequences of the 

three isolates have been deposited in the European Nucleotide Archive (ENA, 

https://www.ebi.ac.uk/ena/browser/home) under BioProject PRJEB39379, with 

the accession numbers LR861112, LR861113, and LR861114. The genome 

data of the three isolates have been deposited in ENA under BioProject 

PRJEB36835, with Whole Genome Sequencing or Chromosome accession 

numbers CADDXC010000000, LR778134, and LR778135. 

3. Results and Discussion 

3.1 Isolation and identification of lactate-consuming strains 

After incubation and several transfers of fermentation broth from a corn silage 

reactor with lactate as substrate, we enriched a mixed culture that produced 

acetate, n-butyrate, iso-butyrate and n-caproate (Figure S1). Isolation of 

lactate-consuming strains was achieved by plating the mixed culture on 

complex agar to isolate single colonies. Eleven pure cultures were obtained as 

confirmed by 16S rRNA gene sequencing. In liquid culture using mineral 

medium, three strains (designated as BL-3, BL-4 and BL-6) were found to 

convert lactate to iso-butyrate and n-caproate. The 16S rRNA gene sequence 

of BL-3 was 96.8% identical to that of Clostridium luticellarii FW431, BL-4 was 

93.8% identical to that of Ruminococcaceae bacterium CPB6, and BL-6 was 

96.3% identical to that of Clostridium jeddahense JCD. According to the current 

species threshold (98.7%) based on 16S rRNA gene identity (Erko and Ebers, 

2006), these three strains can be assumed to represent novel species and were 

consequently selected for whole genome sequencing. 

3.2 Conversion of lactate to n-caproate and iso-butyrate in batch cultivation 

The pure culture batch experiments showed that all three newly isolated strains 
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can convert lactate into acetate, n-butyrate, iso-butyrate and n-caproate 

(Figure 1). Started at an initial pH 5.5, the three strains displayed different 

product spectra even though growing in the same mineral medium with lactate 

as the sole carbon source. Specifically, all three strains produced a large share 

of acetate (23% to 43%) and n-butyrate (35% to 57%), whereas propionate and 

n-caprylate were not detected. Based on the final concentrations (mmol C/L), 

strain BL-6 produced the highest proportion of n-caproate (18% for BL-6, 10% 

for BL-4 and 4% for BL-3) and strain BL-4 produced the highest proportion of 

iso-butyrate (23% for BL-4, 2% for BL-3 and 2% for BL-6). As shown in Figure 
1, the n-butyrate production rate decreased in cultures of BL-4 and BL-6 after 

the second spiking with lactate but was constant in the culture of BL-3. 

Simultaneously, the iso-butyrate production rate increased in BL-4 and the n-

caproate production rate increased in BL-6. This indicates that further chain 

elongation of n-butyrate to n-caproate was catalyzed by strain BL-6 while strain 

BL-4 might convert n-butyrate to iso-butyrate. 

3.3 Genomic heterogeneity of strains BL-3, BL-4, and BL-6 

The genomes of all three isolates were sequenced to better understand the 

genetic background of their metabolism, particularly of n-caproate and iso-

butyrate formation from lactate. Based on the hybrid genome assembly of short 

reads (Illumina) and long reads (Oxford Nanopore Technologies), we recently 

announced high-quality genomes of these strains with CheckM completeness 

of 98.6%, 97.9% and 98% and contamination of 1.0%, 0.3% and 1.3% for BL-

3, BL-4 and BL-6, respectively [19]. The genome sizes are depicted in Figure 
2 and detailed in Table 1. According to the taxonomic classification of GTDB, 

BL-3 was assigned to the genus Clostridium_B (Clostridiaceae), whereas BL-4 

and BL-6 were assigned to the genera UBA4871 and Clostridium_E, 

respectively, both belonging to the Acutalibacteraceae (Ruminococcaceae 

according to the NCBI taxonomy). The number of predicted gene CDSs ranges 

from around 2,300 to almost 3,900 in the three genomes (Table 1). For all three 

genomes, most of the CDSs could be classified in COG functional categories 

(76% for BL-3, 75% for BL-4 and 73% for BL-6; see details in Table S1) and 

EGGNOG categories (86% for BL-3, 85% for BL-4 and 83% for BL-6; see 
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details in Table S2). Comparative genome analysis revealed a total of 6,654 

homologous gene families with 9,508 genes identified in all three genomes and 

indicates a relatively small core-genome size of 504 homologous gene families 

(Figure 2). As for the 2,064 genes conserved in the core-genome, proportions 

of 27.2%, 20.9% and 19.1% can be considered core CDSs of strains BL-3, BL-

4 and BL-6, respectively. The core CDSs include all necessary genes involved 

in bioprocesses of lactate oxidation to acetyl-CoA, reverse β-oxidation, 

hydrogen formation and energy conservation (see Table 2 and details in 

Supplemental file 2). According to the pairwise comparison of the three 

genomes, a few synteny groups on nucleotide level are shared (Figure S2), 

which indicates the low conservation of genome organisation and underlines 

the genomic heterogeneity of the three isolates. 

3.4 Genomic diversity of the reported chain-elongating bacterial strains 

In addition to our newly isolated strains, we included eleven strains that have 

been experimentally validated of microbial chain elongation (Table 1). Two 

metagenome-assembled genomes (MAGs; Candidatus Pseudoramibacter 

fermentans and Candidatus Weimeria bifida) were also included in the 

comparative genome analysis because their chain elongation traits were 

evident from metatranscriptome analyses [46]. These 14 obligate anaerobes 

isolated from various environments all belong to the phylum Firmicutes, class 

Clostridia and its closest phylogenetic neighbor – Negativicutes (here including 

species Megasphaera elsdenii and Megasphaera hexanoica). The genome 

sizes of the strains range from 2.1 Mbp to 4.7 Mbp, and the GC content varies 

from 32% to 55% (Table 1). 

We constructed a phylogenomic tree to understand the evolutionary 

relationships between our isolates and other chain-elongating species (Figure 
3a). The two main branches delineate that strain BL-3 is evolutionary distant 

from BL-4 and BL-6, as the latter were placed in the other main cluster. BL-3 

belongs to a Clostridiaceae cluster and is closely related to two chain-

elongating species of the genus Clostridium: C. kluyveri and C. luticellarii, with 

the latter having the highest OrthoANIu (average nucleotide identity by 

orthology with USEARCH) value of 83.88% to BL-3 (Figure 3b). The closest 
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chain-elongating relatives of BL-4 and BL-6 are Ruminococcaceae bacterium 

CPB6 and Caproiciproducens galactitolivorans BS-1, both affiliated to the 

family Acutalibacteraceae (according to GTDB taxonomy). BL-6 formed a 

separate cluster together with Clostridium jeddahense and Clostridium merdae, 

for which chain elongation functions have not been described. However, BL-4 

and BL-6 have relatively low OrthoANIu values (≤ 75%) and low genome 

coverages (≤ 25%, referring to the aligned genome fraction) with their closest 

relatives (Figure 3b). For all three isolates, the synteny groups on nucleotide 

level delineate a low conservation of genome organization when aligned to the 

closest relative. 

The number of predicted CDSs in the chain-elongating bacteria ranges from 

less than 2,000 to more than 4,600 (Table 1), which suggests substantial 

heterogeneity of their genomes. The pan-genome analysis of the genomes of 

all 14 strains revealed a total of 20,790 homologous gene families with 40,582 

genes identified (Figure 4a). The core-genome presented in all 14 strains 

consists of only 237 conserved homologous gene families corresponding to 

4775 core CDSs, which were distributed in a range of 9% to 15% for each strain 

(Figure 4b). Interestingly, the number of pan-CDSs positively correlated with 

the genome size, whereas the number of strain-specific CDSs did not correlate 

with the genome size. For example, C. kluyveri DSM 555 holds the second 

largest genome (4.02 Mbp) with a number of 4288 pan-CDSs, but it has the 

lowest number of strain-specific CDS (287 CDSs). The above-mentioned 

patterns also apply to the comparison of the three isolates as shown in Figure 
4b. 

Functional distribution of homologous gene families in the core-genome shows 

that the majority encode components of well-conserved housekeeping genes 

for the basic metabolism of bacteria, including DNA and RNA metabolism, 

protein processing, folding and secretion, cellular processes as well as 

intermediary and energy metabolism (details in Supplemental file 3) [60]. The 

chain elongation-specific core-genome also comprises genes involved in 

reverse β-oxidation, hydrogen formation and energy conservation (Table 2 and 
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details in Supplemental file 4). These genes are highly conserved in all 14 

strains and can be considered hallmarks of chain-elongating bacteria. 

3.5 Genetic basis of lactate conversion to n-caproate and iso-butyrate 

To elucidate the genetic background of lactate metabolism and fermentation 

pathways leading to the formation of n-caproate, n-butyrate and iso-butyrate, 

we manually curated the functional annotation of genes involved in the following 

bioprocesses: acetyl-CoA formation from lactate and ethanol, reverse β-

oxidation cycle, energy conservation and hydrogen formation. Besides our 

newly isolated strains, we also included the other eleven chain elongators in 

this analysis. Especially for those strains reported to use lactate as electron 

donor, corresponding genes of lactate oxidation were also considered in the 

manual curation. 

3.5.1 Lactate oxidation to acetyl-CoA 

Lactate can serve as carbon and energy source for chain-elongating bacteria. 

As shown in Figure 5, first lactate needs to be transported into the cell, which 

is facilitated by lactate permease (LacP). Genomes of BL-3 and BL-6 were 

predicted to harbor the corresponding CDSs, which are located in a gene 

cluster encoding lactate racemase (LacR) (Figures 6a and 6c). The gene 

cluster encoding LacP and LacR was also found in all other lactate-based chain 

elongators (Figures 6d-6h). The fermentation starts with the oxidation of 

lactate via pyruvate to acetyl-CoA catalyzed by an NAD-dependent lactate 

dehydrogenase (LDH) and a pyruvate ferredoxin oxidoreductase (PFOR). All 

three genomes encode predicted LDH proteins that are highly similar to each 

other. Specifically, the BL-3 genome was predicted to have four LDH genes, 

one of which is located in a gene cluster (Figure 6a, CDS labels: 11486-11488) 

comprising also genes for the electron transfer flavoprotein (EtfAB). The BL-4 

genome harbors four LDH genes with one located in the gene cluster (Figure 
6b, CDS labels: 2199-2205) encoding the membrane-associated energy-

converting NADH:ferredoxin oxidoreductase (RnfABCDEG). The BL-6 genome 

has three LDH genes with one found in a cluster (Figure 6c, CDS labels: 3216-

3223) including genes for butyryl-CoA dehydrogenase (BCD), EtfAB, LacR and 
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LacP. A similar gene cluster (Figure 6e, CDS labels: 01775-01795) containing 

genes for LacR, LDH, EtfAB and BCD was found in the genome of 

Ruminococcaceae bacterium CPB6. As for the enzyme PFOR or its synonym 

pyruvate synthase, all three genomes contain the corresponding genes, 

enabling the oxidation of pyruvate to acetyl-CoA. Acetyl-CoA then enters the 

reverse β-oxidation cycles. CDSs for LDH and PFOR were found in all other 

lactate-based chain-elongating species (Figure 6d-6h). 

3.5.2 Ethanol oxidation to acetyl-CoA 

The ethanol-based chain elongation pathway is well elucidated in C. kluyveri 

[14] and of particular biotechnological importance as shown in several studies 

[61–63]. Genome data of BL-3 and BL-6 suggest that these strains are capable 

of utilizing ethanol as additional or alternative substrate. Small, uncharged 

molecules like ethanol diffuse through the cytoplasmic membrane and can be 

oxidized via acetaldehyde to acetyl-CoA. NAD-dependent alcohol 

dehydrogenase (ADH) and NAD(P)-dependent acetaldehyde dehydrogenase 

(ADA) catalyze this conversion (Figure 5). The corresponding CDSs were 

found in the genomes of BL-3 and BL-6, but not in the BL-4 genome. 

3.5.3 n-Butyrate and n-caproate formation 

Transformation of acetyl-CoA to butyryl-CoA includes three intermediates: 

acetoacetyl-CoA, 3-hydroxybutyryl-CoA and crotonyl-CoA. The involved 

enzymes are acetyl-CoA acetyltransferase (ACAT), NAD- and NADP-

dependent 3-hydroxyacyl-CoA dehydrogenase (HAD), enoyl-CoA hydratase 

(ECH) and NAD-dependent butyryl-CoA dehydrogenase complex (BCD/EtfAB) 

(Figure 5). The formation of n-butyrate further requires butyryl-CoA:acetate 

CoA transferase (CoAT) to catalyse the reaction of butyryl-CoA and acetate to 

yield acetyl-CoA and the corresponding fatty acid. Transformation of butyryl-

CoA to caproyl-CoA may happen with the same set of enzymes (ACAT, HAD, 

ECH and BCD/EtfAB) and a CoAT to remove the CoA from caproyl-CoA, 

resulting in the formation of n-caproate. We came up with the same assumption 

as described for the ethanol-based chain elongation mechanism of C. kluyveri 

[14] – caproyl-CoA can be a further elongated acyl-CoA when a second 
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analogous cycle proceeds, and CoAT was reported to have a broad substrate 

specificity [64,65]. All three genomes contain the genes encoding ACAT, HAD, 

ECH, BCD, EtfAB and CoAT (Supplemental file 4 including the summary of 

all related CDSs). As for BL-3, three sets of ACAT, HAD, ECH, BCD and EtfAB 

genes are present in the genome, with one cluster encoding CoAT, ACAT, ECH 

and HAD (Figure 6a, CDS labels: 13110-13113) as well as one cluster 

encoding ECH, BCD, EtfAB and HAD (Figure 6a, CDS labels: 20308-20313); 

other CDSs are scattered in the genome. As for BL-4, one gene cluster 

encoding all six enzymes is present in the genome (Figure 6b, CDS labels: 

1867-1873). Two similar clusters were found in the genomes of Eubacterium 

limosum (Figure 6k, CDS labels: 21760-21785) and Eubacterium 

pyruvativorans (Figure 6i, CDS labels: 280031-280037). Another set of HAD, 

ACAT, ECH and CoAT genes clusters together with the genes for acetyl-

CoA:oxalate CoA-transferase (ACOCT) and (R)-2-hydroxyisocaproyl-CoA 

dehydratase (HadABC) (Figure 6b, CDS labels: 1158-1165). The genome of 

BL-6 harbors two sets of the ACAT, HAD, ECH, BCD and EtfAB genes 

separated into several sub-clusters, with one comprising genes for HAD, ACAT, 

ECH, CoAT and HadABC (Figure 6c, CDS labels: 0555-0562) and two sub-

clusters of genes encoding the BCD/EtfAB complex. One set of genes encoding 

the BCD/EtfAB complex is located in the same cluster with genes for LDH, LacR 

and LacP (Figure 6c, CDS labels: 3216-3223) as mentioned above. We found 

that the genes encoding BCD are located in close vicinity to the genes of EtfAB 

in the genomes of all three isolates (Figure 6a-6c), which is commonly 

conserved as a key feature among all genomes of other chain-elongating 

bacteria (Figure 6d-6n).  

Besides CoAT, the acyl-CoA thioesterase (ACT) may also catalyse the 

formation of n-butyrate and n-caproate from the terminal acyl-CoA (Figure 5). 

Our data suggest that the genome of BL-3 may encode the predicted proteins 

annotated as thioesterase superfamily proteins. We further compared their 

protein sequences in all the databases used (see the results in Supplemental 
file 5) and confirmed that these thioesterase proteins were not involved in the 

terminal step of reverse β-oxidation (see CDS labels and final annotations in 

Supplemental file 4, sheets BL-3). Genomes of BL-4 and BL-6 both contain 
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the CDSs for ACT (see CDS labels in Supplemental file 4, sheets BL-4 and 

BL-6), but presenting a low identity (≤ 40%) to proteins in the databases (see 

alignment details in Supplemental files 6-7). Further experiments are required 

to assess the functionality of these CDSs and if the predicted enzymes play a 

role as terminal enzymes in reverse β-oxidation. A recent study on lactate-

based chain elongation in mixed cultures using guild-based metabolic models 

suggested that butyrate is formed by CoAT, whereas caproate and caprylate 

are formed by ACT [66]. As pointed out by the authors, this might depend on 

the organisms, and the affinities of CoAT and ACT enzymes for different chain 

lengths need to be assessed.  

Besides CoAT and ACT, a third pathway potentially contributing to n-butyrate 

formation from n-butyryl-CoA was identified in the genome of BL-3. As 

illustrated in Figure 5, a phosphate butyryltransferase (PTB) forms butyryl 

phosphate that is further converted to butyrate by a butyrate kinase (BUK). The 

latter step leads to the formation of one ATP, in contrast to the CoAT route, 

which conserves energy in the form of acetyl-CoA. The PTB/BUK route might 

favor butyrate production at the cost of caproate yield, i.e. butyrate is not further 

elongated due to acetyl-CoA shortage and possibly due to higher growth rates. 

In our previous study on a mixed culture growing on xylan and lactate under 

constant conditions [18], co-occurrence network analysis predicted a 

Clostridium sensu stricto (closely related to C. luticellarii) as key butyrate 

producer that outcompeted caproate producers as reflected by higher microbial 

biomass production and a drop in caproate and caprylate concentrations. The 

lack of BUK genes in the genomes of strains BL-4 and BL-6 is consistent with 

the previously reported progressive loss of BUK genes found in some clostridial 

lineages [67]. From the biotechnological perspective, strains BL-4 and BL-6 

seem to be more beneficial than BL-3 as they yield more caproate and less 

acetate compared with strain BL-3. However, detailed experiments are required 

to characterise the kinetics of lactate conversion and product formation in the 

strains under different growth conditions and in pure and mixed culture settings. 

3.5.4 iso-Butyrate formation 
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The formation of iso-butyrate as a product of lactate-based chain elongation 

was experimentally proven in all three isolates. The genome analysis revealed 

hints on the assumed pathway, i.e. reversible n-butyrate/iso-butyrate 

isomerization [68,69]. As described by Matthies and Schink [69], the conversion 

of n-butyrate to iso-butyrate first requires activation to n-butyryl-CoA. Next, the 

isomerisation of n-butyryl-CoA via iso-butyryl-CoA to iso-butyrate is catalysed 

by a butyryl-CoA:isobutyryl-CoA mutase (BM) and an isobutyryl-CoA:acetate 

CoA transferase (CoAT) as shown in Figure 5. At the first glance, none of the 

three genomes seems to encode a BM, but we found a BM homologue in the 

genome of BL-3 that might have been misannotated as methylmalonyl-CoA 

mutase. As reported by Cracan et al. [70], the fusion protein IcmF (isobutyryl-

CoA mutase fused) composed of the small subunit of BM, a GTPase domain 

and the large subunit of BM has been widely misannotated as methylmalonyl-

CoA mutase in other bacterial genomes. CDSs for a putative IcmF were found 

in the genomes of BL-3 and of the iso-butyrate producer C. luticellarii (see the 

CDS labels in Supplemental file 4). A CoA transferase gene located next to 

these CDSs may confirm the prediction function in isomerisation. BMs catalyse 

the rearrangement of carboxyl groups as migration to the adjacent carbon atom, 

in which enzyme activities depend on coenzyme B12 [71]. One possible reason 

for the conversion of n-butyrate to iso-butyrate is that bacteria can maintain the 

pool of iso-butyrate for synthesising valine during growth in amino acid-deficient 

medium [72]. As this isomerisation step does not release any free energy, 

another possible explanation is that bacteria try to overcome inhibition effects 

of the accumulated n-butyrate, because the corresponding fatty acid of the 

unbranched form is more toxic than the branched form. As suggested for a 

methanol-based CE process [3,12], the formation of iso-butyrate may facilitate 

bacteria to further obtain energy from chain elongation. 

The genomes of BL-4 and BL-6 lack CDSs for BM, but the formation of iso-

butyrate from lactate is also conceivable via methylmalonyl-CoA and 

methylmalonate-semialdehyde, representing a reverse process of anaerobic 

iso-butyrate degradation by Desulfococcus multivorans [73]. At first sight, not 

all candidate genes predicted for this hypothetical pathway were found in strain 

BL-4 (Figure S4,) and other reported iso-butyrate-producing CE species 
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(Supplemental file 4), thus physiological experiments are needed to elucidate 

the mechanism of iso-butyrate formation in CE strains. In order to find 

indications of the presence of the anticipated methylmalonyl-CoA pathway, 

strain BL-4 was cultivated with 50 mM sodium succinate (Figure 7). The culture 

reached an OD600 of around 0.2 while concomitantly consuming 39 mM 

succinate and producing propionate (37 mM) and minor amounts of acetate 

(4.2 mM), formate (0.3 mM), iso-butyrate (0.2 mM), butyrate (0.1 mM) and 1-

propanol (0.8 mM). Therefore, succinate was decarboxylated to propionate in 

an almost 1:1 stoichiometric ratio. The latter reaction, to our knowledge, is only 

catalysed with the enzymes of propionic acid fermentation, i.e. via 

methylmalonyl-CoA as an intermediate. This indicates that BL-4 has the 

enzymes necessary for the conversion of organic acids to propionyl-CoA and 

could theoretically produce iso-butyrate through a reversal of the iso-butyrate 

degradation pathway in Desulfococcus multivorans [73]. 

We hypothesise that pyruvate derived from lactate oxidation is carboxylated to 

oxaloacetate with concomitant decarboxylation of methylmalonyl-CoA to 

propionyl-CoA by a transcarboxylase. The genes for a transcarboxylase could 

not be identified at first sight. However, a BLAST-search of the amino acid 

sequence of the genes of the respective enzyme complex in Propionibacterium 

freudenreichii DSM 20271 against the genome of BL-4 revealed three potential 

homologs. The three major methylmalonyl-CoA carboxyltransferase subunits of 

P. freudenreichii DSM 20271 12S, 5S and 1.3S (IMG-locus tags 

Ga0077868_111809, Ga0077868_111810 and Ga0077868_111807) are 

similar to a carboxyltransferase (CLOSBL4_v1_1895, 33% identities), an 

oxaloacetate decarboxylase (CLOSBL4_v1_1897, 52% identities) and a 

glutaconyl-CoA decarboxylase subunit gamma (CLOSBL4_v1_1896, 39% 

identities) respectively, and similarly arranged in one gene cluster. These genes 

therefore possibly constitute a methylmalonyl-CoA transcarboxylase. Yet, a 

gene candidate for a methylmalonyl-CoA mutase could not be identified. As a 

consequence of the ability to decarboxylate succinate to propionate, strain BL-

4 might also be able to convert lactate to propionyl-CoA, which in turn could be 

carboxylated to methylmalonate-semialdehyde (MMS). MMS could then be 

reduced to 3-hydroxy-isobutyrate (3-HIB), which then might be activated to 3-
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hydroxyisobutyryl-CoA (3-HIB-CoA) by a CoA-transferase. The pathway could 

proceed with the dehydration of 3-HIB-CoA to 3-enoyl-isobutyryl-CoA (a.k.a. 

methylacrylyl-CoA) and reduction of the latter to isobutyryl-CoA. Finally, iso-

butyrate could be produced either by another CoA-transferase or by 

phosphorylation and dephosphorylation by a phosphotransferase and an iso-

butyrate kinase. The genes responsible for the conversion of propionyl-CoA to 

iso-butyrate could not be completely identified in the genome of strain BL-4. 

However, inferring from the fact that valine is degraded to acetate and iso-

butyrate, strain BL-4 should at least have the biochemical machinery for the 

conversion of iso-butyrate to 3-hydroxyisobutyrate and methylmalonyl-CoA and 

vice versa (Figure 8) [74]. Otherwise, the production of acetate from valine 

cannot be easily explained. Acetate was always produced in media with 0.05% 

yeast extract (4.2 mM acetate during growth with succinate, Figure 7) and 

could therefore result from the degradation of other organic compounds in yeast 

extract. However, acetate concentrations in valine-grown cultures were twice 

as high (9 mM, Figure 8b). Possibly, valine could also be co-fermented in a 

Stickland-reaction, i.e. fermentation of pairs of amino acids such as valine and 

glycine, yet this would also lead to accumulation of amounts of iso-butyrate in 

a 2:1 acetate to iso-butyrate ratio, which was not the case (15 mM iso-butyrate 

produced, Figure 8b). It is hence questionable where the reducing equivalents 

derived from valine oxidation to iso-butyrate ended up and possibly, these 

reducing equivalents were used to generate the various other side products 

present in the valine-grown cultures (Figure 8b). Alternatively, pyruvate, and 

subsequently acetate, could be produced by the enzymes of the valine 

biosynthesis pathway acting in reverse, i.e. acetohydroxy-acid synthase (ilvB, 

CLOSBL4_v1_0646), acetolactate synthase (ilvH, CLOSBL4_v1_0647) and 

acetohydroxy-acid isomeroreductase (ilvC, CLOSBL4_v1_0648). Yet, it is 

doubtful whether the thermodynamic equilibrium allows for such a reversal of 

these enzyme reactions as the latter pathway usually favours valine production 

and as at least the reaction of acetohydroxy-acid synthase is irreversible [75]. 

A comprehensive metabolic pathway of lactate conversion to iso-butyrate is not 

available to date for strain BL-4 and the former might be a combined variation 

of the known pathways of propionic acid fermentation and branched chain 
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amino acid degradation. It appears that iso-butyrate is only formed in large 

amounts, when butyrate accumulation levels out and might also depend on the 

pH of the culture (Figure 1). Moreover, the amount of iso-butyrate formed is too 

high to be explained by degradation of branched-chain amino acids alone. The 

proposed methylmalonyl-CoA pathway could be a plausible explanation for iso-

butyrate production from lactate, yet it remains enigmatic why strain BL-4 does 

not convert lactate into propionate as end-product by classical propionic acid 

fermentation instead of iso-butyrate, i.e. the question remains what are the 

advantages of proceeding degradation to the level of iso-butyrate. 

3.5.5 Energy conservation and hydrogen formation 

As shown in Figure 5, the cytoplasmic BCD/EtfAB complex catalyses the 

transformation of crotonyl-CoA (hexenoyl-CoA) to butyryl-CoA (caproyl-CoA) 

and simultaneously transfers electrons from NADH to ferredoxin, a mechanism 

that has been described as flavin-based electron bifurcation [76]. ATP can be 

produced by the ATP synthase using the ion motive force that is generated by 

a membrane-associated, proton-translocating ferredoxin:NAD+ oxidoreductase 

(Rnf complex) in the oxidation of ferredoxin [77]. The genomes of BL-3 and BL-

4 contain the operon arranged as rnfCDGEAB encoding the six subunits of the 

Rnf complex as shown in Figures 6a and 6b. This gene organization (shown 

as rnfBAEGDC in the other DNA strand) was also found in other genomes of 

chain-elongating bacteria (Figures 6d-n). For BL-6, we could only find four 

genes for subunits of the Rnf complex during the functional annotation (see 

CDS labels in the Supplemental file 4, sheet BL-6), but it contains the CDSs 

encoding the analogous membrane-associated energy-converting 

hydrogenase (Ech complex), which was proposed to generate hydrogen for 

maintaining the cytoplasmic redox balance caused by the oxidation of 

ferredoxin [78,79]. The Ech uses reduced ferredoxin as electron donor and 

reduces protons, not NAD+ like Rnf. As shown in Figure 6c, CDS labels 2699-

2708, a cluster encoding six subunits of the Ech complex and CDSs for the 

hydrogenase maturation were found. The Ech complex was also identified in 

the MAG of Candidatus Weimeria bifida (Figure 6m). Additional hydrogenases 

include hydrogen:ferredoxin oxidoreductase (H2ase), which was found in the 
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genomes of all three isolates, and the bifurcating [Fe-Fe]-hydrogenase 

(HydABC) using electrons from NADH and reduced ferredoxin, of which no 

homologous genes were detected (see CDS labels in Supplemental file 4, 

sheets BL-3, BL-4 and BL-6). 

Apart from the BCD/EtfAB complex, the predicted EtfAB-containing complexes 

for energy coupling may also include the LDH/EtfAB complex. The redox 

potential of the pyruvate/lactate pair (E0’ = -190 mV) is much higher than that 

of the NAD+/NADH pair (E0’ = -320 mV), which introduces a thermodynamic 

bottleneck of the lactate oxidation coupled to NAD+ reduction. Our annotation 

results show that strains BL-3, BL-6 and Ruminococcaceae bacterium CPB6 

have LDH genes next to EtfAB genes (Figure 6a, CDS labels: 11486-11488; 

Figure 6c, CDS labels: 3217-3220; Figure 6e, CDS labels: 01780-01790). 

Therefore, similar like the mode of lactate metabolism in the strict anaerobic 

acetogen Acetobacterium woodii, we assume that the LDH/EtfAB complex of 

these species can also use flavin-based electron confurcation to solve the 

energetic enigma: driving electron flow from lactate to NAD+ at the cost of 

exergonic electron flow from reduced ferredoxin to NAD+ [77,80]. 

The manually curated annotation of all above-mentioned CDSs in the genomes 

of other lactate-based chain-elongating strains is provided in Supplemental 
file 8. 

4. Conclusions 

Our results suggest three novel Clostridia species, represented by the strains 

BL-3, BL-4 and BL-6 that are able to convert lactate to n-caproate and iso-

butyrate in batch cultivation, with the confirmation of their genetic background 

of lactate-based chain elongation and using CoA transferase as the terminal 

enzyme. Further research is needed to elucidate the pathways for iso-butyrate 

formation in these strains. By comparative genome analysis including further 

eleven experimentally validated chain-elongating bacteria, we found a 

substantial genetic heterogeneity but highly conserved genes related to chain 

elongation, hydrogen formation, and energy conservation, which can be 

considered hallmarks of chain-elongating bacteria. Based on the genomic 
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features, chain-elongating species may contain two types of energy 

conservation systems in the re-oxidation of reduced ferredoxin – proton-

translocating ferredoxin:NAD+ oxidoreductase (Rnf complex) and energy-

converting hydrogenase (Ech complex). Besides the proposed BCD/EtfAB 

complex for flavin-based electron bifurcation, energy coupling may also include 

the LDH/EtfAB complex in the oxidation of lactate and the supply of acetyl-CoA 

for chain elongation. Overall, the genomic and metabolic features of the three 

novel chain-elongating isolates might be interesting for further research and 

biotechnological applications with regard to n-caproate and iso-butyrate 

production. 
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Figures 

 

Figure 1. Fermentation products of strains BL-3, BL-4 and BL-6 during growth 

on lactate. 75 mM lactic acid was added to each bottle on day 7. Mean values 

of six measurements of duplicate batch cultures are given and error bars 

represent the standard deviation. 

 

 

Figure 2. Genomic heterogeneity of strains BL-3, BL-4 and BL-6. Venn diagram 

showing the shared and unique gene families of the three isolates, and 

numbers of CDSs presenting the pan-genome and core-genome as well as 

variable and strain-specific genes. Families refer to the MicroScope 

homologous gene families (MICFAM), in which the protein-coding genes share 

at least 80% amino acid sequence identity and 80% alignment coverage. 
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Figure 3. Phylogenomic analysis of the three isolates. (a) Neighbor-joining tree 

showing the genome similarity between 14 chain-elongating bacterial strains. 

The newly isolated strains are highlighted in pink and all experimentally 

validated chain-elongating strains are indicated in bold. Additional related 

species based on 16S rRNA phylogenetic analysis were included (see the 

phylogenetic tree in Figure S3). GTDB taxonomic assignments at the family 

level are shown in parentheses. The NCBI/ENA accession numbers of the 

genomes are shown in brackets. Distances indicated at the branches correlate 

to the average nucleotide identity (ANI) according to: D ≈ 1-ANI. (b) USEARCH 

OrthoANI comparison for strains BL-3, BL-4 and BL-6 to related genomes. The 

line plots give an overview of the conservation of synteny groups on nucleotide 

level. Strand conservations are depicted in purple and strand inversions in blue. 

The synton size was selected with higher than three genes for the analysis. 
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Figure 4. Pan-genome analysis of the 14 chain-elongating bacterial strains. (a) 
Pan-genome and core-genome sizes and their changes for the increasing 

genome set. Families refer to the MicroScope homologous gene families 

(MICFAM), in which the protein-coding genes share at 80% of amino acid 

sequence identity and 80% of alignment coverage. (b) Summary of gene counts 

for each strain. CDS: gene coding sequence. 
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Figure 5. Metabolic pathways involved in lactate-based or ethanol-based chain 

elongation and production of acetate, n-butyrate, iso-butyrate and n-caproate 

as predicted from the genome annotation of strains BL-3, BL-4 and BL-6. 
Enzyme abbreviations (see Table 2 for full names) are provided in red letters 

next to the pathways (solid lines). The numbers below the enzyme names 

indicate the strains that were predicted to harbour the corresponding CDSs, i.e. 

“3” refers to strain BL-3, “4” refers to strain BL-4 and “6” refers to strain BL-6. 

The dashed line represents multi-enzyme reactions between the two indicated 

molecules, and “cycle” refers to the reverse β-oxidation. The conversion of the 

terminal acyl-CoA to the corresponding fatty acid can be catalysed by CoAT or 

alternatively by ACT as shown at the example of butyrate. A third way of 

butyrate formation from butyryl-CoA proceeds via PTB and BUK. The predicted 

pathway of iso-butyrate formation via isomerisation of n-butyryl-CoA by BM is 

shown; an alternative hypothetical pathway for iso-butyrate formation from 

lactate is depicted in Figure S4 (Supplemental File 1). 
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Figure 6. Arrangement of predicted CDSs in genomes of strains BL-3 (a), BL-

4 (b), BL-6 (c), other bacterial strains reported of chain elongation with lactate 

(d-h), and with other reduced substrates (i-n). Numbers in the arrows denote 

the corresponding CDS labels. Abbreviations above the arrow refer to the 

enzyme names (see Table 2 for full names). Scale bar: 1,000 nucleotides (nt). 
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Figure 7. Fermentation kinetics of strain BL-4 during growth on 50 mM 

succinate and 0.05% yeast extract. Shown are mean values of triplicates. Error 

bars represent the standard deviation. Some error bars are smaller than symbol 

size. Small amounts (< 2 mM) of formate, butyrate, iso-butyrate, and 1-propanol 

were also formed, but omitted in the figure for clarity. 

 

 

Figure 8. Fermentation kinetics of strain BL-4 during growth on 50 mM L-valine 

and 0.05% yeast extract. Shown are mean values of triplicates. Error bars 

represent the standard deviation. Some error bars are smaller than symbol size. 

a: optical density at 600 nm b: difference of fermentation products identified 

and quantified by HPLC (tend – t0 values). 
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Table 1. Genomic characteristics of all chain elongation strains included in this 

study 

 

 

Table 2. List of enzymes considered for the manual functional annotation 
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2.5.2 Supplementary information 

Supplementary methods: Sanger sequencing of 16S rRNA genes 

Genomic DNA was extracted from fresh cell pellets of the isolates and purified 

using the NucleoSpin Microbial DNA kit (Macherey-Nagel, Germany). The 

concentration and quality of DNA were determined by NanoDrop™ UV-Vis 

spectrophotometer (NanoDrop™ ONE, Thermo Scientific, Waltham, USA) and 

by agarose gel electrophoresis. Amplification of bacterial 16S rRNA genes by 

PCR using MyTaq™ Mix (Bioline, Germany) and sequencing were carried out 

as described previously [81], with few modifications. For almost complete 

sequencing of 16S rRNA genes, sequencing primers 27f, 357f, 519r, 530f, 927r, 

1104r, 1114f and 1492r were used [82]. Amplicons were purified using the 

SureClean Kit (Bioline, Germany) and quantified using the NanoDrop. The DNA 

sequence analysis software Sequencher® v5.4.6 (Gene Codes Corporation, 

Ann Arbor, MI USA) was used for trimming and aligning the forward and reverse 

sequences and assembling contigs. The sequences were compared against 

the National Center for Biotechnology Information (NCBI) rRNA/ITS databases 

(16S ribosomal RNA sequences (Bacteria and Archaea)) using the nucleotide 

BLAST (Basic Local Alignment Search Tool) web interface [34]. 

 

Table S1. COG (Clusters of Orthologous Groups) classification 
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Table S2. EGGNOG (Evolutionary Genealogy of Gene: Non-supervised 

Orthologous Groups) classification 

 

 

 

 

Figure S1. Fermentation products of the enrichment culture (a single bottle of 

the fourth transfer) during growth on lactate. Mean values of three 

measurements are given and error bars represent the standard deviation. 
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Figure S2. Pairwise comparison of the conservation of the synteny groups in 

the three new isolates. Strand conservations are depicted in purple and strand 

inversions in blue. The synton size was selected higher than three genes. 

 

Figure S3. Maximum likelihood tree of the three new strains and closest 

relatives based on 16S rRNA gene sequences. Bootstrap values above 50% 

are shown at the node. GenBank or European Nucleotide Archive (ENA) 

accession numbers of 16S rRNA sequences are presented in parentheses. 

Scale bar = 8% nucleotide substitution. 
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Figure S4. Hypothetical iso-butyrate-producing lactate degradation pathway 

with the independence of iso-butyrate-CoA-mutase. Numbers represent the 

locus tags of the predicted genes for strain BL-4. See the corresponding CDSs 

in Supplementary file 4. 
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3 General discussion 

3.1 Understanding microbial community assembly in model 
ecosystems 

The interactions of microorganisms shape the composition and function of the 

microbial community in an ecosystem (Zengler and Zaramela, 2018). The 

ecosystem also consists of various species that interact with the environment, 

making it more difficult to explore. Currently, we still lack a deeper 

understanding of the rules governing microbial community assembly (Faust, 

2019). The contributions of deterministic and stochastic processes in the 

assembly of microbial communities are generally accepted, but characterising 

these processes in natural systems is a grand challenge (Wu et al., 2019a). In 

engineered systems such as bioreactors, by developing ecosystem models, we 

could have the opportunity to understand the complexity of community 

assembly. In this PhD thesis, by enriching self-assembled chain-elongating 

microbiota in continuous reactors, I explored microbial ecosystem models with 

a top-down approach. Here, the top-down approach refers to look at the 

enriched consortia as a whole while the bottom-up approach focuses more on 

synthetic communities. Through ecological selection, the top-down approach is 

used to understand how the manipulation of environmental factors (e.g., 

alterations of pH and hydraulic retention time) would force the existing 

microbiota to reassemble in order to maximise the growth yield. Afterwards, 

different mathematical models can be applied to capture community functioning 

by representing different functional groups of species, and to infer the potential 

reasons in the explanation of the microbial community dynamics. In other words, 

these investigations by using 16S rRNA gene analysis or metagenomics 

coupled to modelling or machine learning are valuable for generating different 

hypotheses in the field of microbial ecology, although most theories are in a 

rational way transferred from ecology of macroorganisms, such as the 

community assembly mechanisms controlling diversity patterns (Zhou and Ning, 

2017; Ning et al., 2019). On the one hand, with rapid advances in sequencing 

technologies, categorising microbial diversity becomes relatively easy. On the 
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other hand, due to the dynamics of microbial ecosystems with numerous 

interacting species, it is still not possible to disentangle the factors controlling 

community assembly. For our chain-elongating reactor systems with highly 

enriched mixed cultures, a number of around 100 taxa (ASVs) is more than 

enough for any confirmed conclusions drawn from such advanced data 

analyses (Chapters 2.1, 2.2 and 2.3). As it is common to almost all kind of top-

down studies, the ecological questions cannot be answered clearly (Prosser et 

al., 2007).   

Going back to the starting point in understanding microbial community 

assembly, I anticipate boldly that defined mixed cultures with a reasonable 

number of species under well-controlled conditions in many replicates hold the 

promise for a holistic mechanistic understanding of community assembly 

(Vrancken et al., 2019). Most of the synthetic communities used for studying 

their dynamics are based on simple consortia with selected model 

microorganisms for a specific environment. There are some limitations for the 

approach of bottom-up design. First, it trades clarity by the sacrifices of 

reflecting the realism of the communities. According to my knowledge, no truly 

representative systems have been developed that exactly mimic in situ 

environments. Second, most microorganisms relevant for environmental 

processes resist cultivation, not to mention the low availability of well-

documented strains regarding their ecophysiology and metabolism (Lawson et 

al., 2019). The CE process is a good example. Not many chain-elongating 

bacterial strains have been isolated for utilising lactate, ethanol or 

monosaccharides (Chapter 2.5). Other mysteries of CE include the unclearness 

of reverse ꞵ-oxidation pathway regarding the substrate fluxes and flexibility, as 

well as enzymology (e.g., the missing of trans-2-enoyl-CoA reductase in the 

chain elongator Ruminococcaceae bacterium CPB6; and terminal enzymes for 

controlling the carbon length) and the pathway using acyl carrier protein (ACP) 

as opposed to CoA in the fatty acid biosynthesis (Liao et al., 2016; Tao et al., 

2017; Han et al., 2018). The knowledge in understanding membrane and 

enzyme processes of the toxicity of carboxylic acids is missing. The difficult 

maintenance of cultures is also challenging to construct synthetic communities. 
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Given the truth that many species need to be characterised, at the moment, 

exploration in the simplified and well-controlled systems is the most viable 

option to start unveiling the metabolic and ecological interactions within 

community members. Many studies have shown promise in this way, including 

the classical co-cultivation of syntrophic communities (Stams and Plugge, 

2009), the competitive exclusion of the Gause principle (Connell and Sousa, 

1983), the huge numbers of settings of defined communities showing the initial 

evenness of the community influences ecosystem function (Wittebolle et al., 

2009) and a groundbreaking study of dynamics of three interacting species in 

closed ecosystems with many replicates, showing the effects of geometric 

random walks in a system are clearly contingent (Hekstra and Leibler, 2012). 

As for CE, the proposed mutualism of chain-elongating species and lactic acid 

bacteria (e.g., Olsenella and Lactobacillus) was mentioned in many CE studies 

(Contreras-Dávila et al., 2020; Liu et al., 2020a), but this symbiotic interaction 

has never been proved systemically in co-cultivation or any bottom-up designs. 

Sequencing of microbial communities is really convenient but its generated data 

are overwhelming compared with cultivation studies, which are important to 

prove those findings from sequencing studies. 

High-throughput cultivation techniques would be a perfect match for parallel 

tests in defined mixed culture fermentation. The system of mini-bioreactor 

arrays is one of the examples, in which a continuous-flow mode with reactors 

miniaturised in volume and operated up to 48 in parallel was developed 

(Auchtung et al., 2015). A future combination with microsensor devices that 

determine chemical properties, community structure and functioning and 

ecophysiological parameters can be developed as an in-line monitoring system. 

The acquired high quality data would be important for any kind of model 

development to test and prove ecological theories. Besides the high-throughput 

feature, affordability and easy usability also need be considered. In this case, 

droplet-based microfluidics is also promising in the characterisation of microbial 

communities (Kehe et al., 2019). 
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3.2 Linking microbial community structure to functioning 

A critical topic in ecology is to understand the relationship between diversity 

and ecosystem functioning (Prosser et al., 2007). How are microbial diversity 

and interactions relevant to ecosystem functioning, stability and resilience? For 

this PhD thesis, I found that decreasing the hydraulic retention time can shape 

the reactor microbiota resulting in the improvement of CE process performance 

in terms of C6/C8 productivity (Chapter 2.2). However, when testing the 

increase in pH gradient (Chapter 2.3), the reactor performance returned to the 

previous state while the communities developed to a different state (i.e., 

decreases in diversity and evenness but increase in richness). Since the CE 

bioreactors are engineered systems, I assumed that there would be a strong 

link between the reactor microbiota and its functions regarding C6/C8 

production. Thus, it is important to understand the complexity of the microbial 

communities with parallel pathways of an enormous number of coexisting but 

taxonomically distinct species, and the changes to communities are not 

necessary reflected by the most relevant functioning (Agler et al., 2012b; 

Vanwonterghem et al., 2016; Louca et al., 2017). That is to say, the taxonomic 

composition of communities appears decoupled from functional composition. 

Then coming up with the open questions: how to completely decouple certain 

functions from the community assembly of metabolically overlapping 

microorganisms with functional redundancy, in particular of those in resource 

competition with the target processes, and what determines the degree of 

functional redundancy in microbial systems? Acquiring more knowledge on 

physiological, genomic and metabolic features of species themselves is of 

particular importance in answering these questions. In addition, functional 

redundancy is critical for maintaining the stability of community functioning 

against environmental perturbations. Hewn in stone is that functional 

redundancy always exists in microbial open systems (Louca et al., 2018). To 

be practical, promoting functional redundancy in systems dealing with organic 

wastes or biomass residues is an important aspect in microbial resource 

management. 
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3.3 Moving from intriguing science to real-world practice – 
Microbiota-based biotechnology 

Ecological theories are particularly crucial to provide predictions on microbial 

community functioning. Making it predictable is an important step to leverage 

fundamental scientific principles and quantitative design to manage the 

communities performing desired functions. Microbiota-based biotechnologies 

are relevant to the fields of environmental technology, agriculture, human health, 

energy and many others (Figure 3.1). 

 

Figure 3.1 The application of microbiota. Figure was adapted from Jiang et al., 

2017. 

Biotechnological processes using pure culture fermentation are economically 

attractive due to their high titers and production rates (Angenent et al., 2020). 

However, considering the utilisation of waste streams or biomass residues, 

mixed culture fermentation is a wiser option with inherent advantages. It can be 

operated in nonsterile conditions to perform multiple functions with robust 

redundancy in the utilisation of complex substrates. Anaerobic digestion is the 

most successful application to date aiming at producing renewable energy in 

the form of methane. Now it is evolving to the production of MCCs (e.g., C6 and 

C8), which are ways more valuable than methane. However, the low product 

concentration and selectivity are still a challenge for any downstream processes.  
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To my knowledge, for open-culture biotechnology, manipulation of 

environmental conditions of the reactor microbiota is the only way for process 

control. In this context, process design with spatial organisation can be a 

promising way to reduce the complexity of reactor microbiota, aiming at steering 

microbial pathways towards the production of the corresponding desired 

products. For example, the study of Xu et al., 2018 demonstrated a 

temperature-phased bioreactor system in converting acid whey into MCCs via 

lactate. Without the addition of external electron donors, they integrated lactic 

acid fermentation in a first phase (thermophilic and mildly acidic conditions) with 

CE in a second (mesophilic conditions), showing lactate-based CE within 

carboxylate platform to be a promising waste stream recovery strategy. This 

PhD thesis also emphasised the importance of in situ lactate formation in the 

lactate-based CE process, by taking initiatives to valorise carbohydrate-rich 

waste streams in a maximal way.  

Another example for the exploration of spatial organisation came to the defined 

mixed culture fermentation in a biofilm membrane reactor system (Shahab et 

al., 2020). By adopting strategies of synthetic ecology and process engineering, 

they constructed an artificial food chain with cross-kingdom microbial consortia 

including an aerobic fungus, lactic acid bacteria and lactate-based chain-

elongating bacteria, which can convert the complex substrate lignocellulose to 

valuable platform chemicals such as butyrate, valerate and caproate. This 

groundbreaking study successfully presented the possibility of engineering 

stable and controllable synthetic communities with the utilisation of their 

ecological niches. 

Despite our broad scientific interest in knowing microbiota from multiple 

environments, a way to synthesise all the gained knowledge into best practice 

would advance the microbiota-based biotechnologies to diminish our 

dependence on fossil resources. Given our nascent knowledge of microbial 

ecology at the moment, it is a long and hard way of microbiota engineering. 

Thus, working together with multidisciplinary experts is essential to turn the 

challenge into opportunities and to finally realise the dream of a circular 

economy. 
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	Figures
	Figure 1. Performance of bioreactors. Concentrations of chain elongation products and lactate, as well as yields of chain elongation products in bioreactors A (a) and B (b) at three pH levels. Chain elongation products: C4, n-butyrate; C6, n-caproate;...
	Figure 2. Longitudinal changes in alpha diversity at three pH levels. Based on the relative abundance of ASVs, we calculated the alpha diversity represented by diversity of order one (1D) (a), evenness of order one (1E) (b) and richness (c). Diversity...
	Figure 3. Effects of pH increase and time on bacterial community composition. a, A variance-based compositional principle component analysis (PCA) biplot based on Aitchison distance. Dots are named according to sampling days. Ellipses of 95% confidenc...
	Figure 4. pH bioindicators determined by random forest classification accurately predict the different pH levels. a, A recursive feature elimination plot illuminates the model accuracy changes as a function of ASV count. The top-ranked 18 ASVs (pH bio...
	Figure 5. Co-occurrence networks for the three individual pH levels. Edges indicate a coefficient > 0.5 for positive correlations and < -0.5 for negative correlations. Edge thickness reflects the strength of the correlation. The size of each ASV node ...
	Table 1. Partial Mantel tests showing significant correlations between the time-corrected dissimilarities of microbial community composition and process parameters.
	arm, the correlation coefficient based on partial Mantel test, in which time was controlled. The permutation test compares the original rm to rm computed in 9999 random permutations.
	bThe reported P value is one-tailed.
	cConc., concentration
	Table 2. Metagenome-assembled genomes (MAGs) with the same taxonomy as ASVs.

	2.3.2 Supplementary information
	Figure S1. Alpha rarefaction curves. ASVs of all samples were rarefied to an equal sequencing depth of 21,389 reads. Colours represent the different samples.
	Figure S2. Daily consumption of xylan in bioreactors. During the fluctuations at pH 6.0 (day 67), an intensive sampling shows the fed water-soluble xylan was fast consumed in both bioreactors. A and B stand for bioreactors A and B. Error bars represen...
	Figure S3. Gas production of bioreactors. Daily gas production and composition in bioreactors A (a) and B (b), respectively, at three pH levels. Error bars indicate the standard deviation.
	Figure S4. Biomass production of bioreactors. Cell concentration and biomass yield in bioreactors A (a) and B (b) at three pH levels. The carbon number of cell biomass was calculated by assuming an elemental biomass composition of CH1.8O0.5N0.2 (molar...
	Figure S5. Microbial community composition profiles of bioreactors. Based on amplicon sequencing of 16S rRNA genes, the taxonomic classification of amplicon sequence variants (ASVs) was categorised at the phylum (a), class (b), order (c), family (d) a...
	Figure S6. Longitudinal changes in diversity and evenness of order two of bioreactor communities. Based on the relative abundance of ASVs, we calculated the alpha diversity represented by diversity of order two (2D) and evenness of order two (2E), whi...
	Figure S7. Dissimilarities in bacterial community composition (beta-diversity). Principal coordinates analysis (PCoA) based on Bray-Curtis dissimilarities of microbial community composition in bioreactors. Dots are named according to sampling days. El...
	Figure S8. Variation partitioning analysis (VPA) showing the relative importance of pH and time on microbial community variations. VPA was used with redundancy analysis (RDA), and multiple partial RDAs were ran to determine the partial, linear effect ...
	Figure S9. Nested cross-validation of random forest classification in the prediction of pH levels for each sample. a, Confusion matrix for the random forest classifier of all samples at three pH levels. For model optimisation, two layers of K-fold (K ...
	Figure S10. The core time-dependent taxa of individual pH levels. Using relative abundance data of ASVs of both bioreactors, a Microbial Temporal Variability Linear Mixed Model (MTV-LMM) was applied to identify time-dependent taxa of each individual p...
	Figure S11. Co-occurrence network for the entire period of reactor operation. Edges indicate the significant (P < 0.05) correlations. Edge thickness reflects the strength of the correlation. Size of each ASV node is proportional to the mean relative a...
	Table S1. Linear mixed-effects model results for diversity of order one (1D). We consider time and pH as the fixed effects, and bioreactor as the random effect.
	aVariance of pH
	bVariance of bioreactor [treatment of bioreactor B]
	cCovariance of pH and bioreactor (random intercept)
	Table S2. Linear mixed-effects model results for evenness of order one (1E). We consider time and pH as the fixed effects, and bioreactor as the random effect.
	aVariance of pH
	bVariance of bioreactor [treatment of bioreactor B]
	cCovariance of pH and bioreactor (random intercept)
	Table S3. Linear mixed-effects model results for Richness. We consider time and pH as the fixed effects, and bioreactor as the random effect.
	Table S4. Linear mixed-effects model results for the relative abundance of Clostridium IV sp. ASV008 at the different pH levels. We consider time and pH as the fixed effects, and bioreactor as the random effect.
	Table S5. Linear mixed-effects model results for the relative abundance of Clostridium sensu stricto sp. ASV009 at the different pH levels. We consider time and pH as the fixed effects, and bioreactor as the random effect.
	Table S6. Linear mixed-effects model results for microbial community composition that is represented by the PC1 from the Aitchison distance-based principal component analysis.
	Table S7. Linear mixed-effects model results for microbial community composition that is represented by the PC1 from the Bray-Curtis distance-based principal coordinate analysis.
	Table S8. Summary statistics of networks.


	2.4 Draft genome sequences of three Clostridia isolates involved in lactate-based chain elongation
	Bin Liu, Denny Popp, Heike Sträuber, Hauke Harms, Sabine Kleinsteuber #
	Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
	# Correspondence to Sabine Kleinsteuber: sabine.kleinsteuber@ufz.de
	Published in Microbiology Resource Announcements, 2020, 9: e00679-20.
	https://doi.org/10.1128/ MRA.00679-20

	2.5 Three novel Clostridia isolates produce n-caproate and iso-butyrate from lactate: comparative genomics of chain-elongating bacteria
	Bin Liu 1, Denny Popp 1, Nicolai Müller 2, Heike Sträuber 1, Hauke Harms 1 and Sabine Kleinsteuber 1,*
	1 Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany; liu.bin@ufz.de (B.L.); denny.popp@ufz.de (D.P.); heike.straeuber@ufz.de (H.S.); hauke.harms@ufz.de (H.H.); sabine.kleinsteuber@ufz.d...
	2 Department of Biology, University of Konstanz, D‐78457 Konstanz, Germany; nicolai.mueller@uni-konstanz.de (N.M.)
	* Correspondence: sabine.kleinsteuber@ufz.de; Tel: +49-341-235-1325
	Submitted (November 2020)
	2.5.1 Main text
	Abstract: The platform chemicals n-caproate and iso-butyrate can be produced by anaerobic fermentation from agro-industrial residues in a process known as microbial chain elongation. Few lactate-consuming chain-elongating species have been isolated an...
	Keywords: Novel clostridial species; Carboxylate platform; Medium-chain carboxylates; Branched-chain carboxylates; Anaerobic fermentation; Reverse β-oxidation
	1. Introduction
	Speciality chemicals such as n-caproate and iso-butyrate are valuable products of the carboxylate platform, with a broad range of potential applications in agriculture and industry [1–3]. For example, n-caproate can be used as promoter of plant growth...
	The metabolic process to produce n-caproate by anaerobic fermentation is called microbial chain elongation, also known as reverse β-oxidation. Some strictly anaerobic bacteria are known as chain elongators that use ethanol as electron donor providing ...
	Recently, we reported on a complex bioreactor community that produced n-caproate from lactate-rich corn silage [17], and later a mixed culture producing n-caproate was enriched with lactate and xylan in a daily-fed bioreactor [18]. To investigate func...
	The objectives of this study were to investigate the product spectrum of the three new lactate-consuming strains and to give insights into their metabolism based on their genomes. Batch experiments were conducted to explore the fermentation profiles w...
	2. Materials and Methods
	2.1 Enrichment, isolation and identification of lactate-consuming strains
	Anaerobic fermentation broth from a caproate-producing reactor (38 C, pH 5.5 and hydraulic retention time of 4 d) fed with corn silage was initially taken as the inoculum. Serum bottles (120 mL) with 45 mL mineral medium [18] containing 5 g/L lactic a...
	A single bottle of the fourth transfer was used to isolate lactate-consuming strains. The culture was plated on complex agar (medium DSM104c with additional 5 g/L lactic acid) and incubated in an anaerobic chamber at 37 C for two weeks. Colonies were ...
	2.2 Lactate utilisation in batch cultivation
	Batch cultures of isolates BL-3, BL-4 and BL-6 were run in mineral medium with lactate as sole carbon source and 0.05% yeast extract as described above. The bottles were inoculated with 5 mL seed cultures (optical density at 600 nm [OD600] ~ 2), which...
	2.3 Analytical techniques
	Liquid samples of the batch cultures were centrifuged for 10 min at 20,817 × g (Centrifuge 5417R; Eppendorf, Hamburg, Germany). Acetate, lactate, propionate, iso-butyrate, n-butyrate, n-valerate, n-caproate, n-caprylate and ethanol concentrations of t...
	2.4 Gene prediction and annotation
	We sequenced the genomes of the three isolates with the Oxford Nanopore Technologies MinION and the Illumina NextSeq platforms, and three complete genomes were constructed using a hybrid assembly approach as described previously [19]. Prediction and f...
	2.5 Phylogenetic analysis and taxonomic classification
	Phylogenetic analysis of 16S rRNA gene sequences was performed on the Phylogeny.fr platform [33]. According to the Nucleotide BLAST (Basic Local Alignment Search Tool) comparison result against the rRNA/ITS databases (16S ribosomal RNA sequences (Bact...
	A phylogenomic tree of strains BL-3, BL-4, BL-6 and other chain-elongating bacteria was calculated based on genomic similarity. The genomic similarity was estimated using Mash [41], which computes the distance between two genomes. This distance D is c...
	Default settings were used for all tools unless otherwise specified.
	2.6 Pan-genome analysis
	The interface Comparative Genomics of the MicroScope platform was employed to analyze the pan-genome, core-genome and variable genome for our newly sequenced genomes and for all the available genomes of chain-elongating bacteria in the comparison. The...
	2.7 Data availability
	All data generated or analysed during this study are included in this published article and its additional files. The full-length 16S rRNA gene sequences of the three isolates have been deposited in the European Nucleotide Archive (ENA, https://www.eb...
	3. Results and Discussion
	3.1 Isolation and identification of lactate-consuming strains
	After incubation and several transfers of fermentation broth from a corn silage reactor with lactate as substrate, we enriched a mixed culture that produced acetate, n-butyrate, iso-butyrate and n-caproate (Figure S1). Isolation of lactate-consuming s...
	3.2 Conversion of lactate to n-caproate and iso-butyrate in batch cultivation
	The pure culture batch experiments showed that all three newly isolated strains can convert lactate into acetate, n-butyrate, iso-butyrate and n-caproate (Figure 1). Started at an initial pH 5.5, the three strains displayed different product spectra e...
	3.3 Genomic heterogeneity of strains BL-3, BL-4, and BL-6
	The genomes of all three isolates were sequenced to better understand the genetic background of their metabolism, particularly of n-caproate and iso-butyrate formation from lactate. Based on the hybrid genome assembly of short reads (Illumina) and lon...
	3.4 Genomic diversity of the reported chain-elongating bacterial strains
	In addition to our newly isolated strains, we included eleven strains that have been experimentally validated of microbial chain elongation (Table 1). Two metagenome-assembled genomes (MAGs; Candidatus Pseudoramibacter fermentans and Candidatus Weimer...
	We constructed a phylogenomic tree to understand the evolutionary relationships between our isolates and other chain-elongating species (Figure 3a). The two main branches delineate that strain BL-3 is evolutionary distant from BL-4 and BL-6, as the la...
	The number of predicted CDSs in the chain-elongating bacteria ranges from less than 2,000 to more than 4,600 (Table 1), which suggests substantial heterogeneity of their genomes. The pan-genome analysis of the genomes of all 14 strains revealed a tota...
	Functional distribution of homologous gene families in the core-genome shows that the majority encode components of well-conserved housekeeping genes for the basic metabolism of bacteria, including DNA and RNA metabolism, protein processing, folding a...
	3.5 Genetic basis of lactate conversion to n-caproate and iso-butyrate
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	3.2 Linking microbial community structure to functioning
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	Figure 3.1 The application of microbiota. Figure was adapted from Jiang et al., 2017.
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