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Abstract

The main areas in mathematics in which this thesis lies are real al-
gebraic geometry, computational algebraic geometry, and commutative
algebra. This dissertation mainly revolves around the real algebraic ge-
ometry of curves, especially curves of degree six and the hyperplanes
that have special intersections with them.

Chapter 2 consists of our computational study on smooth curves
of degree six in the real projective plane. In the Rokhlin–Nikulin clas-
sification, there are 56 topological types, refined into 64 rigid isotopy
classes. We develop methods for determining the topological type of
a given sextic and, using our implementation, we compute empirical
probability distributions on the various types. We list 64 explicit rep-
resentatives with integer coe�cients, and we perturb these to draw
many samples from each class. This allows us to explore how many of
the bitangents, inflection points and tensor eigenvectors are real. We
also study the real tensor rank and the avoidance locus, which is the
locus of all real lines that do not meet a given sextic. This is a union
of up to 46 convex regions, bounded by the dual curve. Finally, we use
the correspondence between surfaces of degree four and plane sextic
curves to construct quartic surfaces with prescribed topology.

The objects of our study in Chapters 3 and 4 are canonical curves
of genus four, called space sextics. These curves are the intersections
of a quadric and a cubic surface in three dimensional projective space.
A space sextic curve has exactly 120 complex tritangent planes corre-
sponding to its 120 odd theta characteristics.

In Chapter 3, we present algorithms for computing real tritangent
planes to space sextics, and we study the associated discriminants.
However, our main focus is on sextic curves that arise from blowing up
the projective plane at eight points. In particular, we give algorithms
to construct such sextic curves and their tritangents. The number
of planes that are tangent to a space sextic at three points with real
coordinates vary widely. We show that both 0 and 120 are attained.
This solves a problem suggested by Arnold Emch in 1928.

In Chapter 4, we develop e�cient inverses to the algorithm of con-
structing space sextics arising from del Pezzo surfaces of degree one.
This means, we present an algorithm to either reconstruct the original
eight points in the projective plane from a space sextic or certify that
this is not possible. Moreover, we extend a construction of Lehavi [60]
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ABSTRACT ii

which recovers a space sextic from its tritangents and Steiner system.
All algorithms in this chapter have been implemented in magma.

Chapter 5 o↵ers an algebraic study of an optimization problem
with a long history. The Fermat-Weber point is the unique point that
minimizes the sum of distances from n given points in the real Euclidean
space. For n points with integer coordinates where n � 5, the Fermat-
Weber point is no longer expressible by radicals over the field of rational
numbers. It is the root of an irreducible monic polynomial of high
degree with rational coe�cients. We present our computational results
on the algebraic degree of the Fermat-Weber point over rationals. We
also derive a conjectured formula for that degree.
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CHAPTER 1

Introduction

Algebraic geometry, the broad area in which this manuscript falls,
explores solution sets of systems of polynomial equations. They are
called varieties. In classical algebraic geometry, for some fundamental
theorems to hold, the ground field is often assumed to be algebraically
closed, such as the field of complex numbers C. By restricting the main
objects of study, i.e. varieties and mappings between them, to the field
of real numbers R, we restrict to a branch of algebraic geometry known
as real algebraic geometry.

Working with the real numbers as the ground field brings the very
abstract objects and methods of algebraic geometry into applications
in industry and science. For instance, several optimization and convex
geometry problems arising from economics, chemistry, and biology can
be formulated as real algebraic geometry problems. Another important
aspect of restricting to R is the ability to produce fast computations
and visualizations for numerous problems in small dimensions.

This chapter aims for making the reader familiar with the main ob-
jects of study in this thesis as well as their brief history and importance.
In addition, the overall scope of the chapters is given in this introduc-
tion. We start by introducing some notation and elementary defini-
tions. Apart from Chapter 4, which inherits the key definitions and
notations from Chapter 3, the remaining chapters are self-contained.
Furthermore, each chapter starts with a detailed outline of its sections.

The projective space, of dimension n over a field k, is denoted by
Pn
k , or simply Pn when the field is arbitrary or known from context. For

readers that are not familiar with projective spaces, it is intuitive to
think of the n dimensional (a�ne) space kn. Varieties in Pn are defined
by homogeneous polynomial equations. A hypersurface is the zero set
of a single polynomial and a hyperplane is a hypersurface defined by
a linear form. The one-dimensional varieties in Pn are called algebraic

curves, or curves for short. The degree of a curve in Pn
k is geometrically

defined as the number of intersection points of a generic hyperplane
with the curve in Pn

k̄
, where k̄ is the algebraic closure of k.

1



1. INTRODUCTION 2

There are several intrinsic properties assigned to curves that are
well-studied over the field of complex numbers. However, there is not
much known about these properties when restricting to curves over the
real numbers. A crucial direction of inquiry is the study of hyperplanes
associated with the curve. The possibility of reconstructing some fam-
ilies of curves from hyperplanes that have special intersections with
them, highlights this importance. We now explore two such examples
in projective spaces of dimensions two and three, both of which will be
discussed in detail within this thesis.

Curves and lines in the projective plane P2 are the simplest examples
of hypersurfaces and hyperplanes. A curve in the projective plane is
called a plane curve, and it is the zero set of a single homogeneous
polynomial with three unknowns. Let C ✓ P2 be a plane curve defined
by f(x, y, z) = 0. Its dual C_

✓ (P2)_ is a plane curve that consists of
points (a : b : c) corresponding to the lines ax + bc + cz = 0 that are
tangent to C. Plücker’s formula relates certain numeric invariants of
algebraic curves to corresponding invariants of their dual curves. In
particular, it counts the singularities of curves over an algebraically
closed field.

The lines that are tangent to a plane curve C of degree d at two
points, called bitangents, correspond to certain singularities of the dual
curve C_. Bézout’s theorem says that for a bitangent line to exist, d has
to be larger than three and by Plücker’s formula over C the number
of such lines only depends on d and equals 1

2(d � 3)(d � 2)d(d + 3).
Therefore, for a curve C ✓ P2

C of any given degree d, the number of
lines that are tangent to C at two points is known.

After passing to R, the largest degree for which this number has
been well-studied is four, i.e. the first case for which a bitangent is
defined. There are only experimental results regarding the count of
real bitangents to a curve in P2

R for higher degrees. The ‘experiment’
can be to write a program to generate many random curves of a certain
degree d and to count how many of the complex bitangents are real.
Advanced computational tools are indispensable for such studies.

In three-dimensional projective space P3, hypersurfaces and hyper-
planes are called surfaces and planes, respectively. The common zero
set of two homogeneous polynomials in four variables, i.e. the inter-
section of two surfaces, is a curve in P3, which we call a space curve.
The natural analogous to lines that are tangent to a plane curve at two
points are planes tangent to a space curve at three points.

Examples of space curves for which these planes are well-studied
over the complex numbers are curves of degree six, called space sextics.
The smooth space sextics in P3

C arise from intersecting a quadric and a
cubic surface. These are surfaces defined by polynomials of degrees two
and three, respectively. The definition of the degree of a curve implies
that a plane intersects a space sextic at six points in P3

C .
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There are exactly 120 planes, called tritangents, corresponding to
120 odd theta characteristics of a space sextic C. Geometrically, tritan-
gents are planes that are tangent to C at every points of intersection.
If C lies on a smooth quadric surface, every such plane is a tritangent.
However, if the quadric surface is singular, there are infinitely many
planes passing through its singularity that are tangent to C at every
intersection point. In this case, tritangents are the planes tangent to C
at three points and do not pass through the singularity of the quadric
surface. The tritangent planes reflect notable facts about the intrin-
sic properties of a space sextic as well as its extrinsic geometry. For
instance a space sextic curve can be reconstructed from its tritangent
planes.

In early 20th century the answer to many questions regarding space
sextics over the real numbers seemed to be known to real algebraic ge-
ometers. However, recently it has been shown that not all of them
were correct: Let C be a smooth space sextic. The number of con-
nected components of the real part CR ✓ P3

R is at most five, due to the
Harnack bound [37]. From 120 complex tritangent planes associated
to C, the count of the real ones only depends on the number of real
components. All complex tritangents are real if and only if CR has
five components. Such a curve was constructed by Arnold Emch [26]
in 1928. Furthermore, he used the symmetry of his construction and
claimed that all 120 tritangents intersect the curve only at real points.

Figure 1.1. Arnold Emch and his construction of a
space sextic with five real components on a smooth
quadric surface.

This claim was proven wrong by Corey Harris and Yoav Len in 2018,
which left the problem open again [38]:

? Does there exist a space sextic C with 120 real tritangent planes, all

intersecting C only at real points?
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This thesis mainly revolves around curves of degree six and their ‘re-
ality problems’ in two and three-dimensional projective spaces. Broadly
speaking, reality problems treat the real solutions to the defining equa-
tions of a curve and the hypersurfaces intersecting it in special manners.
It also includes the investigation of several other features associated
with the real part of the curve as well as the complex curve which can
be viewed as a two-dimensional real manifold. Plane sextics and space
sextics, are both of great importance, especially in computational and
real algebraic geometry.

In the projective plane, the topological classification of plane sextic
curves o↵ers several problems that can be investigated over the real
numbers:

The real topological classification of smooth plane curves is a
classical theme in algebraic geometry. It basically asks: by plot-
ting the zero set of a degree d polynomial in the real projective
plane P2

R, what are the possible mutual positions of the con-
nected components that one can expect? More than a century
ago, David Hilbert asked for the first non-trivial case, i.e. the
topological classification of curves of degree six:

A thorough investigation of the relative position of the sep-

arate branches when their number is the maximum seems to me

to be of very great interest, and not less so the corresponding

investigation as to the number, form, and position of the sheets

of an algebraic surface in space.

In 1978, after about seven decades of proof and disproof, D.
A. Gudkov [35] solved this problem which is known as Hilbert’s
16th problem. The di�culty of the topological classification in-
creases dramatically as d increases. So far, it is only solved up
to degree seven. A complete classification of plane sextics in P2

R
would provide a viable source to explore their features and in
particular, several related reality problems.

The study of the avoidance locus associated to a plane curve
is one such example: points corresponding to the lines that miss
a curve C ✓ P2

R form a union of convex connected components
in the dual projective plane (P2)_R. Exploring these components
is directly related to the real topological type of the curve and
its real bitangents. More examples of invariants associated with
a plane sextic that can be investigated over R are its rank and
the number of its inflection points. Additionally, one can ask
analogous questions for surfaces of degree four in P3 arising from
plane sextic curves.
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In three-dimensional projective space P3, an important family of
space sextics arises from blowing up the projective plane at eight points.
This simplifies several reality problems concerning such curves:

Smooth space sextics are the canonical curves of genus four in
P3, where the genus of a curve is the number of holes in the
corresponding manifold. Space sextics provide a rich example
for us to understand several geometric features of non-planar
curves. There is a classical construction that relates del Pezzo

surfaces of degree one to a family of space sextics.
This construction starts with a del Pezzo surface of degree

one which is the blow-up of the projective plane P2 at eight points
in general position. The resulting space sextic is smooth and it
lies on a singular quadric surface in P3. Several reality problems
related to such sextics have equivalent descriptions in terms of
the reality of given points and their relative configurations.

Answering the question by Harris and Len with intersecting
samples of quadric and cubic surfaces, if possible, is computa-
tionally very hard. In this approach one needs to keep track of
the number of real components in the intersection of two sur-
faces along with the reality of their intersections with all tritan-
gents. However, by restricting to sextics that are constructed
from blowing up the plane at eight points, we can rephrase this
question:

?What are the coordinates of eight points in the plane that give
rise to the desired space sextic?

Roughly speaking, this construction translates the problem
of intersecting surfaces in three dimensional space to the inter-
sections of planar curves where exact computations are much
more feasible. Apart from dealing with the historical problem
due to Emch, the ‘eight points construction’ of space sextics
has advantages in answering more general questions regarding
the real part of the curve. For instance it relates the number of
components of the real curve to the number of real points among
the original eight points. Therefore, it simplifies the exploration
of features associated to real space sextics with di↵erent number
of connected components.

The structure of this manuscript is as follows. Chapter 2 addresses
plane sextics and Chapters 3 and 4 revolve around the space sextics and
their tritangents. In Chapter 5, we report on computational results to
an optimization problem which arose historically in economics due to
Alfred Weber. Although this problem has a di↵erent flavor in its main
objects of study, the computational methods and tools that we apply
are similar to the ones used in the chapters before. Advanced com-
putational tools including mathematica, maple, and in particular
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specialized computer algebra systems such as singular, macaulay2
and magma play a major role in all chapters.

Chapter 2 starts with introducing two important classifications of
smooth plane sextics: the topological and rigid isotopy classifications.
The latter is a finer classification since, in addition to the topology of
the curve in the real plane, it concerns the behavior of its real part
inside the complex curve. This classification is based on a hypersur-
face, called the discriminant, in the space of all real plane sextic curves
P27
R . The discriminant has degree 75 and it divides the whole space into

64 connected components, one for each rigid isotopy type. Crossings
of the discriminant, which we call discriminantal transitions, come in
three di↵erent forms. The 64 rigid isotopy types, grouped into 56 topo-
logical types, carry a poset structure where the cover relations are the
discriminantal transitions. The exact computation of the discriminant
as well as a detailed study of all three forms of transitions are presented
in this chapter.

Several di↵erent methods from the literature combined with our sys-
tematic tricks are applied to construct a ‘nice’ representative in each
component of the complement of the discriminant in P27

R . We wrote
code that given the defining polynomial of a plane sextic returns its
topological type after checking its smoothness. Using the 64 represen-
tatives to produce many curves in each component together with our
fast code to check the type provided us with a large and reliable sam-
ple space. We use our samples to explore several features associated to
plane sextics over the field of real numbers.

In addition to the experimental results on reality questions, we give
an algorithm which uses the real bitangents to construct the avoidance
locus. We prove that for a smooth plane curve of degree d the avoid-
ance locus is the union of m convex connected components where m
is bounded above by a degree four polynomial in d. The upper bound
evaluates to 46 for plane sextics, and we show that any number between
0 and 46 is realizable by plane sextic curves.

In Chapter 3 we answer the historical problem originating from
Emch’s mistake in the construction of a space sextic where all the real
tritangents only touch the curve at real points. We call such planes
totally real tritangents and we prove that there exists a space sextic
with 120 totally real tritangents by presenting one such curve.

Although we give a method to compute the tritangents for an ar-
bitrary space sextic, we advise against using it for the purpose of com-
putational proof. Instead, we recommend restricting to the family of
sextics that lie on a singular quadric and therefore, they are constructed
from del Pezzo surfaces of degree one. In particular, we give an algo-
rithm to construct space sextic curves that arise from blowing up P2 at
eight points and provide algorithms to compute the 120 tritangents.



1. INTRODUCTION 7

In P2 eight given points define 120 pairs of curves that satisfy certain
properties. Each pair maps to a unique tritangent plane. The intersec-
tion of two planar curves in such a pair contains three points which do
not lie in the set of our eight original points. We show that there is a
one-to-one correspondence between these points and the three points in
P3 where the corresponding tritangent plane touches the space sextic.

Therefore, to answer the above-mentioned question asked by Harris
and Len, we present the coordinates of eight points in the projective
plane and show that the reality of coordinates of eight points together
with the reality of all intersections between planar curves in 120 pairs
results in the desired space sextic.

More generally, in this chapter we show how to control the number
of components of a real space sextic curve by the choices of coordinates
of eight original points: By picking s pairs of 8 points to be complex
conjugated non-real pairs, for 0  s  4, we obtain a space sextic with
5� s components in P3

R. Since the number of real tritangents only de-
pends on the number of components of the real curve, this is a powerful
tool to keep track of the count of real and totally real tritangents.

Furthermore, in the space of all configurations of eight points (P2)8,
we define the tritangent discriminant locus. It divides the whole space
into open subsets in such a way that within each subset the number of
totally real tritangents to the arising space sextics is constant. We show
that the tritangent discriminant locus is a union of 120 hypersurfaces,
one for each pair of special curves in the plane. Next, we discuss such
a division in the more general space P9

⇥ P19, i.e. the space of an
arbitrary space sextic from intersecting a quadric and a cubic surface.
In both cases, we compute the degrees of all hypersurfaces that are
involved.

Finally, at the end of Chapter 3, there is a list of ten questions
presented as the ‘natural follow-ups’. The last one is motivation for the
next chapter: David Lehavi [60] shows that a general space sextic can
be reconstructed from its 120 tritangents. How to do this in practice?

In Chapter 4, which relies on Chapter 3, we present several algo-
rithms, all implemented in magma. In the construction of a space
sextic C from a del Pezzo surface X of degree one, the 120 pairs of
special plane curves that we discussed above map to 120 pairs of ex-
ceptional curves on X. There is a rational function that maps X to
a double cover of a singular quadric surface in P3 branched along the
space sextic C. It maps each of the exceptional pairs to a tritangent
plane. This intermediate step whose explanation we skipped before, is
the key point for the inverse direction:

Given a space sextic curve C which comes from a del Pezzo surface
of degree one, we give an algorithm that constructs a collection of eight
points in the plane which give rise to a space sextic isomorphic to C.
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First we compute the defining equation of the del Pezzo surface X of
degree one. Among the 240 exceptional curves on X, we find a (non-
unique) set of 8 curves that satisfy certain properties. The blow-down of
X along these 8 exceptional curves into P2 marks the desired 8 points.

Over the complex numbers, Lehavi [60] explained how to recover
a generic space sextic C on a smooth quadric surface from its 120
tritangent planes. In this method, first we present the reconstruction
of the unique quadric surface containing C and then the reconstruction
of a cubic surface which cuts out the curve on the quadric.

Lehavi uses the Steiner system associated to C in this reconstruc-
tion method. This is a set consisting of 255 blocks called Steiner com-

plexes. Each block is a set of 28 pairwise disjoint length-two-subsets
of the 120 tritangents. There are certain syzygetic relations defining
these sets, where four tritangents are syzygetic if 4⇥3 = 12 pairwise
intersection points of them with C lie on a quadric surface in P3.

We give algorithms to compute the Steiner system associated to
a space sextic, in both of the cases that C lies on a smooth or on a
singular quadric surface. Moreover, we extend Lehavi’s reconstruction
results to space sextics on singular quadrics and to space sextics over
more general ground fields.

Chapter 5 tackles an optimization problem with real and computa-
tional algebraic geometry methods. We translate a minimization prob-
lem into finding the number of solutions to a system of polynomial
equations with integer coordinates.

The first roots of the problem go back to the 17th century when
Pierre de Fermat started the challenge by asking for the location of a
point that minimizes the sum of the Euclidean distances from three
given points in the plane. By the end of the 18th century, the exact
location of the minimizer was found for three and for four given points
in the plane, using basic geometrical tools such as straight-edge and
compass. Therefore, it is expressible in terms of the coordinates of
given points and by radicals over the rational numbers Q.

Later, the economist Alfred Weber generalized Fermat’s question
to n given points. The point that minimizes the Euclidean sum of
the distances from n given points in the plane is called Fermat-Weber

point. Chandrajit Bajaj [4] in 1984 proved that in general for n given
points, where n � 5, the Fermat-Weber point is no longer expressible
by radicals over Q. He showed that the coordinates of this point are
roots of irreducible monic polynomials of high degree with rational
coe�cients. This unique degree is called the algebraic degree of the

Fermat-Weber point over Q.
In 2015, Jean-Charles Faugère, Mohab Safey El Din, Bernd Sturm-

fels and Rekha Thomas conjectured this degree for the more general
case where n given points are in d dimensional space Rd. Chapter 5
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o↵ers an algebraic study of this optimization problem. We give an alge-
braic explanation of the conjecture for the case that n given points are
in R2. Finally, we present partial and computational results regarding
the proof of the conjecture.



CHAPTER 2

Plane Sextic Curves, an Experimental Approach

The topological classification of the real algebraic curves in the
projective plane has become a prominent topic in mathematics since
it has appeared in the well-known Hilbert’s problems list. In 1900, a
German mathematician David Hilbert published a list of twenty-three
problems that were all unsolved at the time. Some of these problems
are still open and several of them were very influential for 20th and
21st century mathematics. The topological classification of smooth real
algebraic curves in P2

R is a classical theme is real algebraic geometry
that originates from the Hilbert’s sixteenth problem.

An algebraic curve C in the real projective plane P2
R is the zero set of

a homogeneous polynomial in three variables. The degree of C is defined
to be the degree of the defining polynomial. In this chapter an algebraic
curve is simply called a curve. The topological type of a curve C in P2

R is
the mutual position of the connected components of C. More precisely,
two plane curves C and C 0 have the same type if some homeomorphism
of P2

R ! P2
R restricts to a homeomorphism CR ! C 0

R. Hilbert’s sixteenth
problem asks for the topological classification of smooth curves of degree
six as the classification is quite manageable for the lower degrees.

Let C be a smooth curve of degree d in P2
R. For odd d, the curve C

consists of exactly one pseudoline and some ovals. The complement of
a pseudoline has only one connected component in the real projective
plane P2

R while the complement of an oval has two, namely, inside and
outside of the oval. The inside of an oval O is homeomorphic to a
disk, and the outside to a Möbius strip. An oval O1 contains another
oval O2 if O2 lies in the inside of O1. In that case, O1 and O2 are
nested ovals. An oval is empty if it contains no other ovals. If d is even
then it only consists of ovals. The number of connected components
of a smooth plane curve C together with the information of how the
ovals are nested determines the topological type of C. The number of
connected components of C is bounded above by

1

2
(d� 1)(d� 2) + 1,

which is known due to Harnack (1876) and is called the Harnack bound.
The topological classification is trivial for smooth plane curves of

degree less than six. The triviality follows from a well-known result of
Bézout’s theorem which states that any line in the real projective plane

10
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intersects a smooth curve C of degree d in at most d real points. Let m
be the maximum number of ovals of C. Thus, m is the Harnack bound
for even d and one less for odd d. For d  5, any mutual position of the
0 to m ovals, together with the unique pseudoline for the odd degree
case, corresponds to a topological type if it does not contradict the
stated result of Bézout’s theorem. Example 2.1 shows the topological
classification for d = 4.

Example 2.1 Let C be a smooth plane curve of degree four. It has
at most 1

2(4 � 1)(4 � 2) + 1 = 4 connected components that are all
ovals. Figure 2.1 shows all of the possible topological types of C. This
can either be empty or consist of one to four empty ovals. If there is a
nesting of ovals then there can not be more than two ovals, otherwise
there will be a line intersecting C in more than 4 real points as it is
shown in the right-most picture.

Figure 2.1. The topological classification of the
smooth plane quartics. The configuration that is crossed
out contradicts Bézout’s theorem.

There is a unique topological type for smooth curves of degree two
since conics are all homeomorphic in P2

R. Cubic forms can be either a
pseudoline or the union of a pseudoline and an oval. Curves of degrees
four, and five are called quartics and quintics, respectively. There are
simple constructions for the smooth plane curves of these degrees. Fig-
ures 2.2 and 2.3 present one singular curve in red for each of them. You
can see that perturbing these singular curves at their nodes gives rise
to all the topological types of the smooth plane quartics and quintics.

The challenge of the topological classification for smooth plane
curves increases dramatically with d, where d is the degree. The rea-
son is that not all the configurations of ovals that satisfy the Harnack
bound and do not contradict Bézout’s theorem, can be easily con-
structed or proven to be non existence for d � 6. The topological
classification problem has been solved up to d = 7, thanks to con-
tributions by many mathematicians, including Hilbert [41], Rohn [75],
Petrovsky [69], Rokhlin [76], Gudkov [35], Nikulin [68], Kharlamov [48],
and Viro [84, 88, 85].

In this chapter the focus is on the case d = 6 which is part of the
Hilbert’s sixteenth problem. Curves of degree six are called sextics. The
Harnack bound for the smooth plane sextics is 11. There are 68 mutual
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Figure 2.2. All non-empty topological types for the
smooth plane quartics are constructible by perturbing
the union of two conics, intersecting transversally.

Figure 2.3. A smooth plane quintic has eight possible
topological types. It can be the union of a pseudoline
and n empty ovals, where 0  n  6, or it is the union
of a pseudoline and one oval nested in another. All of
these types are constructible from the singular quintic
that is the union of two conics and a line, intersecting
transversally as shown in the red picture.



2. PLANE SEXTIC CURVES, AN EXPERIMENTAL APPROACH 13

positions for 0 to 11 ovals that any line in P2
R intersects them in less than

7 points. Hilbert and Harnack proved that 54 of them correspond to the
topological types of plane sextic curves by introducing a construction
for each. Furthermore, Hilbert conjectured that the type with 11 empty
ovals does not exist. Many mathematicians including Hibert’s students
Kahn [44] and Löbbenstein [62], Wrigh [87], Rohn [75], and McDonald
[65] attempted to prove it. The first rigorous proof was given by I.
G. Petrowsky [69]. Although the non existence of the remaining 13
cases was not proven, Hilbert strongly believed and conjectured that
these 54 types complete the topological classification for plane sextics.
This conjecture was shown to be wrong after 69 years, by the Russian
mathematician Dmitrii Andreevich Gudkov. In 1978, he completed the
answer to the classification problem by finding a construction for two
of the 13 unknown cases and proving that the remaining 11 candidates
can not represent a topological type of a smooth plane sextic. See
Figure 2.4. In addition to the stated result of Bézout’s theorem and
the Harnack bound, there are more prohibitions for the configurations
of ovals. These new limits explain the elimination of 12 out of 68
cases. To formulate these restrictions we need two more numerical
characteristics of a curve. An oval is called even if it lies inside even
number of ovals and is odd otherwise. Denote the number of even ovals
and the number of odd ovals by p and n, respectively.

Theorem 2.2 (Gudkov-Rokhlin congruence) Let C be a plane curve

of degree d = 2k with the maximal number of ovals. The following

congruence holds:

p� n ⌘ k2 mod 8.

This congruence explains why in the top row of Figure 2.4 only
three cases are plane sextic types. Gudkov [34] proved this congruence
for the specific case of d = 6; later Rokhlin [77] gave the first proof for
the general case that was conjectured by Gudkov.

Theorem 2.3 (Gudkov-Krakhnov-Kharlamov congruence) Let C be a

plane curve of degree d = 2k with one less than the maximum number

of ovals, i.e., with
1
2(d � 1)(d � 2) ovals. The following congruence

holds:

p� n ⌘ k2
± 1 mod 8.

This congruence explains why in the second top row of Figure 2.4,
four cases do not correspond to plane sextic types. Gudkov and Krah-
nov [36], and Kharlamov [50] proved this independently.

As Figures 2.2 to 2.4 suggest, a small perturbation of a smooth
curve does not change its topology. The natural question to ask is this:
given two curves of the same degree, when is it possible to deform one
of them to the other one continuously, i.e. without passing any singular
curve? More precisely, take two distinct points in the space of all degree
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Figure 2.4. The picture shows all 68 candidates for
the topological type of a plane smooth sextic at the time
that Hilbert formulated his 16th problem. Hilbert and
Harnack constructed 54 of them. Petrovski proved the
nonexistence of the one that is crossed out. Later, Gud-
kov found the two missing cases that are boxed. The
configurations in black are 56 topological types.

d curves that correspond to two curves with the same topological type.
Does there always exist a continuous path from one to the other not
passing through any point that corresponds to a singular curve? This
motivates us to introduce a finer classification.

Another notion of equivalence comes from the discriminant. The
space of all the plane curves of degree d in P2

R is the projective space

Pd(d+3)/2
R . The points of this space that correspond to the singular

curves form an irreducible hypersurface of degree 3(d � 1)2 which is

called the discriminant and is denoted by � ⇢ Pd(d+3)/2
R .



2. PLANE SEXTIC CURVES, AN EXPERIMENTAL APPROACH 15

The rigid isotopy classes are the connected components of the com-
plement Pd(d+3)/2

R \�. If two curves C and C 0 are in the same rigid
isotopy class, then they have the same topological type, but the con-
verse is not true for d � 5, as shown by Kharlamov [48]. In the case
of d = 5, there are 9 rigid isotopy types and therefore only one of the
topological types appears in two di↵erent components of P20

R \�. This
is the type with 4 ovals and one pseudoline. The rigid isotopy classifi-
cation of plane sextics was completed by Nikulin. It first appeared in
his paper [68] on the arithmetic of real K3 surfaces.

This chapter presents an experimental study of the objects above
for planar degree six curves, conducted with a view towards applied
algebraic geometry. Numerous emerging applications, notably in the
analysis of data from the life sciences, now rely on computational tools
from topology and algebraic geometry. A long-term goal that mo-
tivated this project is the development of connections between such
applications and existing knowledge on the topology of real algebraic
varieties.

The ecosystem to be explored in this particular study is the 27-
dimensional space of plane sextic curves. Our focus lies on experimen-
tation and exact computation with ternary sextics over the integers.
Thus, our model organisms are homogeneous polynomials in Z[x, y, z]6.

The following proposition shows one of the many new results and
questions that can be derived by the computational framework devel-
oped in this chapter. It concerns reducible sextic curves consisting of
six distinct lines. This 12-dimensional family in P27

R is the Chow variety

of factorizable forms.

Proposition 2.4 Configurations of six general lines appear in the clo-

sure of precisely 35 of the 64 rigid isotopy classes. These are the classes

that meet the Chow variety in a generic point. These 35 classes are

marked with an asterisk in Table 2.7, in the column on eigenvectors.

The structure of this chapter is as follows. Section 2.1 is a discus-
sion on the rigid isotopy classification for planar sextics. In Section 2.2
we describe methods for classifying a given ternary sextic according
to Theorem 2.1.1. To determine the topological type we wrote fast
code in Mathematica based on the built-in tool for cylindrical alge-

braic decomposition (CAD, [7]). This is used to sample sextics from
natural probability distributions on R[x, y, z]6 ' R28, so as to find the
empirical distributions on the 56 topological types. Distinguishing be-
tween dividing and non-dividing types is harder. Our primary tool for
this is Proposition 2.4.2. For an alternative approach see [46]. In Sec-
tion 2.3 we present a list of 64 polynomials in Z[x, y, z]6 that serve as
representatives for the 64 rigid isotopy types and we explain several
constructions which we use to find the satisfactory representatives.



2.1. THE RIGID ISOTOPY CLASSIFICATION OF PLANE SEXTICS 16

In Section 2.4, a method for computing the discriminant is pre-
sented and we discuss di↵erent types of discriminantal transitions.
Moreover, we use the 64 polynomial exemplar and the discriminant
to sample from each of the rigid isotopy types for our further experi-
ments. Section 2.5 concerns the subdivision of the dual projective plane
(P2)_R by a curve C_ of degree 30, namely that dual to a given sextic C.
The nodes of C_ are the 324 bitangents of C. We study how many of
them are real for each of the 64 types. These numbers do not depend
on the topological or rigid isotopy type alone. They are reported in
Table 2.7. Real lines that miss CR form the avoidance locus AC . This
is a union of up to 46 convex regions, bounded by the dual curve. In
Section 2.6 we use our local samples to explore inflection points, tensor
eigenvectors, real tensor rank and the final section briefly connects our
studies on plane sextic curves to K3 surfaces.

2.1. The rigid isotopy classification of plane sextics

The discriminant of plane sextic curves is a hypersurface of degree
75 in P27

R whose complement has 64 connected components. There-
fore, there are 64 rigid isotopy types for smooth sextic curves in P2

R.
The following theorem summarizes both topological and rigid isotopy
classifications for the plane sextics [88, §7].

Theorem 2.1.1 (Rokhlin–Nikulin) A degree six smooth plane curve

consists of 0 to 11 ovals. It has 64 rigid isotopy types that are grouped

into 56 topological types with the distribution that is shown in Table

2.1.

ovals 0 1 2 3 4 5 6 7 8 9 10 11 all
topological types 1 1 2 4 4 5 6 7 8 9 6 3 56
rigid isotopy types 1 1 2 4 4 7 6 10 8 12 6 3 64

Table 2.1. Rokhlin–Nikulin classification of smooth
sextics in the real projective plane. The first row is the
number of ovals, the second and third rows are the counts
of rigid isotopy and topological types corresponding to
each number of ovals, respectively.

We denote the type of a smooth plane sextic C in P2
R by (hyp) if

C consists of three ovals, one nested in another and together they are
inside the third oval (“hyp” stands for “hyperbolic”); by n if C consists
of n empty ovals; and finally by (n1)m if C consists of an oval O with
n empty ovals inside and of m further empty ovals lying outside it.

For an irreducible curve C in P2
R, the set CC\CR of non-real points

in the Riemann surface has either one or two connected components.
In other words, the real curve CR either divides the Riemann surface
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CC of real dimension two or not. The rigid isotopy type of a smooth
plane sextic determines whether it is dividing or non-dividing and we
denote it by d or nd in front of the topological type.

All but eight of the 56 topological types correspond to exactly one
rigid isotopy class. Each of the following eight types consists of two
rigid isotopy classes [68, p. 107], explaining the di↵erence between the
second row and third row of the table in Theorem 2.1.1:

(2.1) (41) (21)2 (51) 1 (31)3 (11)5 (81) (41)4 9.

These can be dividing or not, by [68, Remark 3.10.10]. There are
six topological types that are necessarily dividing:

(2.2) (91)1 (51)5 (11)9 (61)2 (21)6 (hyp).

Finally, the remaining 42 types are all only non-dividing. Therefore,
the subset of P27

R consisting of all dividing sextics is the closure of the
union of 14 rigid isotopy types appearing in (2.1) and (2.2). In Figure
2.5, which is a refinement of Viro’s diagram in [85, Figure 4], the blue
and red configurations are the non-dividing types and dividing types,
respectively. Those 8 configurations that can be both dividing or non-
diving are colored in purple. Therefore each curve with the color red
or blue corresponds to exactly one connected components of P27

R \�
while each of the purple ones corresponds to two. This accounts for all
64 = 42 + 6 + 2⇥ 8 rigid isotopy types in Theorem 2.1.1.

For exploring these 64 components of P27
R \�, it is important to

understand their adjacencies. A general point in the discriminant � is
a sextic curve f that has precisely one ordinary node. If f is in the real
locus �R, then that node is a point in the real plane P2

R. Two of the 64
types are connected by a discriminantal transition if there is a curve in
the closure of both of the components having only one singular point
which is an ordinary node.

All 56 topological types that are covering the whole 64 components,
together form a poset, where the cover relation is either fusing two
ovals or shrinking an oval until it vanishes (cf. Theorem 2.4.5). These
relations are shown by the green line segments in Figure 2.5. Note the
one to one correspondence between the maximal elements of this poset
and the 6 types that can only be dividing. Apart from the type (hyp)
which ruins the symmetry, if we exchange the inside and outside of the
biggest oval in a configuration of Figure 2.5, the resulting type is the
one obtained by vertical reflection with respect to the broken line.

For now we have an insight into the actions shrinking an oval, fusing
two ovals, and turning an oval inside out, however, we have not yet
mathematically defined them. The explicit definitions come in Section
2.4. Furthermore, in Theorem 2.4.4 we prove that any discriminantal
transition corresponds to exactly one of these actions. Before that, we
start with the experiments. We study the probability that each of the
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Figure 2.5. The 56 types of smooth plane sextics form
a partially ordered set. The color code indicates whether
the real curve divides its Riemann surface. The red
curves are dividing, the blue curves are non-dividing, and
the purple curves can be either dividing or non-dividing.

56 topological types will occur at random and afterwards we present
representative polynomials, one for each 64 rigid isotopy components.

2.2. Classifier and empirical distributions

Given the equation of a plane curve how to find its topological type
in P2

R? This problem is well-studied in computational geometry and
the key idea is to construct isotopic graphs whose nodes are the singu-
lar and extreme points. Despite the existence of several methods and
packages for this task, we wrote our own program based on the build-in
quantifier elimination techniques of the software Mathematica. At the
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end of this section we introduce some other methods and their draw-
backs that motivated us to have our own specialized implementation
for sextic curves in P2

R.
For now, we first illustrate how our code works and then we use

it to do some probabilistic study on the topological type of the sextic
curves. In the following section, it is easy to observe that some of the
representative polynomials are simpler than the other ones in terms of
the size of their coe�cients. Naturally, we have tried to present the
simplest form that we could obtain for each type. By having a code to
identify the topological type there are natural questions arising: Could
we obtain all fifty-six types by randomly assigning reasonably small
integers into the 28 coe�cients of a general plane sextic? With di↵erent
probability distributions, what is the chance that a specific topological
type will occur in a large sample of randomly chosen sextics?

One advantage of our program that allows us to do the probabilistic
experiments is its speed. For all sextics in Section 2.3, it terminates in
less than four seconds and if the absolute value of the coe�cients are
smaller than 108, then it takes less than one second. The entire code,
which we called SexticClassifier, is written in Mathematica and is
available on our supplementary materials website

(2.3) https://software.mis.mpg.de/planeSexticCurves/index.html.

The input to SexticClassifier is a homogeneous polynomial f
of degree six in three variables x, y, and z with integer coe�cients,
f 2 Z[x, y, z]6. At first, the code checks whether the curve that is
defined by the polynomial f has singularities in P2

C or not. If yes, then
it returns “Singular” and if no then the output shows the topological
type of the curve VR(f) in the real projective plane:

• Empty for the type with no ovals.

• n for the type with n empty ovals.

• {1,1,1} for the type (hyp) with three nested ovals.

• {{n,1},m} for the type (n1)m with n+m+1 ovals. This type
consists of an oval with n empty ovals inside and m empty
ovals outside it.

This covers the whole fifty-six topological types. The last case
that could occur as the output is “Please change the coordinates”.
This happens when the curve is smooth in P2

C but its ovals in the real
plane arrange a certain position that our code can not proceed. A
linear transformation in the coordinates of f can change the exposition
of the ovals without changing the topology of the real curve VR(f).

We now explain how SexticClassifier works. After checking
the smoothness, we start with setting z = 1 in our input polynomial
f 2 Z[x, y, z]6 so that the curve C := VR(f) is in the a�ne chart R2

https://software.mis.mpg.de/planeSexticCurves/index.html
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with coordinates x and y. Next we use the build-in function Cylindrical

Algebraic Decomposition (CAD; see e.g. [5, 7]) of the curve C ⇢ R2.
Our goal is to build up a graph GC whose connected components are
in one-to-one correspondence with the ovals of C, and furthermore, the
final graph reveals the relative positions of the ovals.

To construct such a graph we project C into the x-axis. The nodes
of GC are the critical points of this projection. We draw an edge be-
tween the two nodes if the preimages of them is connected by an arc in
C. The message “Please change the coordinates” is to avoid mul-
tiple preimages for a critical point. Having in mind that by restricting
our curve to the a�ne chart R2 we might lose the information of some
components that are not compact in our choice of the chart, we add
further edges corresponding to arcs crossing the line at infinity. Fi-
nally, by having the one-to-one correspondence between the ovals and
the connected components of GC , for each pair of ovals we have to
find their relative positions. This is done by first checking whether the
center of projection is inside or outside an oval and then looking at the
parity of the number of branches of both ovals.

One of our goals for the future is to extend SexticClassifier so
that it decides rapidly whether the curve is dividing or non-dividing.
At present, our code is only determining the topological type of a given
curve. Since out of fifty-six topological types, forty-eight of them each
corresponds to a unique component of the P27

R to extend our code for de-
termining between ‘d’ and ‘nd’ we only need to check the types that ap-
pear in more than one connected components, namely the eight Nikulin
[68] cases in (2.1). To find this, we need to build the Riemann surface
VC(f) to see whether VC(f)\VR(f) has one or two connected compo-
nents. Kalla and Klein [46] developed and implemented a method for
this verification, however, we found their code not suitable for curves
of genus 10, which is the case that we are interested in.

Our first use of SexticClassifier is answering the question:
“what is the probability that a particular topological type arises when
we pick a sextic curve at random?”. This, of course, depends on the
probability distribution that we choose on cijk in the equation of a
general plane curve of degree six:

(2.4) f =
X

i+j+k=6

cijkx
iyjzk.

We computed the empirical distributions of the topological types
over the space of plane sextics. Recently, Lerario and Lundberg [61] did
a theoretical study for curves of large degree. They employed the real
Fubini-Study ensemble and the Kostlan distribution. Our experiments
below are meant to inform this line of inquiry with some empirical
probability distributions.
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As the first experiment we take our sample space to be the set
of all homogeneous polynomials as (2.4) where the 28 coe�cients cijk
are independently chosen from a univariate normal distribution, with
center at 0 and with variance equal to 6!/(i!j!k!). This is the unique
U(3)-invariant probability measure on R[x, y, z]6 by [11, §16.1]. Ta-
ble 2.2 shows the count of the topological types that appear by running
SexticClassifier on 1, 500, 000 samples with this distribution.

Type Evidences Type Evidences

0 127 (hyp) 1

1 875109 (31) 2

(11) 90316 (21)1 8

2 423099 (11)2 118

(21) 1180 4 7594

(11)1 4360 5 245

3 97834 6 7

Table 2.2. Counts of topological types appearing in
a sample of 1, 500, 000 randomly chosen sextics with the
U(3)-invariant distribution

The result shows that the empirical distribution is very skewed:

• In total, only 14 of the 56 types were observed.

• Only six types had an empirical probability of � 1%.

• No type with more than six ovals was observed.

• The average number of connected components is approxi-
mately 1.50.

• The average energy is approximately 2.99.

Another numerical invariant of the topological type of a smooth
real plane curve is the energy. This nonnegative integer, which was
introduced in [61, page 8], measures the nesting of the ovals. For
curves of degree six, the maximal energy is 38 and attained by the
Harnack-type curve (91)1. The average energy that we observe in our
sample of 1, 500, 000 sextics is considerably smaller.

We expand our experiment to several distributions on R[x, y, z]6.
We sample 500, 000 random sextics with each probability distribution.
After running SexticClassifier on our samples, we ignore the types
with empirical probability less than 0.01% and report the appearance-
percentage of the rest in the following tables.

Table 2.3 shows the largest variety of types with the most number
of ovals that appears among our considered distributions. In this ex-
periment, we sample sextics of the form det(xA+yB+zC) where A,B
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and C are symmetric 6⇥ 6-matrices with entries uniformly distributed
random integers with absolute value less than 1000. Some types ap-
pear with this probability distribution that did not show up among the
1, 500, 000 samples in Table 2.2. This is also the only distribution in
our experiments where the most common type is not the sextic con-
sisting of only one oval. The type (11)3 is our unique observation of
nesting in a type with more than four ovals.

Type Probability Type Probability

1 16.44% (21)1 0.12%

(11) 8.02% (11)2 0.98%

2 29.12% 4 11.06%

(21) 1.19% (11)3 0.13%

(11)1 4.30% 5 2.46%

3 25.77% 6 0.30%

(31) 0.07% 7 0.02%

Table 2.3. Sextics that are determinants of random
symmetric matrices with linear entries

Our most skewed distribution appears when we are restricting to
sextics of real rank 10, the case considered in [66, §6]. Here we sample
signed sums (with the signs chosen uniformly at random) of ten sixth
powers of linear forms whose coe�cients are uniformly distributed inte-
gers with absolute values less than 1000. More than 90% of the samples
are of the type consisting of only one oval. Table 2.4 shows the result
for this distribution. Furthermore, it reveals that if we pass to eleven
and twelve summands, no more type will show up. Although, we ob-
serve that by increasing the number of summands, the percentage of
types with zero or one ovals decreases while the appearance of other
three types increases.

Type n 10 11 12

0 5.14% 4.75% 4.28%

1 90.17% 89.95% 89.90%

(11) 0.09% 0.12% 0.15%

2 4.50% 5.06% 5.53%

3 0.09% 0.12% 0.15%

Table 2.4. Probability of sextics that are signed sums
of n sixth powers of linear forms

In our last two experiments with random sextics, the coe�cients are
uniformly distributed integers with absolute value smaller than 1012.
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Table 2.5 shows the general result if we sample our sextics in this way
and in Table 2.6 we see the empirical distribution obtained from sam-
pling only symmetric sextics, i.e. linear combinations of the monomial
symmetric polynomials of degree six. By restricting our random sample
to symmetric sextics, the variety of types increases from 6 to 10. The
type consisting of seven empty ovals appears as a random symmetric
sextic, however, it was not among 1,500,000 sextics in our first U(3)-
invariant distribution. Another interesting observation is that Table
2.6 is the only one missing the type consisting of two empty ovals.

Type Probability Type Probability

0 0.66% 2 18.19%

1 77.52% 3 2.11%

(11) 1.46% 4 0.06%

Table 2.5. Sextics with uniformly distributed integer
coe�cients of absolute value  1012

Type Probability Type Probability

0 28.38% (31) 0.03%

1 45.69% 4 2.17%

(11) 7.40% (11)3 0.03%

3 16.15% 6 0.13%

(hyp) 0.01% 7 0.01%

Table 2.6. Symmetric sextics with uniformly dis-
tributed integer coe�cients of absolute value  1012

The experiments with four large sets of samples and di↵erent prob-
ability distributions demonstrate that it is extremely rare to observe
topological types consisting of more than four ovals when sextic curves
are generated at random. Only 15 out of 56 types occurred in our sam-
ples and we never encountered a sextic with 8, 9, 10 or 11 ovals. This
underlines the importance of having the representatives listed in Sec-
tion 2.3. Our sixty-four explicit polynomials in Z[x, y, z]6 allow us to do
local sampling for further experiments on di↵erent properties of each
type in P2

R. Section 2.6 covers all the results for our local experiments.
The program enabling us to obtain the above results, not only

needed to be reasonably fast, but also had to handle other sort of
di�culties with the non-compactness of a randomly generated curve.
Our first attempt was trying several existing algorithms ([16, 24,
33, 78]) given by many authors including Nicola Wolpert, Raimund
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Seidel, Hoon Hong, M’hammed El Kahoui, Ioana Necula, Laureano
González-Vega, Elias Tsigaridas, Fabrice Rouillier, Luis Peñaranda,
Marc Pouget, Sylvain Lazard, and Jinsan Cheng.

The main idea of building the corresponding graph for each type
is the same in all methods, including ours in SexticClassifier. The
algorithm in [16] is called ISOTOP. It uses certain C packages and is
implemented in Maple. For comparisons between ISOTOP and Top, as
well as with INSULATE, AlciX [24], and Cad2d [7], we refer to [16, Table
1, page 28]. The implementation of the last two is in C++.

After first experiments with these packages, it was not obvious how
to extract the topological type of the curve in P2

R from the output with
a reasonable amount of coding e↵ort since all of them are restricted
to the a�ne chart {z = 1}. It is not hard to imagine that some
of our samples are not compact in this a�ne chart. On the other
hand, although curves of even degrees consist of only ovals, it is not
true that they can be compact after some linear transformation of the
coordinates. More precisely, unlike curves of degrees two and four,
there are real plane sextics that any line in P2

R will intersect them.
Here is an example of such curve. More details on this topic will show
up in Section 2.5 where we define the avoidance locus.

Example 2.2.1 Let f be the following polynomial of degree six:

7(x+y+2z)(x+2y+z)(2x+y+z)(x�2y+3z)(y�2z+3x)(z�2x+3y)

+ xyz(x3+y3+z3).

The input to SexticClassifier is the polynomial f and the output is
the label 3. This means, after checking that the complex curve VC(f)
has no singularities in P2

C, our code reveals that the real curve VR(f)
consists of three empty ovals and therefore has no nesting. Since the
topological type of VR(f) is not in (2.2) or (2.1), SexticClassifier
shows that the real curve VR(f) is not dividing the Riemann surface
defined by f . Every real line in P2

R meets VC(f) in at least one real
point, regardless of which line serves as the line at infinity. Thus, the
real curve VR(f) is not compact in any a�ne chart of P2

R.

Apart from the speed, our main reason to have our own spe-
cialized implementation to determine the topological type of a given
degree six curve was to include such “non-compactible” curves.
SexticClassifier has been designed to handle them well. The vast
experiments that we did using our code demonstrate that to build most
of the types certain constructions, to be provided in the following sec-
tion, are needed as they will not appear at random.

2.3. Examples of polynomials and their constructions

We list sixty-four polynomials with integer coe�cients that rep-
resent sixty-four rigid isotopy types of smooth sextic curves in P2

R.
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SexticClassifier helped us to verify the correctness of our polyno-
mial list. An algorithm for sampling from the connected components
of P27

R \� using our representatives is presented in Section 2.4.
Afterwards, we explain the constructions and give some explicit

examples of how we find the representatives. Each sextic is labeled by
its topological type and an indicator d or nd showing whether it is a
dividing or a non-dividing type. This list is available in a computer-
algebra-friendly format at (2.3).

Types with less than four ovals are all non-dividing:

One type with no ovals:

0 nd x6 + y6 + z6

One type with only one oval:

1 nd x6 + y6 � z6

Two types with two ovals:

(11) nd 6(x4 + y4 � z4)(x2 + y2 � 2z2) + x5y

2 nd (x4 + y4 � z4)((x+ 4z)2 + (y + 4z)2 � z2) + z6

One of the types with three ovals, namely (hyp) appears in the maximal
elements of the poset in Figure 2.5, therefore it can be only dividing.
The other three are non-dividing. Four types with three ovals:

(21) nd 16 ((x+ z)2 + (y + z)2 � z2)(x2 + y2�7z2)((x�z)2+(y�z)2�z2)x3y3

(11)1 nd ((x + 2 z)2 + (y + 2 z)2 � z2)(x2 + y2 � 3 z2)(x2 + y2 � z2) + x5y

3 nd (x2 + y2 � z2)(x2 + y2 � 2z2)(x2 + y2 � 3z2) + x6

(hyp) d 6 (x2 + y2 � z2)(x2 + y2 � 2z2)(x2 + y2 � 3z2) + x3y3

Four types with four ovals, all non-dividing:

(31) nd (10 (x4
� x3 z + 2x2 y2 + 3x y2 z + y4) + z4)(x2 + y2 � z2) + x5y

(21)1 nd (10(x4
�x3z + 2x2y2 + 3xy2z + y4) + z4)((x+ z)2 + y2 � 2z2) + x5y

(11)2 nd (10 (x4
� x3z + 2x2y2 + 3xy2z + y4) + z4)(x2 + (y � z)2 � z2) + x5y

4 nd x6 + y6 + z6 � 4x2y2z2



2.3. EXAMPLES OF POLYNOMIALS AND THEIR CONSTRUCTIONS 26

There are only five topological types with five ovals. Two types, namely
(41) and (21)2 can be both dividing or non-dividing. Therefore, there
are seven rigid isotopy types with five ovals:

(41) nd (x2 + 3y2 � 20z2)(4x2 + y2 � 16z2) + 18x2z2)(x2+y2 � 10 z2)� 2z6

(41) d 10(((x2+2y2 � 16z2)(2x2+y2�16z2)+x2y2)(10x+y+5z) + xz4)(10x
�y � 8z)� xz5

(31)1 nd ((x2 + 3y2 � 17z2)(3x2 + y2�10z2)+15x2z2)(x2 + 4(y + z)2 � 25z2)
+x3y3

(21)2 nd ((x2 + 3y2 � 20z2)(4x2 + y2 � 16z2) + 18x2z2)((x+ y)2 + 20(x� y
�3z)2 � 24z2) + (y � x)z5

(21)2 d ((x2 + 3y2�20z2)(4x2 + y2 � 16z2)+18x2z2)(x2 + 8y2 � 16z2)�4z6

(11)3 nd ((x2 + 2y2�30z2)(3x2 + y2�20z2)+15x2z2)(x2 + (4y + 16z)2�15z2)
+x3y3

5 nd 4((x2 + 2y2 � 4z2)(2x2 + y2 � 4z2) + z4)(x2 + y2 � z2) + x3y3

Six types with six ovals, all non-dividing:

(51) nd (3x2 + 4xy + 2y2 � 4z2)(x2 + 2(y � z)2 � 8z2)(2x2 + y2 � 3z2)� z6

(41)1 nd (4x2 + 6x(y � z) + 3 (y � z)2 � 14 z2)(x2 + 5 (y � 2 z)2 � 9 z2)(2x2

+(y � z)2 � 15z2)� yz5

(31)2 nd ((x+ z)2 + 4 y2 � 4z2)(7(x+ z)2 + y2 � 10 z2)((x+ z)2 + 4(2(x+ y)
+3z)2 � 8z2) + xz5

(21)3 nd ((x+ z)2 + 3 y2 � 4z2)(7 (x+ z)2 + y2 � 12 z2)((x+ z)2 + 3(2(x+ y)
+3z)2 � 5z2) + xz5

(11)4 nd ((x2 + 3y2 � 20 z2)(4x2 + y2 � 16 z2) + 18x2z2)(8x2 + y2 � 16z2)
+(x+ y)z5

6 nd (3x2 + 5xy + 2 y2 � 7 z2)(x2 + 2(y � z)2 � 8 z2)(2x2 + y2 � 5z2)� z6

There are seven topological types with seven ovals. Three types,
namely (51)1, (31)1, and (11)5 can be both dividing or non-dividing.
Therefore, there are ten rigid isotopy types with seven ovals:

(61) nd (4x2 + 4xy + 3 y2 � 4 z2)(x2 + 3 y2 � 4 z2)(4x2 + y2 � 4z2)� z6

(51)1 nd 30(((x� z)2 + 3 y2 � 5z2)(3(x� z)2 + y2 � 5z2) + xz3)((x� z)2 + y2

�2 z2) + (x � 2 z)z5
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(51)1 d 7((x2 + 3 (y + z)2 � 48 z2)(3 (x + z)2 + y2 � 48 z2)� z4)(x2 + y2

� 26 z2) + xz5 + yz5

(41)2 nd 15(4x2 + y2 � 3z2)(x2 + 3y2 � 3z2)((4x� z)2 + 16y2 � 22z2) + (5xz5

+(y � z)3z3)

(31)3 nd 34 ((3x2 + y2 � 3 z2)(x2 + 8 y2 � 3 z2) + x2 y2)(2x2
� y z � 2 z2)

+ (x � 4 z) y z4

(31)3 d ((x2 + 3y2 � 28z2)(4x2 + y2 � 20z2)�z4)((x+ z)2 + y2 � 12z2)� xz5

(21)4 nd 27 (2xz � 6 y2 + 2 yz + 3 z2)(�(x+ y)2 � 4 y2 + 2 z2)(5 (x+ y)2 + y2

� 4 z2) � x z5

(11)5 nd ((x2 + 3 y2 � 20 z2)(4x2 + y2 � 16 z2) + 18x2z2)(16x2 + y2 � 20 z2)
�(x+ y)z5

(11)5 d ((x2 + 3 y2 � 20 z2)(4x2 + y2 � 16 z2) + 18x2z2)((x+ y)2 + 20 (x� y
�3z)2 � 24z2) + (x+ y)z5

7 nd 2 (4x2 + y2 � 4 z2)(x2 + 4 y2 � 5 z2)(x2 + y2 � 4 z2) + 3x4y2 + xy5

Eight types with eight ovals, all non-dividing:

(71) nd 2(x2 + y2 � 26z2)(x2 + 3(y + z)2 � 48z2)(3(x+ z)2 + y2 � 48z2)� z6

(61)1 nd (160075 (5 y z � x2)(8 (x z + 15 z2) � (y � 12 z)2) + 109 (17x,+5y
+72z)(13x+ 5y + 42z)(9x+ 5y + 20z)(2x+5y))(5yz�x2)�(x+ 3z)z5

(51)2 nd (5435525 ((y + z)z � x2)((x + 2 z)z � 2(y � x)2) + 5 (25x � 25 y
�31z)(5x� 50y � 49z)(15x+ 25y + 27z)(35x+ 25 y + 37 z))((y + z)z

�x2) + x5y

(41)3 nd (14460138 ((y + z)z � x2)((x + 2 z)z � 2 (y � x)2) + 5(25x � 25y
�31 z)(5x� 50y � 49z)(15x+ 25y + 27z)(37z + 35x+ 25y))((y + z)z

�x2) + x5y

(31)4 nd (27867506 ((y + z)z � x2)((x + 2 z)z � 2 (y � 2x)2) + 61 (6x+ 8 y
+9 z)(64 y + 63 z)(15x� 25y � 27z)(35x� 25y � 37z))((y + z)z � x2)

+x5y
(21)5 nd 40 (3x2 + y2 � 3 z2)(x2 + 8(y � z)2 � 3 z2)(2x2

� yz � 2 z2)� y3z3

�2xz5 + 2z6

(11)6 nd 19(4x2 + y2 � 4z2)(x2 + 8(y � z)2 � 3z2)(2x2
� yz�2z2)�(2y � 3z)z5

8 nd 12 (x4 + 2x2y2 + y4 � x3z + 3xy2z)(7 (8x+ 3z)2 + 8y2 � 10z2) + x5y
+2z6

There are nine topological types with nine ovals, three of which namely
(51)1, (31)1, and (11)5 can be both dividing or non-dividing. The two
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types (61)2 and (21)6 are maximal elements in the poset in Figure 2.5
and they are only dividing. Twelve rigid isotopy types with eight ovals:

(81) nd (1920981 (y z � x2) (57 (x + z) z � (6x � y + 6 z)2) + 48 (10x+ 7y
+3z)(11x+25y+z)(11x�23y � z)(10x� 8y�3z))(x2

�yz)+x2y4 � 61y6

(81) d ((x2 + 3 y2 � 28 z2)(4x2 + y2 � 20 z2)� z4)(2x2 + y2 � 12 z2)� z6

(71)1 nd (529321083 (yz � x2)(53 (x + z)z � (6x� y + 6z)2) + 25 (10x + 8y
+3z)(12x + 30y + z)(12x� 32y � z)(10x � 8y � 3z))(x2

� yz) � y6

(61)2 d (19157935 (5yz � x2)(8(xz + 15z2)� (y � 12 z)2) + 1185 (17x + 5 y
+72z)(13x+ 5y + 42z)(9x+ 5y+20z)(2x+ 5y))(5yz � x2)�(x+ 3z)z5

(51)3 nd (28920269 ((y + z)z � x2)((x + 2 z)z � 2(y � x)2) + 10 (25x � 25 y
�31z)(5x� 50y � 49z)(15x+ 25 y + 27 z)(35x+ 25y + 37z))((y + z)z

�x2) + x5y

(41)4 nd 6761249083262 (68794627464 (1095368 (118 (x2 + y2 � 3z2) y + (x
�2z)(x� 12z)(x� 13z))y + (x� 4z)(x� 9z)(x�10z)(x�11z))y + (x

�3z)(x� 5z)(x� 6z)(x� 7z)(x� 8z))y � z6

(41)4 d 13278270242890 (52982089012 (1610519 (149 (x2 + y2 � 4 z2) y + (x
�3 z)(x� 13 z)(x� 14 z))y + (x� 5 z)(x� 10 z) (x� 11 z) (x� 12 z)) y

+(x� 4z)(x� 6z)(x� 7z)(x� 8z)(x� 9z))y � (x� 5z)z5

(31)5 nd (26894836459 ((y + z)z � x2)((x + 2z)z � 2(y � 2x)2) + 1880 (6x
+8y + 9 z)(64y + 63z)(15x� 25 y � 27 z)(35x� 25y � 37z))((y + z)z

�x2) + x5y

(21)6 d (93678589978((y + z)z � x2)((x+ 2z)z � 2(y � 2x)2) + 50949(6x+ 8y
+9z)(18x� 72 y � 73 z)(5x� 6 y � 7 z)(�27x+ 18y + 28z))((y + z)z

�x2) + x5y
(11)7 nd 23 (3x2 + y2 � 3z2)(x2+8(y�z)2�3z2)(2x2

� yz � 2z2)� (2y � 3z)z5

9 nd ((x2 + 3y2 � 20z2)(4x2+y2 � 16z2) + 18x2z2)((x+y)2+20(x�y�3z)2

�24z2) + y2z4

9 d ((x2 + 3y2�20z2)(4x2 + y2 � 16z2) + 18x2z2)(16x2 + y2 � 20z2) + z6

Six types with ten ovals, all non-dividing:

(91) nd (40008 (yz � x2)(57(x+ z)z � (6x� y + 6z)2) + (10x+ 7y + 3z)(11x
+25y + z)(11x� 23y � z)(10x� 8y � 3z))(x2

� yz)� y6

(81)1 nd (622771068 (y z � x2)(57(x + z)z � (6x� y + 6 z)2) + 35 (10x+ 8 y
+3 z ) (12x + 30 y + z)(12x� 32y � z)(10x� 8y � 3z))(x2

� yz)� y6
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(51)4 nd �3401397120x6
� 3195251840x5y � 2164525440x4y2 � 869728640x3y3

+332217600x2y4 + 316096000x y5 + 53760001 y6 + 1597625920x5z
+1011⇥368484688x4yz + 1011⇥79881296x3y2z � 1011⇥33732864x2y3z
+1011 ⇥ 38247616x y4 z + 1023 ⇥ 234256 y4 z2 � 1199390720x4 z2

�1011 ⇥ 79881296x3yz2�1021⇥127552392x2y2z2 + 1012 ⇥ 1618496y5z
+764952320x3 z3 + 1031 ⇥ 14172488 y3 z3 + 1011 ⇥ 36543936x2 y z3

� 1011 ⇥ 38247616x y z4 � 130099200x2 z4 + 1023 ⇥ 117128 y2 z4

+1012 ⇥ 650496yz5 � 2z6

(41)5 nd � 3401397120x6
� 3195251840x5y � 2164525440x4y2 � 869728640x3y3

+332217600x2 y4 + 316096000x y5 + 53760002 y6 + 1597625920x5z
+1011⇥368484688x4yz+1011⇥79881296x3y2z�1011 ⇥ 33732864x2y3z
+1011 ⇥ 38247616x y4 z + 1012 ⇥ 1618496 y5 z � 1199390720x4 z2

�1011 ⇥ 79881296x3yz2�1021 ⇥ 127552392x2y2z2+1023 ⇥ 234256y4z2

+764952320x3 z3 + 1011 ⇥ 36543936x2 y z3 � 1011 ⇥ 38247616xyz4

�130099200x2z4 + 1031 ⇥ 14172488y3z3 + 1023 ⇥ 117128y2z4

+1012 ⇥ 650496yz5 � z6

(11)8 nd (227693(yz � x2)((x+ 2z)z � 2(y � 2z)2) +(10x� 8y � 3z)(10x� 23y
�z)(11x+ 22y + z)(10x+ 7y + 3z))(x2

� yz) + y6

10 nd 19x6
� 20x4 y2 � 20x2y4 + 19 y6 � 20x4z2 + 60x2y2z2 � 20 y4z2

� 20x2z4 � 20y2z4 + 19z6

Finally, there are three types with the maximum number of ovals
and they are all dividing:

(91)1 d (1941536164 (y z � x2)(60 (x + z)z � (6x+ 6z � y)2) + 118(10x+ 8y
+3z)(12x+ 32 y + z)(12x� 32 y � z)(10x� 8 y � 3 z))(x2

� yz)� y6

(51)5 d �3401397120x6
� 3195251840x5y � 2164525440x4y2 � 869728640x3y3

+332217600 x2 y4 + 316096000 x y5 + 53760001y6 + 1597625920x5 z
+1011⇥368484688x4yz+1011 ⇥79881296x3y2z�1011 ⇥ 33732864x2y3z
� 130099200 x2 z4 � 1199390720 x4 z2 � 1011 ⇥ 79881296 x3 yz2

� 1021 ⇥ 127552392x2 y2 z2 + 1023 ⇥ 234256 y4 z2 + 764952320x3z3

+1011 ⇥ 36543936x2yz3 + 1031 ⇥ 14172488y3z3 + 1011⇥38247616xy4z
+1012 ⇥ 1618496 y5 z � 1011 ⇥ 38247616x y z4 + 1023 ⇥ 117128y2z4

+1012⇥650496yz5 � z6

(11)9 d (340291 (yz � x2) ((x + 2 z) z � 2 (y � 2 z)2) + (10x� 8y � 3z)(12x
�27y � z)(12x+ 28y + z)(10x+ 7y + 3z))(x2

� yz) + y6

After furnishing explicit polynomial representatives, now we can
derive the following result.

Proposition 2.3.1 Each of the 64 rigid isotopy types can be realized

by a ternary sextic in Z[x, y, z]6 whose integer coe�cients have absolute

value less than 1.5⇥ 1038.
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The absolute value of the underlined coe�cients is the closest to the
bound 1.5⇥ 1038 in the proposition above. Our criterion for the desir-
able representative polynomial f are smoothness of VC(f) and having
integer coe�cients of small size. Let f be a polynomial of degree six
as in (2.4). We say f is optimal if its complex curve VC(f) is smooth
and its coe�cients cijk are integers with minimal infinite norm. i.e, we
attempt to minimize the largest absolute value |cijk| among all curves
in the same rigid isotopy class. The simplest example is the Fermat
sextics x6 + y6 ± z6. Four more examples of optimal representations
are:

(11) nd x5y+x5z+x4y2+x4yz�x3y3+x3yz2�x3z3�x2y4+x2y3z+x2y2z2�x2yz3

+x2z4�xy4z+xy3z2�xyz4+xz5�y5z�y4z2+y3z3+y2z4�yz5�z6

2 nd x6
�x5y�x5z�x4yz+x3y3+x3yz2�x2y4�x2y2z2+xy4z
�xy3z2�xy2z3�xyz4+y6+y5z+y4z2+y3z3�yz5+z6

3 nd x6
�x5y�x4y2+x4z2+x3y3+x3y2z+x3yz2+x2y3z�x2y2z2+x2yz3+x2z4

+xy4z+xy3z2+xy2z3+xyz4�xz5+y6+y5z+y4z2�y2z4�yz5+z6

4 nd �x6+x5y+x4y2�x3y3+x2y4+xy5�y6+x5z+x4yz+xy4z
+y5z+x4z2+y4z2�x3z3�y3z3+x2z4+xyz4+y2z4+xz5+yz5�z6

Although, these types might have shorter representatives, minimiz-
ing the number of monomials is not part of our criterion. In all four
representatives, the largest absolute value of the coe�cients is one and
therefore they are optimal.

To find such optimal representatives, one approach is to start with
all 28 integers cijk being zero or ±1, and slowly increase the range
and check which types will appear. More precisely, we sample at ran-
dom from sextics with |cijk| 2 {0, 1, . . . ,m} starting with m = 1 and
increase it one by one. The most frequent types in Table 2.2 could
be constructed in this way, however, this approach is not useful for
constructing the vast majority of types. As we have seen in our exper-
iments in the previous section, most of the types are extremely rare to
happen at random even without the restriction of the small coe�cients.
Note that the four types listed above appear when we set m = 1.

To construct our list of 64 representatives, we relied on di↵erent
methodologies. Many types could be obtained by perturbing singular
curves that are the union of three smooth conics intersecting transver-
sally. Figure 2.2 shows that if we perturb a unique singular curve which
is the union of two smooth conics intersecting transversally, we obtain
all topological types of plane quartics.

Such a unique singular curve does not exist in the case of plane sex-
tics. Although, varying the manner of transversal intersections in the
union of three smooth quadratics and perturbing the resulting singular
curve, result in all of the types with less than nine ovals. Several types



2.3. EXAMPLES OF POLYNOMIALS AND THEIR CONSTRUCTIONS 31

with more ovals can be constructed in this way as well. This is not
hard to find these representatives in our list since we did not expand
the multiplication of our quadratics in the final polynomial. Figure 2.6
shows two examples of such construction. Let

f = (x2 + 2y2 � z2)(2x2 + y2 � z2)(x2 + 8y2 � 2z2)± ✏z6.

If ✏ = 0 then VR(f) is the red curve and a small enough choice of ✏ > 0,
results in the two smooth blue sextics.

Figure 2.6. Many of the 56 topological types can
be obtained by perturbing the union of three smooth
quadrics intersecting transversally.

Later we present an important example of this construction with 10
ovals. The curve in Figure 2.12 is notable since any line in P2

R intersects
it in at least one point. We briefly explained this property in Example
2.2.1 where we had a sextic of Type 3. The complete discussion on this
topic will come in Section 2.5.

For all other types, except the three types having underlined co-
e�cients, we carried out the classical constructions of Harnack and
Hilbert, as explained by Gudkov [35]. We start with two quadratics
intersecting in four real points, pick eight points on the curves, and
perturb the reducible quartic with the product of four lines through
these points. The smooth quartic is intersected with one of the original
quadratics and perturbed again to get a smooth sextic. The di↵erent
ways in which the original curves and the points on them are selected
give the di↵erent types.

For the construction of types (51)5, (51)4, and (41)5 we tried
Gudkov’s method but found it too complicated to carry out explic-
itly. For them, we employed the most recent method for constructing
real varieties with prescribed topology, namely, Viro’s patchworking
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method [85]. All 56 topological types of smooth sextics can be realized
by a version of patchworking known as combinatorial patchworking,
which can also be interpreted in the language of tropical geometry.

In this method, one records the signs of the 28 coe�cients cijk and
represents their magnitudes by a regular triangulation of the Newton
polygon. Transitioning from that representation to actual polynomials
in Z[x, y, z]6 yields integer coe�cients cijk whose absolute values tend
to be very large. We experimented with some of these sextics, but in
the end we abandoned them for all but three types, because symbolic
computation became prohibitively slow.

Although the constructions above enabled us to build our fifty-six
topological types, yet it is remained to distinguish between dividing and
non-dividing curves for the Nikulin cases (2.1). We followed Fiedler [29,
§2] for this purpose. We start with the union of two smooth curves of
degrees d1 and d2, with prescribed orientations, in a way that they
transversally intersect in d1· d2 real points. Small perturbations of this
reducible curve can lead to a smooth plane curve. Depending on how
is the perturbation of the curve at the singular points, one can decide
whether it is dividing or non-dividing as follows.

#

Figure 2.7. Using local perturbations to create sextics
that are dividing or non-dividing

If the singular point is smoothen such that the two orientations
agree on the final curve, it is called type A and otherwise type B. If all
intersections are perturbed either using only A or using only B then it is
dividing. However, if the smoothening is done via A at some crossings
and via B at other crossings, then the resulting smooth curve does not
divide its Riemann surface. Figure 2.7 shows the two possible ways
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of smoothening a singular point and an example for construction of a
dividing curve of type (21)2.

In this example the reducible curve is the union of smooth quartic
and quadratic curves. After perturbation, all the intersection points are
smoothen with type B since the black and the red directions disagree
on all the mixed components. One can show that any other choice of
prescribed directions for the quartic and quadratic leads to the same
result. Proposition 2.4.2 will give us an extra tool to construct the
type (21)2 by turning the type (21)2 d inside out. See Figure 2.9. In
particular, for the construction of types (41)4d and (41)4nd we followed
[31, page 273].

After having all the sixty-four representatives, the task is to make
them look nicer. This means to make the expression smaller and closer
to the optimal polynomial for each type. Except for our first method of
construction the other two led to huge coe�cients. We have two main
methods to improve the representatives and their combination yields
the best results for each type.

One way is to choose a prime number p and vary the polynomial
without crossing the discriminant locus so that every coe�cient of the
resulting polynomial is divisible by p. The other is to shrink the abso-
lute value of each coe�cient of a given representative separately as far
as possible without crossing the discriminant. For both methods we
used our code SexticClassifier. In the following chapter we com-
plete the discussion about discriminant and the later method appears
in more details. In particular, we show that Sylvester’s formula for the
discriminant (Proposition 2.4.1) has a major role in improvement of
the representatives.

2.4. Local sampling and rigid isotopy transitions

Representing explicit polynomials, one for each sixty-four connected
components in the complement of the discriminant P27

R \�, enables us
to sample locally. Our experimental study in Section 2.6 on certain
properties of curves belonging to each rigid isotopy class requires such
sampling. In this section, we take a deeper look into the discriminant.
After presenting a method to compute �, we explain how to avoid
crossing it. This avoidance is needed to sample from a component.
Moreover, we study di↵erent possibilities to cross the discriminant and
how they a↵ect the rigid isotopy type.

Before we start with the computation of discriminant in the whole
space P27

R , let us see an example of such polynomial for a smaller sub-
space:

(2.5)
R(a, b, c) = a(x6 + y6 + z6) + bx2y2z2

+ c(x4y2 + x4z2 + x2y4 + x2z4 + y4z2 + y2z4),
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where (a : b : c) is any point in P2
R. The discriminant is now a curve

in P2
R and this allows us to visually explore how it divides the two

dimensional subspace of P27
R defined by R(a, b, c).

In 1973, R.M. Robinson showed that the sextic R(1, 3,�1) is non-
negative but is not a sum of squares which is the reason that we named
this net of sextics after him [74]. The real locus of his special sextic
curve consists of 10 isolated singular points, given by

(2.6)

�
(1 :1 :1), (�1:1 :1), (1 :�1:1), (1 :1 :�1), (0 :1 :1),

(0 :1 :�1), (1 :0 :1), (�1:0 :1), (1 :1 :0), (1 :�1:0)
 

⇢ P2
R.

By examining the complement of the discriminant P2
R \�R one can

express how the topology of R(a, b, c) varies with (a : b : c). First, we
compute the discriminant:

(2.7)
�R = a3 ⇥ (a+ c)6 ⇥ (3a� c)18 ⇥ (3a+ b+ 6c)4

⇥ (3a+ b� 3c)8 ⇥ (9a3 � 3a2b+ ab2 � 3ac2 � bc2 + 2c3)12.

This is a reducible polynomial of degree 75. The complement of the
discriminant P2

R \ �R has 15 connected components. The topological
types 10, 4, 3 and 0 are appearing in 1, 3, 5 and 6 connected compo-
nents, respectively. Setting (a : b : c) = (19 : 60 : �20), results in
a smooth sextic and its real locus has ten empty ovals. We included
R(19, 60,�20) as our representative for the Type 10nd in Section 2.3
because of its nice construction.

Figure 2.8. The Robinson net (2.5) is divided into
15 components by the discriminant (2.7). The darkest
region shows the unique component corresponding to the
type with 10 empty ovals. The red point represents the
curve that is known as Robinson form.

The space of plane sextic curves P27
R is divided into 64 connected

components by a hypersurface of degree 75, namely the discriminant �.
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Intersecting this partition by the plane P2
R, with coordinates (a : b : c)

gives the simplified version that divides the Robinson net R(a : b : c).
Figure 2.8 shows a selected region of this two-dimensional slice in the
a�ne chart (a, b) ⇢ R2.

We are interested in this region since it contains all of the four
topological types. From the darkest to the lightest blue, the number of
ovals in the regions decreases. Therefore, the lightest blue belongs to
one of the six components corresponding to the type that has no ovals.
The unique component with 10 empty ovals is shown as the darkest
region. The red point is where the zero locus of R(a, b, c) in P2

R is the
set of ten points in (2.6).

Occurrence of the types 0, 3, and 4 in more than one components
of this two dimensional slice proves that the 64 regions corresponding
to the 64 rigid isotopy types are not necessarily convex.

Now we continue with the general case: For plane curves of degree
six, as represented in (2.4), identify � with its defining irreducible poly-
nomial over Z in the 28 unknowns cijk. We follow Gelfand, Kapranov
and Zelevinsky [32, Theorem 4.10, Chapter 3] and evaluate � using
Sylvester’s formula which expresses � as the determinant of a 45⇥ 45-
matrix Sf . Each entry in the first 30 columns of Sf is either 0 or one
of the coe�cients cijk. The entries in the last 15 columns are cubics in
the cijk. Therefore, we have the required degree:

deg (det(Sf )) = 75.

A Curve of degree eight is called an octic. Let

Sf : (R[x, y, z]3 )3 � R[x, y, z]4 �! R[x, y, z]8
be a map taking a triple of real plane cubics and a real plane quartic
and mapping them into a real plane octic as follows. It maps a triple
of cubics to an octic via

(a, b, c) 7! a
@f

@x
+ b

@f

@y
+ c

@f

@z
.

and on the second summand, it takes a quartic monomial xryszt to the
octic det(Mrst), where Mrst is any 3⇥ 3-matrix of ternary forms in the
cijk satisfying the homogeneous identity

2

4
@f/@x
@f/@y
@f/@z

3

5 = Mrst ·

2

4
xr+1

ys+1

zt+1

3

5 .

The entries of Mrst are linear in the cijk. Thus, det(Mrst) is an
octic in x, y, z whose coe�cients are cubics in the cijk. These are the
entries of the column indexed by xryszt in the matrix representation
of the R-linear map Sf in monomial bases. This representation of Sf

is exactly the Sylvester matrix Sf .
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Proposition 2.4.1 The discriminant � is the determinant of the

45 ⇥ 45 - matrix Sf .

Proof. We use Sylvester’s formula for the resultant of three
ternary quintics. This is [32, Theorem III.4.10] by setting d = 5 and
k = 4. If we take the three quintics to be the three partial derivatives
of f , then we get the matrix Sf above. That resultant equals our dis-
criminant because both are non-zero homogeneous polynomials in 28
unknowns cijk and the degree of both is 75. ⇤

Let f and g be points in the space P27 of all ternary curves of
degree six, a pencil of sextics is a line {f + tg}. Its discriminant
�(f + tg) is a univariate polynomial in t of degree 75 which can be
computed as the determinant of the Sylvester matrix Sf+tg. If we pick
f, g 2 Z[x, y, z]6 with reasonably small coe�cients, the computation of
discriminant takes only a few seconds. For the Robinson net of sextics,
we tried a similar method with more than one parameter and com-
puted the discriminant (2.7) of the curve (2.5) with three parameters
a, b, and c. In this case the output is not large and factors in smaller
components, therefore the computation took less than one second.

Due to our experiments, the symbolic evaluation of the 45⇥ 45 de-
terminant in Proposition 2.4.1 works well for pencils of sextics and, in
principle, also for evaluating � on families with more than one param-
eter, however, it generally fails for nets of plane sextics.

Sylvester’s formula allows us to sample from a fixed rigid isotopy
class. We start with a representative f with �(f) 6= 0, for example one
of the 64 sextics in Section 2.3. After picking a random sextic g, we
compute the polynomial �(f + tg) in the unique variable t. Next, we
extract the real roots among the 75 complex ones, and we identify the
smallest positive root and the largest negative root. The sextic f + tg
has the same rigid isotopy type as f for any t in the open interval
between these two roots. Repeating this process over and over, we
make our sample from the unique connected component of R[x, y, z]6\�
that contains f . This produces sextics in the largest star domain with
center f contained in that component. We have seen in 2.3 that the
components of P27

R \ � are not necessarily convex. Therefore, this is
wise to vary the center many times as well to reach the largest area
of the desired component. We call this process the local exploration

method. It will be used for the applications in Sections 2.5 and 2.6.
To understand the cover relations of the poset structure and the

vertical reflection in Figure 2.5, we briefly introduced the discriminan-

tal transitions. For any two connected components of P27
R \ �, the

intersection of their Euclidean closures is a subset of �. Therefore, it
only contains singular curves. Recall from Section 2.1, two rigid isotopy
types are connected by a discriminantal transition if this intersection
contains a curve C, whose only singularity is an ordinary node.
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The ordinary node of C is locally defined by either x2 + y2 = 0 or
x2

� y2 = 0. The former occurs when the singularity is an isolated
real point called acnode. This transition corresponds to removing one
empty oval and we call it shrinking an oval. The inverse operation to
shrinking is adding an empty oval. In the later case, singularity of C is
a crunode, i.e. it locally looks like the intersection of two crossing real
branches. In this case, there are two possibilities: The ordinary node
is the unique intersection of either two ovals or two pseudolines.

If two ovals are intersecting in one point the transition is two ovals
coming together and forming one oval. We call this operation fusing

two ovals. Itenberg [43] uses the terms contraction and conjunction

for the operations shrinking an oval and fusing two ovals, respectively.
Each of these two operations reduces the number of ovals by one.

The transition corresponding to the intersection of two pseudolines
does not change the number of ovals. This operation exchanges the
inside and outside of an oval that is not contained in any other ovals.
We call this transition turning inside out. Figure 2.9 shows an example
of turning inside out for two di↵erent smooth sextics with five ovals.

# #

Figure 2.9. The left picture is Type (21)2 d transi-
tioning into Type (21)2 nd and on the right Type 5 nd
transitions into Type (41) which could be d/nd. Both
transitions are turning inside out.
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Proposition 2.4.2 The topological type of the resulting curve from

turning inside out of a plane sextic is obtained by vertically reflecting

Figure 2.5. Curves of diving type become non-dividing, however, non-

dividing sextics can turn into either dividing or non-dividing.

Proof. Let C be a real plane curve with exactly one ordinary
crunode p. In a neighborhood of p, the Riemann surface CC is homeo-
morphic to the union of two discs D1 and D2 with D1\D2 = {p}. The
real part CR divides D1 and D2 into two connected components D+

1 ,
D�

1 and D+
2 , D

�
2 respectively. One of the two possible smoothenings of

the node p connects D+
1 with D+

2 and the other one connects D+
1 with

D�
2 . Thus, if C is dividing then exactly one of the two deformations

results in a dividing curve. Otherwise, both are non-dividing. ⇤

Turning inside out preserves the number of ovals, so it is an oper-
ation that acts on each of the rows in Figure 2.5 separately. In Figure
2.9, on the left we start from a curve with the topological type (21)2
that is diving. (See 2.7.) From the previous proposition we know that
turning the outermost oval inside out is a non-dividing type. In the
right picture, the same transition for the type with 5 empty ovals that
is non-diving results in the topological type (41), which is one of the
Nikulin cases in 2.1, therefore could be either dividing or non-dividing.

Not every vertical reflection in Figure 2.5 can be realized geometri-
cally by a discriminantal transition. For instance, the types (91)1 and
(11)9 are related by a vertical reflection. But both types are dividing,
so Proposition 2.4.2 implies that they are not connected by turning in-
side out. Put di↵erently, these two components of P27

R \� do not share
a wall of codimension one. In fact, turning inside out can only happen
for curves with at most 9 ovals: Consider a plane sextic curve with
exactly one crunode and r connected components, one of which is the
intersection of two pseudolines. The normalization of such a curve has
genus 9 and r+1 connected components. By Harnack’s inequality this
implies that r  9.

In addition to turning inside out, the other discriminantal transition
which helps us to determine whether the resulting plane sextic is diving
or non-dividing type is shrinking an oval:

Lemma 2.4.3 A smooth sextic obtained from shrinking an oval is non-

dividing.

Proof. Consider a singular real plane curve C with only one sin-
gularity p that is an acnode. We can assume that S is of dividing
type since being of non-dividing type is an open condition. Therefore,
CC\CR has two connected components and p is in the closure of both.
In particular, (CC\CR) [ {p} is connected. Thus, shrinking an oval
leads to a curve that is non-dividing. ⇤
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The definitions of an acnode and a crunode are not restricted to
curves of degree six. These are the only two possibilities of an ordinary
node in any plane curve of degree d. Although, a crunode could also be
the intersection of a pseudoline and an oval for odd d, in addition to the
possibilities that we explained above. Therefore, it makes sense to have
similar discussions on discriminantal transitions for other degrees. The
transition turning inside out is only defined for curves of even degrees.
In particular, this is the only transition for plane conics. All three
discriminant transitions are possible for plane quartics.

We include our proof for the following theorem only for lack of a
suitable reference. We expect that they are well-known to experts.

Theorem 2.4.4 Any discriminantal transition between rigid isotopy

types for plane curves of even degree is one of the following: shrinking

an oval, fusing two ovals, and turning inside out.

Proof. Let C be a general point on the discriminant � ⇢ P
d(d+3)

2
R ,

where d is even. i.e. C ⇢ P2
R is a singular plane curve of even degree

with exactly one ordinary singularity p. If p is an acnode, then C
corresponds to shrinking. Let p be a crunode. There are two subsets
C1, C2 ⇢ CR, both homeomorphic to the circle, such that C1\C2 = {p}.
Let ⇡ : C̃ ! C be the normalization map. The fiber ⇡�1(p) consists of
exactly two points p1, p2 2 C̃R.

Suppose that p1 and p2 are in the same connected component of C̃R.
If any of C1 or C2 does not disconnect P2

R, there is a perturbation of C
that results in a smooth curve with at least one pseudoline. Since this
is not possible for a smooth plane curve to have a pseudoline as one of
the connected components of its real part, both C1 and C2 disconnect
P2
R. This corresponds to fusing of ovals.
If both p1 and p2 belong to di↵erent connected components of C̃R,

the number of components of the real curve stays the same for both
bifurcations of the node. Suppose that C1 or C2 disconnected P2

R, then
besides p, there would be another intersection point of C1 and C2.

Therefore, P2
R\Ci is connected for i = 1, 2, and P2

R\(C1[C2) has two
connected components, both homeomorphic to an open disc. Depend-
ing on the bifurcation of the node, one of these connected components
remains homeomorphic to an open disc and the other one does not.
This case corresponds to turning inside out. ⇤

Back to our case of interest, namely smooth plane curves of degree
six, let us examine the diagram in Figure 2.5 from the perspective of
discriminantal transitions. We have already discussed the correspon-
dence between turning inside out and the vertical reflections. Thus,
the focus is now on the other two discriminantal transitions.

The edges in the poset correspond to shrinking or fusing. There are
three possibilities for what might be geometrically possible: shrinking
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only, fusing only, or shrinking and fusing. For instance, Type (11) can
become Type 1 by either shrinking the inner oval, or by fusing the two
nested ovals. Both possibilities are geometrically realized by a singular
curve with a single node that lies in the common boundary between
the two types.

Theorem 2.4.5 (Itenberg) Each of the edges in Figure 2.5 is realized

by shrinking an empty oval, except the one between (hyp) and (11). Not

every edge is realized by fusing two ovals.

Proof. The first statement is [43, Prop. 2.1]. Furthermore, it was
shown in [43] that the transition from (11)9 to 10 cannot be realized
by fusing. ⇤

One possible way of explicitly realizing edges by fusing is to use
Gudkov’s constructions [35] and the following lemma which is a special
case of a theorem due to Brusotti [10].

Lemma 2.4.6 Let C1, C2 ⇢ P2
be two smooth real curves of degrees 2

and 4 (resp. 1 and 5) intersecting transversally. By a small perturba-

tion, we can fix any one of the real nodes of the sextic curve C1 [ C2

and perturb all the others independently in any prescribed manner.

Proof. Let q, p1, . . . , p7 2 P2
R be eight distinct real points lying

on the smooth quadric C1. We claim that, for every tuple ✏ 2 {±1}7,
there is a sextic which is singular at q and whose sign at pi is ✏i. Let
L be the linear system of all sextic curves that are singular at q. The
pull-back of L to C1

⇠= P1 is the set of all bivariate forms of degree 12
having a double root at q. Since for any distinct 7 points in R there is
a polynomial of degree 10 that vanishes on all but one of these points,
the claim follows. The other case (degrees 1 and 5) is analogous. ⇤

We might also approach these questions by computational means.
This requires a software tool for the following task. Consider two gen-
eral sextics f, g 2 Z[x, y, z]6 and compute the univariate polynomial
�(f + tg) of degree 75. For each of its real roots t⇤, we must decide if
the transition at t⇤ is a shrinking of ovals, a fusing of ovals, or turning
inside out.

2.5. Avoidance locus, dual curve, and bitangents

In Section 2.2, we have seen that SexticClassifier has several
advantages in comparison with many other software packages for plane
curves. The most important one is handling the cases where the given
curve is not compactible, e.g. the one in Example 2.2.1.

We say a real plane curve C is compactible, if there is a homeomor-
phism P2

R ! P2
R such that the image of C is a compact curve in some

a�ne chart, i.e. the closure of the image in P2
R is disjoint from the
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line at infinity. Odd degree curves are not compactible since they con-
tain a pseudoline. Although any plane conic or quartic is necessarily
compactible, this is no longer true for the higher even degrees.

Consider any line in P2
R that do not intersect a given curve C. The

image of C under the homeomorphism that maps this line to the line
at infinity is compact in the corresponding a�ne chart. Therefore, C
is compactible if such a non-intersecting line exists. This motivates
the concept of the avoidance locus, to be introduced and studied in
this section. This will lead us naturally to computing dual curves and
bitangent lines, and to investigating the behavior of these objects over
the field of real numbers.

We define the avoidance locus of a smooth curve C ⇢ P2 of even
degree d to be the set AC of all lines in P2

R that do not intersect the
real curve CR. Let (P2)_ be dual of the projective plane. We write C_

for the curve in (P2)_ that is dual to C. The dual curve has degree
d(d � 1) and points on C_ correspond to lines in P2 that are tangent
to C. The real dual curve C_

R divides the real projective plane (P2)_R
into connected components. The set AC is a semi-algebraic subset of
(P2)_R that comes from such devision.

Example 2.5.1 Let C be the smooth plane curve of degree four known
as Edge quartic, defined by:

f = 25
�
x4 + y4 + z4

�
� 34

�
x2y2 + x2z2 + y2z2

�

This curve C ⇢ P2 served as a running example in [70]. The a�ne
picture by setting z = 1 is shown on the left in Figure 2.10. We choose

Figure 2.10. The dual curve to the Edge quartic C
divides the real plane into 21 regions; the avoidance locus
AC is colored.

coordinates (u : v : w) for points in the dual projective plane (P2)_.
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Such a point represents the line L = {ux+ vy+wz = 0} in the primal
P2. The dual curve C_ is given by

10000u12
�98600u10v2�98600u10w2+326225u8v4+85646u8v2w2 + 326225u8w4

� 442850u6v6 � 120462u6v4w2
� 120462u6v2w4

� 442850u6w6 + 326225u4v8

�120462u4v6w2 + 398634u4v4w4
� 120462u4v2w6 + 326225u4w8

� 98600u2v10

+85646u2v8w2
� 120462u2v6w4

� 120462u2v4w6 + 85646u2v2w8
� 98600u2w10

+10000v12 � 98600v10w2 + 326225v8w4
� 442850v6w6 + 326225v4w8

�98600v2w10 + 10000w12 = 0.

The real dual curve C_
R divides (P2)_R into 21 open regions. Seven

of the regions comprise the avoidance locus AC . They are colored in
Figure 2.10, and they represent the seven ways of bipartitioning the
four ovals of CR by a straight line. The central blue region on the right
is the convex body dual to the convex hull of CR, in our a�ne drawing
on the left.

The number seven of colored regions seen in Figure 2.10 attains the
following upper bound.

Proposition 2.5.2 Let C ⇢ P2
be a smooth curve of even degree d.

Up to closure, its avoidance locus AC is a union of m connected com-

ponents in (P2)_R\C
_
R where m is bounded above by

(2.8)
9

128
d4 �

9

32
d3 +

15

32
d2 �

3

8
d+ 1.

Moreover, each component can be regarded as a convex cone in R3
.

Proof. Any line intersects C in d points, counting multiplicity.
Points in (P2)_R\C

_
R correspond to real lines that intersect C transver-

sally. The appearance or non-appearance of a real point in this in-
tersection only changes by crossing the dual curve C_

R . Thus, AC\C_
R

is a union of connected components of (P2)_R\C
_
R . The prefix “up to

closure” is needed because AC also contains some points in C_
R , cor-

responding to real lines that do not meet CR but are tangent to C at
complex points.

To prove the upper bound, we start with the Harnack’s inequality.
It says that the real curve CR can have at most

�
d�1
2

�
+ 1 ovals in

P2
R. However, for our count we only care about the outermost ovals,

i.e. those not contained inside any other oval. By a result of Arnold
in [2], which is a more precise version of a classical inequality due to
Petrovsky [69], the number of outermost ovals of the curve CR is at
most

k =
3

8
d2 �

3

4
d+ 1.

If we pick a generic point in each oval, their configuration has
�
k
2

�
+ 1

bipartitions that can be realized by a straight line. Indeed, dually, this
is the number of regions in the complement of a general arrangement
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of k lines in the plane P2
R. The quartic polynomial in (2.8) is simply�

k
2

�
+ 1 with Petrovsky’s expression for k.
It remains to check that this number is the desired upper bound.

Indeed, every connected component of AC is uniquely labeled by a
bipartition of the set of non-nested ovals. The number of such biparti-
tions that are realized by a straight line is bounded above by the said
bipartitions of the points.

The set AC is the convex dual of the convex hull of CR in the
a�ne space P2

R\L, where L 2 AC . Therefore each of its components is
convex. ⇤

For plane sextics, the upper bound in (2.8) evaluates to 46. In the
following example we present a sextic that attains the bound.

Example 2.5.3 Consider the following net of sextics where t and ✏ are
parameters:

Ft,✏ = 60x6 � 750x5z � 111x4y2 + 1820x4z2 + 700x3y2z � 2250x3z3

+ 20x2y4 � 1297x2y2z2 + 960x2z4 � 56xy4z + 1440xy2z3 � y6

� 576y2z4 + t (x3 + xz2 � y2z)2 + ✏ (x2z4 + y2z4 + z6)

For t0 = �
1645
2 � 150

p
34 and ✏ = 0 , the sextic Ft0,0 has 10 isolated

real singular points:

(1 : ±
p
2 : 1), (2 : ±

p
10 : 1), (3 : ±

p
30 : 1), (4 : ±2

p
17 : 1),

�
(3�

p
34)/5 : 0 : 1

�
, (0 : 0 : 1).

No three of these 10 points lie on a line. For any su�ciently small
✏ > 0 and t su�ciently close to t0, the sextic Ft,✏ is smooth with 10 small
ovals arranged around the singular points of Ft0,0. When these ovals
are small enough, the avoidance locus will have the maximum number
46 of connected components, by the argument given in the proof of
Proposition 2.5.2. We used the construction developed by Kunert and
Scheiderer in [57] for this example.

In Example 2.5.1 and the proof of Proposition 2.5.2 we have seen the
one to one correspondence between the components of the avoidance
locus of a smooth curve C and bipartitions of all non-nested ovals in
the real curve CR using lines in P2

R that do not intersect CR. This
correspondence suggests that in order to compute the avoidance locus
in P_

R we find the boundaries for moving any of such lines. In our
algorithm for computing the avoidance locus AC , to be described in
this section, we use bitangents to serve as the desired boundary lines.

Let C be a smooth plane curve of degree d. A bitangent of C is a
line L in P2 that is tangent to C at two points. Note that bitangents
of C correspond to nodal singularities of the dual curve C_. By the
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Plücker formulas, the expected number of bitangents is

1

2
(d� 3)(d� 2)d(d+ 3),

which evaluates to 324 for d = 6. A bitangent L is called relevant if
the real part of the divisor L \ C is an even divisor on the curve C.
For generic curves C, this means that L has no real intersection points
with C except possibly the two points of tangency. If these two points
are real, then L corresponds to an extreme point of a convex connected
component of AC . If L can be represented with a linear form with only
real coe�cients then we call it a real bitangent.

Example 2.5.4 Let C be the smooth sextic that we represented for
Type 8nd in Section 2.3. This curve has 324 distinct complex bitan-
gents of which 124 are real. Of the real bitangents,

• 8 are tangent at non-real points and meet the curve in two
more non-real points;

• 60 are tangent at real points and meet the curve in two more
non-real points;

• 4 are tangent at non-real points and meet the curve in two
more real points;

• 52 are tangent at real points and meet the curve in two more
real points.

The last two families of bitangents intersect the real curve CR transver-
sally at two of the intersection points. Therefore, C only has 68 real
relevant bitangents. The curve C together with its 68 relevant bitan-
gents is shown in Figure 2.11.

Due to Bézout’s theorem, or simply from the formula above, curves
of degrees less than four have no bitangents. From the Zeuthen classifi-
cation [70, Table 1], among all 28 bitangent lines for a smooth quartic,
the number of real ones only depends on the topological type. In
higher degrees, when this is not the case, not much seems known. In
the following conjecture we suggest the bound that we have observed
experimentally. See Table 2.7.

Conjecture 2.5.5 The number of real bitangents of a smooth sextic in

P2
R ranges from 12 to 306. The lower bound is attained by curves in the

following four types: empty, 1, 2, (11) and (hyp). The upper bound is

attained by certain 11-oval curves of Gudkov-type (51)5.

We now describe an algorithm to compute the avoidance locus AC .

Remark 2.5.6 Let C be a smooth curve in P2
R of degree d � 4. If C

contains at least two non-nested ovals or has a non-nested oval which
is not convex, then every connected component of the avoidance locus
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Figure 2.11. A sextic C of Type 8nd; the avoidance
locus AC is represented by 68 real relevant bitangents.

AC has a relevant bitangent in its closure. If C does not satisfy this
hypothesis then AC is connected.

Assume that C satisfies the hypothesis in Remark 2.5.6. The avoid-
ance locus can be represented as the connected components (cliques)
of a graph GC . We construct the avoidance graph GC as follows.

Algorithm 2.5.7 (Avoidance graph of a smooth plane curve)

Input: (f, d), such that

• d is an even integer.

• f 2 C[x, y, z] is homogeneous of degree d.

• C := VC(f) is smooth.

Output: The avoidance graph GC corresponding to C.

1: Let L = {L1, . . . , Lk} be the set of all complex bitangents to the
curve C, where k = 1

2(d� 3)(d� 2)d(d+ 3).

2: Set LR ⇢ L to be the subset consisting of all real bitangents.
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3: Discard those bitangents that are not relevant from LR and call the
remaining set VG.

4: Let EG be the set of all LiLj such that

• Li, Lj 2 VG,

• (Li + Lj) \ CR = ;,

• {tL̃i + (1 � t)L̃j : 0 < t < 1} \ C_
R = ;, where L̃ 2 P_

R is the
corresponding point to the line L ⇢ P2

R.

5: return The graph GC=(VG, EG) with vertex set VG and edges in EG.

We made a proof-of-concept implementation of this algorithm for
the case of sextics. Its two main ingredients are computing the bitan-
gents in step 1 and the dual curve in step 4.

To compute the bitangents in step 1, we employ the variety of binary
sextics with two double roots. The prime ideal of this variety is defined
by 13 forms of degree 7; see the row labeled 2211 in [58, Table 1].
Substituting the binary form f(x, y,� 1

w (ux+ vy)) into that ideal, and
clearing denominators, yields the ideal in Q[u, v, w]. The zero set of
this ideal consists of 324 points (u : v : w), each corresponding to a
bitangent ux + vy + wz = 0. Note that the sign of our linear forms
representing the bitangents has to be chosen carefully.

For the computation of the dual curve we solve a linear system of
equations in the

�
30+2
2

�
= 496 coe�cients of C_. The equations are

derived by projecting C from random points p 2 P2. The ramification
locus of this projection reveals (up to scaling) the binary form of degree
30 that defines C_

\ p?.
Finally, the graph GC is a disjoint union of cliques, one for each

connected component of AC . This follows from Remark 2.5.6 and
convexity of the connected components. Midpoints of the segments
{tL̃i + (1 � t)L̃j : 0 < t < 1}, appearing in step 4, furnish sample
points in the components.

In Example 2.5.4, the avoidance graph GC is found to consist of 14
cliques: four K6’s, five K5’s, four K4’s and one K3. Hence AC consists
of 14 convex components. One can see all the 14 ways to bipartition
the 8 ovals in Figure 2.11 by lines that avoid CR.

Another important family of lines associated with a smooth plane
curve C consists of flex lines. While the nodes on C_ correspond to
bitangents of C, the cusps on C_ represent the flex lines of C. The
number of inflection points is 3d(d� 2) for a general curve of degree d.
A classical result due to Felix Klein states that at most one third of the
complex inflection points of a real plane curve can be real. Brugallé
and López de Medrano [8] proved, using tropical methods, that Klein’s
upper bound d(d � 2) is attained for all d � 3. Hence, for smooth
sextics, the number of real inflection points can be any even integer
between 0 and 24. The distribution of the numbers of real bitangents
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and real inflection points over the 64 rigid isotopy types is presented
in Section 2.6.

By passing through the discriminant hypersurface, the numbers of
real inflection points and bitangents of a sextic C often change. Al-
though, they may also change within the same rigid isotopy type. In
the space of all plane sextics, there are more hypersurfaces that all
together with the discriminant provide necessary conditions for these
changes. Each of such hypersurfaces is defined by one of the following
properties:

(222) C has a tritangent line, i.e. a line that is tangent to C in three
distinct points.

(321) C has a flex-bitangent, i.e. a line that meets C with multiplicity
3 in one point and is tangent at another point.

(411) C has an undulation point, in which the tangent meets C with
multiplicity at least 4.

If C is smooth then the total number of complex inflection points
resp. bitangents drops below the bounds 72 resp. 324 in all above
exceptional cases. Furthermore, the number of real inflection points or
bitangents changes only when passing through the discriminant or one
of these hypersurfaces. When generic sextics approach these hypersur-
faces, three lines come together: three bitangents for a tritangent line
(222), and two bitangents and a flex line for a flex-bitangent (321), a
bitangent and two flex lines for an undulation point (411). We define
the bitangent discriminant to be the Zariski closure of the set of smooth
sextics in PV = P27 having fewer than 324 bitangent lines.

Theorem 2.5.8 Let T be the Zariski closure in PV = P27
of the set of

smooth sextics with a tritangent line and let F be the locus of smooth

sextics with a flex-bitangent. Then:

(1) The loci T and F are irreducible hypersurfaces of degree 1224
and 306 respectively.

(2) Their union B = T [ F is the bitangent discriminant.

Proof. The binary sextics with three double roots in R[x, y]6 de-
fine an irreducible variety of codimension 3 . (It is defined by 45 quar-
tics [58, Table 1].) Let X be the incidence variety of all pairs (L, f) in
(P2)_⇥PV where L is the dual of a tritangent line to VC(f) ⇢ P2. The
locus T is the projection of X onto PV . The intersection of X with
any subspace of the form {L}⇥PV for L 2 (P2)_ has codimension 3 in
PV . Taking the union over all L, we conclude that T has codimension
1. Since the projection of X onto the first factor is surjective with
irreducible fibers of constant dimension, X is irreducible, hence so is
T . The same argument applies to F . The degrees of the hypersur-
faces F and T were computed for us by Israel Vainsencher with the
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Maple package schubert. The relevant theory is described by Colley
and Kennedy in [19]. This completes the proof of (1).

To prove (2), we start with the fact that any smooth deformation
of a sextic in T splits a tritangent into three bitangents. Similarly,
for a sextic in F , a flex-bitangent turns into two bitangents and a flex
line. This shows that T and F are both contained in the bitangent
discriminant. By degenerating the singularities of the dual picture in
C_, we can argue for the reverse. ⇤

In Proposition 2.5.2 we proved that the number of connected com-
ponents of the avoidance locus AC , where C is a smooth sextic, can
not exceed 46. Moreover, throughout this section, we presented two
examples of smooth sextics, for two extreme cases where AC has zero
and 46 components. We now conclude this section with the following
result on the avoidance loci of plane sextics.

Corollary 2.5.9 For any integer m between 0 and 46, there exists a

smooth sextic C in P2
R whose avoidance locus AC comprises exactly m

convex connected components.

Proof. We start with one of the 64 components in the comple-
ment of the discriminant and there we pick two smooth sextics whose
avoidance locus has 0 and 46 number of connected components. By us-
ing the bitangent discriminant, we prove that along a path connecting
these two sextics, any integer between 0 and 46 is realizable: Let f1 be
a sextic of Type 10nd whose avoidance locus has 46 components, as in
Example 2.5.3. Let f0 be a sextic of Type 10nd with empty avoidance
locus, for instance

f0 = (20x2�(y+10z)2+z2)(21y2�(x�10z)2+z2)(20(x�5z+y)2�(y+10z)2+z2)

+ z6.

The real picture of such a curve is shown in Figure 2.12. Let U be the
connected component of P27

R \� that contains both f0 and f1. Consider
the bitangent discriminant B of Theorem 2.5.8. There is an open dense
subset B0 of B, whose points represent curves with a single tritangent
line or a single flex-bitangent. The exceptional locus Z = B \ B0 has
codimension at least 2 in P27

R , hence V = U\Z is path-connected. Fix
a path � : [0, 1] ! V with �(0) = f0, �(1) = f1. Let {�(t1), . . . , �(tk)}
be its intersection points with B. Since �(ti) lies in B0, the number of
connected components of the avoidance locus of VR(�(t)) cannot change
by more than 1 in a neighborhood of ti. Indeed, at a point where that
number drops by one, exactly three relevant bitangents come together,
giving a sextic with a single tritangent in B0. Therefore, along the path
� we cross sextics with any number of convex avoidance components
between 0 and 46. ⇤
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Figure 2.12. A smooth sextic with 10 ovals and empty
avoidance locus

2.6. Reality questions for plane sextics

In this section we extend our experiments and we report on the
numbers of real features associated with real sextics in P2

R. The re-
sults are summarized in Table 2.7. Certified samples were drawn in
the vicinity of each of our current 64 representatives, using the local
exploration method that is described after Proposition 2.4.1.

Each row of Table 2.7 has five entries: the name of the rigid isotopy
type, numbers of real inflection points, numbers of real eigenvectors,
numbers of real bitangents, and one real rank. The numbers are ranges
of integers that were observed in our experiments. For instance, for
Type 1, which is the type with only one oval, we found numbers ranging
between 12 and 56 of real bitangents among 324 complex ones. In some
cases, all samples gave the same number of real solutions. For instance,
all our Type (71) sextics had 108 real bitangents.

Type Flex Eigenvec Bitang Rank
0 0 3-31 12 3
1 0-12 3-31⇤ 12-56 3

(11) 0-14 11-31⇤ 12-66 10
2 0-8 5-31⇤ 12-52 13

(21) 0-10 7-31⇤ 16-86 14
(11)1 2-6 7-31⇤ 20-66 15
3 0-8 7-31⇤ 24-94 13

(hyp) 0-14 11-31⇤ 12-52 13
(31) 2-10 19-31⇤ 24-90 13
(21)1 0-6 11-31⇤ 28-72 14
(11)2 0-4 11-31⇤ 32-82 13
4 0-2 11-31⇤ 36-54 11
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(41)nd 14-16 21-31⇤ 48-90 16
(41)d 12-14 27-31⇤ 98-104 14
(31)1 2-8 15-31⇤ 40-86 14

(21)2nd 10-16 17-31⇤ 54-82 20
(21)2d 8-16 19-31⇤ 60-70 17
(11)3 8-12 19-31⇤ 48-94 14
5 2-10 19-31⇤ 52-112 15

(51) 12-16 21-31⇤ 54-64 14
(41)1 22 27-31⇤ 90-104 14
(31)2 14-18 27-31⇤ 126-130 14
(21)3 16 27-31⇤ 112-116 14
(11)4 6-10 25-31⇤ 76-106 15
6 10-12 23-31⇤ 78-108 14

(61) 16 27-31⇤ 78-88 14
(51)1nd 16 23-25 110-124 15
(51)1d 20-24 29 136 16
(41)2 16-20 29-31 126-128 14

(31)3nd 12 25-31⇤ 124-148 15
(31)3d 20-22 29 132 16
(21)4 14-20 27-31⇤ 138-142 15

(11)5nd 6-16 29-31⇤ 116-122 16
(11)5d 8-16 25-31⇤ 120-128 16

7 4-14 25-31⇤ 96-124 14
(71) 20-24 29 108 16
(61)1 20-22 25 104-214 15
(51)2 22 25-31 226-228 15
(41)3 20 23-25 154-214 14
(31)4 22 21 162-214 14
(21)5 16-20 29-31 168 13
(11)6 12-14 27-31⇤ 172-176 14
8 0-12 23-31⇤ 124-142 13

(81)nd 18-22 23 122-196 14
(81)d 18-24 29 124-132 12
(71)1 14-18 21-31 104-240 13
(61)2 18-20 23-31 228-276 13
(51)3 22 25 192-254 13

(41)4nd 14-16 25 188-220 9
(41)4d 18 25 194-230 11
(31)5 20 25-31 198-260 13
(21)6 20 23-31 242-258 15
(11)7 14-16 29-31 216 14
9nd 8-16 25-31⇤ 162-172 15
9 d 4-16 29-31⇤ 156 15
(91) 18-22 23 124-236 13
(81)1 16-20 23-31 162-240 14
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(51)4 20 27 232-234 10
(41)5 18-20 27-31 232 10
(11)8 14-18 25-31 142-210 13
10 0-24 21-31⇤ 192 12

(91)1 18-22 25-31 200-284 14
(51)5 20-22 25-31 276-306 10
(11)9 16-20 25-31 174-250 14

Table 2.7. The results of our computational experi-
ments on the reality of four major features associated to
each rigid isotopy class of smooth plane sextics: inflec-
tion points, eigenvectors, bitangents and rank.

For the calculation of bitangents we applied numerical methods.
This means that, for some instances, the number of real solutions might
be undercounted. This can happen when two or more real bitangents
lie very close to each other. Bitangents and their applications were
discussed in detail in the previous section.

The column concerning the reality of inflection points is labeled
by “Flex”. In the previous section we discussed that a smooth sextic
VC(f) ⇢ P2 has 72 = 3 · 6 · 4 complex inflection points. They are
computed as the solutions of the equations

f(x, y, z) = det

2

664

@2f
@x2

@2f
@x@y

@2f
@x@z

@2f
@x@y

@2f
@y2

@2f
@y@z

@2f
@x@z

@2f
@y@z

@2f
@z2

3

775 = 0.

Due to Felix Klein, Brugallé and López de Medrano [8], for a general
sextic in P2

R, the number of real inflection points is an even integer
between 0 and 24. The data stored in our table comes from an empirical
distribution on the 64 rigid isotopy types. Note that a � b in this
column means all even integers k such that a  k  b are observed as
the number of real inflection points of a sextic with the corresponding
type.

We now give the definitions needed to understand the columns la-
beled by “Eigenvec” and “Rank” in Table 2.7, namely, we define the
eigenvector and rank of a plane curve. These two columns pertain to
the study of tensors in multilinear algebra. Here we identify the space
R[x, y, z]6 of ternary sextics with the space of symmetric tensors of
format 3⇥3⇥3⇥3⇥3⇥3. Such a symmetric tensor f has 28 distinct
entries, and these are the coe�cients cijk of the general sextic (2.4).
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A vector v = (v1, v2, v3) 2 C3 is an eigenvector of f if v is parallel
to the gradient of f at v. Therefore, every eigenvector is a solution to

(2.9) rank

"
v1 v2 v3

@f
@x(v)

@f
@y (v)

@f
@z (v)

#
= 1

in P2
C. Following [1, Theorem 2.1], a general ternary form f of degree

d has d2 � d + 1 eigenvectors. Those vectors are the critical points of
restricting f on the unit sphere S2 = {(x, y, z) 2 R3 : x2+y2+z2 = 1}.
Since f attains a minimum and a maximum on S2, the number of
real eigenvectors is at least 2. We note that the upper bound d2 �
d + 1 is attained over R. Anna Seigal and Bernd Sturmfels in [1,
Theorem 6.1] showed that if f is a product of d general linear forms,
then all its complex eigenvectors are real. Therefore, the number of
real eigenvectors of a general ternary sextic is an odd integer between
3 and 31.

The column labeled “Eigenvec” shows the empirical distribution on
the rigid isotopy types. For many rigid isotopy types we found instances
that attain the maximal number 31 of real eigenvectors. Among them
are the 35 types that have unions of six real lines in general position
in their closure. These types are marked with an asterisk next to the
number 31. We found these by perturbing each of the four combinato-
rial types of arrangements of six lines in general position in P2

R. This
search process resulted in 35 of the rigid isotopy types. This is the
result stated in Proposition 2.4. The computation we described is the
proof.

Maccioni in [63] proved that the number of real eigenvectors of a
ternary form is bounded below by 2`+1, where ` is the number of ovals.
The result of our experiments in the third column of Table 2.7 confirms
this theorem. Moreover, there are seven types where our computations
prove the converse, namely that all values between this lower bound
and the upper bound 31 are realized in these types.

For real inflection points and real eigenvectors we performed exact
computations. That means, we are sure that all numbers listed in the
table actually occur. However, we do not know whether there are more
possible numbers.

Finally, we explain our data in the last column. The rank r of a
ternary form f of degree d is the minimum number of summands in a
representation

(2.10) f(x, y, z) =
rX

i=1

�i(aix+ biy + ciz)
d.

Remark 2.6.1 Every tensor is a sum of rank one tensors. The smallest
number of summands needed in such a representation is the rank of
that tensor. This notion depends on the underlying field. Symmetric
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tensors of rank 1 are a constant times powers of linear forms. This is
the motivation for the definition above.

The computations for estimating the real rank are more delicate
than the rest. Similar to the computation of bitangents, in this case also
our results are accomplished numerically as the exact determination of
the real rank of a sextic f is very di�cult. The task is to decide the
solvability over R of the equations in the unknowns �i, ai, bi, ci obtained
by equating coe�cients in (2.10). This computation is a challenge for
both symbolic and numerical methods. There is no known method
that is guaranteed to succeed in practice. If f is a generic sextic in
R[x, y, z]6 then the complex rank of f is 10, and the real rank of f is
an integer between 10 and 19. This was shown in [66, Proposition 6.3].
We expect that 19 is not a tight upper bound for the real rank.

A standard package for tensors, that is widely used in the engineer-
ing community is the software tensorlab [83]. This program furnishes
a local optimization method for the following problem: given f and
r, find a sextic f ⇤ of rank r that is closest to f , with respect to the
Euclidean distance on the tensor space (R3)⌦6. If the output f ⇤ is very
close to the input f , we can be confident that f has real rank  r. If f ⇤

is far from f , even after many tries with di↵erent starting parameters,
then we believe that f has real rank � r + 1.

We found the software tensorlab the best existing tool for our rank
experiments, however, it does not furnish any guarantees. To increase
our accuracy, we needed to rerun the same instance many times to
achieve a lower bound on the real rank. Obtaining these numbers with
high confidence proved to be di�cult. We had considerable help from
Anna Seigal and Emanuele Ventura in carrying this out. Most puzzling
is the real rank 20 we found for our representative of type (21)2nd, as
this seems to contradict [66, Proposition 6.3]. This is either an error
arising in our numerical method, or the sextic lies on some exceptional
locus.

This could be an interesting future project at the interface of numer-
ics and real algebraic geometry to do the same calculation for a larger
sample of sextics in each rigid isotopy class. The guiding problem is
to find the maximal generic real rank among sextics. The following
question that yet has remained unanswered underscores the challenge.

Problem. In [66, Example 6.7], it is shown that the real rank of
the monomial x2y2z2 is either 11, 12 or 13. Verify the correct rank.

Our experimental data in this section needs further improvement,
however, each entry in Table 2.7 can be also regarded as a conjecture.
For example, we conjecture that smooth sextics with topological types
(71) and (21)5 have 108 and 168 real bitangents, respectively.
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2.7. Connections to K3 surfaces

In our final section of this chapter we discuss implications for real
K3 surfaces and their connections to plane sextics. In particular we
show how to construct quartic surfaces in P3

R with prescribed topology.
An algebraic surface is the zero locus of a polynomial equation in P3

C. A
quartic surface is an algebraic surface of degree four. i.e. the defining
equation is a homogeneous polynomial of degree four in four unknowns.
Two basic models of algebraic K3 surfaces are quartic surfaces in P3

and double-covers of P2 branched at a sextic curve. We start with
briefly explaining a well-known example for such a surface. See [42] for
details.

Let K ⇢ P3 be a quartic surface with a node p. Let K 0 be the
blow-up of K at p. There is a two-to-one projection from K 0 to P2.
The ramification locus of this double cover is a plane curve C of degree
six, and all the nodes of K which are not p map to the nodes of C.
One can also check that there is a “reverse direction” to this process.

By the genus degree formula, the maximum number of nodes on a
plane curve C of degree six is 15. This is attained when C is the union
of six lines intersecting in pairwise distinct points. Therefore a quartic
surface has at most 16 nodes. Quartic surfaces attaining this bound are
called Kummer surfaces. They were first discovered by Ernst Eduard
Kummer in his geometrical studies with applications to ray systems
and ballistics, following the work of William Rowan Hamilton. Figure
2.13 shows a Kummer surface and the corresponding plane sextic where
all of the complex nodes are real.

Figure 2.13. A Kummer surface with 16 real nodes
and the corresponding plane sextic

In a similar manner, each of our ternary sextics in Section 2.3 rep-
resents a K3 surface over Q. Suppose we can write f = v23 � v2v4
where vi is a homogeneous polynomial of degree i in x, y, z. Then
F = v2w2+2v3w+ v4 is a quartic in four variables that realizes the K3
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surface with one singular point at (0 : 0 : 0 : 1). Blowing up that singu-
lar point gives the K3 surface encoded by f . Perturbing the coe�cients
of F gives a smooth quartic surface with similar properties.

As the relevance between reality of nodes on a Kummer surface
and the corresponding plane sextic suggests, the real topology of the
surface VR(F ) is determined by the topological type of the real curve
VR(f) and its sign behavior. By perturbing F to a polynomial F̃ , we
can obtain a smooth quartic surface whose real part VR(F̃ ) has the
desired topology. See [82] for details.

In Section 2.3 we have shown that many of the 64 types can be
constructed by adding a positive sextic to the product of a plane quartic
and a plane conic. For such types, the sextic has the desired form
f = v23�v2v4. The resulting quartic F can be expressed with reasonably
small integer coe�cients.

Let S ⇢ P3 be a smooth K3 surface. Its real part SR ⇢ P3
R is an

orientable surface with at most one connected component. Unless SR
is the union of two tori, it has non-positive Euler characteristic and
therefore it is determined (up to homeomorphism) by its total Betti
number and its Euler characteristic. If SR is nonempty, by Smith-
Thom inequality its total Betti number ranges between 2 and 24, and
according to the Comessatti inequalities its Euler characteristic ranges
between �18 and 20. There are 64 possible combinations of these two
numbers; they are displayed in [80, Table (3.3), page 189]. All these 64
possibilities can be realized as a quartic surface in P3. These topological
classification was studied by Utkin [82]. The isotopic and rigid isotopic
classifications are due to Kharlamov [47, 49]. We refer to Silhol’s book
[80, Section VIII.4] for proofs and further information.

We now conclude this section by presenting two explicit quartic
surfaces that realize the minimal and the maximal Euler characteristic.
The following example for the minimal case arises from a plane sextic
with ten empty ovals.

Example 2.7.1 Let F̄ 2 C[x, y, z, w]4 be defined as

F̄ = 100w4
� 12500w2x2 + 104x4

� 12500w2y2 + 1640x2y2 + 1550y4

+12500w2yz � 75x2yz � 1552y3z + 9375w2z2 � 487x2z2

�1533y2z2 + 354yz3 + 314z4.

The variety VC(F̄ ) ⇢ P3 is smooth and its real locus VR(F̄ ) is a con-
nected orientable surface of genus 10. The Euler characteristic of that
surface is �18. This is the smallest possible Euler characteristic for a
real K3 surface. To construct the quartic F̃ from a sextic f of the form
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f = v23 � v2v4, we set

v2 = �4x2
� y2 + 2yz + 3z2,

v3 = 10�3z3,
v4 = 33001x4 + 131227x2y2 + 30980y4 � 11842x2yz � 62072y3z

�155986x2z2 � 122652y2z2 + 56672yz3 + 100672z4.

The plane sextic VC(f) is smooth and the real part VR(f) has
Type 10. These informations we easily obtained by using our code
SexticClassifier. The quartic

F = v2w
2 + 2v3w + v4

has a node at (0 : 0 : 0 : 1). The curve VC(f) is the ramification
locus of the projection from this node. To smoothening the singular
surface VC(F ) we make a small perturbation. For su�ciently small ✏,
for example ✏ = 10�10, the K3 surface defined by F̃ = F + ✏w4 has the
desired properties. Now we use the the techniques discussed in Section
2.3 for polishing the polynomials by improving integer coe�cients and
to obtain F̄ from F̃ .

Finally, we dedicate our last example which is the closing of this
chapter to our favorite algebraic geometer Karl Rohn. He was a profes-
sor at the University of Leipzig from 1904 until 1920 and his inspiring
article [75] was our motivation for this project.

Example 2.7.2 Let G 2 C[x0, x1, x2, x3]4 be defined as

G = ⌧(s21 � 6s2)
2 + (s21 � 4s2)

2
� 64s4,

where si is the ith elementary symmetric polynomial in x0, . . . , x3, i.e.

s1 = x0 + x1 + x2 + x3,
s2 = x0x1 + x0x2 + x0x3 + x1x2 + x1x3 + x2x3,
s4 = x0x1x2x3,

and ⌧ = (16
p
10 � 20)/135. This quartic is Rohn’s imaginary sym-

metroid in [75, §9]. The variety of this nonnegative form VC(G) ⇢ P3 is
exactly ten points with real coordinates. Subtracting a positive definite
form multiplied with a small postive scalar gives a quartic surface with
ten connected components. The surface VR(Ḡ) is the disjoint union of
ten spheres, so it has Euler characteristic 20. To represent this instance
we use the techniques in Section 2.4 and construct

Ḡ = 6s41 � 53s21s2 + 120s22 � 320s4.

which has nicer integer coe�cients.

So far, we have explored the topological and rigid isotopy classi-
fications of smooth plane sextics. We gave an exact computation for
the discriminant and we constructed an example for each rigid isotopy
type of plane sextics. Using our representative polynomials together
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with the software that we developed to identify the topological type of
a given sextic curve, we ran many experiments. Tables 2.2 to 2.6 show
the results of our probabilistic studies and Table 2.7 summarizes our
computational data on the reality of some key features associated to
the real part of a plane sextic. Algorithm 2.5.7 constructs the avoid-
ance locus of a plane curve from its real bitangents. We found an upper
bound for the number of connected components of the avoidance locus
of a plane curve, and we proved that for plane sextics, any number
between zero and this upper bound is realizable These two results ap-
pear in Proposition 2.5.2 and Corollary 2.5.9, respectively. Finally, we
finished our discussion about plane sextics with briefly explaining their
connections to K3 surfaces. We are now ready to move on to three-
dimensional projective space and explore space sextics and their real
features.



CHAPTER 3

Real Space Sextics and their Tritangents

In this chapter, we present a computational study of canonical
curves of genus 4 over the field R of real numbers. Such a curve C,
provided it is smooth and non-hyperelliptic, is the complete intersec-
tion in P3 of a unique surface Q of degree two and a (non-unique)
surface K of degree three. Conversely, any smooth complete intersec-
tion of a quadric and a cubic in P3 is a genus 4 curve. The degree of
C = Q \ K is six: any plane in P3 meets C in six complex points,
counting multiplicity. We refer to such a curve C as a space sextic.

We denote the canonical divisor class of the smooth curve C by C .
A theta characteristic of C is a divisor class ✓ such that 2✓ = C . A
theta characteristic is odd if dimH0(C, ✓) is odd and is even otherwise.
An even theta characteristic is said to be vanishing if dimH0(C, ✓) > 0.

For a smooth proper surface X, we use the terminology of inter-
section pairing, exceptional curve, and blow-up/blow-down from [39,
Chapter V]. A del Pezzo surface X of degree 1 is a smooth sextic sur-
face in P(1 : 1 : 2 : 3) with weighted coordinates (u : v : w : r) of the
form

XP : �r
2 = f0w

3 + f2(u, v)w
2 + f4(u, v)w + f6(u, v),

where each fd is homogeneous polynomial of degree d and �, f0 2 k
are nonzero. Without loss of generality, one may always assume that
� = f0 = 1.

Since C is a smooth space sextic, it has exactly 120 odd theta
characteristics and there is no theta characteristic ✓ such that
dimH0(C, ✓) > 2 (as dimH0(C, 2✓) = 4). In particular, each odd theta
characteristic ✓ has a unique e↵ective representative which we will refer
to as D✓. Since C is its own canonical model, by definition we have
that 2D✓ is cut out by linear form which we will denote l✓. Let ✓ be an
odd theta characteristic of C. We call the zero locus H✓ := V (l✓) ✓ P3

the tritangent plane associated to ✓. Any plane H✓ P3 of this form is
called a tritangent plane of C or tritangent for short.

Note that we exclude from consideration planes which are tangent
to C at 3 points (counted with multiplicity) but do not arise from
odd theta characteristics. If the unique quadric QC containing C is
smooth then every plane tangent to C at 3 points is a tritangent plane
in the sense of our definition above [38, Theorem 2.2]. However, if Q is
singular, then the curve C has infinitely many tritangents. We can see
this as follows. Any plane H tangent to Q contains the singular point

58
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of Q, and it is tangent to Q at every point in the line H \ Q. Since
the intersection of H and C is contained in Q, the plane H is tangent
to C at every point in C \H. These planes do not correspond to odd
theta characteristics.

In what follows we focus on the case when the quadric surface Q
containing the space sextic C is singular. A tritangent is real if it is
defined by a linear form with real coe�cients. A real tritangent is
totally real if it touches the curve C at three distinct real points.

O1

O2

O3

Figure 3.1. Totally real tritangent of a curve with
three ovals. The plane touches O1 on one side and O2, O3

on the other.

A space sextic C has at most five ovals [38, §3], since the maximum
number of ovals is the genus of C plus one. By [38, Proposition 3.1],
all 120 tritangents of C are real if and only if the number of ovals of
C attains this upper bound. A heuristic argument suggests that at
least 80 =

�
5
3

�
⇥8 of the 120 real tritangents are totally real, since eight

planes can touch three ovals as in Figure 3.1. The analogous fact for
genus three curves is true: a plane quartic with four ovals has 28 real
bitangents, of which at least 24 =

�
4
2

�
⇥4 are totally real. The situation

is more complicated in genus 4, as seen in Figure 3.2.

Figure 3.2. No tritangent touches all three ovals of this
sextic curve on the smooth quartic.
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In 1928, Emch [26, §49] asked whether there exists a space sextic
with all of its 120 tritangent planes totally real. He exhibited a curve
suspected to attain the bound 120. However, ninety years later, Harris
and Len [38, Theorem 3.2] showed that only 108 of the tritangents of
Emch’s curve are totally real. In [38, Question 3.3] they reiterated
the question whether 120 totally real tritangents are possible. Our
Example 3.3.1 answers that question a�rmatively.

Theorem 3.1 The number of totally real tritangents of a space sextic

with five ovals can be any integer between 84 and 120. Each of these

numbers is realized by an open semialgebraic set of such curves.

This chapter is organized as follows. In Section 3.1 we construct
space sextics associated with del Pezzo surfaces of degree one. These
curves lie on a singular quadric Q and are obtained by blowing up eight
points in the plane. This construction has the advantage of producing
120 rational tritangents when the points are rational. In Section 3.2 we
construct these 120 planes and we explain a method to decide which
are totally real depending on the configuration of the eight points. In
Section 3.3 we present a set of eight points with integer coordinates
which gives rise to a space sextic with 120 totally real tritangents.
This solves the long lasting problem by Emch. In the same section, we
also prove Theorem 3.1.

In Section 3.4 we extend this construction to real curves obtained
from complex configurations in P2 that are invariant under complex
conjugation. Theorem 3.4.1 summarizes what we found about these
special space sextics. In Section 3.5 we turn to arbitrary space sextics,
where Q is now generally smooth, and we show how to compute the
120 tritangents of C = Q \K directly from the equations defining Q
and K. Section 3.6 o↵ers a study of the discriminants associated with
our polynomial system, and Section 3.7 sketches some directions for
future research. Finally, the scripts used throughout this chapter are
available at [55].

3.1. Space sextics from del Pezzo surfaces of degree 1

We shall employ the classical construction of space sextics from del
Pezzo surfaces of degree one. We describe this construction below and
direct the reader to [23, §8] or [53, §2] for further details. Any space
sextic C that is obtained from this construction is special: the quadric
Q that contains C is singular. See also [52], where these curves C are
referred to as uniquely trigonal genus 4 curves.

These curves are special as the unique quadric containing it is singu-
lar. Nevertheless, the construction remains a valuable source of space
sextics as many interesting qualities of them are both computation-
ally and conceptually much more accessible compared to the generic
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case. In Proposition 4.4.1 we show that any space sextic on a singu-
lar quadric arises this way. Moreover, we describe special algorithms
which compute the 120 tritangents.

Fix a configuration P := {P1, . . . , P8} ✓ P2 of eight points in P2
R.

We may assume that P is su�ciently generic to allow for the choices to
be made below. Additionally, genericity of P ensures that the resulting
space sextic C is a smooth curve in P3. For practical computations we
always choose points Pi whose coordinates are in the field Q of rational
numbers. This ensures that each object arising in our computations is
defined over Q.

First, note that the space of plane cubics through P has dimension
10� 8 = 2. Let {u, v} be any basis of it. Next, observe that the space
of plane sextics vanishing doubly on P has dimension 28� 8 · 3 = 4. It
is spanned by {u2, uv, v2, w} for some sextic w. Further, the space of
plane nonics vanishing triply on P has dimension 55 � 8 · 6 = 7. It is
spanned by {u3, u2v, uv2, v3, uw, vw, r} for some nonic r. This defines
a rational map

 : P2 99K P(1 :1 :2 :3)
(x :y :z) 7�! (u(x, y, z) :v(x, y, z) :w(x, y, z) :r(x, y, z)).

The closure of the image of  is cut out by a single equation of de-
gree six. As it turns out, we can say a lot about the image of  [64,
Remark 24.4.2].

Proposition 3.1.1 The image of  is a del Pezzo surface of degree 1.

Henceforth, we let XP := Im( ). By abuse notation we label the
coordinates of P(1 : 1 : 2 : 3) by u, v, w, r (respectively, with respect to
weights). After a linear change of coordinates we can write the defining
equation of XC in P(1 :1 :2 :3) as

XP : r
2 = w3 + f2(u, v) · w

2 + f4(u, v) · w + f6(u, v),

such that each f2, f4, f6 is homogeneous degree 2, 4, 6 respectively.

Now consider the projection ⇡ : P(1 : 1 : 2 : 3) ! P(1 : 1 : 2) onto its
first three coordinates and an embedding � of P(1 : 1 : 2) as a singular
quadric in P3, which is illustrated in Figure 3.3.

The projection ⇡ is a generically 2-to-1 rational map branched along
the curve C 0 of weighted degree six given by r = 0. The defining
equation of C 0 in P(1 :1 :2) is hence given by

(3.1) C 0 : 0 = w3 + f2(u, v) · w
2 + f4(u, v) · w + f6(u, v).

The embedding � is an isomorphism between P(1 : 1 : 2) and V (x2
1 �

x0x2) ✓ P3, where (x0 :x1 :x2 :x3) are the homogeneous coordinates of
P3. The curve C := �(C 0) is therefore a space sextic which lies on a
singular quadric.
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P2 P(1 :1 :2 :3)

P(1 :1 :2)

P3

 

⇡
(u :v :w :r)

(u :v :w)

�
(u :v :w)

(u2 :uv :v2 :w)

XP :=  (P2)◆

C 0 := BranchCurve(⇡|XP )◆

C◆

Figure 3.3. The ramification locus of the 2-to-1 ratio-
nal map � � ⇡ �  is the space sextic lying on a singular
quadric.

3.2. Constructing the tritangents

Note that any tangent plane of the singular quadric V (x2
1�x0x2) ✓

P3 is tangent to the curve C at its points of intersection; the plane
intersects the quadric in a double line passing through the node of
the cone, which in turn intersects the cubic in three double points.
However, because all intersection points lie on a line through the node
of the cone, the tangent plane arises from an even theta characteristic
rather than an odd theta characteristic, which is why we will disregard
them in the context of this chapter.

Proposition 3.2.1 Let C be a space sextic curve on a singular quadric

Q. Then any plane corresponding to an odd theta characteristic of C
does not pass through the singularity of Q.

Proof. Let H be a plane passing through the node of Q such that
H is tangent to C at each point in C \ H. As H passes through the
node of Q, we have that H \ Q is the union of two lines which each
meet C in three points. As each point in C \H has even multiplicity,
the two lines must be coincident. But then the class of the divisor
1
2(C \H) of C is the vanishing even theta characteristic. ⇤



3.2. CONSTRUCTING THE TRITANGENTS 63

We derive 120 tritangents of our curve C in P3 from the 240 excep-
tional curves on the del Pezzo surface XP (cf. Lemma 3.2.2). There
is an order two automorphism ◆ of XP , called the Bertini involution.
The image of an exceptional curve e under the Bertini involution ◆ is
another exceptional curve e0 = ◆(e). If ' := ��⇡ : XP ! V (x0x2�x2

1)
is the 2-to-1 covering branched along C, then ' � ◆ = '. In particular,
'(e) = '(e0). The intersection e \ e0 consists of three points on XP .
Their image under ' is the triple of points at which the tritangent
corresponding to {e, e0} touches C. We can thus decide whether a tri-
tangent is totally real by checking whether the intersection e\e0 in XP
contains one or three real points. This intersection can be carried out
in P2, as we shall explain next.

Recall that XP is the blow-up of P2 at P . By blowing down, we
may view the eight exceptional fibers of the blow-up as the eight points
of P , and we may view the remaining 112 exceptional curves of XP as
(possibly singular) curves in P2. We can determine the images of the
exceptional curves in P2 from [81, Table 1], as well as how they are
matched into pairs {e, e0} via the Bertini involution. We named the
following types after their degrees in P2.

8 pairs of type (0,6):

The exceptional fiber at one point Pi matches the sextic van-
ishing triply at Pi and doubly at the other seven points. The
three components of the tangent cone of this sextic determine
the three desired points on the branch curve C.

�
8
2

�
= 28 pairs of type (2,5):

The line through Pi and Pj matches the quintic vanishing at
all eight points and doubly at the six points in P\{Pi, Pj}.
Their intersection in P2

\ P consists of three complex points.
Either one or three of them are real (see Figure 3.4).

Pi Pj

Figure 3.4. 28 lines pair with 28 rational quintics
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�
8
3

�
= 56 pairs of type (2,4):

The conic through Pi1 , . . . , Pi5 matches the quartic vanishing
at P and doubly at the three other points. Their intersection
in P2

\ P consists of three complex points (see Figure 3.5).

Figure 3.5. 56 conics pair with 56 rational quartics

�
8
2

�
= 28 pairs of type (3,3):

For two points Pi and Pj, the cubic vanishing doubly at
Pi, non-vanishing at Pj, and vanishing singly at P\{Pi, Pj}

matches the cubic vanishing doubly at Pj, non-vanishing at
Pi, and vanishing singly at P\{Pi, Pj}. Their intersection in
P2

\P consists of three points in P2 (see Figure 3.6).

Pi

Pj

Figure 3.6. P determines 28 pairs of rational cubics

The following lemma summarizes the reality issues on the del Pezzo
surface XP that arises from the constructions in P2 described above.

Lemma 3.2.2 Let {e, e0} be a pair of exceptional curves of type (0,6),

(1,5), (2,4) or (3,3) contained in the del Pezzo surface XP Then

' ( e \ e0 ) spans a tritangent plane of the space sextic C in P3
.

That tritangent is totally real if and only if the intersection e \ e0 is
real on XP .
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Proof. Let � be the anticanonical divisor class of XP . Then �
and �2 are ample but not very ample. The class �3 is very ample,
and its linear system embeds XP into P6. Consider the sequence of
maps P2 99K XP ! V (x0x2 � x2

1) ⇢ P3. The first map is the blow-up
 , which is birational. The second map is the 2-1 morphism ' given by
the linear system |� 2|. The second map takes the 240 exceptional
curves in pairs {e, e0} onto the 120 hyperplane sections of V (x0x2�x2

1)
defined by the tritangent planes of C.

The pairs are as indicated above, since their classes add up to �2
by [81, Table 1]. Intersection points of the pairs of curves onXP become
singular points of the intersection curves on V (x0x2�x2

1), so the planes
are tangent at those points. The tritangent being totally real means
that these three points have real coordinates. ⇤

3.3. 120 totally real tritangents

In this section, we present a concrete instance (Example 3.3.1) that
we found of a space sextic for which all 120 complex tritangents are
totally real. This corrects a mistake by Emch [26, §49] in 1928 and
answers the follow up question [38, Question 3.3] by Harris and Len.

Following [53, Example 2.5], we parametrize the singular quadric
Q as {(1 : t : t2 : W )}. This represents C by a polynomial in two
unknowns (t,W ) that has Newton polygon conv{(0, 0), (6, 0), (0, 3)}:

(3.2)
C : t6+c1t

5+c2t
4W+c3t

4+c4t
3W+c5t

2W 2+c6t
3+c7t

2W+

c8tW
2+c9W

3+c10t
2+c11tW+c12W

2+c13t+c14W+c15.

In our computations, the del Pezzo surface XP is represented by
(P2,P). For each of the triples of points described above, we can com-
pute their images in V (x0x2 � x2

1) ⇢ P3 using Gröbner-based elimina-
tion. These triples are the contact points of the corresponding tritan-
gent plane of C. We may choose an a�ne open subset of V (x0x2�x2

1),
isomorphic to A2, containing these three points. The intersection of
a plane in P3 with the singular quadric Q is represented on this open
subset by a plane curve with Newton polygon conv{(0, 0), (2, 0), (0, 1)}.
We normalize this as follows:

(3.3) tritangent planes: t2 + ↵1t + ↵2 + ↵3W.

The upper bound in Theorem 3.1 is attained in the following example.

Example 3.3.1 Consider the following configuration of eight points:

P =
�
(1 :0 :0), (0 :1 :0), (0 :0 :1), (1 :1 :1), (10 :11 :1),

(27 :2 :17), (�19:11 :�12), (�15:�19:20)
 

⇢ P2
R.

The resulting space sextic C in V (x0x2 � x2
1) has 120 totally real tri-

tangents. We prove this by computing the pairs of special curves in
P2 and by computing their triples of intersection points as described
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above. For each of the 112 = 28(1,5) + 56(2,4) + 28(3,3) pairs of curves
as above, we found that all three intersection points are real. We ver-
ified that the remaining eight tritangents of C are also totally real by
computing the tangent cones of the special sextics in item 8.

We now convert the curve C to the format in (3.2). From that we
can recover the pair (Q,K) defining the canonical model of C, for the
independent verification in Example 3.5.1. We start by computing the
cubics u, v. They are minimal generators of the ideal I :=

T8
i=1 mPi ,

where mPi denotes the maximal ideal corresponding to the point Pi:

u = 7151648400xy2 � 434820164119x2z + 354394201544xyz

� 38806821565y2z + 692107405715xz2 � 580026269975yz2,

v = 14303296800x2y � 782195108453x2z + 613370275528xyz�

49450554755y2z + 1245021817105xz2 � 1041049726225yz2.

Next, we compute the sextic w. It is the element of lowest degree in
I(2) \ I2, where I(2) is the symbolic square of the ideal I. We find

w = 175674063641748261863073581969689280x4yz

+ 11115515429554564750686439346701440x3y2z

� 445819563363162103552629662552521920x2y3z

+ 264167833624792096768707005238371200xy4z

� 20036962656454818365487885637968107x4z2

� 294913066878605444782558855953184976x3yz2

� 44062271090476792370117994521819642x2y2z2

+ 755657199632193956412295956477085200xy3z2

� 416363969347671237983809688854251675y4z2

+ 32905512814926710254817331888615230x3z3

+ 28993156637165570509985808089578930x2yz3

+ 40808451826702177753226924348677890xy2z3

� 78682528595564243828185219353313650y3z3

� 1745283730188673093290045100489475x2z4

� 5237850029165498581303629066909850xyz4

� 2460237915794525755410066318259875y2z4.

The curve C is defined by the generator of the principal ideal
��
hdet J(u, v, w)i+Minors2⇥2

�
u2 uv v2 w
1 t t2 W

��
: hu, vi2

�
\ Q[t,W ],

where J(u, v, w) is the Jacobian matrix of the map (x, y, z) 7! (u, v, w).
The determinant of J(u, v, w) gives the singular model of the branch
curve in P2 and the 2 ⇥ 2 minors determine its image in the singular
quadric in P3. In our case, the generator of the principal ideal is in the
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form of (3.2), and explicitly is given by

C : 22070179871476654215734436981460373192064947078797748209t6

+ 5585831392725719195345163470516310362705889042844010328t5

+ 14175569812724447393500233789877848531491265t4W

� 447718078603500717216424896040737869157828321607704039864t4

� 86567655386571901223236593151698362962027440t3W

+ 57114529769698357624742306475t2W 2

+ 474302309016648096934423520799618219755274954155075926592t3

+ 192856342071229007723481356183461213738057680t2W

� 194302706043604453258752959400tW 2
� 26371599148125W 3

+ 2341397816853864817617847981162945070584483528261510775184t2

� 183528856281941126263893376861009344326329920tW

+ 164969244105921949388612135400W 2

� 5390258693970772695117811943833419754488807920338145746560t

+ 61550499069700173478724063089387654812308400W

+ 3193966974265623365398753846860968247266969720956505401600.

We next compute each of the 120 tritangent planes explicitly, in the
format (3.3). For instance, the tritangent that arises from the line
spanned by the points (10 :11 :1) and (27:2 :17) in P is found to be

345059077005W � 153208173277626716984179949t2

+ 277165925195542929496239488t � 2613400142391424482367340.

We now have a list of 120 such polynomials. Each of these intersects
the curve C in three complex points with multiplicity two in the (t,W )-
plane. All of these complex points are found to be real.

Now we present an example which attains our lower bound in The-
orem 3.1.

Example 3.3.2 A similar computation verifies that the following con-
figuration of eight points gives 84 totally real tritangents:

P =
�
(�12 : 9 : 11) , (7 : �5 : �7) , (1 : 3 : 3) , (2 : 2 : �1) ,

(�2 : 2 : 1) , (1 : 3 : 1) , (3 : 3 : 2) , (8 : �8 : �7)
 

⇢ P2
R.

Proof of Theorem 3.1. The 120 tritangent planes arising from
the construction above correspond to the odd theta characteristics of
C. They are tritangent to C but they do not pass through the singular
point (0 : 0 : 0 : 1) of the quadric V (x0x2 � x2

1) in P3. Each such
tritangent is an isolated regular solution to the polynomial equations
that define the tritangents of C. These equations are described explic-
itly as the tritangent ideal in Section 4. We may perturb the equation
x0x2 � x2

1 to obtain a new curve C 0. By the Implicit Function Theo-
rem, for each tritangent H of C there is a nearby tritangent plane H 0

of C 0. Moreover, if the perturbation is su�ciently small and the three
points of C\H are real and distinct, then C 0

\H 0 also consists of three
distinct real points. Conversely, if two points of C \H are distinct and
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complex conjugate, then two points of C 0
\H 0 will also be distinct and

complex conjugate.
Hence, if our blow-up construction gives m totally real tritangents

for some m  120 then that same number of real solutions persists
throughout some open semialgebraic subset in the space P9

R ⇥ P19
R of

pairs (Q,K) of a real quadric and a real cubic in P3.
Examples 3.3.2 and 3.3.1 exhibit configurations with m = 84 and

m = 120. Every integer m between these two values can be realized
as well. We verified that assertion computationally, by constructing a
configuration P in P2

Q for every integer between 84 and 120. ⇤

Remark 3.3.3 It may be possible to prove by hand that every in-
teger m between 84 and 120 is realizable. The idea is to connect
the two extreme configurations with a general semialgebraic path in
P9
R ⇥ P19

R . That path crosses the tritangent discriminant �2 (cf. Sec-
tion 5) transversally. At such a crossing point, precisely one of the 120
configurations marked (0,6), (1,5), (2,4) or (3,3) fails to have its three
intersection points distinct. This means that the number of real triples
changes by exactly one. So, the number of totally real tritangents of
the associated space sextic changes by exactly one. This is not yet a
proof because the path might cross the discriminant �1.

3.4. Space sextics with fewer ovals

In Section 3.1 we started with eight points in the real projective
plane P2

R. Here we generalize by taking a configuration P in the com-
plex projective plane P2

C that is invariant under complex conjugation.
This also defines a real curve C in V (x0x2 � x2

1) ⇢ P3
R. To be precise,

for s 2 {1, 2, 3, 4, 5}, let P consist of 2s� 2 real points and 5� s com-
plex conjugate pairs. Such a configuration of eight points defines a real
del Pezzo surface XP . Additionally, the map P2 99K P3 in Figure 3.3
and its branch curve C are defined over R. The space sextic C has s
ovals and it is not of dividing type when s  4. By, [38, Proposition
3.1], the number of real tritangents of C equals 2s+2. For curves which
come from the construction in Section 3.1, we can derive this number
by examining how complex conjugation acts on the special curves in
P2
C we had associated with the point configuration P . We follow our

notation from Section 3.2.

8(0,6): The exceptional fiber over a point Pi defines a real tritangent
if and only if the point Pi itself is real.

28(1,5): This tritangent is real if and only if the pair {Pi, Pj} is real,
i.e. either Pi and Pj are both real, or Pj is the conjugate of Pi.
Among the 28 pairs, the number of real pairs is thus 4 = 0+4,
4 =

�
2
2

�
+ 3, 8 =

�
4
2

�
+ 2 and 16 =

�
6
2

�
+ 1 for s = 1, 2, 3, 4.
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56(2,4): This tritangent is real if and only if the triple of singular points
in the quartic is real. This happens if either the three points
are real, or there is one real point and a conjugate pair. Among
the 56 triples, the number of real triples is thus 0, 6 = 0+2 ·3,
12 =

�
4
3

�
+ 4 · 2 , 26 =

�
6
3

�
+ 6 · 1 for s = 1, 2, 3, 4.

28(3,3): In this case, the tritangent is real if and only if the two cubics
are conjugate, and this happens if and only if the pair {Pi, Pj}

is real. Hence the count is 4,4,8,16, as in the case 28.

For each value of s 2 {1, 2, 3, 4}, if we add up the respective four
numbers then we obtain 2s+2. For instance, for s = 3, the analysis
above shows that 4 + 8 + 12 + 8 = 32 of the 120 tritangents are real.

We wish to know how many of these 2s+2 real tritangents can be
totally real, as P ranges over the various types of real configurations.
Our investigations led to the findings summarized in Theorem 3.4.1.

Theorem 3.4.1 The third row in Table 3.1 lists the ranges of currently

known values for the number of totally real tritangents of real space

sextics C that are constructed by blowing up eight points in P2
:

s ovals 1 2 3 4 5
real 8 16 32 64 120

totally real [0, 8] [1, 15] [10, 32] [35, 63] [84, 120]

Table 3.1. Real and totally real tritangents of a space
sextic C on a singular quadric Q, according to number
of ovals of C.

The following examples exhibit some lower and upper bounds.

Example 3.4.2 (s = 1) Let P be the following configuration in P2
C:

P1 = (i : 1� i : 0) P2 = P1

P3 = (2� i : �3� i : 3 + i) P4 = P3

P5 = (2� i : 1� i : �2� i) P6 = P5

P7 = (4i : �i : 4) P8 = P7

The curve C consists of only one oval in P3
R. One checks that none of

the eight real tritangents of C is totally real, i.e. no plane is tangent to C
at three real points. On the other hand, for the following configuration,
all eight real tritangents are totally real:

P1 = (i : 0 : 1) P2 = P1

P3 = (1� 3i : �3 + 2i : 1) P4 = P3

P5 = (0 : 2 + 3i : �3� 2i) P6 = P5

P7 = (4i : �3 + 4i : 1 + i) P8 = P7
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Example 3.4.3 (s = 2) We fix the following configuration P of two
real points and three pairs of complex conjugate points in P2.

P1 = (1 : �2i : 2i) P2 = P1

P3 = (1 : 3 + 2i : �3i) P4 = P3

P5 = (1 + 2i : 4 + 2i : �4 + i) P6 = P5

P7 = (1 : 0 : �1) P8 = (0 : 4 : 1)

The associated curve C has two ovals. Of its 16 real tritangents, ex-
actly one is totally real. By a random search, we found examples
where up to 15 of the real tritangents of the curve C are totally real.
At present, we have not found any P where the associated curve has
either 0 or 16 totally real tritangents.

Figure 3.7 shows the empirical distribution we observed for s = 3
(left) and s = 4 (right). The respective ranges are [10, 32] and [35, 63].

Figure 3.7. Count of totally real tritangents for s = 3
and s = 4.

Example 3.4.4 (s = 3) The following configuration P gives a space
sextic C with three ovals that has 32 totally real tritangents:

P1 = (�204813760� 55982740i : 452442430 + 319792532i : 1), P2 = P1

P3 = (252002303� 508295920i : 418802957 + 255990940i : 1), P4 = P2

P5 = (420794066 : 346448315 : 1), P6 = (64527687:183049780:1),

P7 = (410335352:364471450:�1), P8 = (�210806629 : �146613813 : 1).

3.5. Solving the tritangent equations

In Sections 3.1 to 3.4, we studied space sextics C lying on a singular
quadric surface Q. By perturbing these, we obtained generic space sex-
tics with many di↵erent numbers of totally real tritangents. However,
not all numbers between 0 and 120 were attained by this method. To
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remedy this, we considered arbitrary space sextics C = Q\K, defined
by a random quadric Q and a random cubic K.

However, we found the problem of computing the tritangents di-
rectly from (Q,K) to be quite challenging. We conjecture that all in-
tegers between 0 and 120 can be realized by the totally real tritangents
of some space sextic.

In spite of the very recent research ([40],[56]) on expanding Table 3.1
and finding the possible bounds, there are open cases remain to be
realized or shown to be impossible: 64 real tritangents with all 64
totally real and 120 real tritangents with 80 - 83 totally real tritangents.

In what follows we describe a method – and its implementation – for
computing the 120 tritangents directly from the homogeneous polyno-
mials of degree two resp. three in x0, x1, x2, x3 that define the quadric
Q resp. the cubic K. In Section 4.2 of our next chapter we present
an algorithmic version of this method for the case where the quadric
is smooth, together with an algorithm to compute the corresponding
Steiner system. We now introduce four unknowns u0, u1, u2, u3 that
serve as coordinates on the space (P3)_ of planes:

(3.4) H : u0x0 + u1x1 + u2x2 + u3x3 = 0.

For generic real values of the ui, the intersection Q \K \H = C \H
consists of six distinct complex points in P3. We are interested in
the special cases when these six points become three double points.
We seek to find the tritangent ideal IC , consisting of polynomials in
u0, u1, u2, u3 that vanish at those H that are tritangent planes of C.

We fix the projective space P6 whose points are the binary sextics

f = a0t
6
0 + a1t

5
0t1 + a2t

4
0t

2
1 + a3t

3
0t

3
1 + a4t

2
0t

4
1 + a5t0t

5
1 + a6t

6
1.

Inside that P6 we consider the threefold of squares of binary cubics:

(3.5) f =
�
b0t

3
0 + b1t

2
0t1 + b2t0t

2
1 + b3t

3
1

�2
.

The defining prime ideal of that threefold is minimally generated by 45
quartics in a0, a1, a2, a3, a4, a5, a6. This is revealed by the row labeled
� = (2, 2, 2) in [58, Table 1]. Computing these 45 quartics is a task of
elimination, which we carried out in a preprocessing step.

Consider now a specific instance (Q,K), defining C = Q \K. We
then transform the above 45 quartics in a0, . . . , a6 into higher degree
equations in u0, . . . , u3. This is done by projecting C \H onto a line.
This gives a univariate polynomial of degree six whose seven coe�cients
are polynomials of degree 12 in u0, u1, u2, u3. We replace a0, . . . , a6 by
these polynomials. Theoretically, it su�ces to project onto a single
generic line. Practically, we had more success with multiple (possibly
degenerate) projections onto the coordinate axes, and gathering the
resulting systems of 45 equations each.
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To be more precise, fix one of the 12 ordered pairs (xi, xj). First,
solve the equation (3.4) for xi, substitute into the equations ofQ andK,
and clear denominators. Next, eliminate xj from the resulting ternary
quadric and cubic. The result is a binary sextic f in the two unknowns
{x0, x1, x2, x3}\{xi, xj} whose coe�cients a0, . . . , a6 are expressions of
degree 12 in u0, . . . , u3. We substitute these expressions into the 45
quartics precomputed above. This results in 45 polynomials of degree
48 in u0, . . . , u3 that lie in the tritangent ideal IC . Repeating this
elimination process for the other 11 pairs (xi, xj), we obtain additional
polynomials in IC . Altogether, we have now enough polynomials of
degree 48 to generate IC on any desired a�ne open subset in the dual
(P3)_ of planes in P3. The homogeneous ideal IC is radical and it has
120 zeros in (P3)_.

To compute these zeros, we restrict ourselves to an open chart, say
U = {u3 6= 0} ' C3. The resulting system (with u3 = 1) is grossly
over-constrained, with up to 12⇥ 45 equations in the three unknowns
u0, u1, u2. We compute a lexicographic Gröbner bases, using fglm [28],
as our ideal is zero-dimensional. For generic instances (Q,K), the
lexicographic Gröbner basis has the shape

(3.6)
�
u1 � p1(u3), u2 � p2(u3), p3(u3)

 
,

where deg(p3) = 120 and deg(p1) = deg(p2) = 119. For degenerate
(Q,K) we proceed with a triangular decomposition.

We implemented this method in magma [6]. The Gröbner basis
computation was very hard to carry out. It took several days to finish
for Example 3.5.2. The output had coe�cients of size ⇠10680.

We applied our implementation to several curves C, some from
configurations P ⇢ P2

Q, and some from general instances (Q,K).
The first case is used as a tool for independent verification, e.g. for

Example 3.3.1. Here, p3 decomposes into linear factors over Q. Each
factor yields a rational tritangent, for which we compute the three
(double) points in H \ C symbolically. To check whether one or three
are real, we again project onto a line. This yields a univariate rational
polynomial of degree 6. We can test whether it is the square of a cubic
with positive discriminant. More generally, any non-linear factor with
only real roots also allows us to continue our computations symbolically
over an algebraic field extension.

In the second case, the univariate polynomial p3 is typically irre-
ducible over Q, and we solve (3.6) numerically. We compute all real
tritangents H and their intersections H \ C. Based on the resulting
numerical data, we decide which H are totally real. Complex zeroes
are also counted, to attest that there are indeed 120 solutions. This
certifies that the chosen open chart U was indeed generic.
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Example 3.5.1 The polynomial C(t,W ) in Example 3.3.1 translates
into a cubic K(x0, x1, x2, x3) which is unique modulo the quadric
Q = x0x2 � x2

1. We apply the algorithm above to the instance (Q,K)
with U = {u3 6= 0}. The result verifies that all 120 tritangents are
rational and totally real. Interestingly, two of the 120 tritangents have
a coordinate that is zero. These two special planes are

0 = 666727858907928630542805134887161895157u0

�371406861222752391050720128495402169926u1

�13148859997292971155483015u3

and

0 = 7984878906436628716387308745543788472u1

�4446108899575055719305582305633616071u2

+10689705055237706452395u3.

Example 3.5.2 The curve C = Q \K in [38, §3] is given by

Q = x2
0 + x2

1 + x2
2 � 25x2

3

K =
�
x0 +

p
3x3

� �
x0 �

p
3x1 � 3x3

� �
x0 +

p
3x1 � 3x3

�
� 2x3

3.

It has five ovals, so all tritangents are real. Our computation shows
that there are only 108 distinct tritangents. Twelve are solutions of
multiplicity two in the ideal IC , and none of the tritangents are rational.
This verifies [38, Theorem 3.2]. Figure 3.8 shows three tritangents,
meeting 3, 2 and 1 ovals of the red curve respectively.

Figure 3.8. The curve in Example 3.5.2 has 108 totally
real tritangents

In [38, Question 3.3], Harris and Len asked whether this example
can be replaced by one with 120 distinct totally teal tritangents. Our
computations in Examples 3.3.1 and 3.5.1 establish the a�rmative an-
swer. However, we do not yet know whether all integers between 0 and
120 are possible for the number of totally real tritangents.
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3.6. Discriminants

In this chapter we consider two parameter spaces for space sextics.
First, there is the space P9

R ⇥ P19
R of pairs (Q,K) consisting of a real

quadric and a real cubic in P3. The regions for which the number of real
tritangents remains constant partitions P9

R⇥P19
R into open strata. This

stratification is refined by regions for which the number of totally real
tritangents remains constant. We are interested in the discriminantal
hypersurfaces that separate these strata.

Second, there is the space (P2
R)

8 of configurations P of eight la-
beled points in the plane. This space works for any fixed value of s in
{1, 2, 3, 4, 5}, representing configurations of 2s�2 real points and 5�s
complex conjugate pairs. For simplicity of exposition we focus on the
fully real case s = 5. In any case, the number of real tritangents is
fixed, and we care about the open strata in (P2

R)
8 in which the number

of totally real tritangents is constant. Again, we seek to describe the
discriminantal hypersurface, but now in (P2)8.

For P 2 (P2)8, denote the associated space sextic by CP . Let ⌃
denote the locus of configurations in (P2)8 which are not in general
position. We define the tritangent discriminant locus by

Y =

8
><

>:
P 2 (P2)8\⌃ :

CP has a tritangent
with contact
order at least 4 at some
point

9
>=

>;
,

where the over-line denotes the Zariski closure.

Lemma 3.6.1 Every irreducible component of Y is a hypersurface.

Proof. Let P0 2 Y \⌃, and fix local coordinates p̄ = (p1, . . . , p16)
for a neighborhood U of P0 = p̄0 in (P2)8. The bivariate equation (3.2)
that represents C0 is the specialization at p̄0 of a general equation

(3.7) C : c(t,W ) = t6+d1(p̄)t
5+d2(p̄)t

4W+ · · ·+d15(p̄),

where the coe�cients di(p̄) are rational functions regular at p0. Let
H0 be a tritangent plane to C0 with a contact point of order at least
4. Then H0 is either the tritangent associated to a point in P0 or
associated to one of the patterns in Figure 3.4, 3.5 or 3.6. Either way,
we see that H0 is obtained by specializing an equation of the form

(3.8) H : h(t,W ) = t2 + e1(p̄)t + e2(p̄) + e3(p̄)W,

where the coe�cients ei(p̄) are rational functions regular at p̄0.

The resultant of c(t,W ) and h(t,W ) with respect to W is a poly-
nomial f(t) of degree 6 whose coe�cients are rational functions in p̄.
Note that H is a tritangent plane to C, so f = g2 as in (3.5). The
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roots of the cubic g correspond to the contact points of H with C. In
particular, Hp̄ has a point of contact with Cp̄ of order at least 4 pre-
cisely when the discriminant of g is zero. Since the coe�cients of g are
rational functions in p̄, regular at p̄0, this means that a neighborhood
of P0 in Y has codimension 1 in U . This implies that every irreducible
component of Y has codimension 1. ⇤

The following theorem describes these irreducible components:

Theorem 3.6.2 The tritangent discriminant locus Y is the union of

120 = 8(0,6)+28(1,5)+56(2,4)+28(3,3) irreducible hypersurfaces in (P2)8,
one for each point in P and each pattern in Figures 3.4, 3.5 and 3.6.

The 8 components of type (0, 6) have total degree 306, namely 54 in

the point corresponding to the exceptional curve and 36 in the other

seven points. The 28 components of type (1, 5) have total degree 216,
namely 18 in each of the two points on the line and 30 for the six on

the quintic. The 56 components of type (2, 4) have total degree 162,
namely 18 in each of the five points on the conic and 24 for the three

on the quartic. The 28 components of type (3, 3) have total degree 144,
namely 18 in each of the eight points.

We prove Theorem 3.6.2 computationally. In order to do so, it is
convenient to make the following observation. Let Y = V (f) with f
a Z8-homogeneous polynomial of Z8-degree (d1, . . . , d8). We scale f so
that its coe�cients are relatively prime integers. For a prime p, let fp
denote the reduction of f modulo p. If p is large, then

Yp = V (fp) ⇢ (P2
Fp
)8

has the same Z8-degree as Y . We can thus calculate (d1, . . . , d8) by
using Gröbner bases over a large finite field Fp.

Let k = Fp be the field with p = 106 + 3 elements and kal its
algebraic closure. Let S = P1

k and let R = k[a, b] be the coordinate
ring of S. Let P2

R := ProjR[x, y, z] be the projective plane over R. If
X is some family, its specialization to (a : b) 2 S is denoted X(a:b).

We use the following configuration of eight points in P2
R:

P =
�
(24 : �23 : 57), (11 : 25 : �27), (�30 : 29 : 79), (14 : �23 : 26),

(43 : 92 : 61), (�34 : 81 : 7), (88 : 29 : 69), (a : b : 0)
 
⇢ P2

R.

Then P is in general position for generic a, b. Let U be the open subset
of S parameterizing specializations in general position. The following
result concerns generic specializations. We omit the proof.
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Proposition 3.6.3 There exists a pair of ternary cubics u, v 2

R[x, y, z], a ternary sextic w 2 R[x, y, z], bivariate polynomials c, h 2

R[t,W ] as in (3.7) and (3.8), and an explicitly computable finite set

X ⇢ S(kal) such that, whenever (a : b) 2 U\X, the following hold:

(a) The specializations u(a:b), v(a:b) span the space of cubics passing

through all eight points in P(a:b).

(b) The specializations u2
(a:b), uv(a:b), v

2
(a:b), w(a:b) span the space of sex-

tics vanishing doubly at each point in P(a:b).

(c) The specialization {c(a:b)(t,W ) = 0} is a smooth genus 4 curve

Ca:b lying on a singular quadric surface.

(d) The specialization {h(a:b)(t,W ) = 0} is a tritangent plane to

C(a:b) where the coe�cient of W is nonzero.

(e) For any (a : b) 2 X, the curve C(a:b) is smooth, genus 4, and

none of the tritangent planes have a point of contact order larger

than 4.

We now derive Theorem 3.6.2 from Proposition 3.6.3. The degree
d8 of Y in the last point P8 is computed by restricting to the slice

{(24 : �23 : 57)}⇥ {(11 : 25 : �27)}⇥ . . .⇥ {(88 : 29 : 69)}⇥ P2.

This restriction of Y is a curve of degree d8 in P2. We compute this
degree as the number of points in the intersection with the line

S = {(a : b : c) 2 P2 : c = 0}.

The same argument works also for each irreducible component of
Y . These components correspond to the various tritangent patterns,
marked (0,6), (1,5), (2,4) and (3,3). We perform this computation for
each pattern over Fp, and we obtain the numbers stated in Theorem
3.6.2.

We now turn to the canonical representation of arbitrary space
sextics C = Q\K, namely by pairs (Q,K) in P9

⇥P19. We shall identify
three irreducible hypersurfaces in P9

⇥ P19 that serve as discriminants
for di↵erent scenarios of how C can degenerate. For each hypersurface,
we shall determine its bidegree (↵, �). Here ↵ is the degree of its defining
polynomial in the coe�cients of Q, and � is the degree of its defining
polynomial in the coe�cients of K.

First, there is the classical discriminant �1, which parametrizes all
pairs (Q,K) such the curve C = Q\K is singular. This is an irreducible
hypersurface in P9

⇥P19, revisited recently in [12]. The general points of
�1 are irreducible curves C of arithmetic genus 4 that have one simple
node, so the geometric genus of C is 3. The discriminant �1 specifies
the wall to be crossed when the number of real tritangents changes as
(Q,K) moves throughout P9

R ⇥ P19
R .
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Second, there is the wall to be crossed when the number of totally
real tritangents changes. The discriminant �2 comprises space sextics
with a tritangent H that is degenerate, in the sense that H is tangent
at one point and doubly tangent at another point of C. For real pairs
(C,H), such a point of double tangency deforms into two contact points
of a tritangent H✏ at a nearby curve C✏, and this pair is either real or
complex conjugate. On the hypersurface in P9

⇥P19 whereQ is singular,
the locus �2 is the image of the discriminant with 120 components in
Theorem 3.6.3 under the map that takes a configuration P 2 (P2)8 to
its associated curve CP .

Our third discriminant �3 parametrizes pairs (Q,K) such that the
curve C = Q \ K has two distinct tritangents that share a common
contact point on C. In other words, the curve C has a point whose
tangent line is contained in two tritangent planes. The discriminant
�3 furnishes an embedded realization of the common contact locus that
was studied in the dissertation of Emre Sertöz [79, §2.4].

The following theorem was found with the help of Gavril Farkas
and Emre Sertöz. The numbers are derived from results in [27, 79].

Theorem 3.6.4 The discriminantal loci �1, �2 and �3 are irreducible

and reduced hypersurfaces in P9
⇥ P19

. Their bidegrees are

bidegree(�1) = (33, 34),
bidegree(�2) = (744, 592),
bidegree(�3) = (8862, 5236).

Proof. Consider the discriminant �1 for curves in P3 that are
intersections of two surfaces of degree d and e. It has bidegree

�
e(3d2+2de+e2�8d�4e+6) , d(3e2+2de+d2�8e�4d+6)

�
.

This can be found in many sources, including [12, Proposition 3]. For
d = 2 and e = 3 we obtain bidegree(�1) = (33, 34), as desired.

To determine the other two bidegrees, we employ known facts from
the enumerative geometry of M4, the moduli space of stable curves
of genus 4. The Picard group Pic(M4) is generated by four classes
�, �0, �1, �2. Here � is the Hodge class, and the �i are classes of irre-
ducible divisors in the boundary M4\M4. They represent:

�0: a genus 3 curve that self-intersects at one point;

�1: a genus 1 curve intersects a genus 3 curve at one point;

�2: two genus 2 curves intersect at one point.

Our discriminants �i are the inverse images of known irreducible divi-
sors in the moduli space under the rational map P9

⇥ P19 99K M4.



3.7. WHAT NEXT? 78

First, �2 is the pull-back of the divisor D4 ⇢ M4 of curves with
degenerate odd spin structures. From [27, Theorem 0.5]:

(3.9) [D4] = 1440�� 152�0 � ↵�1 � ��2 for some ↵, � 2 N.

For any curve � ⇢ M4, the sum
P2

i=0 � · �i counts points on � whose
associated curve is singular. Write h resp. v for the curve � that rep-
resents line ⇥ point resp. point ⇥ line in P9

⇥ P19. We saw

(h · �0, v · �0) = bidegree(�1) = (33, 34).

Moreover, it can be shown that

h · � = v · � = 4 and h · �i = v · �i = 0 for i = 1, 2.

This implies the assertion about the bidegree of our discriminant:

bidegree(�2) = (h · [D4], v · [D4]) = (1440 ·4�152 ·33, 1440 ·4�152 ·34).

Similarly, �3 is the pull-back of the common contact divisor

Q4 ⇢ M4 studied by Sertöz. It follows from [79, Theorem II.2.43] that

(3.10) [Q4] = 32130�� 3626�0 � ↵�1 � ��2 for some ↵, � 2 N.
Replacing (3.9) with (3.10) in our argument, we find that
bidegree(�3) is

(h · [Q4], v · [Q4]) = (32130 · 4� 3626 · 33, 32130 · 4� 3626 · 34).

This completes our derivation of the bidegrees in Theorem 3.6.4.
The irreducibility of the loci �i is shown by a standard double-

projection argument. One marks the relevant special point(s) on C.
Then �i becomes a family of linear spaces of fixed dimension. ⇤

3.7. What next?

In this chapter, we initiated the computational study of totally
real tritangents of space sextics in P3. These objects are important
in algebraic geometry because they represent odd theta characteris-
tics of canonical curves of genus 4. We developed systematic tools for
constructing curves all of whose tritangents are defined over algebraic
extensions of Q, and we used this to answer the longstanding question
whether the upper bound of 120 totally real tritangent planes can be
attained. We argued that computing the tritangents directly from the
representation C = Q \K is hard, and we characterized the discrimi-
nants for these polynomial systems.

Working on these problems led us to many natural directions to
be explored next. In the following list, so far much progress is made
on Question (2) in [40] and [56]. There are at most 120 facets in the
convex hull of a space sextic C in R3. These form a ruled surface of
degree 54, by [72, Theorem 2.1]. In [56], apart from expanding Table
3.1, Kummer shows that the maximal number of facets in the convex
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hull of C is 8. Finally, we propose the following ten specific problems
for further study.

(1) Decide whether every integer between 0 and 120 is realizable.

(2) Determine the correct upper and lower bounds in Table 3.1. In
particular, is 84 the lower bound for curves with five ovals?

(3) A smooth quadricQ is either an ellipsoid or a hyperboloid. Degt-
yarev and Zvonilov [22] characterized the topological types of
real space sextics on these surfaces. What are the possible num-
bers of totally real tritangents for their types?

(4) What does [22] tell us about space sextics on a singular quadric
Q? Which types arise on Q, how do they deform to those on a
hyperboloid, and what does this imply for tritangents?

(5) Given a space sextic C whose quadric Q is singular, how to best
compute a configuration P 2 (P2)8 such that C = CP? Our idea
is to design an algorithm based on the constructions described
in [52, Proposition 4.8 and Remark 4.12].

(6) Let CP be the space sextic of a configuration P 2 (P2)8. How to
see the ovals of CP in P2? For each tritangent as in Figure 3.4,
3.5 or 3.6, how to see the number of ovals it touches?

(7) Design a custom-tailored homotopy algorithm for numerically
computing the 120 tritangents from the pair (Q,K).

(8) The tropical limit of a space sextic has 15 classes of tritangents,
each of size eight [38, Theorem 5.2]. This is realized classically
by a K3,3-curve, obtained by taking K as three planes tangent
to a smooth quadric Q. How many totally real tritangents are
possible in the vicinity of (Q,K) in P9

R ⇥ P19
R ?

(9) The 28 bitangents of a plane quartic are the o↵-diagonal entries
of a symmetric 8⇥8-matrix, known as the bitangent matrix [21].
How to generalize this to genus 4? Is there such a canonical
matrix (or tensor) for the 120 tritangents?

(10)? Lehavi [60] shows that a general space sextic C can be recon-
structed from its 120 tritangents. How to do this in practice?

(?) In the next chapter, we answer the last problem.



CHAPTER 4

Tritangents and Their Space Sextics

Space sextic curves o↵er a rich example for understanding the var-
ious geometric features of non-planar algebraic curves. Several ques-
tions for plane curves have natural analogues for curves in arbitrary
projective spaces. An important direction of inquiry is the study of
hyperplanes that have a special intersection with the curve. In this
chapter, we focus on the tritangents of C, planes in P3 which are tan-
gent to C at every point of intersection with C. They reflect important
intrinsic facts about the curve as well as important details about the
extrinsic geometry.

For instance, the tritangents arise from e↵ective representatives of
the theta characteristics. As such, they provide insight into the Jaco-
bian variety and over the complex numbers yield important informa-
tion regarding values of theta functions. Conversely, any principally
polarized abelian variety A of dimension 4 defines 120 planes in P3 via
its theta functions. If A is the Jacobian of a non-hyperelliptic genus
4 curve, these 120 planes are the tritangents of its canonical model
[17]. On the extrinsic side of geometry, Caporaso and Sernesi [13] have
proven that over the complex numbers the theta characteristics deter-
mine the curve uniquely.

The history of reconstructing a curve from its theta hyperplanes
starts in the 19th and early 20th century. For the non-hyperelliptic
genus 3 curves, Aronhold [3] and Coble [18] provided methods and
formulas for the reconstruction from certain ordered subsets of the 28
theta hyperplanes. In this case, the curve is a plane quartic and the
hyperplanes are bitangents, lines that are tangent to the curve at two
points. Also see [23, sections 6.1.2 and 6.2.2] for details.

More recently, several mathematicians including Lehavi [59], Capo-
raso and Sernesi [13], worked on the generalization of this problem in
terms of dropping the order requirement on the theta hyperplanes and
extending to higher genus curves. In 2014, Lehavi [60] explained how
over the complex numbers the tritangents can be used to recover the
curve for generic space sextics on smooth quadrics.

In this chapter we present several algorithms related to space sextic
curves and their tritangents. In Section 4.2 we give an algorithm to
compute the tritangents of space sextics on smooth quadrics and their
Steiner systems; see Algorithms 4.2.1 and 4.2.2.

80
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For computing sextic curves which arise from a construction in-
volving del Pezzo surfaces of degree 1 and their tritangents, we rely on
methods in the first three sections of the previous chapter. In Section
4.3, we compute the corresponding Steiner system for this case. In
Section 4.4, we show that these curves are exactly the ones lying on
singular quadrics and answer the last question of the previous chapter
by presenting the inverse of that construction. In other words, given
the space sextic, we find the corresponding eight points in the plane.
see Algorithm 4.4.7.

Finally, in Section 4.5 we state a minor correction of [60, Theo-
rem 2] and extend [60, Theorem 1 and 2] to space sextics on singu-
lar quadrics and over more general fields. Using them, we explain
how to reconstruct space sextics from their tritangents, see Algo-
rithms 4.5.5 and 4.5.10, for generic curves on smooth quadrics and
generic curves on singular quadrics. Moreover, we allow fields with
positive characteristics, provided that it is su�ciently high. All al-
gorithms have been implemented in magma [6] and are available on
https://software.mis.mpg.de.

One of the greatest challenges in working with tritangents of space
sextics symbolically, especially over fields of characteristic 0, is that the
field over which all of their equations are defined is monstrous. To be
precise, if C is a generic curve defined over Q, then its 120 tritangents
are defined over an algebraic extension of Q of degree #Sp(8,F2) =
47377612800. This is critical for the reconstruction algorithms, as their
correctness hinge on the existence of a single successful example. This
is where space sextics from del Pezzo surfaces of degree 1 come in. For
them we have a reliable method of constructing space sextics with 120
rational tritangents.

Most of the objects and notations are defined in the previous chap-
ter. In the following section we introduce the new objects to be used
throughout this chapter. For further details see [23, Section 5.4.2].
Also, some notation will closely follow that of [60].

Convention 4.1 For the remainder of this chapter, fix a base field k
of characteristic not equal to 2. In Sections 4.2 and 4.5 we assume for
convenience that k is algebraically closed.

Moreover, let P3 denote the projective 3-space over k and let C ✓ P3

be a smooth curve of degree 6, or equivalently a canonical model of
a non-hyperelliptic curve of genus 4. We can write the curve as an
intersection of a unique quadric surfaceQC and a suitable cubic surface,
neither of which are necessarily smooth.

https://software.mis.mpg.de
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4.1. Steiner systems and syzygetic quadruples

Let J(C) be the Jacobian variety of C and let J(C)[2] be its 2-
torsion points. For any ↵ 2 J(C)[2]\{0}, we define the Steiner complex

associated to ↵ by

⌃C,↵ :=

(
2✓ = C and

{✓, ✓ + ↵} :
dimH0(C, ✓) = dimH0(C, ✓ + ↵) ⌘ 1 mod 2

)
,

where ✓ is a theta characteristic of C; or equivalently, for the corre-
sponding linear forms

SC,↵ :=
�
{l✓, l✓+↵} : {✓, ✓ + ↵} 2 ⌃C,↵

 
.

We call the set

SC := {SC,↵ : ↵ 2 J(C)[2] \ {0}}

the Steiner system associated to C.

We call four theta characteristics ✓1, . . . , ✓4 syzygetic if
P4

i=1 D✓i

is cut out by a quadric in P3. This means that there exists a quadric
V (q) ✓ P3 such that C\(

S4
i=1 Hi) = C\V (q2). We call the linear forms

l1, . . . , l4 syzygetic if they arise from syzygetic odd theta characteristics.

Note that if ✓1, . . . , ✓4 are odd theta characteristics of C such that
Y := C\(

S4
i=1 Hi) consists of 12 points of multiplicity 1, then ✓1, . . . , ✓4

are syzygetic if and only if there exists a quadric Q0 which is not QC

passing through the 12 points of Y .

Remark 4.1.1 There are exactly 255 non-trivial 2-torsion points
↵ 2 J(C)[2] \ {0}. On the other hand, the 120 tritangents yield
precisely

�
120
2

�
= 7140 pairs {l✓1 , l✓2}. Intruigingly, the 7140 pairs can

be split evenly into 255 blocks, each block containing exactly 28 pairs,
such that

• the union of any two pairs inside a block is syzygetic,

• the union of any two pairs in two distinct blocks is not
syzygetic,

• the intersection of any two pairs inside a block is empty.

These blocks are the Steiner complexes ⌃C,↵ in our definition above.
See [23, Section 5.4.2] for further explanations.

In general combinatorics a Steiner system with parameters (t, k, n)
is an n-element set together with a set of k-element subsets called
blocks, such that each t-element subset is contained in exactly one
block. If we forget the pairings in our Steiner complexes SC,↵ and
simply consider them as subsets of cardinality 56, then our Steiner
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system SC would be a specific instance of a general Steiner system
with parameters (t, k, n) = (2, 56, 120).

4.2. Space sextics on smooth quadrics

In this section we give a full description of the algorithm appear-
ing in Section 3.5 for calculating the 120 tritangents of a space sextic
that lies on a smooth quadric. Moreover, we provide an algorithm for
calculating its Steiner system.

If C ✓ P3 lies on a smooth quadric, it su�ces to compute all planes
which are tangent at their points of intersection since there are no van-
ishing theta characteristics. In theory, this can be done by intersecting
C with a parametrized plane and forcing its projection onto a single
generic line to be three double points. In practice, it is often su�cient
and generally much more e�cient to project onto all coordinate axes
instead.

Algorithm 4.2.1 (Tritangents of space sextics on smooth quadrics)

Input: (f, g), where

• f, g 2 k[x] := k[x0, . . . , x3] homogeneous of degrees 2, 3,

• V (f) smooth,

• C := V (f) \ V (g) a space sextic.

Output: {l✓ : ✓ odd theta characteristic of C} ✓ k[x].

1: Denote by Pk[t0, t1]6 the space of homogeneous sextic polynomials
in k[t0, t1]. Let V (J) ✓ Pk[t0, t1]6 be the threefold of perfect squares
whose ideal J ✓ k[a0, . . . , a6] is minimally generated by 45 quartics;
see [58, Table 1]

Pk[t0, t1]6 P6
⇠=

a0t60 + . . .+ a6t61 7�! (a0 : . . . :a6)

{(b0t30 + . . .+ b3t31)
2 : (b0 : ... :b3) 2 P3

} V (J)
⇠=

✓ ✓

2: Consider the defining linear form of a parametrized plane in k[x]

u0x0 + . . .+ u3x3 2 k[u±1][x] := k[u±1
0 , . . . , u±1

3 ][x0, . . . , x3].

3: for i, j 2 {0, . . . , 3}, i 6= j do

4: Let fi, gi be the images of f, g under the substitution map

k[u±1][x] �! k[u±1][xj, xk, xl], xi 7�!
�ujxj � ukxk � ulxl

ui
,

where {i, j, k, l} = {0, . . . , 3}.
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5: Compute the following resultant which is a homogeneous sextic
in xk, xl

P6
µ=0 cµ · x

6�µ
k xµ

l := Res(fi, gi, xj) 2 k[u±1][xk, xl].

6: Let Iij denote the image of J under the substitution map

k[a0, . . . , a6] �! k[u±1], aµ 7�! cµ.

7: Set I :=
P

i,j Iij and compute the 120 points in V (I).

8: return {z0x0 + . . .+ z3x3 : (z0 : . . . :z3) 2 V (I)}.

A simple way to obtain the Steiner system from the set of linear
forms is to exploit the fact that they form a Steiner system in the com-
binatorial sense; see Remark 4.1.1. Algorithm 4.2.2 simply enumerates
through all pairs of linear forms, grouping those together which are
syzygetic.

Algorithm 4.2.2 (Steiner system via syzygetic relations)

Input: (f, g, T ), where

• f, g 2 k[x] homogeneous of degrees 2, 3,

• V (f) smooth,

• C := V (f) \ V (g) a space sextic,

• T = {l✓ : ✓ odd theta characteristic of C} ✓ k[x].

Output: SC , the Steiner system associated to C.

1: Initialize SC := ;.

2: for {l1, l2} ✓ T with l1 6= l2 do

3: if 9S 2 SC 9{l3, l4} 2 ⌃ : l1, . . . , l4 syzygetic then

4: Set S := S [ {{l1, l2}}.

5: else

6: Set S := {{l1, l2}} and SC := SC [ {S}.

7: return SC .

Remark 4.2.3 The bottleneck in Algorithm 4.2.2 is deciding whether
four linear forms l1, . . . , l4 are syzygetic in Step 3. This can be done in
several ways depending on what is viable. One straightforward option
would be to compute whether the intersection C \ (

S4
i=1 V (li)), as a

divisor of C, is linearly equivalent to 2C using the magma intrinsic
IsLinearlyEquivalent.

Remark 4.2.4 Note that Algorithm 4.2.2 can also be applied ad ver-
bum to space sextics on singular quadrics. Algorithm 4.2.1 has a
straightforward generalization:
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For a sextic on a singular quadric, the ideal I in Step 7 will be
positive dimensional. It will contain infinitely many tangent planes of
the singular quadric that contain the singularity; see Proposition 3.2.1.
This positive dimensional component can be removed using saturation,
leaving us with the desired 120 tritangents that are of interest to us.

When applied to space sextic curves that arise from the construction
in Section 3.1, both Algorithm 4.2.1 and Algorithm 4.2.2 prove to be
inferior to their more specialized counterparts in Section 3.1, which is
why we generally advise against using them for space sextics on singular
quadrics.

4.3. Space sextics on singular quadrics

We briefly review the construction of space sextics from del Pezzo
surfaces of degree 1 and its tritangents from the previous chapter. For
more details see Sections 3.1 to 3.3. Next, we use this construction to
compute the corresponding Steiner system.

For a fixed configuration P := {P1, . . . , P8} ✓ P2 of eight points,
recall the following diagram from Figure 3.3:

P2 P(1 :1 :2 :3)

P(1 :1 :2)

P3

 

⇡
(u :v :w :r)

(u :v :w)

�
(u :v :w)

(u2 :uv :v2 :w)

XP :=  (P2)◆

C 0 := BranchCurve(⇡|XP )◆

C◆

where the map  is the blow-up of P2 at P . The image of  is a del
Pezzo surface of degree 1 with the following defining equation

XP : r
2 = w3 + f2(u, v) · w

2 + f4(u, v) · w + f6(u, v),

in the weighted projective space P(1 : 1 : 2 : 3), such that each f2, f4, f6
is homogeneous degree 2, 4, 6 respectively. Note that we obtain an
elliptic curve on X by specializing t = 0, which will be important in
Section 4.4.

The ramification locus of the projection ⇡ is C 0. The defining equa-
tion of the branch curve C 0 in P(1 :1 :2) is

C 0 : 0 = w3 + f2(u, v) · w
2 + f4(u, v) · w + f6(u, v).
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Finally the space sextic C ✓ P3 is the image of C 0 under the em-
bedding �, i.e. C = �(C 0).

We observed that the 120 tritangents of C have a natural descrip-
tion in the framework of our construction. Recall that l✓ is the linear
form corresponding to the odd theta characteristic ✓. If H✓ := V (l✓) is
a tritangent of C, then ��1(H✓) is a curve in P(1 : 1 : 2) of weighted
degree 2 tangent to C 0 at 3 points (counting multiplicity). We call
��1(H✓) a tritangent curve of C 0.

Every tritangent curve of C 0 is the image of exactly two excep-
tional curves (e, e0) on the del Pezzo surface X under ⇡, which are
conjugate under the Bertini involution of X. We di↵erentiate between
the following types of tritangents, which are named after the degrees
of  �1e, �1e0 ✓ P2. The 120 tritangents (120 tritangent curves) are
8, 28, 56, and 28 tritangents (tritangent curves) of type (0, 6), (1, 5),
(2, 4), and (3, 3) respectively.

Example 4.3.1 Consider the configuration P = {P1, . . . , P8} ✓ PZ3

of the following 8 points as in 3.3.1:

P1 =(1:0 :0), P2 =(0:1 :0),

P3 =(0:0 :1), P4 =(1:1 :1),

P5 =(10:11 :1), P6 =(19:�11:12),

P7 =(15:19 :�20), P8 =(27:2 :17).

One can verify that the points in P ✓ PQ3 are in general position,
which also implies that the points in P ✓ PF3

p remain in general posi-
tion for all but finitely many primes p. For instance, for p = 97 they
stay in general position, while for p = 5 we have P 2 = P 5 2 PF3

5.
From now on, consider the base field k := F97. We compute two

linearly independent cubics u, v that vanish on P and a sextic w not
divisible by u or v, vanishing doubly on P . Our implementation gives

u = x0x
2
1 + 33x2

0x2 + 74x0x1x2 + 77x2
1x2 + 47x0x

2
2 + 59x1x

2
2,

v = x2
0x1 + 86x2

0x2 + 57x0x1x2 + 35x2
1x2 + 15x1x

2
2,

w = x4
0x1x2 + 72x3

0x
2
1x2 + 68x2

0x
3
1x2 + 55x0x

4
1x2 + 67x4

0x
2
2

+ 78x3
0x1x

2
2 + 11x2

0x
2
1x

2
2 + 18x0x

3
1x

2
2 + 43x4

1x
2
2 + 23x2

0x1x
3
2

+ 55x0x
2
1x

3
2 + 64x3

1x
3
2 + 7x2

0x
4
2 + 96x0x1x

4
2 + 21x2

1x
4
2.

This results in the following space sextic C ✓ P3, which can be verified
to be smooth:

C :

8
>>><

>>>:

0 = x2
1 � x0x2,

0 = 94x3
0 + 88x2

0x1 + 27x2
0x2 + 16x0x1x2 + 82x0x2

2 + 72x1x2
2

+73x3
2 + 18x2

0x3 + 17x0x1x3 + 84x0x2x3 + 43x1x2x3

+37x2
2x3 + 63x0x2

3 + 64x1x2
3 + 63x2x2

3 + 74x3
3.
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Let h12 and h34 be the lines through the points P1, P2 and P3, P4

respectively and let h125 and h345 be the conics through the points
P \ {P1, P2, P5} and P \ {P3, P4, P5} respectively. They are given by

h12 = x2, h125 = 19x2
0 + 58x0x1 + 65x2

1 + 21x0x2 + 31x1x2,

h34 = x0 � x1, h345 = 3x0x1 + 89x0x2 + 3x1x2 + 42x2
2.

Their images in P
3 are cut out by the following polynomials and one

can verify that each of them intersect C in three double points:

l12 = x3, l125 = x0 + 52x1 + 23x2 + 87x3,

l34 = x0 + 70x1 + 8x2 + 43x3, l345 = x0 + 71x1 + 65x2 + 94x3.

Constructing the Steiner system: Let P1, . . . , P8 be eight
points in P2 in general position, let XP be the del Pezzo surface of
degree 1 obtained by blowing up P2 at {P1, . . . , P8}, and let C the
space sextic arising from XP . The Steiner system of C can be much
more e�ciently constructed than for a generic space sextic by making
use of the initial eight points in P2:

We label each tritangent by a subset of {1, . . . , 9} depending on
their types as follows:

L(H) :=

8
>>><

>>>:

{1, . . . , 8} \ {i} if H is of type (0, 6),

{1, . . . , 8, 9} \ {i, j} if H is of type (1, 5),

{i, j, k} if H is of type (2, 4),

{i, j, 9} if H is of type (3, 3),

where for each type i, j, k are as in Figure 4.1.

Pi Pj

Pk

P \ {Pi.Pj , Pk}

P \ {Pi, Pj}

Pi Pj

Pi

Pj

P \ {Pi, Pj}

Figure 4.1. We use pairs of exceptional curves to con-
struct the Steiner system.

Given four theta characteristics ✓1, . . . , ✓4 and their tritangents
H1, . . . , H4, we then have

✓1, . . . , ✓4 syzygetic () L(H1) � . . . � L(H4) = ;.



4.4. RECONSTRUCTION OF EIGHT POINTS FROM SPACE SEXTICS 88

The fact that the Steiner system of C can be constructed purely
combinatorially is rooted in a classical connection between theta char-
acteristics of C and quadratic forms over J(C)[2] [23, Section 5]:

The 256 points in J(C)[2] together with the Weil-pairing can be re-
garded as a symplectic vector space over F2 of dimension 8. The space
of quadratic forms of J(C)[2], which we denote by Q(J(C)[2]), is a ho-
mogeneous space of J(C)[2]. The disjoint union J(C)[2]

`
Q(J(C)[2])

has the natural structure of an F2-vector space of dimension 9. Each
quadratic form corresponds to a theta characteristic of C.

Let resC : Pic(X) ! Pic(C) be the natural restriction and set
vi := resC(ei+XP ), where e1, . . . , e8 are the eight exceptional divisors
ofXP corresponding to the eight points P1, . . . , P8 under the blow-down
map. We may construct an Aronhold basis B of J(C)[2]

`
Q(J(C)[2])

from the set {v1, . . . , v8, resC(�XP )} ✓ Pic(C) via [73, Theorem II
A1.1.]. The labeling of a tritangent plane stated above can be under-
stood in terms of the B-coordinates of the corresponding odd theta
characteristic, viewed as an element of J(C)[2]

`
Q(J(C)[2]). For fur-

ther details, see [14, Section 1.1.4].
Under this correspondence, the eight exceptional divisors on XP ,

together with its anticanonical divisor, give rise to a special basis of
J(C)[2]

`
Q(J(C)[2]) called an Aronhold basis [73, Theorem II A1.1.].

The labeling of the tritangents defined above come from linear expres-
sions of the corresponding quadratic forms in terms of the Aronhold
basis. We refer to [14, Section 1.1.4] for the details of obtaining the
Aronhold basis giving this particular labeling and its relation with be-
ing syzygetic.

Example 4.3.2 Consider again the curve C ✓ PF3
97 and its four tri-

tangents from Example 4.3.1. Their labels are:

L(V (l12)) = {3, 4, 5, 6, 7, 8, 9}, L(V (l125)) = {1, 2, 5}.

L(V (l34)) = {1, 2, 5, 6, 7, 8, 9}, L(V (l345)) = {3, 4, 5}.

They have an empty symmetric di↵erence and are therefore syzygetic.
Indeed, one can verify that there exists a quadric which is not
V (x2

1 � x0x2) that vanishes on all 12 contact points of the tritangents
with C.

4.4. Reconstruction of eight points from space sextics

Given a space sextic curve C in P3 which comes from blowing up the
plane at eight points, we will construct some collection of 8 points in P2

such that the construction applied to these 8 points gives a space sextic
isomorphic to C. If a del Pezzo surface X of degree 1 has 8 pairwise
orthogonal exceptional curves defined over k, then the blow-down of
X along these 8 curves is isomorphic to P2 [64, Theorem 24.4.iii]. The
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8 exceptional curves mark 8 points in the plane. Since this is true of
any collection of 8 pairwise orthogonal exceptional curves of X, we see
that the set of 8 points in the plane which construct the branch curve
of X is not unique, even up to linear transformations. The goal of our
algorithm is to find one such set.

Over an algebraically closed field of characteristic not 2, a space
sextic curve C arises from a del Pezzo surface of degree 1 if and only if
the unique quadric in P3 containing C is singular [64, Theorem 24.4.iii].
However, when k is not algebraically closed the situation is slightly
more complicated. Nevertheless, our implementation is able to detect
when a curve comes from eight k-rational points in the plane. Our
method of detection and recovery uses the 120 tritangents given as
input. By assuming that the 120 odd theta characteristics are defined
over k, we can return to the simplicity of the algebraically closed case.

Proposition 4.4.1 Then a space sextic curve C defined over k arises

from a del Pezzo surface of degree 1 if and only if the unique quadric

in P3
containing C is singular and all 120 odd theta characteristics are

defined over k.

Proof. The forward direction is entirely classical. For the reverse,
let Q be the singular quadric containing C. As C is smooth, we must
have that Q is a quadric cone. We claim that Q is isomorphic over
k to the weighted projective space P(1 :1 :2). Let H be any tritan-
gent plane of C corresponding to an odd theta characteristic and let
D := 1

2(H \ C). By Proposition 3.2.1, H does not pass through the
singularity of Q, so Q \ H is a plane conic and D is an odd degree
divisor on Q \H. Thus, we have that P1 ⇠= Q \H.

Since Q \ H ✓ H is a plane conic with a k-rational point,
we may change coordinates so that H = V (x3) and such that
H \Q = V (x3, x2

1 � x0x2). That is, Q is isomorphic to the standard
quadric cone. Since C lies on a standard quadric cone, we have that C
lies on a degree 1 del Pezzo surface X. Moreover, as all 120 tritangents
of C are defined over k, there is a quadratic twist of X such that all
240 exceptional curves are defined over k. The proposition now follows
from [64, Theorem 24.4]. ⇤

Remark 4.4.2 Note that the construction of the space sextics from
del Pezzo surfaces of degree 1 as in [54, Section 2] considers slightly
more general configurations of 8 points in P2. Specifically, it was only
required that the set of eight points be Gal(Q̄/Q)-invariant in order to
construct a space sextic defined over Q. For the sake of simplifying our
implementation we do not consider this general setting.

We are now ready to provide an algorithm that for a given space
sextic on a singular quadric, computes eight points in the plane, the
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blow-up of which returns the same space sextic. First we present an
overview of the steps.

The reconstruction algorithm: The algorithm proceeds along
the following general steps:

(i) Compute a degree 1 del Pezzo surface X as in Figure 3.3.

(ii) Determine the 240 exceptional curves on X, possibly requiring a
quadratic twisting of X.

(iii) Identify 8 pairwise orthogonal curves defined over k.

(iv) Identify a genus 1 curve E ✓ X defined over k, and intersect it
with the 8 exceptional curves to obtain 8 points.

(v) Construct a particular embedding of E into P2 with the proper-
ties expected of the blow-down of E along 8 pairwise orthogonal
exceptional curves.

We shall assume that our curve C is given as the intersection of
a cubic V (f) and the quadric V (x2

1 � x0x2) in P3 with coordinates
(x0 :x1 :x2 :x3). Note that up to linear transformation any singular
quadric with a smooth k-rational point is the one we have specified.
We assume that we are given the 120 tritangent planes as linear forms
{`1, . . . , `120} with coe�cients in k. Finally, we use the existence of the
maps in Figure 3.3 where C would be our given curve. As before, we
will denote the coordinates of P(1 : 1 : 2) and P(1 : 1 : 2 : 3) by (u : v :w)
and (u :v :w :r) respectively and let ⇡ be the usual projection.

To accomplish Steps (i) and (ii), we compute the pullback of the
curve and the tritangent planes to P(1 :1 :2) to set an equation for the
del Pezzo surface X of degree 1. More precisely, let F be the pullback
of f under the map � and hi be the pullback of li under the map �
for i = 1, . . . , 120. We may normalize F and the hi so that the leading
coe�cient in w is 1. We choose � 2 k⇥ such that

Res(h1(u, v, w),�F (u, v, w), w) 2 k[u, v]

is a square over k. We set

r2 � �F (u, v, w)

to be the defining equation of a del Pezzo surface X in P(1 :1 :2 :3). By
definition, �maps the branch curve of the projection ⇡|X to C. Thus,X
is exactly the same surface occurring in Section 4.3 up to isomorphism
over k̄. The choice of � merely selects the unique quadratic twist such
that the pair of exceptional curves over the tritangent curve defined by
h1 is split over k.
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Lemma 4.4.3 With the notation of the preceding paragraph, the sub-

variety

V (r2 � �F (u, v, w), hi(u, v, w)) ✓ X

is the union of two Bertini-conjugate exceptional curves e2i�1, e2i. The
curves are individually defined over k and are explicitly given by

e2i�1, e2i := V
⇣
hi(u, v, w), r ±

p
Res(hi(u, v, w),�F (u, v, w), w)

⌘
.

Proof. From Section 4.3 we have that the image under ⇡ of any
exceptional curve is a tritangent curve and every tritangent curve arises
in this way. The first statement of the lemma follows immediately.

If C arose from blowing up eight k-rational points in the plane,
then all of the exceptional curves on some quadratic twist of X must
be defined over k. Since we have already chosen a twist where one pair
of exceptional curves is split over k, all of them must be so.

All that remains to be shown is the correctness of the defining equa-
tions. We have defined hi to be in the defining ideal of the tritangent
curve, so the scheme

V
�
hi(u, v, w), r

2
� Res(hi(u, v, w),�F (u, v, w), w)

�

must lie over the tritangent curve defined by hi. Next, we see that

X \ V (hi(u, v, w)) = V (r2 � �F (u, v, w), hi(u, v, w))

is reducible, with the two components defined over k corresponding
to the two exceptional curves over V (hi(u, v, w)) ✓ P(1 : 1 : 2). Note
hi(u, v, w) is a degree 1 polynomial in w and both hi and F are monic
due to the normalization, so the resultant is really just the evaluation
of �F at �hi(u, v, 0). In particular, the resultant is a square and

X \ V (hi(u, v, w)) = V
�
r2 � �F (u, v,�hi(u, v, 0)), hi(u, v, w)

�
.

The polynomial r2 � �F (u, v,�hi(u, v, 0)) factors over k, giving the
two components. ⇤

For Step (iii), we compute the Grammatrix for the intersection pair-
ing on the lattice generated by the exceptional curves using Gröbner
bases. We use the fact that the Weyl group of E8 acts via isometry on
the lattice generated by the exceptional curves to optimize the process
of searching for a collection of 8 pairwise orthogonal curves.

Step (iv) and (v) of our algorithm identify the eight points using
the geometry of genus 1 curves, allowing us to avoid an expensive blow-
down computation. Step (iv) turns out to be rather easy; the genus 1
curve E is obtained by specializing v = 0. To indirectly compute the
blow-down of this genus 1 curve, we use the following lemma.
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Lemma 4.4.4 Let E be a plane cubic curve and let p1, p2, p3 2 E(k̄) be
three collinear points. Then the embedding of E into P2

is the unique

embedding with p1, p2, p3 collinear, up to Aut(P2).

Proof. Let D := p1+p2+p3 and let � : E ! P2 be an embedding.
Since D is a hyperplane section of this embedding, we have that �
factors into |D| : E ! P2. There is exactly one complete linear system
containing D, so we are done. ⇤

The blow-down of the genus 1 curve E will be a plane curve of
arithmetic genus 1, which is to say, a plane cubic curve. It su�ces
for us to identify three points on E which are collinear in the blow-
down to identify the correct embedding into P2 given by the blow-
down. Crucially, the eight intersection points of E with the set of eight

pairwise orthogonal exceptional curves are the points where E meets the

eight exceptional points of the blow-up in P2. In order to identify three
collinear points on E, we use a “trivial” lemma, which states that the
e↵ective divisors in the hyperplane class correspond to hyperplanes.

Lemma 4.4.5 Let X be the degree 1 del Pezzo surface obtained from

blowing up {P1, . . . , P8}. Let E ✓ P2
be a plane cubic curve passing

through the eight points, let resE : Pic(X) ! Pic(E) be the natural

restriction, and let ` 2 Pic(X) be the hyperplane class on X. Then

the e↵ective representatives of the divisor class resE(`) are exactly the

divisors of E defined by lines in P2
.

Proof. By definition, a representative of the class ` is the strict
transform of a line in P2 not passing through any of the eight points
of the blow up. The result extends to all e↵ective representatives of
resE(`) via linear equivalence. ⇤

An appropriate curve E, divisor D, and class ` can be identified
using only X and the exceptional curves of X. The class ` 2 Pic(X) is
uniquely identified by its intersection numbers [64, Corollary 25.1.1]; it
is the unique divisor class such that `2 = 1, `·ei = 0, and (redundantly)
` · (�X) = 3. To find a representative, we use the following lemma.

Lemma 4.4.6 Let e01, e
0
2 be a pair of orthogonal exceptional curves of

X. There exists an exceptional curve e such that ` = [e+ (e01 + e02)].

Proof. Note that X is the blow-up of P2 at {P1, . . . , P8}. The
strict transform of the line through {P1, P2} is an exceptional curve e.
Thus the pullback of the line through {P1, P2} by the blow-down, as a
divisor of X, is e+ (e01 + e02). ⇤

We are now equipped with all needed for presenting Algorithm 4.4.7.
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Algorithm 4.4.7 (Reconstruction of 8 points from space sextics)

Input: (f, {l1, . . . , l120}), where

• f 2 k[x0, . . . , x3] homogeneous of degrees 3 such that
C := V (f) \ V (x2

1 � x0x2) space sextic,

• {l1, . . . , l120} is a list of 120 tritangent plane to C.

Output: P ✓ P2, a set of 8 points such that the del Pezzo surface of
degree 1 obtained by blowing up P2 at P has branch curve isomor-
phic to C.

1: Set F (u, v, w) := f(s2, st, t2, w) to be the pullback of f under the
map �.

2: Set hi := `i(s2, st, t2, w) to be the pullback of linear form `i under
the map �.

3: Normalize F and h1, . . . , h120.

4: Choose � 2 k⇥ such that Res(h1(u, v, w),�F (u, v, w), w) 2 k[u, v]
is a square.

5: Set the defining equation of the del Pezzo surface X to be
r2 � �F (u, v, w).

6: Set the pair of exceptional curves corresponding to the i-th tritan-
gent,

e2i�1, e2i := V
⇣
hi(u, v, w), r ±

p
Res(hi(u, v, w),�F (u, v, w), w)

⌘
.

7: Compute the Gram matrix M := (deg(ei\ ej))1i 6=j240, where the
diagonal entries are set to �1.

8: Determine a collection {e0i} of eight pairwise orthogonal exceptional
curves by computing an 8⇥8 principal submatrix B of M such that
�B is the identity matrix.

9: Construct the elliptic curve E on X by setting v = 0 and set
pi := E \ e0i.

10: Identify the unique exceptional curve e such that

deg(e \ e0j) =

(
1 if j = 1, 2,

0 otherwise.

11: Compute H0(E,OE(D)), where D := (e\E) + p1 + p2 is a divisor
on E.

12: return The images of p1, . . . , p8 under the map defined by
H0(E,OE(D)).
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Remark 4.4.8 One challenging step in Algorithm 4.4.7 that we delib-
erately avoided expanding on is the computation of H0(E,OE(D)) in
Step 11, since most computer algebra systems have existing commands
for it. For example, in our magma implementation we use the intrinsic
command DivisorMap.

Example 4.4.9 We apply our algorithm to the space sextic curve ob-
tained in Example 4.3.1. We recall that the defining equations of the
space sextic C are:

q = x2
1 � x0x2,

f = 94x3
0 + 88x2

0x1 + 27x2
0x2 + 16x0x1x2 + 82x0x

2
2 + 72x1x

2
2 + 73x3

2

+18x2
0x3 + 17x0x1x3 + 84x0x2x3 +43x1x2x3 +37x2

2x3 + 63x0x
2
3

+64x1x
2
3 + 63x2x

2
3 + 74x3

3.

The defining equation of the del Pezzo surface X in P(1 : 1 : 2 : 3) with
coordinates (u : t :w :r) constructed in Algorithm 4.4.7 is

X : � r2 =2u6+6u5v+79u4v2+54u3v3+10u2v4+49uv5 +16v6+85u4w

+ 21u3vw+ 41u2v2w+ 36uv3w+40v4w + 55u2w2 + 22uvw2

+ 55v2w2 + 80w3.

Algorithm 4.4.7 computes some set of eight pairwise orthogonal ex-
ceptional curves. Below are the defining equations in P(1 : 1 : 2 : 3).

e1 :

(
w=61u2+19uv+83v2,

r=82u3+44u2v+23uv2+75v3,
e2 :

(
w=41u2+9uv+81v2,

r=23u3+13u2v+14uv2+37v3,

e3 :

(
w=45u2+36uv+90v2,

r=54u2v+18uv2+13v3,
e4 :

(
w=4u2+8uv+93v2,

r=43u3+5u2v+22uv2+58v3,

e5 :

(
w=26u2+57uv+77v2,

r=68u3+55u2v+30uv2+95v3,
e6 :

(
w=�u2+22uv+66v2,

r=81u3+41u2v+20uv2+5v3,

e7 :

(
w=�u2+69uv+27v2,

r = 16u3+41u2v+16uv2+13v3,
e8 :

(
w=uv+67v2,

r=32u3+40u2v+66uv2+24v3.

The genus 1 curve E ✓ X is defined by the common zero set of v
and the defining equation of X. Finally, the resulting eight points
P

0 = {P 0
1, . . . , P

0
8} are

P 0
1 = (35:48 :1), P 0

2 = (41:1 :0),

P 0
3 = (41:91 :1), P 0

4 = (61:1 :0),

P 0
5 = (11:14 :1), P 0

6 = (27:95 :1),

P 0
7 = (52:80 :1), P 0

8 = (88:68 :1).
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Notice that the eight points P
0 are not the same as the original col-

lection of eight points P in Example 4.3.1. The di↵erence potentially
arises due to choice made at Step (8) and linear transformations of P2.
In this case the linear transformation given by the following matrix
maps P 0

i to Pi for i = 1, . . . , 8:
0

@
34 61 39
27 3 75
34 61 53

1

A .

4.5. Steiner systems to space sextics

In this section, we extend Lehavi’s methods [60] for reconstructing
space sextics from their Steiner system to space sextics on singular
quadrics and to space sextics over more general fields. We detail their
implementation in magma and, as a consequence, obtain a simplified
proof of Lehavi’s results.

The method is naturally divided in two parts: the reconstruction of
the unique quadric surface containing the curve and the reconstruction
of a cubic surface which cuts out the curve on the quadric.

Reconstructing the unique quadric. For the reconstruction of
the quadric, we briefly recall the notation in [60, Section 1].

Definition 4.5.1 Let VC := H0
�
O|C |⇤(2)

�
be the vector space of de-

gree 2 forms on the canonical P3 containing C.
For all ↵ 2 J(C)[2] \ {0} and all {✓, ✓ + ↵} 2 ⌃C,↵, let

q✓,✓+↵ := l✓ · l✓+↵ 2 VC be the quadric form cutting out the two tri-
tangent planes corresponding to ✓ and ✓ + ↵.

For all ↵ 2 J(C)[2]\{0}, let VC,↵ ✓ VC be defined as in the following
diagram:

VC = H0
�
O|C |⇤(2)

�

H0(2C)

p

H0
�
O|C+↵|⇤(2)

�i

p�1iH0
�
O|C+↵|⇤(2)

�
◆ =: VC,↵

where, if we view the elements of H0(2C) as e↵ective representatives
of 2C , the projection p : VC ⇣ H0(2C) maps a quadric Q to

p(Q) =

(
V (Q) \ C if dim(V (Q) \ C) = 0,

0 otherwise.

We have that H0(C +↵) is canonically isomorphic to H0(O|C+↵|⇤(1))
by definition. Thus, we define i to be the composition

i : H0(O|C+↵|⇤(2)) ⇠= Sym2 H0(C +↵) �! H0(2(C +↵)) ⇠= H0(2C)

of canonically determined morphisms.



4.5. STEINER SYSTEMS TO SPACE SEXTICS 96

The results below are helpful for understanding Lehavi’s theorem
and its simplified proof.

Lemma 4.5.2 For all ↵ 2 J(C)[2] \ {0} and all {✓, ✓ + ↵} 2 ⌃C,↵ we

have q✓,✓+↵ 2 VC,↵. Additionally, qC is trivially contained in VC,↵.

Proof. We may write the 2-torsion class ↵ as

1

2
(Z(`✓) \ C � Z(`✓+↵) \ C).

It is then clear that both `✓ and `✓+↵ cut out e↵ective representatives
of C + ↵. Since the sum of two e↵ective representatives of C + ↵ is
certainly contained in the image of i, we are done with the first claim.
The second claim is trivial. ⇤

One of the pillars in Lehavi’s arguments is following semicontinuity
statement [60, Corollary 7]. It can be derived from the classical semi-
continuity theorem [39, Section III.12] and holds for any characteristic
of k.

Lemma 4.5.3 Let V/X be a vector bundle over a base X and let

V1, . . . ,Vn be sub-bundles of V. Then

(i) the function dimhV1|x, . . . ,Vn|xi is lower semi-continuous on

X,

(ii) the function dim(\n
i=1Vi|x) is upper semi-continuous on X.

We will now state a generalization of Lehavi’s theorem for recon-
structing the quadric for complex space sextics on smooth quadrics [60,
Theorem 1]. The idea of the proof is remains the same.

Theorem 4.5.4 Let k be either of characteristic zero or of su�ciently

high characteristic. Let C be a generic space sextic or a generic space

sextic lying on a singular quadric over k. Then we have

(i) PVC,↵ = Span({q✓,✓+↵ : ✓ 2 ⌃C,↵}) for all ↵ 2 J(C)[2] \ {0},

(ii)
T

↵2J(C)[2]\{0} PVC,↵ = Span{qC},

where qC denotes the unique quadric vanishing on C, up to scaling.

Proof. We follow the strategy Lehavi uses for proving [60, Theo-
rem 1]. From Lemma 4.5.2 we immediately have the containments

Span{q✓,✓+↵} ✓ VC,↵ and Span{qC} ✓
T

↵2J(C)[2]\{0} VC,↵.

For claim (i), each q✓,✓+↵ generates a rank 1 sub-bundle of VC,↵ over
the family of smooth genus 4 curves C in P3. The dimension of their
span is bounded by the dimension of VC,↵. If we can demonstrate
that dimSpan {q✓,✓+↵} = dimVC,↵ for a particular curve C, then via
Lemma 4.5.3(i) the claim must be true for all curves in an open neigh-
bourhood of C. In the proof of [60, Theorem 1] this is done by hand
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with a pleasant but involved geometric argument, whereas we can sim-
ply use our implementation of Algorithm 4.5.5 as described in Exam-
ple 4.5.6. In both cases the curve C is over k = Q, which shows the
statement for both characteristic zero and su�ciently high characteris-
tic (see the Spreading Out Theorem [71, Theorem 3.2.1]). Additionally,
we consider a space sextic on a singular quadric in Example 4.5.6, which
shows the statement for generic curves of that type.

The proof of the part (ii) is analogous, using Lemma 4.5.3(ii) in-
stead. ⇤

Algorithm 4.5.5

Input: SC , the Steiner system of C as defined in Section 4.1.

Output: qC , the unique quadric form vanishing on C.

1: Construct the subspaces

PVC,↵ := Span
⇣�

l✓ · l✓+↵ : {l✓, l✓+↵} 2 SC,↵

 ⌘
for all SC,↵ 2 SC

2: Compute their one-dimensional intersection

Span{qC} :=
\

SC,↵2SC

PVC,↵.

3: return qC .

Example 4.5.6 Consider again the curve C ✓ PF3
97 and the four

syzygetic tritangents l12, l34, l125, l345 from Example 4.3.1. Then there
exists exactly one SC,↵ 2 SC such that {l12, l34} 2 SC,↵, for which we
have PVC,↵ ✓ PVC given by the linear span

PVC,↵ = Lin

8
>>>>>>>>>><

>>>>>>>>>>:

x2
0 + 36 x1 x3,

x1 x2 + 84 x1 x3 + 32 x2 x3 + 68 x2
3,

x0 x1 + 85 x1 x3 + 17 x2 x3 + 91 x2
3,

x2
2 + 10 x1 x3 + 94 x2 x3 + 27 x2

3,

x2
1 + 69 x1 x3 + 22 x2 x3 + 45 x2

3,

x0 x3 + 39 x1 x3 + 34 x2 x3 + 38 x2
3,

x0 x2 + 69 x1 x3 + 22 x2 x3 + 45 x2
3

9
>>>>>>>>>>=

>>>>>>>>>>;

.

One can easily see that x2
1 � x0x2 2 PVC,↵; it is the di↵erence of

two of our generators above. Our implementation verifies that Theo-
rem 4.5.4 (i) and (ii) hold for this particular curve. More generally, we

can do the same for the curve C ✓ PQ3
obtained from the configuration

P ✓ PQ3 in Example 4.3.1.
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Reconstructing a cubic: Reconstructing a cubic from SC is a
slightly more involved task. A Cayley cubic is an irreducible cubic
surface in P3 whose singular locus consists of 4 simple nodes in general
position. If k is algebraically closed there is exactly one Cayley cubic up
to linear transformations of P3. Lehavi’s idea is to identify 4 nodes of
a Cayley cubic containing C. [60, Theorem 2] allows us to identify the
four nodes via an intersection theoretic argument. We state a corrected
version here.

Theorem 4.5.7 ([60, Theorem 2]) Let ↵ 2 J(C)[2]\{0}. The four

planes through each of the four triples of nodes of the Cayley cubic

associated to ↵ are, set theoretically, the four intersection points in

PVC of the six dimensional projective variety

PV
⇣
((VC/VC,↵)

⇤
^ (VC/VC,↵)

⇤) · S2
|C |

⌘

and the 2nd Veronese image of |C | in PVC. The “ · ” in the equation

above denotes tensor contraction. Moreover, each of these four points

have multiplicity 4 in the intersection.

We provide some context for the statement of Theorem 4.5.7. To
do so, it is helpful to consider the set up of [60, Lemma 14].

Definition-Lemma 4.5.8 For any ↵ 2 J(C)[2] \ {0}, consider the fol-
lowing multiplication map s, as well as the restriction of the projection
onto the first coordinate on its preimage of PVC,↵:

|C |⇥ |C | PVC
s

PVC,↵

✓

s�1PVC,↵

✓

:=X↵

|C |

The two-dimensional fibers of the restricted projection lie over four
points which represent four planes l1,↵, . . . , l4,↵ intersecting triplewise
in four points z1,↵, . . . , z4,↵. We define the Cayley subspace associated
to ↵ by

PWC,↵ := Span

(Q4
j=1 lj,↵

li,↵
: 1  i  4

)
� Span{hqC : deg(h) = 1}.

Generically, the first summand is the space of cubics with the nodes at
z1,↵, . . . , z4,↵ and the first summand contains the Cayley cubic associ-
ated to ↵.



4.5. STEINER SYSTEMS TO SPACE SEXTICS 99

With the notation of Definition-Lemma 4.5.8, the planes through
3 nodes of the Cayley cubic are exactly the a 2 |C | such that the
subvariety

{x 2 |C | : v · s(a, x) = 0 for all v 2 (VC/VC,↵)
⇤
}

has dimension 2. For any v 2 (VC/VC,↵)⇤, we now view v·s(a, –) 2 |C |⇤

as an operator. As the null-spaces of these operators are identical, they
are linearly dependent as vectors in |C |⇤. In particular, we have for
any v, v0 2 (VC/VC,↵)⇤ that

(4.1) v · s(a, –) ^ v0 · s(a, –) = ~0.

In terms of a basis {e1, . . . , e4} for |C |, we have that

(v · s(a, e1), . . . , v · s(a, e4)) ^ (v0 · s(a, e1), . . . , v
0
· s(a, e4)) = ~0.

Or even more explicitly, that the 2⇥ 2 minors of the matrix


v · s(a, e1) . . . v · s(a, e4)
v0 · s(a, e1) . . . v0 · s(a, e4)

�

vanish. The variety defined in Theorem 4.5.7 is

V

✓
minors2⇥2


v · s(a, e1) . . . v · s(a, e4)
v0 · s(b, e1) . . . v0 · s(b, e4)

�
: v, v0 2 (VC/VC,↵)

⇤
◆
✓ PVC

where PVC = S2
|C | is endowed with tensor coordinates a⌦ b. A

coordinate-free description is given by

V
�
(VC/VC,↵)

⇤
^ (VC/VC,↵)

⇤
· S2

|C |
�
✓ VC

which follows from Equation (4.1) since tensor contraction commutes
with wedges.

If C = V (qC , pC) is a smooth space sextic, we have that the space
I(C)3 of cubics containing C is 5-dimensional. It is spanned by the
4-dimensional subspace Span{hqC : deg(h) = 1} along with some ir-
reducible cubic vanishing on C. Observe that the defining equation
of any Cayley cubic containing C could serve as the additional cubic.
Theorem 4.5.7 allows us to identify the four nodes of a Cayley cubic
containing C but this is not quite enough information to recover the
curve uniquely. However, a Cayley cubic containing C is (generically)
contained in the space PWC,↵, so by using all ↵ 2 J(C)[2]\{0} we can
recover the space of cubics containing C.
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Theorem 4.5.9 Let C be a smooth space sextic, let PI(C)3 be the four

dimensional subspace of cubics in P3
containing C, and let WC,↵ be as

in Definition 4.5.8. Then

(i) If C is generic, we have dimWC,↵ = 8 for every ↵ 2

J(C)[2]\{0}.

(ii) If C is a generic member of the family of space sextics con-

tained in a singular quadric, then dimWC,↵ = 8 for the

↵ 2 J(C)[2]\{0} not of the form ✓ � ✓0, where ✓ is one of the

120 odd theta characteristics and ✓0 is the vanishing even theta

characteristic.

(iii) Let C be as in case (i) or (ii) and let

A := {↵ 2 J(C)[2]\{0} : dimWC,↵ = 8}.

Then

PI(C)3 =
\

↵2A

PWC,↵.

The proof of Theorem 4.5.9 is similar to our proof of Theorem 4.5.4.
We apply our implementation of Algorithm 4.5.10 to a specific example
and, via semi-continuity, we obtain that the formula holds generically.

Algorithm 4.5.10

Input: (SC , qC), where

• SC , the Steiner system as defined in Section 4.1,

• qC , the unique quadric form vanishing on C.

Output: pC , a cubic form such that C = V (qC) \ V (pC)

1: We introduce the following coordinates on the homogeneous coor-
dinate rings:

A(|C |⇥ |C |) := k[x,y] := k[x0, x1, x2, x3, y0, y1, y2, y3],

A(PVC) := k[z] := k[zij : 0  i  j  3],

so that the multiplication map s induces the homomorphism

s : A(PVC) �! A(|C |⇥ |C |), zij 7�!

(
xiyj i = j,

xiyj + xjyi i 6= j

and the projection map p induces the homomorphism

p : A(|C |⇥ |C |) �! A(|C |), xi 7�! xi.
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2: for SC,↵ 2 SC do

3: Construct the linear subspace PVC,↵ as a subvariety of PVC :

PVC,↵ := Span
⇣�

l✓ · l✓+↵ : {l✓, l✓+↵} 2 SC,↵

 ⌘
✓ PVC

⇠= P{zij}.

Compute the linear generators FPVC,↵ of the defining ideal of
PVC,↵.

4: Set FX↵ := s(FPVC,↵) ✓ k[x,y], so that X↵ = V (FX↵).

5: Let I↵ be the ideal generated FX↵ and the 2 ⇥ 2 minors of its
Jacobian:

JyF =

✓
@f

@yj

◆

f2FX↵ , j=0,...,3

.

6: Compute V (p�1I↵) =: {l1,↵, l2,↵, l3,↵, l4,↵} ✓ |C |.

7: Compute the four points {z1,↵, z2,↵, z3,↵, z4,↵} ✓ |C |⇤ which lie
on exactly 3 of the planes in {l1,↵, l2,↵, l3,↵, l4,↵}.

8: Construct the set WC,↵ of cubics in P3 with nodes
{z1,↵, z2,↵, z3,↵, z4,↵}.

9: Compute WC,↵ := WC,↵ � Span{x0qC , . . . , x3qC}.

10: Set A := {↵ 2 J(C)[2]\{0} : dimWC,↵ = 8}.

11: Compute the intersection

PI(C)3 :=
\

↵2A

PWC,↵

and pick a pC 2 I(C)3 such that the cubic V (pC) does not contain
the quadric V (qC).

12: return pC .

Example 4.5.11 Consider again the curve C from Example 4.3.1. For
its PVC,↵ in Example 4.5.6, we obtain the four points

Z(p�1I↵) =

⇢
(4 :76 :7 :1), (a281863 :a394021 :a855207 :1),
(a736807 :a69925 :a526311 :1), (a873223 :a800485 :a814599 :1)

�

✓ |C |,

where a 2 F973 is a generator of the multiplicative group of the finite
field. The four nodes of the Cayley cubic are dual to the four points
above, and are given by
⇢
(a691050 :a850020 :a167536 :1), (a406794 :a311460 :a735568 :1),
(a214122 :a93444 :a161680 :1), (43 :25 :72 :1)

�
✓ |C |

⇤= P3.
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Under the reverse lexicographic order on the basis of the space of cubics,

{x3
0, x

2
0x1, x0x

2
1, x

3
1, x

2
0x2, x0x1x2, x

2
1x2, x0x

2
2, x1x

2
2, x

3
2,

x2
0x3, x0x1x3, x

2
1x3, x0x2x3, x1x2x3, x

2
2x3, x0x

2
3, x1x

2
3, x2x

2
3, x

3
3},

these four nodes yield

PWC,↵=Lin

8
>>>>>>>>>><

>>>>>>>>>>:

(1 0 0 0 0 0 0 6 29 41 38 73 0 23 58 51 68 29 51 74),
(0 1 0 0 0 0 0 3 11 34 57 79 0 38 46 92 41 34 61 88),
(0 0 1 0 0 0 0 47 72 48 42 39 0 72 8 32 93 48 85 12),
(0 0 0 1 0 0 0 3 16 2 40 8 0 85 35 90 28 69 17 15),
(0 0 0 0 1 0 0 47 72 48 42 39 0 72 8 32 93 48 85 12),
(0 0 0 0 0 1 0 3 16 2 40 8 0 85 35 90 28 69 17 15),
(0 0 0 0 0 0 1 96 0 0 0 0 0 0 0 0 0 0 0 0),
(0 0 0 0 0 0 0 0 0 0 0 0 1 96 0 0 0 0 0 0)

9
>>>>>>>>>>=

>>>>>>>>>>;

.

Remark 4.5.12 For our example exhibiting Theorem 4.5.9(ii), it turns
out that dimWC,↵ = 7 for every ↵ 2 J(C)[2]\{0} of the form ✓ � ✓0,
with ✓ one of the 120 odd theta characteristics and ✓0 the vanishing
even theta characteristic. We anticipate that this is always the case.

Conjecture 4.5.13 Let C be a smooth space sextic contained in a

singular quadric and let ↵ = ✓ � ✓0 2 J(C)[2]\{0}, where ✓ is one

of the 120 odd theta characteristics and ✓0 the vanishing even theta

characteristic. Then dimWC,↵ = 7.

Now we have completed our discussion on space sextics. We have
given several algorithms: constructing a space sextic, its Steiner sys-
tem and its 120 tritangents, in both cases where the sextic lies on a
smooth or on a singular quadric surface. For the inverse direction:
given a space sextic C that arises from a del Pezzo surface of degree
one, Algorithm 4.4.7 returns a set of eight points such that blowing up
the plane at those points gives rise to a space sextic isomorphic to C.
Furthermore, we extended Lehavi’s method for reconstructing a space
sextic on a smooth quadric from its tritangents, to smooth sextics on
singular quadrics and over more general fields. In the next chapter, we
switch the gears and give an algebraic explanation of an optimization
problem.



CHAPTER 5

The Algebraic Degree of the Fermat-Weber Point

The Weber problem is a geometric optimization problem that has a
long history in the mathematical literature [51]. Given n fixed destina-
tion points {(ui, vi)}ni=1 in the real plane with integer coordinates, find
the optimal location of a single source point. In formula, determine

(5.1) min
x,y

f(x, y) =
nX

i=1

p
(x� ui)2 + (y � vi)2.

The function f is strictly convex. Hence the solution of @f
@x = @f

@y = 0
minimizes the function f . The unique minimum in (5.1) is called the
Fermat-Weber point and denoted p⇤.

Weber [86] was probably the first who formulated this problem in
light of the location of a plant, with the objective of minimizing the sum
of transportation costs from the plant to sources of the raw materials
and to the market centers. The solution to this problem is simple to
obtain for the special cases when n points lie on a straight line or form
a regular n-gon. The case of n = 3 was first formulated and thrown
out as a challenge by Fermat as early as the 1600s. [51]. Cavalieri
in 1647 proved that when three points form the vertices of a triangle
with all the angles less than 120�, the minimizer point is the one that
makes an angle of 120� with each side of the triangle. Heinen in 1834
completed the answer by showing that if the triangle has an angle of
� 120� then the minimizer is the vertex corresponding to the obtuse
angle: see Figure 5.1.

Figure 5.1. The red point minimizes the sum of Eu-
clidean distances from three given points in the plane.
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Fagnano in 1775 showed that for the case n = 4, if four given points
form a convex quadrilateral the minimum solution point is the inter-
section of the diagonals of the quadrilateral, otherwise it is one of four
points that is inside the convex hull of the three other points: see Fig-
ure 5.2. Chandrajit Bajaj in 1984 proved that in general, for the case
of n = 5 points, the Fermat-Weber point is the root of an irreducible
polynomial of high degree and can not be obtained by straight-edge
and compass constructions [4]. Furthermore, the Weber problem is not
solvable by radicals over Q for n � 5.

Figure 5.2. The red point minimizes the sum of Eu-
clidean distances from four given points in the plane.

Jiawang Nie, Pablo A. Parrilo, and Bernd Sturmfels [67] define a
n-ellipse with foci (ui, vi) and radius d to be the following set of points
in the plane:

�
(x, y) 2 R2 :

nX

i=1

p
(x� ui)2 + (y � vi)2 = d

 
.

The n-ellipse is the boundary of a convex set in the plane. For
n = 1 it is a circle, and for n = 2 it is an ellipse. However, if n � 3
the above set is not the vanishing set of an irreducible polynomial,
and therefore, is not an algebraic curve anymore. The unique (up to
sign) irreducible polynomial in unknowns x and y and with parameters
d, u1, v1, . . . , un, vn has degree 2n�

�
n

n/2

�
�n, where �n is 1 for even n and

0 for odd n [67]. The smallest d, such that the n-ellipse is non-empty
defines the Fermat-Weber point. Nie, Parrilo, and Sturmfels ask for the
algebraic degree of the Fermat-Weber point over the field of rational
functions Q(u1, v1, . . . , un, vn).

Now we formulate the problem more precisely. Let k be an arbitrary
field and k̄ its algebraic closure, i.e. the smallest algebraically closed
field containing k. The minimal polynomial of an element a 2 k̄ over k
is an irreducible monic polynomial with coe�cients in k, having a as
a root. The algebraic degree of a over k is the degree of its minimal
polynomial over k. Let {(ui, vi)}ni=1 be the set of n given points. In
the nontrivial case n � 5, our interest is determining the algebraic
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degree of the Fermat-Weber point p⇤ over the field of rational functions
Q(u1, v1, . . . , un, vn), where the algebraic degree of a point is defined
to be the unique algebraic degree of its coordinates. Note that this
degree is one for n = 4 and is one or two for n = 3, depending on the
configuration of three given points. The aim is to prove the following
conjecture for the particular case d = 2:

Conjecture 5.1 For n general points in Rd
the algebraic degree of the

Fermat-Weber point equals

dX

i=2

2n�i

✓
n� 1

i

◆
� 2

✓
n� 1

n/2

◆
�n,

where �n is zero for odd n and one for even n.

This formula which we explain in Section 5.1, first grew out of an in-
formal discussion by Jean-Charles Faugère, Mohab Safey El Din, Bernd
Sturmfels and Rekha Thomas at the Geometry and Optimization with
Algebraic Methods workshop in 2015, in Berkeley. In Section 5.1 we
give an algorithm that constructs the minimal polynomials of the coor-
dinates of the Fermat-Weber point p⇤ and returns the algebraic degree
of p⇤ over Q(u1, v1, . . . , un, vn). Tracking the degree in all steps of the
algorithm explains the conjecture above for the case where n points
are in the real plane, i.e. for d = 2. Sections 5.2 and 5.3 contain the
computation of the degree of the ideals appearing in the algorithm.
The final ideal Ip⇤ is the defining ideal of p⇤. Section 5.3 reports the
computational results based on the calculation of the Fermat-Weber
point for five to ten given points in singular and macaulay2.

5.1. Explaining the degree formula

Let {(ui, vi)}ni=1 be the set of n points in the plane. The Fermat-
Weber point is the minimizer point of the problem

min
x,y

f(x, y) =
nX

i=1

p
(x� ui)2 + (y � vi)2.

Define n distance functions

di =
p

(x� ui)2 + (y � vi)2.

Since we are interested in the unique solution of two partial derivatives

@f

@x
=

nX

i=1

(x� ui)

di
, and

@f

@y
=

nX

i=1

(y � vi)

di
,
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we can form our desired polynomial system as follows:
8
>>>>><

>>>>>:

d2i � (x� ui)2 � (y � vi)2 = 0, for i = 1, . . . , n

Pn
i=1 (x� ui)

Q
j 6=idj = 0,

Pn
i=1 (y � vi)

Q
j 6=idj = 0.

This is a zero-dimensional system of polynomial equations in un-
knowns x, y, d1, . . . , dn and parameters u1, v1, . . . , un, vn. However, we
need to exclude the solutions where di = 0 for some 1  i  n. The
number of remaining solution points in C is twice the algebraic de-
gree of the Fermat-Weber point over Q(u1, v1, . . . , un, vn). Note that
if we choose our n points to be in general positions and have inte-
ger coordinates, we are indeed looking for the algebraic degree of the
Fermat-Weber point over Q. Now we give an algorithm to find the
degree.

Algorithm 5.1.1

Input: A set P = {(ui, vi)}ni=1 of n given points in the plane with
integer coordinates

Output: The algebraic degree of the Fermat-Weber point of the set
P over Q.

1: Let R = Q[x, y, d1, . . . , dn], and define the ideal D := (Dx, Dy)
where

Dx =
nX

i=1

(x� ui)
Y

j 6=i

dj, Dy =
nX

i=1

(y � vi)
Y

j 6=i

dj.

2: Let d =
Qn

1 di and Ds = (D : (d)1) ⇢ R.

3: Let Ii = Ds + (g1, . . . , gi) ✓ R for 1  i  n, where

gi = d2i � (x� ui)
2
� (y � vi)

2.

4: Let Is = (In : (d)1).

5: Let Ip⇤ = Is \Q[x, y].

6: Eliminate {y} (resp. {x}) from Ip⇤ and let hx (resp. hy), be the
unique generator of the resulting ideal.

7: return deg(hx) (resp. deg(hy)).

Remark 5.1.2 In the algorithm above, we could do the saturation of
the ideals only once at step 4, but we break it in two steps, 2 and 4,
for computational reasons.
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Convention 5.1.3 By the degree of an ideal I in a polynomial ring R
we mean the degree of (I, z) ⇢ R[z] where (I, z) is the homogenization
of the ideal I with respect to z. This is the degree of the scheme V (I).

We are now ready to give an explanation for the formula in Con-
jecture 5.1, for the case d = 2: Proposition 5.2.8 at the end of the
following section shows that the degree of the ideal Ds in step 2 is�
n
2

�
+ 1. Section 5.3 explains that for 5  n  10 the following results

holds. The ideal In in step 3 is a zero dimensional ideal and has degree

deg(In) = 2n�1
· (

✓
n+ 1

2

◆
+ 1)� 4 ·

✓
n� 1

n/2

◆
�n,

where �n is zero for odd n and one for even n. Saturating the ideal In
by the ideal generated by d, drops the degree by n · 2n, and therefore,

deg(Is) = 2n�1

✓
n� 1

2

◆
� 4 ·

✓
n� 1

n/2

◆
�n.

The ideal Ip⇤ is a zero dimensional ideal and the number of points in
VQ̄(Ip⇤) is half that of VQ̄(I

s):

deg(Ip⇤) = 2n�2

✓
n� 1

2

◆
� 2 ·

✓
n� 1

n/2

◆
�n.

This ideal corresponds to the Fermat-Weber point p⇤ = (x⇤, y⇤), i.e.
the polynomial system consisting of the two generators of Ip⇤ is the
‘smallest’ polynomial system in two variables with rational coe�cients
vanishing on p⇤ 2 Q̄. More precisely, among all the algebraic vari-
eties defined by such polynomial systems, the variety defined by the
generators of Ip⇤ over Q̄ has the least number of points.

Eliminating y from the two polynomial system, leaves a single poly-
nomial in x. This is the minimal polynomial of x⇤ denoted by hx in step
6. Similarly the minimal polynomial hy of y⇤ is defined by eliminating
x, and the following equality holds:

deg(hx) = deg(hy) = deg(Ip⇤).

5.2. The ideal of the derivatives is determinantal

In this section we compute the degree of the ideal Ds that is intro-
duced in step 2 of the Algorithm 5.1.1. Let the polynomial rings R1

and R2 be:

R1 = Q[u1, v1..., un, vn, x, y, d1, ..., dn],

R2 = Q(u1, v1, ..., un, vn)[x, y, d1, ..., dn],

and set the polynomials

D̄x =
nX

i=1

(x� ui)
nY

j=1
j 6=i

dj, and D̄y =
nX

i=1

(y � vi)
nY

j=1
j 6=i

dj.
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Calculating the degree of the ideal Ds
⇢ Q[x, y, d1, ..., dn] for n

given points {(un, vn)}ni=1 in general position in the real plane with
nonzero integer coordinates is the same as finding the degree of the
saturated ideal (D̄x, D̄y) : (d)1 in R2. In other words we are looking for
the algebraic degree of the Fermat-Weber point over the rational field
Q(u1, ..., un, v1, ..., vn). However, first we study Ds

1 := (D̄x, D̄y) : (d)1

in the ring R1 since it has a nicer structure (Proposition 5.2.1) and
from there we can pass to the ring R2 (Proposition 5.2.8).

Proposition 5.2.1 The ideal Ds
1 = (D̄x, D̄y) : (d)1 in the ring R1 is

generated by the maximal minors of the matrix

M =

2

66666664

x� u1 x� u2 . . . . . . x� un

y � v1 y � v2 . . . . . . y � vn
d1 0 . . . 0 �dn

0 d2
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 dn�1 �dn

3

77777775

(n+1)⇥n

and has degree
�
n+1
2

�
.

The following definitions are needed in order to prove the above
proposition. Let R be a Noetherian ring and M a R-module. The
unique length of a maximal M -sequence in an ideal I ⇢ R is called the
depth of I. The codimension of I is defined as

codim(I) = min{sup{n : p0 ( p1 ( · · · ( pn = p} : I ✓ p}.

The ring R is a Cohen-Macaulay ring if depth(m) = codim(m) for any
maximal ideal m of R. Examples of Cohen-Macaulay rings are fields
and therefore polynomial rings over a field. The ring R is determinantal
if it can be written in the form R = S/I where S is a Cohen-Macaulay
ring and I is the ideal generated by the r⇥r minors of a p⇥q matrixM ,
for some p, q, r, such that the codimension of I in S is (p�r+1)(q�r+1).
We say I is a Cohen-Macaulay ideal if the quotient ring R/I is a Cohen-
Macaulay ring.

To prove Proposition 5.2.1, we decompose the ideal D̄ = (D̄x, D̄y) ✓
R1 and study the codimension, Cohen-Macaulyness and the degree
of the primary components. The following important theorems and
lemmas help us to verify these properties.

Theorem 5.2.2 Determinantal rings are Cohen-Macaulay.

See Bruns and Vetter [1988] for a treatment and proof.

Lemma 5.2.3 Let D̄ be the ideal generated by D̄x and D̄y in R1. Then

D̄ is a complete intersection of codimension 2 and degree n2
.
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Proof. It su�ces to show that D̄x and D̄y are irreducible. Let D̄x

be written as

D̄x = h(u1, v1, d1, . . . , un, vn, dn, x, y) · g(u1, v1, d1, . . . , un, vn, dn, x, y)

where h, g 2 R1. The polynomial D̄x is linear in

S = Q(d1, . . . , dn)[u1, v1, . . . , un, vn, x, y].

Therefore, one of h or g has to be an element of Q(d1, . . . , dn). Without
loss of generality, let it be h. Thus, h is a polynomial in Q[d1, . . . , dn]
and it divides D̄x. For any 1  k  n, setting x = uk implies that h
divides

Pn
i=1
i 6=k

(x�ui)
Qn

j=1
j 6=i

dj and therefore for any 1  i  n, h divides
Qn

j=1
j 6=i

dj. This implies that h is a unit in R1. Thus h 2 Q.

Similarly we can show that D̄y is irreducible. This implies that D̄ is a
complete intersection of codimension 2. Since each of D̄x and D̄y are of
degree n, the degree of D̄ is n · n = n2. This proves the statement. ⇤

Lemma 5.2.4 Let I 2 R1 be the ideal generated by polynomials
Qn

j=1
j 6=i

dj

where 1  i  n. Then I

(1) has codimension 2,

(2) is Cohen-Macaulay,

(3) has degree
�
n
2

�
.

Proof. The ideal D̄ = (D̄x, D̄y) ⇢ R1 is a subset of I and there-
fore, codim(I) � 2 by Lemma 5.2.3. Also, it is easy to see that I is
generated by the maximal minors of the matrix

2

666664

d1 0 . . . 0

0 d2
. . .

...
...

. . . . . . 0
0 . . . 0 dn�1

dn dn . . . dn

3

777775

n⇥(n�1)

,

since in all rows except the last one, there is only one non-zero element
to choose. Now the Hilbert-Burch theorem [25, Theorem 3.2] implies
(1). The correctness of (2) follows from (1) and Theorem 5.2.2. Fi-
nally, the ideal I is a monomial ideal and has the following primary
decomposition

I =
\

1i<jn

(di, dj)

which implies (3). ⇤
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Lemma 5.2.5 Let In(M) be the ideal generated by all n-minors of the

matrix M in Proposition 5.2.1. Then In(M)

(1) has codimension 2,

(2) is Cohen-Macaulay,

(3) is prime.

Proof. The proof of (1), (2) are similar to the proof of Lemma
5.2.4. Let S be the polynomial ring S = Q[x1, y1, d1, . . . , xn, yn, dn].
The ideal In(M) is prime in R1 if and only if In(M 0) is prime in S,
where M 0 is the matrix

M 0 =

2

6666666664

x1 x2 . . . . . . xn

y1 y2 . . . . . . yn

d1 0 . . . 0 �dn

0 d2
. . .

...
...

...
. . . . . . 0

...
0 . . . 0 dn�1 �dn

3

7777777775

.

We prove (3) by induction on n. If n = 2 then the entries of M 0 are
distinct variables in the polynomial ring S, therefore by [9, Theorem
2.10], I2(M 0) is prime. Let N be the matrix obtained from some row
and column transformations of M 0 in the ring S[d�1

1 ]:

N =

2

6666666664

0 x2 . . . xn�1 xn �
dn
d1
x1

0 y2 . . . yn�1 yn �
dn
d1
y1

1 0 . . . 0 0

0 d2
d1

. . .
... �

dn
d1

...
. . . . . . 0

...
0 . . . 0 dn�1

d1
�

dn
d1

3

7777777775

.

Now let S 0 = Q[x1, y1, . . . , xn�1, yn�1, x0
n, y

0
n, d1, d

0
2, . . . , d

0
n]. The substi-

tution

x0
n ! xn �

dn
d1

x1, y0n ! yn �
dn
d1

y1, d0i !
di
d1

, for 2  i  n,

induces the isomorphism

S 0[d�1
1 ]

In�1(N 0)
⇠=

S

In(M 0)
[d̃�1

1 ]
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where d̃1 denotes the residue class of d1 in S
In(M 0) , and

N 0 =

2

6666666664

x2 x3 . . . xn�1 x0
n

y2 y2 . . . yn�1 y0n

d02 0 . . . 0 �d0n

0 d03
. . .

...
...

...
. . . . . . 0

...
0 . . . 0 d0n�1 �d0n

3

7777777775

.

Let � be the natural localization map

� :
S

In(M 0)
!

S

In(M 0)
[d̃�1

1 ].

By [20, Lemma 3.1] d̃1 is a non-zero divisor of S
In(M 0) which implies that

� is an injection. The isomorphism above together with the injectivity
of � completes the proof. ⇤

Lemma 5.2.6 Let I be the ideal generated by
Qn

j=1
j 6=i

dj, for 1  i  n,

In(M) be the ideal generated by all n-minors of the matrix M in Propo-

sition 5.2.1 and D̄ be the ideal (D̄x, D̄y). Then

D̄ = I \ In(M).

Proof. By Lemmas 5.2.4 and 5.2.5, we have D̄ ✓ In(M) and
D̄ ✓ J ,

codim(D̄) = codim(In(M)) = codim(I) = 2.

Since the columns of the matrix M are homogeneous of degree one, a
special case of Thom-Porteous-Giambelli formula [30, §14.4] evaluates
the degree of In(M) into

�
n
2

�
+ n⇥ 1 =

�
n+1
2

�
. Therefore,

deg(D̄) = deg(In(M)) + deg(I).

The ideals I and In(M) do not have embedded components since
they are both Cohen-Macaulay. Thus, Bézout’s theorem implies the
result. ⇤

Proof of Proposition 5.2.1: By using the notations of Lemma
5.2.6, this is enough to show that

D̄ : (d)1 = In(M) : (d)1 = In(M).

The first equality holds because of 5.2.6. Note that

(I \ In(M)) : (d)1 = (I : (d)1) \ (In(M) : (d)1),

and I : (d)1 = R1. The second equality holds because In(M) is a
prime ideal by Lemma 5.2.5. ⇤
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We can now use this result in the following way. Let my and mx be
minors which are the determinant of the matrix M without the first
and the second row, respectively. Let mi be the minor which is the
determinant of the matrix M without (i+2)-th row for 1  i  n� 1.
By Proposition 5.2.1, Ds

1 = (D̄x, D̄y) is minimally generated by the
(n+1) minorsmx,my,m1, ...,mn�1 wheremx andmy are both of degree
n and m1, ...,mn�1 are all of degree (n� 1). Explicitly, the generators
are

mx = (�1)n+1D̄x,

my = (�1)n+1D̄y,

mi = (�1)n�i+1
nX

j=1
j 6=i

[(x(vi � vj)� y(ui � uj) + (uivj � ujvi)) ·
nY

k=1
k 6=i,j

dk],

where 1  i  n� 1.

This completes the calculations in R1. Now by using the next two
proposition, we pass to the ring R2 and we find the degree of the ideal
Ds

2 := (D̄x, D̄y) ⇢ R2. That is degDs for the ideal Ds
⇢ R defined in

step 2 of Algorithm 5.1.1.

Proposition 5.2.7 The ideal Ds
2 ⇢ R2 is generated by polynomials

m1, . . . ,mn�1.

Proof. First we show that in the ring R2, mx and my both can be
generated by m1,m2,m3. For this purpose, let

a1 =
(u2 � u3)

l
, a2 =

(u1 � u3)

l
, a3 =

(u1 � u2)

l
,

and

b1 =
(v2 � v3)

l
, b2 =

(v1 � v3)

l
, b3 =

(v1 � v2)

l
,

where l is the determinant of the matrix
2

4
u1 u2 u3

v1 v2 v3
1 1 1

3

5 .

Then

mx = a1d1m1 + a2d2m2 + a3d3m3,

my = b1d1m1 + b2d2m2 + b3d3m3.

⇤
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Proposition 5.2.8 Let m(i,j,k) be the 3-minor of the matrix

2

4
u1 u2 . . . un

v1 v2 . . . vn
1 1 . . . 1

3

5

with columns i, j, k 2 {1, . . . , n}. The ideal Ds
2 ✓ R2 is the ideal gen-

erated by the maximal minors of the (n� 1)⇥ (n� 2) matrix MR2 :

MR2 =


M11 M12 M13

M21 M22 M23

�
,

where

M11 =

2

4
m(2,3,4)d1 m(2,3,5)d1 . . . m(2,3,n�1)d1
m(1,3,4)d2 m(1,3,5)d2 . . . m(1,3,n�1)d2
m(1,2,4)d3 m(1,2,5)d3 . . . m(1,2,n�1)d3

3

5 ,

M12 =

2

4
m(2,3,n)d1 +m(1,2,3)dn
m(1,3,n)d2 �m(1,2,3)dn
m(1,2,n)d3 +m(1,2,3)dn

3

5 ,

M13 =

2

4
((v2 � v3)x� (u2 � u3)y + (u2v3 � u3v2)) d1
((v3 � v1)x� (u3 � u1)y + (u3v1 � u1v3)) d2
((v1 � v2)x� (u1 � u2)y + (u1v2 � u2v1)) d3

3

5 ,

and

M21 =

2

664

d4 0 . . . 0
0 d5 . . . 0
...

...
. . .

...

0 0 . . . dn�1

3

775 , M22 =

2

664

�dn
�dn
...

�dn

3

775 , M23 =

2

664

0
0
...

0

3

775 .

Moreover, Ds
2 has degree

�
n
2

�
+ 1.

Proof. Let m0
i be the minor which is the determinant of the ma-

trix MR2 without the i-th row for 1  i  n�1. We have the following
relations:

m0
i =

(�1)n

m(1,2,3)
mi,(5.2)

for i = 1, 2, 3, and

m0
i =

(�1)(n+1)

m2
(1,2,3)

mi,(5.3)

for i = 4, . . . , n�1. Therefore, the maximal minors of MR2 are genera-
tors of Ds

2. After homogenizing the last column, the first n�3 columns
of MR2 are linear in di and the last column is bilinear in x, y, z and di.
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Using a special case of Thom-Porteous-Giambelli formula [30, §14.4]
the degree of Ds

2 evaluates
✓
n� 3

2

◆
⇥ (1⇥1)+(n�3)⇥12+(n�3)⇥ (1⇥2)+1⇥22 =

✓
n

2

◆
+1.

⇤

5.3. Computational results

This section reports on the computational results on the degree
of the ideals Ii in step 3 and Is in step 4 of the Algorithm 5.1.1 for
n = 5, . . . , 10. This leads us to obtain the desired formula for the al-
gebraic degree of the Fermat-Weber point over Q. Notice that in this
section we use the notations defined in Algorithm 5.1.1.

Implementation of Algorithm 5.1.1 in singular is available on
https://software.mis.mpg.de. It results in the following formulas:
let n be an integer such that 5  n  10, and �n be zero for odd n and
one for even n. The degree of the ideals I1

deg(I1) = 2 · deg(Ds),

and for 2  i  n� 1,

deg(Ii) = 2 · deg(Ii�1)� 2i�2
· (i� 2)

and

deg(In) = 2 · deg(In�1)� 2n�2
· (n� 2)� 4 ·

✓
n� 1

n/2

◆
�n.

Therefore, always there is only a drop of 2i�2
· (i � 2) from

deg(gi) · deg(Ii�1) in the degree of Ii = Ii�1 + (gi), except for the last
step where there is an extra drop of 4 ·

�
n�1
n/2

�
for odd n. Thus, for

1  i  n� 1,

deg(Ii) = 2i�1(2 · deg(Ds)�

✓
i� 1

2

◆
)

= 2i�1(2(

✓
n

2

◆
+ 1)�

✓
i� 1

2

◆
),

and for i = n,

deg(In) = 2n�1(2(

✓
n

2

◆
+ 1)�

✓
n� 1

2

◆
)� 4 ·

✓
n� 1

n/2

◆
�n

= 2n�1
· (

✓
n+ 1

2

◆
+ 1)� 4 ·

✓
n� 1

n/2

◆
�n.

Saturating the ideal In by the ideal generated by d is the same
as saturation by the ideals (di) for all 1  i  n. In each

https://software.mis.mpg.de
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step of saturation the degree drops by 2n. Thus, the final ideal
Is := (· · · (In : (d1)) : · · · : (dn) · · · ) ✓ R has degree

deg(Is) = deg(In)� n · 2n

= 2n�1
· (

✓
n+ 1

2

◆
+ 1)� 4 ·

✓
n� 1

n/2

◆
�n � n · 2n

= 2n�1

✓
n� 1

2

◆
� 4 ·

✓
n� 1

n/2

◆
�n.

Elimination of {d1, d2, · · · , dn} from the ideal Is drops the de-
gree by a factor of 2. Note that (x, y) 2 VQ̄(Ip⇤) implies
(x, y,±d1, · · · ,±dn) 2 VQ̄(I

s). Therefore, the ideal Ip⇤ has degree

deg(Ip⇤) = deg(Is)/2

= 1/2 · (2n�1

✓
n� 1

2

◆
� 4 ·

✓
n� 1

n/2

◆
�n)

= 2n�2

✓
n� 1

2

◆
� 2 ·

✓
n� 1

n/2

◆
�n.

The ideal Ip⇤ is a zero-dimensional ideal in Q[x, y] that has the
conjectured degree. Therefore, the following proposition holds:

Proposition 5.3.1 Let n be an integer such 5  n  10. For n
general points in R2

with integer coordinates, the algebraic degree of

the Fermat-Weber point over Q is

2n�2

✓
n� 1

2

◆
� 2 ·

✓
n� 1

n/2

◆
�n.

For giving an algebraic explanation of the conjecture on the alge-
braic degree of the Fermat-Weber point over Q, we have broken it into
smaller steps. We proved some of the steps for n number of points,
where n � 5. However, in some steps we our restricted to computa-
tional results where n  10. The formulas that are calculated in the
last section suggest the steps of a general proof.
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Mathematische Annalen 73 (1913), pp. 177–229.

[76] A. V. Rokhlin. “Complex topological characteristics of real alge-
braic curves”. In: Russian Mathematical Surveys. Vol. 33. 5. 1978,
pp. 85–98.

[77] V. A. Rokhlin. “Congruence modulo 16 in Hilbert’s sixteenth
problem. II”. In: Functional Analysis and Its Applications 7.2
(1973), pp. 163–164.

[78] R. Seidel and N. Wolpert. “On the exact computation of the
topology of real algebraic curves”. In: Proceedings of the Twenty-

First Annual Symposium on Computational Geometry. SCG ’05.
Association for Computing Machinery, 2005, pp. 107–115.
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Selbstständigkeitserklärung
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