
Clustering Approaches for Multi-source
Entity Resolution

Der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D i s s e R t a t i o n
zur Erlangung des akademischen Grades

DoctoR ReRum NatuRalium
(DR. ReR. nat.)

im Fachgebiet Informatik

vorgelegt von
M. Sc. Informatik Alieh Saeedi

geboren am 18. Mai 1986 in Mashhad/Iran

Die Annahme der Dissertation wurde empfohlen von:
1. Prof. Dr. Erhard Rahm, Universität Leipzig

2. Prof. Dr. Felix Naumann, Universität Potsdam

Die Verleihung des akademischen Grades erfolgt mit Bestehen der
Verteidigung am 1. Dezember 2021 mit dem Gesamtprädikat

Magna cum Laude

Acknowledgments

I would like to express my sincere gratitude to all parties who supported me doing this
PhD. The dissertation is the result of five years of being a PhD student in database group
of Leipzig university and is mostly funded within the ScaDS and ScaDS.AI projects. I
would like to express my special thanks to Prof. Dr. Erhard Rahm firstly for inviting
me to Germany to work under his supervision, and secondly for his assistance at every
stage of the research project. Furthermore, I want to thank Dr. Eric Peukert for his
unwavering support in my research and illuminating many new basics for me. Their
invaluable advice, continuous support, and patience during my PhD study encouraged
me in all the time of my academic research and daily life.

I would like to extend my sincere thanks to my colleagues at database group for main-
taining the joyful and supportive atmosphere. I would initially name Prof. Dr. Anika
Groß and Dr. Ying-Chi Lin for their informational and emotional support when I was
new in Germany which helped me feeling almost like home. Furthermore, I thank my
former office mate Dr. Markus Nentwig who answered my scientific and technical ques-
tions in the first year of the study and for the inspiring discussions on the research topics.
I additionally thank Dr. Victor Christen who is always ready to talk about data matching
topics and also for his feedback on my dissertation. Furthermore, I would thank all for-
mer and current colleagues working on the Gradoop project such as Martin Junghanns,
Dr. André Petermann, Kevin Gomez, and Christopher Rost for answering my emails
and listening to my complaints. My special thanks go to the former colleague Dr. Mo-
hammad Ali Rostami for the interesting discussions on graph topics and developing the
SIMG-VIZ tool which helped me a lot in contributing new approaches.

I would like to thank my friend Dr. Morteza Moradi for giving me the courage to
leave my home country and seeking new academic challenges and career opportunities
abroad. My deep appreciation certainly goes out to my parents that accepted and en-
dured my distance. I would also like to express gratitude to my sister Atefe who never
stops believing in me. Last but not least, I thank my husband Ronald Rist for his support
and patience, and his sustained effort for motivating me to finish my dissertation. I also
thank him for the proofreading.

Leipzig, 30. Juni 2021 Alieh Saeedi

v

Abstract

Entity Resolution (ER) or deduplication aims at identifying entities, such as specific
customer or product descriptions, in one or several data sources that refer to the same
real-world entity. ER is of key importance for improving data quality and has a cru-
cial role in data integration and querying. The previous generation of ER approaches
focus on integrating records from two relational databases or performing deduplication
within a single database. Nevertheless, in the era of Big Data the number of available
data sources is increasing rapidly. Therefore, large-scale data mining or querying sys-
tems need to integrate data obtained from numerous sources. For example, in online
digital libraries or E-Shops, publications or products are incorporated from large num-
ber of archives or suppliers across the world or within a specified region or country
to provide a unified view for the user. This process requires data consolidation from
numerous heterogeneous data sources which are mostly evolving. By raising the num-
ber of sources, data heterogeneity and velocity as well as the variance in data quality
is increased. Therefore, multi-source ER, i.e. finding matching entities in an arbitrary
number of sources, is a challenging task. Previous efforts for matching and clustering
entities between multiple sources (> 2) mostly treated all sources as a single source. This
approach excludes utilizing meta data or provenance information for enhancing the inte-
gration quality and leads up to poor results due to ignorance of the discrepancy between
quality of sources.

The conventional ER pipeline is comprised of blocking, pair-wise matching of entities,
and classification. In order to meet the new needs and requirements, holistic clustering
approaches that are capable of scaling to many data sources are needed. The holistic
clustering-based ER should further overcome the restriction of pairwise linking of enti-
ties by making the process capable of grouping entities from multiple sources into clus-
ters. The clustering step aims at removing false links while adding missing true links
across sources. Additionally, incremental clustering and repairing approaches need to
be developed to cope with the ever increasing number of sources and new incoming
entities.

To this end, we developed novel clustering and repairing schemes for multi-source
entity resolution. The approaches are capable of grouping entities from multiple clean
(duplicate-free) sources as well as handling data from an arbitrary combination of clean

vii

and dirty sources. The multi-source clustering schemes exclusively developed for multi-
source ER can obtain superior results compared to general purpose clustering algorithms.
Additionally, we developed incremental clustering and repairing methods in order to
handle the evolving sources. The proposed incremental approaches are capable of incor-
porating new sources as well as new entities from existing sources. The more sophisti-
cated approach is able to repair previously determined clusters and consequently yields
improved quality and a reduced dependency on the insert order of the new entities.

To ensure scalability, the parallel variation of all approaches are implemented on top
of the Apache Flink framework which is a distributed processing engine. The proposed
methods have been integrated in a new end-to-end ER tool named FAMER (FAst Multi-
source Entity Resolution system). The FAMER framework is comprised of Linking and
Clustering components encompassing both batch and incremental ER functionalities.
The output of Linking part is recorded as a similarity graph where each vertex represents
an entity and each edge maintains the similarity relationship between two entities. Such
a similarity graph is the input of the Clustering component. The comprehensive compar-
ative evaluations overall show that the proposed clustering and repairing approaches for
both batch and incremental ER achieve high quality while maintaining the scalability.

viii

Contents

AcKnowledgments v

AbstRact vii

List of FiguRes x

List of Tables xiii

1 IntRoduction 1
1.1 Motivation . 1
1.2 Scientific Contributions . 5
1.3 Structure of Thesis . 7

2 BacKgRound 9
2.1 Entity Resolution . 9
2.2 Clustering . 17
2.3 Distributed Data Processing . 22
2.4 Quality Measurements . 28

3 FAMER 29
3.1 Motivation . 29
3.2 Data Model and Data Structures . 30
3.3 FAMER Batch Pipeline . 31
3.4 FAMER Incremental Pipeline . 41
3.5 Visualization Tool . 43

4 Multi-souRce Clean ClusteRing 51
4.1 Motivation . 51
4.2 Generic Clustering Schemes . 53
4.3 Clean Clustering Algorithms . 58
4.4 Evaluation . 65
4.5 Case Study . 73
4.6 Related Works . 78

ix

CONTENTS

4.7 Conclusion . 79

5 Multi-souRce Clean/DiRty ClusteRing 81
5.1 Motivation . 81
5.2 Affinity Propagation for Multi-source Clean/Dirty Datasets 83
5.3 Hierarchical Clustering for Multi-source Clean/Dirty Datasets 93
5.4 Evaluation Results . 99
5.5 Related Works . 110
5.6 Conclusion . 111

6 IncRemental Entity Resolution 113
6.1 Motivation . 113
6.2 Incremental Approaches . 115
6.3 Evaluation . 122
6.4 Related Works . 128
6.5 Conclusion . 129

7 Conclusion and OutlooK 131
7.1 Conclusion . 131
7.2 Outlook . 136

Appendix A FAMER ConfiguRations 141
A.1 Preprocessing . 141
A.2 Linking . 142
A.3 Clustering . 145
A.4 Postprocessing . 146
A.5 Incremental Configurations . 146

Appendix B MSCD-AP Qality Results 148

Appendix C MSCD-HAC Qality Results 150

BibliogRaphy 153

x

List of Figures

1.1 Data integration workflow . 2
1.2 Clustering example . 4

2.1 Entity resolution workflow . 13
2.2 Clustering example . 18
2.3 Quality measurement example . 28

3.1 An example of FAMER similarity graph implemented using Gradoop log-
ical graph . 31

3.2 FAMER batch workflow . 32
3.3 Sequence of transformations for the SB 35
3.4 Sequence of transformations for SN . 36
3.5 The transformation for the pair-wise comparison 37
3.6 Sequence of transformations for the match classification 39
3.7 Sequence of transformations for clustering approaches implemented with

Gelly . 40
3.8 FAMER incremental workflow . 42
3.9 SIMG-VIZ architecture . 44
3.10 An overview of SIMG-VIZ . 45
3.11 A visualization of all clusters . 47
3.12 SIMG-VIZ output . 48

4.1 Clean clustering concepts . 58
4.2 CLIP example . 61
4.3 Overlap resolution (example) . 64
4.4 Cluster quality of CLIP vs other clustering approaches 67
4.5 Cluster quality of CLIP vs Split/SplitMerge 69
4.6 Average F-Measure results with range between minimal and maximal

values . 69
4.7 Cluster quality without and with repair using RLIP 70
4.8 Speedup . 72

xi

LIST OF FIGURES

5.1 Factor graph of AP . 84
5.2 Affinity Propagation concepts . 84
5.3 MSCD-AP concepts . 86
5.4 The factor graph of MSCD-AP for the running example 87
5.5 HAP for three hierarchy levels h (l: local exemplar, g: global exemplar) . 91
5.6 Hierarchical clustering example . 94
5.7 MSCD-AP evaluation for MSC datasets 102
5.8 MSCD-AP evaluation for MSCD datasets 104
5.9 Precision/Recall for hierarchical clustering schemes. 105
5.10 MSCD-HAC evaluation for MSC datasets 105
5.11 MSCD-HAC evaluation for MSCD datasets 106
5.12 Speedup of MSCD-HAP for different similarity thresholds 108
5.13 Clustering quality and runtime for different partitions sizes of MSCD-HAP 109
5.14 HAC speedup . 110

6.1 FAMER workflow for incremental entity resolution 115
6.2 Incremental clustering concepts . 117
6.3 Running example: existing entities, new entities and blocking 117
6.4 Incremental linking . 118
6.5 Fusion example . 119
6.6 Max-Both merge . 120
6.7 1-depth reclustering (1DR) . 122
6.8 nDR example . 122
6.9 Source-wise cluster quality for dataset DS-G 125
6.10 Source-wise cluster quality for dataset DS-C100 125
6.11 Source-wise incremental ER for DS-M (1st row) and DS-P (2nd row) . . . 126
6.12 F-Measure results for entity-wise incremental ER 127
6.13 Incremental runtimes . 128

B.1 MSCD-AP evaluation for DS-P1 dataset 148
B.2 MSCD-AP evaluation for camera datasets 149

C.1 MSCD-HAC evaluation for DS-P1 dataset 150
C.2 MSCD-HAC evaluation for camera datasets 151

xii

List of Tables

2.1 Camera entities from three data sources with challenges for data matching 11
2.2 Comparison of ER Frameworks . 16
2.3 Apache Flink dataset transformations . 27

3.1 ER clustering algorithms classification . 39
3.2 Actions in SIMG-VIZ . 45
3.3 Preprocessing algorithms in SIMG-VIZ 46

4.1 Overview of evaluation datasets . 65
4.2 Default blocking and match configuration for different datasets 66
4.3 Runtimes for clustering schemes (seconds) 71
4.4 Example raw data . 75
4.5 Example data after preprocessing and property alignment 76
4.6 Performance of ER approaches on training data and ground truth 78

5.1 Linkage types . 95
5.2 Overview of evaluation datasets . 100
5.3 Overview of camera dataset (DS-C) . 100
5.4 MSCD datasets . 100
5.5 Linking configurations of clean multi-source datasets 101
5.6 Runtimes for clustering schemes (seconds) 107
5.7 Runtimes (seconds) . 109

6.1 Evaluation datasets . 123
6.2 Increment configurations . 124
6.3 Linking configurations . 124
6.4 Accumulated runtimes in seconds for source-wise ER 127

xiii

1
Introduction

This chapter starts with motivating the topic of data integration and describing the cor-
responding workflows. The relevant subjects and background of data integration are dis-
cussed in Section 1.1.1 and Section 1.1.2. Section 1.1.3 then introduces the corresponding
requirements and challenges. On this basis, scientific contributions of this dissertation
are specified in Section 1.2. Finally, Section 1.3 gives an overview of the remaining work.

1.1 Motivation

Data integration is the practice of consolidating data from disparate sources into a sin-
gle, unified view [100]. The main aim of data integration is delivering data to meet the
information needs of different applications and processes. Data integration, for instance,
is the initial step in getting the whole picture of an individual patient’s electronic health
record in health care. It furthermore enables analytics tools to produce businesses intel-
ligence for companies, and facilitates better governing and managing the public sector
for governments. Additionally, popular tools we use on a daily basis, such as search
engines and query answering systems, integrate data from numerous sources in order
to generate knowledge from data. Analogously, advanced AI tools that allow the user to
turn a single query into an ongoing conversation, build and store a general knowledge
of the world in a so-called knowledge graph [166] by collecting and combining entities
and their relationships from multiple data sources [130].

Integrating heterogeneous data residing in different sources is a costly process that
requires several steps [100]. The conventional data integration workflow depicted in

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Data integration workflow

Figure 1.1 consists of three main steps [27]. The first step is schema matching. Schema
consists of several attributes for describing data instances and schema matching is the
process of identifying semantically identical schema elements [147]. For example, in two
schemas camera1 (Manufacturer, Model, Resolution, Weight, Zoom) and camera2 (Man-
ufacturer, ModelNo, Megapixels, Optical Zoom), schema matching generates the possi-
ble matches of camera1.Manufacturer ≈ camera2.Manufacturer, camera1.Model ≈ cam-
era2.ModelNo, camera1.Resolution ≈ camera2.Megapixels, and camera1.Zoom ≈ cam-
era2.Optical Zoom. The second step is data matching which is the task of identifying and
matching entities that refer to the same entity across different sources or within a single
source. A great amount of literature under different titles such as Entity Resolution (ER),
record linkage and etc. has been devoted to data matching issues [20, 32, 58, 59]. Refer-
ring to the camera example, ER aims at finding identical cameras such as Fujifilm FinePix
S6800 with the same manufacturer, model number and exactly the same specifications
within or across different sources. Data fusion [17] as the last step of data integration,
merges groups of matched (identical) entities into a clean and consistent entity.

As illustrated in Figure 1.1, data matching or entity resolution includes several main
steps. After some data cleaning actions refereed as preprocessing, the linking step deter-
mines matches by creating similarity links between instances (or/and uses the existing
links). Then clustering is applied as a postprocessing step, as for more than two sources
a binary linking of entities is not sufficient. Clustering additionally facilitates fusion so
that all matches of the same entity that are grouped together can derive a fused entity
representation [146]. Moreover, semantic metadata such as provenance (see [22] for the
role of provenance in data quality) can be considered in ER-specific semi-supervised [6]
clustering approaches that leads to improved quality of matches.

With the emerge of Big Data, all conventional data-related approaches and algorithms
including data matching methods and techniques must be adapted or advanced to meet
the relevant requirements. Big Data entails new challenges to the whole process of data
matching. Therefore, we discuss the Big Data characteristics as well as the requirements
and challenges of data matching for Big Data in the next section.

2

1.1. MOTIVATION

1.1.1 Big Data

The term Big Data refers to the great variety of large data sources that grow at increasing
rates. The concept of big data has been articulated under three main V’s [161]:

• Volume: refers to the sheer volume of data. The number and size of the datasets
that need to be analyzed and processed continues to increase strongly [32, 67, 150].

• Velocity: points to the speed of data generation. The data sources are evolving
continuously i.e. new data sources as well as new entities from new or existing
data sources are incrementally disseminated.

• Variety: introduces all the structured and unstructured data that have the possi-
bility of being generated either by humans or by machines.

Likewise, other V’s such as Veracity and Value were defined to describe more aspects.
The former is equivalent to quality and the latter refers to the ability to transform data
to knowledge. Due to the significant role of Big Data applications in today’s technology
and economics, the story of defining new V’s is still continuing.

Considering the above mentioned features, it is difficult or impossible to perform any
computation including data matching process on data when the data is so large, fast
and complex using traditional methods and technologies. To tackle this problem the
data matching pipeline needs to be built on top of the available distributed storage and
processing platforms. Moreover, in order to handle the evolving data, novel approaches
should be designed and developed to integrate new entities to the already existing knowl-
edge graph. The next problem with conventional data matching methods is that the ma-
jority of them consider at most two data sources which is insufficient to integrate data
from numerous different data sources. For transcending this limitation, the last step of
data matching workflow (clustering) must be thoughtfully considered. Therefore, in the
next section we discuss the functionality of clustering in data matching process.

1.1.2 ClusteRing

Clustering aims at grouping entities into clusters, such that entities belonging to the
same cluster are more similar to each other than they are to entities in the other clusters.
A large number of clustering algorithms have been proposed for different applications.
Detailed surveys of clustering methods can be found in [46, 182, 183]. Generally, clus-
tering is an unsupervised task that determines entities of the clusters by estimating the

3

CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.2: Clustering example

similarity or distance between them. In addition to the similarity information, the meta-
data or the available knowledge about the sources can guide the clustering process as a
limited form of supervision. The resulting approach is called semi-supervised clustering
[65].

Clustering is an essential component for multi-source data matching, because the link-
ing (matching) step of data matching workflow determines the final matching status of
each pair of entities individually. As a consequence, the entities that are connected via
indirect links (transitive closures) and are assumed to be identical, may break some priori
provenance-related constraints. Moreover, a long chain of connecting entities may form
so that entities at the two ends of the chain have a very low similarity [27]. Therefore, an
appropriate clustering algorithm as the last step of data matching process is applied in
order to cut irrelevant and incoherent direct and indirect links while keeping the correct
ones. Figure 1.2a depicts five entities from three sources X, Y and Z. Based on the prior
knowledge all entities of source X are unique. Thus, none of the entities of source X are
allowed to be matched together. But a long chain makes indirect connection between
entity e0 and e3 (both from source X). Moreover, the entity e0 in the middle of the chain
and the entity e4 at the end, are most probably dissimilar. A good clustering algorithm
splits the chain in such a way that the constraints are satisfied (the constraint in this ex-
ample is that each cluster must contain at most one entity from the duplicate-free source
of X) and entities with low similarities get grouped in different clusters. In Figure 1.2b,
a clustering algorithm grouped entities into three clusters so that each cluster contains
at most one entity from source X and entities within each cluster are highly similar.

1.1.3 CHallenges and ReiRements

As mentioned above, data matching is the central component of the data integration pro-
cess. This dissertation is focused on data matching solutions for multiple data sources
using Big Data technologies. In the following different challenges are listed.

4

1.2. SCIENTIFIC CONTRIBUTIONS

Grouping instances into clusters effectively and efficiently Integrating data from
multiple (> 2) data sources, makes clustering an essential part for unsupervised data
matching. Clustering should be applied as a postprocessing step after classification
phase with the aim of grouping linked entities into clusters of entities so that each rep-
resents a unique entity. Dealing with numerous different sources, a clustering method
furthermore should utilize the provenance information of entities in order to improve
the match quality. In this thesis, it is assumed that duplicate-free sources are known
prior to data matching. Therefore, the clustering approaches set constraints in order to
avoid grouping entities of the same duplicate-free sources within the same cluster. Addi-
tionally, for further improvement of final clustering results, repairing approaches need
to be designed and developed.
Support for dynamic data and data sources Velocity is one of the main aspects of Big
Data. Thus, new technologies should handle incoming and processing of the new data
in an efficient and effective way. Constant incoming of new data sources and new enti-
ties from existing sources need to be supported by developing incremental linking and
incremental clustering and repairing approaches. The incremental approaches should
be competent to add entities to an in-use knowledge graph i.e. the already integrated
entities that are largely unaffected by new entities should not have to be re-integrated
for every update. The incremental repairing approach furthermore should be able to use
the new entities and sources to repair already determined clusters by reconsidering the
former match decisions.
Scalable and distributed processing of data matching workflows With growth of
data and the increase in number of data sources, building data matching pipelines on
top of Big Data frameworks has become inevitable. The frameworks in the Big Data
ecosystem facilitate distributed data storage and processing across arbitrary number of
machines. They additionally provide scaling up to a desired degree by simple addition
of machines to the cluster. Therefore, developing conforming algorithms and programs
for an optimized and scalable execution of data integration pipeline has become an state-
of-the-art research topic.

1.2 Scientific ContRibutions

The following contributions are derived from the initial analysis of challenges and re-
quirements (mentioned above). All contributions are both peer-reviewed and published
in scientific journals or proceedings of conferences.
Clustering approaches for entity resolution Performing data matching process across

5

CHAPTER 1. INTRODUCTION

multiple sources entails using clustering approaches in order to grouping entities from
different sources in the same cluster. For this reason, we implemented existing generic-
purpose clustering algorithms for our entity resolution task and compared them for our
multi-source datasets in terms of both their efficiency (speed-up curves) and effective-
ness. The results are published in ADBIS 2017 [158]. Due to the fact that data sources
have diverse characteristics, awareness and utilizing provenance information by the clus-
tering algorithm improves the matching result. Therefore, we developed the clustering
scheme CLIP (Clustering based on LInk Priority) that assumes all sources as duplicate-
free. Moreover, in order to correct the results of clustering methods such as overlapping
clusters, we additionally developed the repairing method RLIP (cluster Repair based on
LInk Priority). Both approaches produce superior results compared to generic-purpose
clustering schemes and were published and presented in ESWC 2018 [160]. The publica-
tion succeeded to win the best research paper award. All mentioned approaches were
further compared to novel clustering schemes for grouping entities of multiple clean
sources (named as Split and SplitMerge) and the results were published in CSIMQ pa-
per in 2018 [157]. Furthermore, we developed clustering algorithms that are able to
consider the degree of dirtiness (duplicate existence rate) of datasets to determine the
output. The approaches MSCD-AP (Multi-Source Clean Dirty Affinity Propagation) and
MSCD-HAC (Multi-Source Clean Dirty Hierarchical Agglomerative Clustering) are ex-
tended variations of basic Affinity Propagation clustering and Hierarchical Agglomer-
ative clustering that are able to cluster datasets of combined clean (duplicate-free) and
dirty sources. The MSCD-AP approach is published and presented in BTW 2021 [102]
and MSCD-HAC approaches are submitted to KEOD 2021 [156].
Incremental clustering approaches In the era of Big Data, data sources are evolving.
Moreover, new data sources constantly need to be integrated with the existing knowl-
edge graph. For handling this dynamic growth, we developed approaches for incremen-
tal addition and integration of data without recalculating already existing matches. One
approach called MAX-Both inserts the new incoming entity either to the most similar ex-
isting cluster or creates a new singleton cluster. However, this approach typically suffers
from a strong dependency on the order in which new entities are added. In particular,
wrong cluster decisions, e.g., due to data quality problems, will not be corrected and can
lead to further errors when new entities are added. The overall quality can thus be much
worse than for batch entity resolution where all entities are simultaneously integrated.
We therefore propose and evaluate a novel approach called n-depth reclustering (nDR)
for incremental entity clustering and repairing. The letter n refers to the portion of the
existing graph that is modified. The approach reduces the dependency on the order in
which the new entities and sources are added. Moreover, it is capable of repairing the

6

1.3. STRUCTURE OF THESIS

previously matched decisions while integrating the new entities and sources. The incre-
mental approaches were published and presented in ESWC 2020 [159].
FAMER framework on top of Apache Flink Handling data from numerous sources
entails developing scalable methods. Therefore, this dissertation focuses on develop-
ing scalable approaches for multi-source entity resolution. We developed an end-to-end
framework for entity resolution on top of Apache Flink called FAMER (FAst Multi-source
Entity Resolution system). The input of FAMER is data from multiple sources and the
output is sets of clusters, each representing a unique entity. FAMER constitutes of two
main modules of Linking and Clustering that both support batch and incremental data
matching. As an open-source software, FAMER is available on GitLab server of the infor-
matics institute / Leipzig university1. FAMER additionally benefits from a visualization
tool that enables the user to analyze precomputed similarity graphs and clusterings. The
tool is presented in EDBT 2018 [155]. Furthermore, FAMER succeeded to win the KDD
DI2KG data matching challenge 2019 [131].

1.3 StRuctuRe of THesis

This dissertation consists of five further chapters as follows:

Chapter 2 gives an introduction to the entity resolution topic and the conventional
pipeline. We then give an overview to the current entity resolution tools and their
comparison. The chapter further defines the relevant concepts and categorizes and
explains ER-specific clustering algorithms briefly. It additionally elaborates on the
concept, background, and relative tools of distributed data processing. In the end,
quality measures to evaluate the effectiveness of clustering results are introduced.

Chapter 3 introduces FAMER framework. It explains all modules and sub-modules of
FAMER in detail. The chapter elaborates on both batch and incremental pipelines.
Finally, it discusses the technical details and functionalities of SIMG-VIZ tool.
Some screen-shots of the visualization output are shown for illustration.

Chapter 4 presents the existing clustering algorithms as well as our innovative ap-
proaches for clustering entities from multiple clean (duplicate-free) sources. In
this chapter we comprehensively evaluate the cluster quality and scalability of
the new approaches for different datasets and compare them with previously pro-
posed clustering schemes.

1FAMER repository https://git.informatik.uni-leipzig.de/dbs/FAMER

7

https://git.informatik.uni-leipzig.de/dbs/FAMER

CHAPTER 1. INTRODUCTION

Chapter 5 proposes innovative clustering approaches for grouping entities from a com-
bination of clean (duplicate-free) and dirty data sources. In order to provide the
scalability, the parallel variations of the new approach are developed as well. We
comprehensively evaluate match quality, runtimes and scalability of the new ap-
proaches for different datasets and compare them with previous clustering schemes.

Chapter 6 focuses on handling evolving data sources. It proposes two incremental ap-
proaches to integrate data from dynamically changing data sources. One naive
approach inserts entities to the existing clusters or creates new clusters and a so-
phisticated approach that repairs existing clusters with the new incoming entities
and sources. The incremental approaches are evaluated for datasets of four do-
mains in terms of cluster quality and runtime efficiency. Additionally, a compar-
ison to a previous approach for incremental cluster repair and with batch entity
resolution is provided.

Finally Chapter 7 - Conclusion and Outlook - concludes the results of this dissertation
and provides concepts and ideas for future work.

8

2
Background

This chapter extends the required background and related works of the dissertation. Sec-
tion 2.1 elaborates on Entity Resolution (ER) topic and illustrates the challenges and
issues by an example. The formal definition of the problem is stated in Section 2.1.1.
Section 2.1.2 furthermore explains the conventional pipeline of the ER and narrates the
details of each step. Finally, an overview of the current ER tools and a comparative
comparison between them is described in Section 2.1.3.

Section 2.2 introduces the clustering topic by stating a formal definition. Then, Sec-
tion 2.2.1 introduces the clustering algorithms that are already used in ER applications.

Section 2.3 gives an overview of the architecture of distributed systems and the pro-
gramming models. The current distributed storage and processing frameworks and their
programming paradigms as well as a brief comparison of them are presented in Sec-
tion 2.3.1 and Section 2.3.2. Finally, Section 2.3.3 introduces Apache Flink1 and the rele-
vant libraries which have been used for implementing contributions of this dissertation.
The chapter is closed with description of the quality measurements for evaluating the
methods (Section 2.4).

2.1 Entity Resolution

Data matching known as Entity Resolution (ER) is the task of identifying and matching
individual entities from disparate data sources that refer to the same real-world entities
or objects. Other names of data matching are listed as record or data linkage given by

1https://flink.apache.org/

9

https://flink.apache.org/

CHAPTER 2. BACKGROUND

health researchers and statisticians. The terms data, record or object matching, entity
resolution, co-reference resolution, object identification, data reconciliation, citation or
reference matching, and deduplication are denominated by computer scientists from
different fields [27].

Christen [27] summarized the long history of using computers for data matching by
both database community [73, 74, 110, 111, 147] and statisticians [47, 123, 124, 133, 181].
With the growth of data volume and increased importance of data, data matching has
become more pervasive and influential for organizations. In the last decades, machine
learning approaches as well as natural language processing and graph-based approaches
have been developed to tackle the challenges of data matching for millions of entities
and furthermore improve the matching quality [15, 58, 59]. Performing entity resolution
leads to less usage of storage and computational effort [27]. Moreover, deduplicated data
is needed in order to performing data mining tasks and inferring useful information
toward finding improvement points for organizations and businesses [40].

Generally, ER is a challenging task due to several reasons. The first reason that was
existing from the early days of emergence of data deduplication is solving the compu-
tational complexity problem. Matching each entity of one source with all other entities
of the same source and all entities of the other sources is an exhaustive computation.
On the other hand, with the advent of big data, data volume has been grown in both as-
pects of the number of sources and the size of each source. Furthermore, with dynamic
data sources, newly collected data or even a new source might be continuously added
to the data. The second reason is that data sources have heterogeneous schema which
makes identifying duplicates of different sources a very challenging task. Thirdly, the
data sources are extremely different in quality. The accuracy of data may significantly
differ from source to source. Additionally, there are plenty of other issues like lack of
training data containing the match status or privacy and confidentiality problems which
are out of scope of this dissertation [27, 43].

As a motivating example, we consider a price comparison website that skim through
multiple e-commerce sites to collect data about products and services like prices, de-
scriptions, features, reviews and etc. The buyer can then compare the listings based on
price, features, shipping costs and other desired features to find the best deal. In order to
provide such a listing, it is needed to collect data from many sources, perform the data
matching process and present a specific product with all the providers. To illustrate the
data quality and source heterogeneity problems in a multi-source ER scenario, we show
in Table 2.12 three matching Fujifilm camera products from different sources. As shown

2The camera data is from the dataset of the ACM SIGMOD 2020 Programming Contest.
http://www.inf.uniroma3.it/db/sigmod2020contest/index.html

10

http://www.inf.uniroma3.it/db/sigmod2020contest/index.html

2.1. ENTITY RESOLUTION

Table 2.1: Camera entities from three data sources with challenges for data matching

source www.ebay.com
”<page title>” ”Fujifilm FinePix S6800 16 2 MP Digital Camera Black 074101020977 | eBay”
”brand” ”Fujifilm”
”megapixels” ”16.2 MP”
”model” ”S6800”
”mpn” ”4004857”
”optical zoom” ”30x”
”type” ”Point & Shoot”
”upc” ”074101020977”
source www.pcconnection.com
”<page title>” ”Buy Fujifilm FinePix S6800 Digital Camera, 16MP, 30x Zoom, Black Cameras - Digital - Point &

Shoot 16303014 today at PC Connection”
”returns policy” ”This product is subject to our return policy. Please see our complete return policy for details.”
”warranty labor” ”Call for Warranty”
”warranty parts” ”Call for Warranty”
lcd viewer 3 Inch
effective megapixels 16
source www.mypriceindia.com
”<page title>” ”Fujifilm FinePix S6800 Price In India, Bangalore, Hyderabad, Delhi, Chennai, Mumbai, Pune,

Kolkatta”
”aperture range” ”F3.1 (W) - F5.9 (T)”
”auto focus” ”Yes, Single, Continuous, Center, Tracking, Multi, Area, TTL contrast AF, AF assist illuminator”
”built in flash” ”Yes”
”camera resolution” ”16.2 MP”
”color filter” ”Yes, Primary (RGB) Color filter”
”conitnous shots” ”Yes, High (8.0 fps (max. 10 frames)), Medium (5.0 fps (max. 10 frames)), Low (3.0 fps (max. 10

frames))”
”delete function” ”Yes”
”digital zoom” ”2x”
”external flash” ”No”
”face detection” ”Yes”
”flash range” ”0.4 - 7.0 m (W), 2.5 - 3.6 m (T)”
”image format” ”JPEG (Exif Ver 2.3)”
”image stablizer” ”Yes, CMOS Shift Type”
”iso rating” ”100 - 12800”
”lens type” ”Fujinon 30x Optical Zoom Lens”
”macro mode” ”Yes, 5 cm 300 cm (W), 180 cm 300 cm (T)”
”maximum shutter speed” ”1/2000 sec”
”metering” ”Yes, TTL 256-zone metering, Multi, Spot, Average”
”minimum shutter speed” ”0.25 sec”
”optical zoom” ”30x”
”other focus features” ”Lens Construction (11 groups, 15 Lenses) Normal Focus Range (15cm to infinity(W), 3.0m to in-

finity(T))”
”red eye reduction” ”Yes”
”self timer” ”Yes, 10 sec. / 2 sec. Delay”
”video format” ”AVI (Motion JPEG)”
”video resolution” ”1920 x 1080 pixels at 60 fps”
”white balancing” ”Fine, Shade, Fluorescent light (Daylight) Fluorescent light (Warm White), Fluorescent light (Cool

White) Incandescent light, Custom”
”screen size” 3” (more than 62%)

in the table, there is a significant difference in the set of properties and property values.
For example, the second entity owns the property returns policy while the other two
cameras do neither contain this property nor the corresponding value. Moreover, the
same property values are not represented similarly in different entities. For example, in
the first camera the property megapixels with the value 16.2 MP is represented as ”effec-
tive megapixels”: ”16” for the second camera and ”camera resolution”: ”16.2 MP” for the

11

CHAPTER 2. BACKGROUND

third camera. The difference in the values may arise from misspelling or wrong values
either different ways of data representations like different measuring units or different
symbols. For example, the properties lcd viewer and screen size in the second and third
entities have different values of 3 Inch and 3” (more than 62%).

As mentioned in [27], data matching does neither include the extraction of entity infor-
mation from unstructured documents nor performing schema matching. It is assumed
that records (entities) to be matched are stored in well-defined files or tables. Although
in Chapter 4, we utilize a few schema matching heuristics in order to be able to perform
the task of ER on unstructured datasets as well. Nevertheless, schema matching is not
the main topic of this dissertation but the focus is on designing and developing meth-
ods and techniques for clustering entities from different sources with different quality.
Furthermore, incremental addition of new entities from new or existing sources are in-
vestigated in this dissertation.

2.1.1 PRoblem Definition

The input of Entity Resolution (ER) is data from a set of different data sources S1, S2, ...,
Sm. Each data source Si consists of entities e1, …, en where each entity ej is characterized
by a set of attributes A. For instance, the first entity listed in Table 2.1 is characterized
by the attributes <page title>, brand, megapixels, model, mpn, optical zoom, type, and upc.

The output of ER is a set of clusters C1, C2, ..., Ck where each cluster consists of
entities representing the same real-world entity.

2.1.2 GeneRal appRoacH

Figure 2.1 depicts the general conventional workflow of the ER task. The input is data
from one or multiple sources that may differ enormously in size and quality and the
output is a set of clusters, each of which containing the same real-world entity. The
shown preprocessing step entails data cleaning actions such as handling missing val-
ues, smoothing noisy values, and identifying and correcting inconsistent values [27].
Furthermore, schema matching can be applied to identify matching properties that can
be used for determining the similarity of entities for ER. To match the cameras shown
in Table 2.1, preprocessing may include transforming values into the same unit, low-
ercasing strings, applying canonical abbreviations to harmonize property values, and
assigning the same name to matching properties to facilitate similarity computations.
The blocking step prevents comparing irrelevant entities with each other. For instance,
in our running camera example (Table 2.1), cameras with different manufacturers will

12

2.1. ENTITY RESOLUTION

Figure 2.1: Entity resolution workflow

be placed in different blocks in order to avoid comparing Fujifilm cameras with cameras
from other manufacturers such as Canon or Nikon. Then in the pair-wise matching step
the similarity of candidate pairs are computed by applying a set of similarity methods on
the property values of the entities. Finally, the clustering step uses computed similarities
to group the same entities in the same cluster. Clustering facilitates fusion of the same
entities into one unique representative entity. The main ER steps of blocking, matching
and clustering will be discussed in the rest of this section.

Most of the contributed approaches for ER almost fit into this workflow. However,
some deep learning based ER approaches [10] contemplate schema matching as an im-
plicit part of ER process. They consider a single step as a neural network for both feature
extraction and pair-wise matching. Additionally, another line of research called collec-
tive ER [14] performs matching almost in an iterative manner, because matching status
of each pair is influenced by status of neighbour pairs or other information from neigh-
bors.

Blocking aims at improving performance and scalability by avoiding that every en-
tity has to be compared with every other entity for determining matching entity pairs.
Such a naive approach has a quadratic complexity with n·(n−1)

2 comparisons for n enti-
ties. Therefore, blocking methods intend to restrict the comparisons only to those pairs
that are more likely to match. Standard Blocking (SB) [47] and Sorted Neighborhood
(SN) [74] are two popular blocking methods that both utilize a so-called blocking key
to group entities. The key is mostly specified by a human expert and is the result of a
function on one or several property values, e.g. the initial three letters of the <page title>
property for the camera example (Table 2.1). SB restricts the comparisons to the entities
with the same blocking key while SN moves a sliding window of a fixed size over the en-
tities and considers the entities within a window as candidate matches. Since real data is
noisy, generating one blocking key per entity may not allow finding all matches. Hence,

13

CHAPTER 2. BACKGROUND

it can be necessary to generate multiple blocking keys per entity, leading to multi-pass
blocking [73, 90] that can find more matches and thus improve recall over the use of
single blocking key. Some methods also try to improve precision along with efficiency
by limiting the maximal block size or the number of candidate matches [48]. Since de-
termining suitable blocking keys can be a tedious and difficult task, approaches based
on both supervised [16, 60] and unsupervised [86] Machine Learning (ML) have been
proposed to learn blocking keys. Papadakis et al. [140] gives a comprehensive overview
of blocking techniques.

To further improve runtime, both SB-based and SN-based ER methods can be paral-
lelized to utilize multiple machines in a cluster. The major challenge in parallelizing
a blocking technique is achieving good load balancing because the sizes of the output
blocks can be highly skewed. Kolb et al. propose the load-balanced SB [89] and SN
[91] based on MapReduce framework [39]. For SB, two methods named BlockSplit and
PairRange are proposed and implemented. BlockSplit dedicates an equal number of en-
tities to each reducer by breaking large blocks into smaller sub-blocks while PairRange
distributes the comparisons on the reducer nodes evenly. For load-balanced SN, JobSN
and RepSN methods are proposed [91]. The former approach employs a second MapRe-
duce job to generate boundary entities while the latter enumerates the entities to assign
evenly-sized entity ranges to every reducer.

For semi-structured, textual data or in absence of an aligned schema across sources,
schema-agnostic token-based blocking approaches have been proposed. The basic To-
ken Blocking (TB) [137] generates a candidate match based on the common tokens of
property values of a pair. Like with traditional blocking methods, scalability can be im-
proved by a MapReduce-based implementation [140]. For load balancing, Chu et al. [33]
propose an approach that distributes blocks among computing units. Since the basic TB
may create too many candidate pairs, newer schema-agnostic approaches reduce them
by pairing tokens from synthetically similar properties, considering only selected prop-
erties, or comparing only the entities of the same type [140]. Furthermore, block post-
processing approaches such as meta-blocking [139, 165] can largely reduce the number
of candidate matches. A very different approach [129] totally ignores property values
but determines candidate matches based on relations between entities.

Pair-wiseMatching The decision on whether a pair of entities is a likely match is based
on the similarity of the two entities which is determined by one or multiple similarity
functions. These functions mostly determine the similarity of property values depend-
ing on the data type (string, numerical, date, geographical coordinates etc.). Typically,
several such similarity values need to be combined to derive a match or non-match deci-

14

2.1. ENTITY RESOLUTION

sion. Traditional approaches such as threshold-based or rule-based methods classify the
matching status for each pair independently. In threshold-based classification, a speci-
fied threshold considers all pairs with similarity above a certain value as matches. On
the other hand, in rule-based classification, a rule specifies a match predicate consisting
of property-specific similarity conditions that are combined with logical operations [27].
For the camera example (2.1), the match decision may be based on the similarity of the
properties page title and megapixels although the latter property is not present for all
entities shown.

Manually determining the properties to match, similarity functions and similarity
thresholds is a complex task, especially for heterogeneous and noisy data. Hence, a
better alternative is often to apply supervised ML approaches to find optimal match
configurations to determine matching entity pairs. These approaches can utilize tradi-
tional ML techniques such as SVM, logistic regression or random forests [94] but also
newer approaches based on deep learning. Barlaug et al. [10] provides an overview
about ER proposals utilizing deep neural networks including the approaches DeepER
[45], DeepMatcher [113] and Hi-EM [188]. These approaches typically utilize embed-
dings for textual property values by transforming either words or their characters to
numerical representations that preserve the semantic similarity between property val-
ues. Word embeddings are able to convert a long sequence to a short one, but they can
not necessarily cover all possible words for specialized domains. The generation of em-
beddings can make use of pretrained models such as word2vec [109], GloVe [143] or
fastText [18] that are derived from large corpora such as Wikipedia [10]. Another line
of research called collective ER [14] uses both property value similarity and relational
information for determining the similarity of two entities. Here, the ER process is mostly
iterative because changes in similarity or matching status of one pair affects the simi-
larity value of the neighbouring pairs. Such approaches are more difficult to scale than
the standard approaches where candidate pairs are compared independently. To better
scale collective ER, Rastogi et. al. [149] propose a generic approach that executes multi-
ple instances of the matching task and constructs the global solution by message passing.

Clustering The matches determined by the pair-wise similarity calculations are often
contradicting and therefore only match candidates. The final matches are determined by
applying a clustering approach on the set of candidate match pairs that form a similarity
graph where matching entities are linked with each other. The baseline approach for
entity clustering is to determine the transitive closure or connected components over
the match links. Note, that general clustering algorithms like K-means that need a pre-
defined number of clusters are not suitable for ER.

15

CHAPTER 2. BACKGROUND

Connected components does not consider the strength or similarity of candidate
matches and can thus cluster even weakly similar entities. There is a large spectrum
of alternatives that are suited when the input constitutes of two duplicate-free sources
[56, 96]. For deduplicating a single source, Hassanzadeh et al. [68] comparatively ana-
lyzed several clustering algorithms. A comprehensive overview of ER-specific clustering
approaches is given in Section 2.2.

2.1.3 OveRview of THe CuRRent Tools

Different ER systems developed by research community or industry consider different
scenarios for input data sources. A traditional ER problem mostly solved by database
community is matching entities of two tables against each other where each table is
duplicate-free. Another scenario is deduplicating a single source. But in Big Data appli-
cations, data is in fact from multiple sources (> 2) that some of them are duplicate-free
and some are dirty.

The methods deployed for each step of ER highly influence the result quality. Se-
lecting among the variety of existing methods or proposing new methods is highly de-
pendent on input data features. Therefore, any meta data about input entities such as
provenance facilitate the ER process. Interestingly, different input scenarios can be con-
verted to each other. For example, in case of having multiple dirty sources, each source
can be separately deduplicated and then the problem is reduced to integrating multiple
duplicate-free sources. However, the effort is immense and the result is not necessar-
ily successful [131], because a wrong decision in one source is propagated to all other
sources which lowers the precision significantly.

Table 2.2: Comparison of ER Frameworks

Big Data aspects #Input sources
system Birth Scalability Incremental Clustering Open source 1 2 >2
Febrl [28] 2008 - - - -
FEVER [93] 2009 - - - - - -
Silk [171] 2009 - - -
Dedoop [88] 2010 - - - - -
Limes [125] 2011 - - - -
Woo [12] 2013 -
FAMER 2016
Magellan [41] 2016 - - - -
JedAI [141] 2017 - -

16

2.2. CLUSTERING

The focus of this dissertation is to cover all possible input scenarios in clustering step
of the ER pipeline for Big Data applications. To give an overview of the currently avail-
able ER frameworks, Table 2.2 lists a number of known ER tools with a focus on Big Data
requirements such as scalability, providing clustering algorithms, supporting dynamic
data and different input scenarios.

As listed in Table 2.2, the more recent systems aim at encountering Big Data and there-
fore they are scalable. Woo supports both batch and incremental ER and along with JedAI
provides the user with clustering algorithms. Some of the systems provide deduplication
inside one single dirty source while others match entities across two sources. The frame-
works that perform binary matching assume that both sources are clean. Therefore, they
do not link entities inside each source but it may happen that one entity from one source
is linked to several entities form the other source. Exceptionally, in the binary matching
mode, JedAI guarantees one to one mapping by its binary clustering algorithms such as
Hungarian Algorithm [96], Unique Mapping Clustering [98], and Best Assignment Clus-
tering3. Woo is designed in industry to perform ER for hundreds of millions of entities
from multiple input sources. Obviously, in special cases the number of input sources
can be one or two, however it does not consider the information about cleanness status
of the input sources. Woo is not open source and there is little information in details in
the corresponding publications. The refinement phase of Woo which performs cluster-
ing uses generic-purpose clustering schemes. Correlation clustering [3] is specifically
mentioned as the most effective clustering approach they used. They did not report any
contribution in developing a novel clustering algorithm.

In Chapter 3, we introduce the framework FAMER that is able to perform scalable ER
for entities from multiple sources. It further considers cleanliness status of the sources
in both pair-wise comparison and clustering phases. The clustering step deploys novel
clustering and repairing algorithms for grouping entities from multiple duplicate-free
sources as well as a combination of duplicate-free and dirty sources. Moreover, FAMER
benefits from incremental approaches that are capable of incorporating new sources as
well as new entities from existing sources.

2.2 ClusteRing

Clustering or cluster analysis is the general task of separating a finite unlabeled dataset
into a finite and discrete set of natural, hidden data structures [183]. Clustering aims at

3It is an efficient, heuristic solution to the assignment problem in unbalanced bipartite graphs [1]

17

CHAPTER 2. BACKGROUND

putting objects or entities in the same cluster such that they are more similar to each
other than to those in other groups.

Given a set of data points X = x1, x2, ..., xn, a clustering algorithm F groups data
points into a set of clusters C = c1, c2, ..., ck such that

k∪
i=1

ci = X . The number of
clusters, k is not necessarily predefined. But a group of clustering algorithms like k-
means clustering need k as an input parameter. Thus, they produce different clustering
results with different values of k. Similarly, some clustering algorithms set a maximum
or minimum size constraint for the clusters. If

k∩
i=1

ci ̸= ∅, then the clustering algorithm F

generates overlapping clusters. Ideally, the overlapping clusters are not desired, because
in most applications a clear separation of entities is demanded.

Clustering has a data-driven nature. There is a large number of clustering algorithms
proposed to group data points in different applications. Evidently, the definition of the
cluster as well as finding the similarity measure of data points vary in different appli-
cations. Therefore, there is no clustering algorithm that correctly finds the clusters in
all given data. Due to these facts, having any external or side information beside the
similarity measure between data points improve the clustering results extremely [77].

As depicted in Figure 2.1, the clustering in ER process is considered as a post-processing
step after pair-wise matching. Therefore, the input to the clustering is usually deemed
as a similarity graph. Furthermore, considering cleanliness status of the input sources,
the output of clustering should satisfy source-consistency constraint. These concepts
are defined as follows:
Similarity graph A similarity graph G(V , E) is a graph in which the vertices V repre-
sent the entities and the edge (vi, vj) ∈ E exists only if the similarity θ of vi and vj is
higher than a minimum threshold value. There is no direct link between entities of the
same clean source. Figure 2.2a depicts seven entities from three sources X, Y and Z. The
entities are linked via edges which contain a similarity value higher than 0.75. Since it
is assumed that source X is duplicate-free, entities of source X are not directly linked.

(a) (b)

Figure 2.2: Clustering example

18

2.2. CLUSTERING

Source consistent cluster A cluster that contains at most one entity from each clean
source is called a source-consistent cluster. In Figure 2.2b, the cluster c0 is source-
inconsistent since it contains two entities (e0 and e5) from source X. The other two clus-
ters are source-consistent.

The rest of this section focuses on the clustering algorithms that were proposed or
applied by research community in order to solve the ER problem.

2.2.1 ER ClusteRing AlgoRitHms

Since the number of unique real-world entities is not defined or specified, the clustering
algorithms that require the predefined number of clusters are not applicable for ER pro-
cess. Hassanzadeh et. al [68] deploy string similarity join on datasets of single sources
in order to generate the input similarity graph. Then as the final step of ER process,
they apply several unconstrained general-purpose clustering algorithms on the similar-
ity graphs with different minimum threshold values. They finally sort the chosen clus-
tering algorithms based on different efficiency and effectivity criteria.

Christen [27] explains that instead of specifying a global minimum threshold for sim-
ilarity graphs, all computed similarity values should incorporate in the final match deci-
sions. Therefore, clustering algorithms similar to density clustering that group entities
based on all similarity values are preferable. Other possibilities are the algorithms that
iteratively remove edges till a constraint is satisfied or the approaches that decide about
matches based on not only the single similarity value but a vector comparison.

JedAI [141] is an open source ER tool. It has implemented clustering methods for bi-
nary matching as well as matching inside a single source surveyed in [68]. Another Big
Data ER tool, named Woo [12] refines the matches in the last step by Correlation Clus-
tering [3]. In the following the clustering approaches for ER are explained in details.

Clustering two clean sources
Having two clean sources, the clustering algorithm should make a [0,1][0,1]-mapping.

In this case the problem is usually solved by the solutions to assignment problem. Popu-
lar representatives are Hungarian Algorithm [96] and the solution to the Stable Marriage
problem [56]:

Hungarian Algorithm [96] is an optimization algorithm that solves the assignment
problem in polynomial time. The problem consists of finding a way to allocate certain
available resources (machines or people) to carry out certain tasks at the lowest cost. It
is assumed that each resource is allocated to a single task and each task is executed by
only one of the resources. Assignment problem is one of the fundamental problems of

19

CHAPTER 2. BACKGROUND

combinatorial optimization in the field of optimization or operations research in mathe-
matics.

Stable Marriage [56] matches the entities of two equal size sets. The algorithm guar-
antees a stable matching such that for entity x and y that are not matched together, it is
impossible that both prefer each other over their current matches.

Clustering multiple clean sources
SplitMerge Nentwig et. al [120, 121] propose a novel holistic approach for clustering-

based link discovery for multiple duplicate-free data sources. The approach utilizes ex-
isting links for initial connected components clustering. It then in the two subsequent
phases of cluster decomposition and merging refines the clustering results.

Clustering single dirty source
Connected components also referred as transitive closure considers two entities in

the same cluster if there is a path between them. The algorithm does not remove any
edges from the input graph. Therefore, it results in the highest recall with the cost of
very low precision.

Center [71] processes edges in descending order of similarity values. For each edge,
the unclustered entities at both ends are grouped together as a cluster and one of them
is selected to be the center of the cluster randomly. In all the subsequent decision, if any
entity is connected to a center will be assigned to the cluster of that center and if it is
connected to a clustered entity which is not center, the decision about that entity is left
to the next edges. The Merge Center algorithm [69] performs the same like Center but
it merges two clusters if an entity in one cluster is directly linked to the other cluster
center as well.

Star [4] is based on the idea of finding a minimum clique cover with maximal cliques
on the resulting graph. Since the problem is NP-complete, a heuristic approach promises
to produce the same results by forming dense star-shape clusters. The algorithm initially
computes the degree for each vertex of the similarity graph. Then in each iteration, the
unassigned vertex with the highest degree becomes center and all its direct neighbors
are assigned to its cluster. The algorithm terminates when all vertices are assigned to a
cluster. The clustering can result in overlapping clusters.

Correlation Clustering [8] considers + and - edges depending on whether the enti-
ties at the two ends of the edge are rated as similar or dissimilar. The algorithm aims
at a clustering that maximizes the number of + edges within clusters and the number
of - edges between clusters. It can be identically formulated as a minimization problem.
Since it is an NP-hard problem, many approaches approximated the optimal solution.

20

2.2. CLUSTERING

Markov Clustering [169] clusters entities based on simulation of stochastic flow
in graph. It assumes that a region with strong connectivity is a cluster. Therefore, it
strengthens the amount of flow there and analogously weakens it where the connectiv-
ity is poor. The iterative process of manipulating the flow causes the underlying cluster
structure to appear.

Cut Clustering is based on the max flow-min theorem [50]. It implies splitting a
graph into two partitions with a minimum cut. The approach is further utilized for
partitioning a graph into multiple clusters [49].

Articulation Point For an undirected graph, an articulation point is a vertex that
removing it, increases the number of connected components. The Articulation Point
clustering [9], finds all articulation points of the graph and clusters the graph by remov-
ing the incident edges of them. It may result in overlapping clusters.

Maximum Clique In graph theory, a clique is a subset of vertices of an undirected
graph such that every two distinct vertices in the clique are adjacent. The clique with
the largest possible number of vertices is called a maximum clique. The maximum clique
clustering [44], finds the maximum cliques and removes them from the graph. Each
maximum clique is assumed as a cluster. It repeats the process in an iterative way un-
til all vertices are removed from the graph. The Extended Maximum Clique Clustering
(EMMC) [44], relieves the clique definition to near-clique. The cliques with many edges
to outside vertices are extended and assumed as a cluster. A vertex outside of a clique
must have a minimum connectivity percentage to other cluster members or to the core
clique. Similarly, GCluster [172] defines a new concept called δ-clique in which all ver-
tices are connected to at least δ(v − 1) vertices. It additionally considers cohesion which
is the sum of weights of the edges in the subgraph. Another clustering algorithm that
utilized the concept of clique is called Global Edge Consistency Gain [44]. It considers
all possible triangles in a graph and assumes all three as a cluster only if there are three
duplicate edges between them. If there is any no-duplicate edge, the algorithm tries to
switch the edges status in order to make an consistent triangle or splitting it. The process
of switching edge status is continued until a clique is formed or a singleton is remained
which is assumed as cluster and removed from the graph.

Hierarchical Clustering [79] groups data by creating a multi-level hierarchy tree.
The tree allows to generate clusterings at different threshold degrees without running the
algorithm again. Yan et al. [184] propose a novel variant of the hierarchical clustering
that avoids hard-conflict inside clusters. The cluster-level hard-conflict is determined
by comparing attributes of candidate merging clusters. If the similarity value for any
attribute is less than the predefined threshold a hard-conflict is detected and therefore
merging the candidate cluster pair is avoided.

21

CHAPTER 2. BACKGROUND

Affinity Propagation [53] groups entities by identifying so-called exemplars. An
exemplar is the entity that best represents all the entities of a cluster. The non-exemplar
entities are assigned to the most appropriate exemplar. The goal of AP is to find exem-
plars and cluster assignments in a way that the sum of similarities inside clusters are
maximized. In [63], AP is solved by the iterative max-sum algorithm on a factor graph.
The factor graph is a bipartite graph between the exemplar assignments (variable nodes)
and so-called factor nodes representing two constraints, called the g- and h-constraints.
This method allows to add more constraints in order to have a novel algorithm that fits
an specific application.

FAMER supports the generic-purpose clustering schemes such as connected compo-
nents as the basic method, Center, Merge Center, two variations of Star, CCPivot which
is a variation of Correlation clustering, Hierarchical clustering, and Affinity Propagation.
SplitMerge is additionally considered for the comparative evaluations.

2.3 DistRibuted Data PRocessing

A distributed system is comprised of independent computers (with no shared memory)
that coordinate their actions to achieve a common goal. The computers communicate
by passing messages to each other [167]. Distributed computing exploits distributed
systems to solve a problem with massive amounts of data and computation. It divides
the computation into many tasks, so that each task is small enough to be solved by one
or more computers that work at the same time (in parallel). Distributed systems are used
for practical and scalability reasons. Moreover, a distributed system can provide more
reliability than a non-distributed system, as there is no single point of failure.

In the following we elaborate on the most poplar software techniques and models
that implement distributed computing systems. The advantages and drawbacks as well
as a comparison of them is explained. Finally, a brief overview of the Apache Flink
framework [23] is given. The distributed algorithms of this dissertation are implemented
on top of Apache Flink.

2.3.1 ApacHe Hadoop

Apache Hadoop4 is an open-source software that facilitates using a distributed system
(cluster of computers) for performing massive amount of computations. The framework
guarantees automatic handling of hardware failures. Apache Hadoop comprises of two
main parts. Firstly, the storage part, known as Hadoop Distributed File System (HDFS)

4https://hadoop.apache.org/

22

https://hadoop.apache.org/

2.3. DISTRIBUTED DATA PROCESSING

that supports storing very large files across nodes (computers) in a cluster of many com-
puters. The HDFS splits files into blocks with a configurable size and distributes them
across nodes in a cluster. By default each block has multiple replicas to ensure reliability.
Secondly, the processing engine which is based on the MapReduce [39] programming
paradigm. In order to ensure fast and efficient parallel processing, Hadoop transfers the
packaged code into the nodes. This approach is known as data locality [175].
Hadoop Distributed File System HDFS is a highly available file system for storing
very large amounts of data on the file systems of several computers. The Hadoop clus-
ter computers are organized as master and slave nodes. The incoming data requests
are processed by the master node known as NameNode. In addition, it manages storing
the metadata as well as organizing the storage of files in the slave nodes (DataNodes).
Hadoop achieves reliability by replicating data across multiple hosts with the default
replication value of three. The data is stored in three nodes: two in the same rack (a col-
lection of nodes connected to a same network switch), and one in a different rack. Data
nodes can talk to each other to rebalance data, move copies, and keep data replication
high [19].
MapReduce-based processing engine MapReduce [39] is a programming model that
facilitates performing parallel or distributed algorithms on big datasets on a cluster of
computers [2].

The MapReduce model is mainly composed of the following three operations:

• Map: the user-provided Map() code is applied to the local data by each worker.
The result is written down to a temporary storage.

• Shuffle: the data is redistributed on the workers such that all data with the same
key is located on the same worker.

• Reduce: the user-provided Reduce() code is performed by the worker nodes per
key.

A MapReduce program usually has a high communication cost often dominating the
computation cost [164, 168]. Therefore, the programmer should consider a good trade
off [168] between them. Even though that MapReduce programming model ensures
scalability and fault tolerance, it has some weaknesses due to its architecture [99]. In
summary the disadvantages are listed as follows:

• Materialization of intermediate results between Map and Reduce function

• Necessity of manual coding even for common operations

23

CHAPTER 2. BACKGROUND

• Difficulty of maintenance due to hidden semantics inside the Map and Reduce
functions

• Disability of utilizing global state information

Considering the above mentioned deficiencies, more capable and less disk-oriented
general purpose techniques and frameworks have been developed. In the following two
popular current frameworks are presented and compared with each other in order to
remark the improvements.

2.3.2 State of THe ARt

Current distributed systems perform in-memory computations in order to achieve higher
speed and lower latency compared with Hadoop MapReduce engine. They furthermore
have the functionality to process streaming workloads. Moreover, they provide an ex-
tended set of transformation operators in order to making ease of use. Apache Flink [23]
and Apache Spark [185] are two introduced distributed systems that are designed based
on in-memory computation. They are not assumed as a replacement for Apache Hadoop
rather their processing engine runs on top of the HDFS. In the following, we summarize
some fundamental differences of them with Hadoop MapReduce engine according to [23,
99, 185].
Low latency processing It is achieved by avoiding unnecessary read/write operations
to the disk. Apache Flink and Apache Spark store datasets in the memory that results in
reducing the time consuming factor of writing into and reading from the disc.
Programmingmodel The programming model of Apache Flink and Apache Spark gen-
eralizes the concepts of the MapReduce programming model. In addition to Map and Re-
duce functions, they offer transformations akin to the operations of relational database
query languages (Join, CoGroup, Filter, Distinct, etc) and Iterations. Consequently, their
programming model is a super set of the MapReduce programming model. Furthermore,
the data model is not limited to the key-value pair model. Thus, programming is more
convenient and can be done in a much more concise way.
Execution model Similar to the programming model, Apache Flink and Apache Spark
employ the concepts of parallel relational database systems in their execution model.
They reduce the need to materialize intermediate results on file systems by promoting
a pipeline-based processing model. It further makes them capable of doing real-time
stream processing. Despite the fixed execution pattern of MapReduce programs, the ex-
ecution plan of Apache Flink and Apache Spark programs are figured out by an optimizer
in a lazy manner (only the necessary transformations are evaluated). The execution plan

24

2.3. DISTRIBUTED DATA PROCESSING

can be mapped to a directed acyclic graph (DAG) and is computed such that expensive
operations are avoided.
Data streaming Apache Flink and Apache Spark support for both batch and stream-
ing workloads. Therefore, for fast processing of data and when low latency is required,
stream processing capability can be exploited.
Useful libraries Apache Flink and Apache Spark are multi-purpose frameworks for
data analytics. They facilitates complex data analytics through libraries for machine
learning algorithms, graph processing, streaming live structured data, etc.

Although Apache Hadoop and Apache Spark are similar in many ways, they differ in
several aspects [57, 104, 170]. There is a substantial difference between the two frame-
works in ingesting streams of data. Apache Flink features an operator-based streaming
computational model. It uses the streaming model for all workloads including batch
processing i.e. batch processing is assumed as an special case of stream processing. In
contrast, the computational model of Apache Spark is built upon the micro-batch model.
Thus, stream processing is considered as batch processing for chunks of data known as
Resilient Distributed Datasets (RDDs). To conclude, Apache Flink would be the right
choice when large streams of data need to be processed in real-time. However, Apache
Spark provides the user, convenient switching between streaming and batch mode (be-
cause both have the same API). Apache Spark furthermore facilitates iterations through
explicit caching. In Apache Spark for all iterations the same set of instructions is gener-
ated while Apache Flink optimizes iterative processes by generating an unique schedule
for each iteration. Apache Flink additionally offers delta iterations in order to optimize
the process when only part of data needs to be changed [57]. Li et al. [104] compared
the runtimes of several popular algorithms for both Apache Flink and Apache Spark. For
the non-iterative WordCount example, Apache Flink is slower than Apache Spark while
for executing the iterative algorithm PageRank, Apache Flink shows better performance
compared with Spark. In executing SSSP, Apache Flink manages to finish the iterations
while Apache Spark fails due to the large number of iterations. Veiga et al. [170] con-
firm the previous results about WordCount and PageRank algorithms. They prove that
for PageRank, Flink acquires execution time up to 3.6x faster than Spark. They addi-
tionally show that with maximum cluster size, Spark obtains better results for K-Means,
while both frameworks come by similar results for Grep and connected components.
Apache Spark however is more mature and provides high level of support due to a large
community behind.

25

CHAPTER 2. BACKGROUND

2.3.3 ApacHe FlinK

The implementation of the Entity Resolution workflows of this dissertation relies on
Apache Flink [23]. As mention in Section 2.3.2 compared to Apache Spark, Apache Flink
features faster execution of iterative algorithms as well as the more optimized mecha-
nism for performing iterations. Due to the fact that clustering schemes are mostly iter-
ative algorithms, choosing Apache Flink has been figured out as the rational decision.
This section explains the Flink batch APIs as well the Gelly library which has been em-
ployed for implementation of the clustering algorithms. In Apache Flink, the batch APIs
implement transformations on datasets. Certain sources such as files or local collections
can initially create a dataset. After one transformation or a sophisticated assembly of
them is applied on the dataset, the result is written down on the distributed files, or to
standard output via sink operations. A Flink program can run as an standalone program
or embedded in other programs. Moreover, a program can execute on a local JVM or on
a cluster of many computers. Table 2.35 gives a brief overview of a subset of the available
transformations.

Gelly as the graph API of Flink offers a set of utilities for graph transformations and
modifications. It further provides a library of graph algorithms and iterative graph pro-
cessing. A Gelly graph is represented by a dataset of vertices and a dataset of edges.
Gelly features a variety of methods for retrieving various graph properties, applying
transformations (such as map, filter, join, reverse, union, difference, intersect, etc.) on
the vertices and edges, neighborhood aggregation, and graph validation6.

Additionally Gelly facilitates large-scale iterative graph processing by exploiting ef-
ficient iteration operators of Flink. It currently provides vertex-centric, scatter-gather,
and gather-sum-apply models7. In the following each model is explained briefly.
Vertex-Centric model The model is known as ”think like a vertex” where the compu-
tations are expressed from the perspective of vertices. In each step of the computation
known as superstep, each vertex executes a user-defined function. The communication
between vertices is done through messages [84].
Scatter-Gather model Similar to the vertex-centric iterations, the model expresses the
computation from the perspective of a vertex in the graph. In this model, a vertex sends
messages to the other vertices in one superstep and updates its value in the next super-

5https://ci.apache.org/projects/flink/flink-docs-stable/dev/
batch/

6https://ci.apache.org/projects/flink/flink-docs-release-1.12/
dev/libs/gelly/graph_api.html

7https://ci.apache.org/projects/flink/flink-docs-release-1.12/
dev/libs/gelly/iterative_graph_processing.html

26

https://ci.apache.org/projects/flink/flink-docs-stable/dev/batch/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/batch/
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/libs/gelly/graph_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/libs/gelly/graph_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/libs/gelly/iterative_graph_processing.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/libs/gelly/iterative_graph_processing.html

2.3. DISTRIBUTED DATA PROCESSING

step based on the messages it receives [84].
Gather-Sum-Apply model It is very similar to the scatter-gather model but each su-
perstep consists of three phases of Gather, Sum, and Apply. In Gather phase a partial
value is produced by a user-defined function applied on the edges and neighbors of each
vertex. Then, in Sum phase, the produced partial values are aggregated to a single value
and finally in Apply phase, vertex values are updated by using the current value and the
aggregated value of the previous phase [84].

The implementations of the parallel clustering algorithms (Chapter 4 and Chapter 5)
mainly relies on Gelly Scatter-Gather iterations. For the rest of Entity Resolution pipeline
(explained in Section 2.1.2), the batch APIs of flink are employed.

Table 2.3: Apache Flink dataset transformations

Operation Description
Map Takes one element and produces one element.
FlatMap Takes one element and produces zero, one, or more elements.

Filter Evaluates a boolean function for each element and retains those
for which the function returns true.

Reduce Combines a group of elements into a single element by repeat-
edly combining two elements into one.

ReduceGroup Combines a group of elements into one or more elements.

Distinct Removes the duplicate entries from the input dataset, with re-
spect to all fields of the elements, or a subset of fields.

Join Joins two data sets by creating all pairs of elements that are equal
on their keys.

OuterJoin Performs a left, right, or full outer join on two data sets.

CoGroup Groups each input on one or more fields and then joins the
groups.

Cross Builds the Cartesian product of two input datasets.
Union Creates the union of two data sets having the same type.
First-n Returns the n arbitrary elements of a data set.
Range-Partition Range-partitions a dataset on a given key.

27

CHAPTER 2. BACKGROUND

2.4 Qality MeasuRements

The result of clustering is a set of clusters. Each cluster constitutes entities that are
assumed as matches e. g. a cluster of size m contains m·(m−1)

2 paired entities. In order to
measure the quality of different approaches, we use Precision, Recall and F-Measure in
our experiments. Firstly, we count true positives (TP) which are the number of pairs that
are correctly determined as matches. False positives (FP) analogously comprises non-
matching pairs that are incorrectly identified as matches by the method. The matching
pairs that could not be matched by the method are called false negatives (FN). On this
basis, Precision is determined by computing the ratio between true positives (TP) and
all pairs determined by the methods while recall is the ratio of TP and all existing pairs
in the ground truth. Figure 2.3 clarifies the concept of TP, FP, and FN. It illustrates
the result of a clustering that constitutes of three clusters representing three real-world
entities. In Figure 2.3 entities with the same color represent duplicated entities. The
cluster c0 contains four blue entities, therefore it has six (4·(4−1)

2) true positives. On the
other hand, one red entity is incorrectly grouped with the blue entities. Thus, c0 creates
four false positives as well. Similarly, the cluster c1 has ten true positives while in cluster
c2, one red and one green entity are incorrectly clustered that makes one false positive.
The red entities of c0 and c2 should have been clustered within c1 to make a perfect
clustering. Grouping them in separated clusters creates eleven false negatives. On this
basis, Precision and Recall are computed as follows:

Precision = TP

TP + FP
(2.1) Recall = TP

TP + FN
(2.2)

F-Measure is used as the harmonic mean between Precision and Recall. It is computed
as follows:

F −Measure = 2× Precision×Recall

Precision + Recall
(2.3)

Figure 2.3: Quality measurement example

28

3
FAMER

3.1 Motivation

FAMER is an open source research framework1, for scalable data deduplication in mul-
tiple sources. The name FAMER stands for FAst Multi-source Entity Resolution system.
As an Entity Resolution system, it possesses all components of a general ER pipeline de-
scribed in Section 2.1.2. The details about each component are explained in Section 3.3
and Section 3.4. The word FAst refers to the fact that FAMER is implemented on top of the
distributed processing engine of Apache Flink2. Finally, the term Multi-source empha-
sizes that FAMER can handle data from multiple (> 2) input data sources. This feature is
to serve Big Data requirements. In Big Data applications, data is from many sources that
need to be integrated and deduplicated. The number of sources and the quality of them
influence the ER process. We investigate these issues in the later chapters (Chapters 4
and 5). Considering additionally the velocity aspect of Big Data, new incoming entities
or even data sources need to be handled. In this situation, static approaches are not
sufficient to add entities to an in-use Knowledge Graph where the majority of already
integrated entities is largely unaffected by new entities and should not have to be re-
integrated for every update. Therefore, FAMER supports incremental ER (see Chapter 6)
as well as Batch ER.

In Section 3.2, we initially point out the data model and the Graph analytics software
Gradoop which FAMER is implemented on top of it. We then explain each component of

1FAMER repository https://git.informatik.uni-leipzig.de/dbs/FAMER
2Apache Flink website https://flink.apache.org/

29

https://git.informatik.uni-leipzig.de/dbs/FAMER
https://flink.apache.org/

CHAPTER 3. FAMER

FAMER (version 0.1.0) for both batch (Section 3.3) and incremental pipelines (Section 3.4).
Finally Section 3.5, introduces the Famer GUI which is developed in a joint work with
Mohammad Ali Rostami.

3.2 Data Model and Data StRuctuRes

FAMER considers a set of k data sources S = S1, . . . , Sk, each containing an arbitrary
number of entities E such as e1, e2. Each entity ei encompasses a set of property values
including the source information that describes the entity. Two entities can be connected
by a link with a similarity value sim. The similarity value indicates the degree (probabil-
ity) that they represent the same real-world object. According to this, candidate pairs are
matched by a binary equivalence mapping Mi,j = (e1, e2, sim)|e1 ∈ Si, e2 ∈ Sj, sim[0, 1].
If sources are duplicate-free, then i ̸= j.

To achieve the goal of integrated data sources, FAMER determines clusters of entities
that can be denoted as C = c1, c1, . . . , cn. Each ci constitutes duplicates of the same
real-world object and is identified by a unique id named as cluster_id which is stored as
a property value in all cluster members. The number of clusters |C| or the size of them
are not predefined. If all sources are duplicate-free, then the maximum possible cluster
size equals to the number of sources k, because each cluster can at most keep one entity
from each source.

FAMER is implemented using Apache Flink and the extension for graph analytics
called Gradoop [80]. Gradoop is an open source research framework3 for scalable graph
analytics built on top of Apache Flink. It offers the Extended Property Graph Model
(EPGM) [82] that extends the well known property graph model [151]. In Gradoop the
extended property graph is named logical graph. Moreover, the introduced concept of
graph collection represents a combination of several logical graphs. Therefore, FAMER
stores the attribute values of entities as key value properties. Analogously, the similarity
values of matching entity pairs are represented as edge properties.

Gradoop can be easily integrated in a workflow which already uses Flink operators
and Flink libraries (e.g. Gelly)4. Each Gradoop element such as graph collections, logical
graphs, vertices and edges have an unique identifier, one label and a number of key-
value properties. Each element can contain an arbitrary number of properties because
no fixed schema is involved5.

3Gradoop repository https://github.com/dbs-leipzig/gradoop
4Gradoop wiki https://github.com/dbs-leipzig/gradoop/wiki
5Gradoop data model

https://github.com/dbs-leipzig/gradoop/wiki/Data-Model

30

https://github.com/dbs-leipzig/gradoop
https://github.com/dbs-leipzig/gradoop/wiki
https://github.com/dbs-leipzig/gradoop/wiki/Data-Model

3.3. FAMER BATCH PIPELINE

Figure 3.1: An example of FAMER similarity graph implemented using Gradoop logical graph

Figure 3.1 depicts an example of a similarity graph represented as a Gradoop logical
graph. The computed similarity value between each pair of vertices is stored as an edge
property value while the properties of each entity are represented as vertex property
values. Each logical graph is comprised of three Apache Flink DataSets for vertices (EPG-
MVertex), edges (EPGMEdge), and graph heads (EPGMGraphHead).

3.3 FAMER BatcH Pipeline

The FAMER framework is depicted in Figure 3.2. The input of FAMER is data from mul-
tiple sources and the output is a set of clusters. Each output cluster contains entities
that represent a unique real-world entity. FAMER consists of two main modules. The
Linking module generates a similarity graph which is given to the Clustering module
as input. The clustering module groups entities into clusters by removing existing false
links of the similarity graph and adds missing true matches to the final output. Both
Linking and Clustering modules are configured by a json configuration file. The configu-
ration file lists the selected methods for different parts of linking and clustering as well
as their input parameters. Listing 3.1 depicts the overview configuration of one com-
plete FAMER job6. It constitutes the configuration of Linking and Clustering. The input
is read from the path specified in Preprocessing part while the Postprocessing identifies
writing the output graph on the disk or evaluates the results. One job can perform both

6FAMER overall configuration https://git.informatik.uni-leipzig.de/dbs/
FAMER/-/wikis/Home/Configuration/Overall-Configuration-(JSON)

31

https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/Configuration/Overall-Configuration-(JSON)
https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/Configuration/Overall-Configuration-(JSON)

CHAPTER 3. FAMER

Figure 3.2: FAMER batch workflow

linking and clustering or any of them. Moreover, the configuration file can include an
array of jobs (multiple jobs) in order to enable FAMER to execute arbitrary number of
consecutive jobs in one run.

Listing 3.1: FAMER batch configuration file

[
[
{
"task": "PREPROCESSING",
"config":{}

},
{
"task": "LINKING",
"config":{}

},
{
"task":"CLUSTERING",
"config":{}

},
{
"task":"POSTPROCESSING",
"config":[]

},
]

]

32

3.3. FAMER BATCH PIPELINE

3.3.1 PRepRocessing

The preprocessing task aims mainly at reading data from disk or modify an EPGM ele-
ment. The list of different preprocessing tasks are as follows7:

• READ: reads Gradoop graph data as logical graph (LOGICAL_GRAPH) or graph
collection (GRAPH_COLLECTION) from a given folder path.

• COMBINE: combines any number of logical graphs into one graph collection.

• BENCHMARK: reads provided benchmark data and returns it as a specified type
such as PERFECT_MAPPING, PERFECT_CLUSTERING, GRAPH_COLLECTION,
or LOGICAL_GRAPH. Below is the list of benchmark sets8 and the available return
types:

– ABT_BUY (PERFECT_MAPPING, GRAPH_COLLECTION)

– AMAZON_GOOGLE (PERFECT_MAPPING, GRAPH_COLLECTION)

– DBLP_ACM (PERFECT_MAPPING, GRAPH_COLLECTION)

– DBLP_SCHOLAR (PERFECT_MAPPING, GRAPH_COLLECTION)

– AFFILIATIONS (PERFECT_MAPPING, GRAPH_COLLECTION)

– GEOGRAPHIC (PERFECT_MAPPING, GRAPH_COLLECTION,
PERFECT_CLUSTERING)

– NC_VOTERS (PERFECT_MAPPING, GRAPH_COLLECTION)

– MUSICBRAINZ (PERFECT_MAPPING, GRAPH_COLLECTION)

– CAMERA (PERFECT_MAPPING, GRAPH_COLLECTION)

• Check a logical graph for the mandatory vertex property ”graphLabel”9. It can be
applied to the preprocessing READ tasks.

• Transforms vertex properties of the logical graph or the graph collection. The
properties of a vertex in a logical graph or a graph collection can be transformed

7FAMER preprocessing configuration
https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/
Configuration/PreProcessing-Configuration-(JSON)

8https://dbs.uni-leipzig.de/de/research/projects/object_
matching/benchmark_datasets_for_entity_resolution

9The ”graphLabel” property specifies the data source of the entity.

33

https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/Configuration/PreProcessing-Configuration-(JSON)
https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/Configuration/PreProcessing-Configuration-(JSON)
https://dbs.uni-leipzig.de/de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/de/research/projects/object_matching/benchmark_datasets_for_entity_resolution

CHAPTER 3. FAMER

to meet special needs for linking or clustering. There are two possibilities, which
are optional and can be applied to the READ and COMBINE tasks which return a
logical graph or a graph collection:

– Combines arbitrary number of properties into a new property.

– Renames one or more properties.

3.3.2 LinKing

The Linking module of FAMER constitutes of three main parts. Initially, entities are
grouped into blocks in the Blocking part to limit the number of comparisons. Then the
matching candidates are compared in the Pair-wise Matching part and a similarity value
is generated for each pair. Finally, the Match Classifier decides about the final matches.

In FAMER wiki10, FAMER linking configuration is explained comprehensively.

Blocking
FAMER implements the Standard Blocking (SB) and Sorted Neighborhood blocking (SN)
methods in a distributed fashion.

Both SB and SN methods can be parallelized using MapReduce framework [39]. Basic
SB is implemented by only one MapReduce job. In mapping phase, eachmapper converts
each entity to the key value pair of blocking-key and entity-id. Then, every single reducer
processes all entities with the same blocking key. In SN implementation, the mapper acts
like the mapper of SB. Then, sorting entities based on their blocking keys is done by the
partitioner that follows the mapper. The reducer function, slides down a window of size
w on the entities of each reducer node. Generating duplicates from windows boundary
entities must be additionally implemented [140].

As mentioned in Section 2.1.2, since the sizes of the output blocks can be highly
skewed, achieving good load balancing is the major challenge in parallelising a blocking
technique. Kolb et al. proposed the load-balanced SB [89] and SN [91] based on MapRe-
duce framework. For SB two different methods named as BlockSplit and PairRange are
proposed and implemented. BlockSplit dedicates equal number of entities to each re-
ducer by breaking large blocks into smaller sub-blocks while PairRange distributes the
comparisons on the reducer nodes evenly. Figure 3.3 shows the sequence of Flink trans-
formations for the PairRange approach. The input of blocking is the DataSet of vertices

10FAMER linking configuration https://git.informatik.uni-leipzig.de/dbs/
FAMER/-/wikis/Home/Configuration/Linking-Configuration-(JSON)

34

https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/Configuration/Linking-Configuration-(JSON)
https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/Configuration/Linking-Configuration-(JSON)

3.3. FAMER BATCH PIPELINE

Figure 3.3: Sequence of transformations for the SB

and the output is a DataSet of paired vertices. Initially, blocking keys are generated for
each vertex using the FlatMap transformation, because some key generation methods
may generate multiple keys for a single entity. When data is dirty and some property
values are missing in some entities, then a group of vertices may have empty keys that
results in forming a bucket comprised of non-relevant vertices. FAMER manages empty
keys by the user preferred strategy of removing the empty block (REMOVE strategy), or
attaching all keys to each vertex (ADD_TO_ALL strategy), or leaving the empty block
as it is (EMPTY_BLOCK strategy). Then, a set of GroupBy and ReduceGroup transfor-
mations are applied to compute the statistics of each block, because distributing compar-
isons evenly on the reducers requires knowing the size of each block and total number of
vertices. In the next step big blocks (blocks bigger than total number of vertices

number of F link reducers
) are split-

ted into multiple blocks. Therefore, the entities of the splitted blocks are replicated in the
subsequent blocks as well. A reducer-ID is assigned to each vertex such that vertices are
evenly distributed on the reducers. The transformation PartitionCustom relocates the
vertices and puts them on the specified reducers. Finally, on each reducer the GroupBy
transformation pairs vertices together. The replicated vertices are not paired with each
other, because they are getting paired in other reducers.

For load-balanced SN, Kolb et al. [91] proposes JobSN and RepSN methods. The for-
mer approach employs a second MapReduce job to generate boundary entities while
the latter enumerates the entities to assign evenly-sized entity ranges to every reducer.
Figure 3.4 shows the sequence of Flink transformations for the RepSN approach. After
key generation, a reducer-ID is assigned to each vertex such that vertices are evenly
distributed on the Flink reducers. Then, windowsize − 1 number of vertices of each
reducer are replicated for the next reducer. Finally, the vertices are grouped by the as-

35

CHAPTER 3. FAMER

Figure 3.4: Sequence of transformations for SN

signed reducer-ID and are paired together on each reducer by sliding down a window.
Similar to BlockSplit, the replicated vertices are bypassed to be paired together.

To improve the recall of blocking, FAMER additionally supports multi-pass blocking
which is using more than one blocking phase. Then, the candidate pairs are the union
of candidate pairs of the multiple blocking phases. The improved recall is gained by
the cost of less efficiency due to performing multiple passes of blocking and removing
repetitive candidate pairs.

All blocking methods need to generate at least one blocking key for each entity. Con-
sidering each property value as a string, FAMER supports the following key generation
methods:

• Full property value: assumes the complete value of the specified property as key.

• Prefix length: assumes the value of initial n characters of the specified property
as key.

• QGrams: generates a key using the qGrams method on the attribute value. It splits
the attribute value to substrings with the given length q. The keys are generated
by concatenating the substrings with different combination orders. The minimum
number of substrings is calculated using the threshold. If the attribute value length
is less than q, then the whole attribute value is returned as one single key.

• Word tokenizer: splits the attribute value on the given tokenizer string into a list
of generated keys. If the attribute value does not contain the tokenizer then the
attribute value itself is returned as a single key.

36

3.3. FAMER BATCH PIPELINE

Figure 3.5: The transformation for the pair-wise comparison

The last two methods may generate more than one key per entity. Therefore, the out-
put of blocking may contain repetitive candidate pairs. FAMER removes the repetitive
pairs to have a clean output for blocking.

Pair-Wise Comparison
In this part a similarity degree is computed for each candidate pair. Thus, a selected
set of corresponding property values of the pair are compared using different similarity
methods. Figure 3.5 shows that for each pair of blocked vertices, a list of similarity values
are computed. The FAMER configuration enables the user to specify the list of expected
similarities between the desired property values (see Appendix A for more details about
similarity configurations).

The similarity methods supported by FAMER are listed below:

• Edit distance Levenshtein: The smallest number of edits (character insertions, dele-
tions and substitutions) that are required to convert string s1 into string s2 is de-
fined as Levenshtein distance of the two strings. The distance can be converted
into a similarity degree in [0, 1] by 1− distance

max(|s1|,|s2|) [27].

• Extended Jaccard: Firstly two strings are tokenized using a tokenizer. Then, all
tokens of string s1 are compared with all tokens of string s2 using a secondary
similarity value (FAMER uses Jaro Winkler similarity). The set of pairs S are the
pairs that their similarity value is bigger than a threshold θ. The unique tokens
from s1 and s2 that are not included in S as an element of pair are noted by U1

and U2 respectively. Then, the similarity degree is computed by 1 − |S|
|S|+|U1|+|U2|

[119].

• Jaro Winkler: Jaro distance counts the number of matching characters (c) as well
as the number of transpositions (t) in two comparing strings s1 and s2. The Jaro
similarity is computed by 1

3(|c||s1|+
|c|
|s2|+

|c−t|
|c|). Then, considering a threshold θ, the

Jaro Winkler similarity is computed by simJaro + θ · l · (1− simJaro). The length

37

CHAPTER 3. FAMER

of common prefix at the beginning of the two strings up to a maximum of four
characters is noted by l [27].

• List similarity: It computes the similarity degree of two list of values using the
user specified similarity computation method. The computed similarities for each
pair of compared values are aggregated into one single similarity degree.

• Longest common substring: The common substrings of the two comparing strings
s1 and s2 are found and then the total summed length of all found common sub-
strings noted by lc is computed. The similarity degree can be computed as simdice =

2·lc
|s1|+|s2| , or simoverlap = lc

min(|s1|+|s2|) , or simjaccard = lc
|s1|+|s2|−lc

[54].

• Monge-Elkan: It splits two input strings s1 and s2 into tokens using a tokenizer.
Then, using a secondary similarity computation function (FAMER uses JaroWin-
kler), the similarity between the set of tokens of s1 (noted by A) and the set of
tokens of s2 (noted by B) is computed. The maximum similarity between each
token of |A| and |B| is found. These maximum similarities are summed up (noted
as sum). Then, the aggregated similarities of all tokens is computed by l

|A| · sum

[111, 112].

• Numerical similarity with maximum distance/percentage: The difference of the
two numbers are computed (noted as diff) and if it is less than a predefined dis-
tance, then the similarity of the numbers is computed as 1− diff

distance
. The method

can be used by a predefined percentage instead of a predefined absolute distance
[27].

• Q-grams: The two input strings s1 and s2 are split into small substrings of length
q. Then, the number of common substrings of the two strings ccommon is computed.
Assuming the number of all substrings of s1 and s2 as c1 and c2 respectively, the
similarity degree between s1 and s2 is computed as simoverlap = ccommon

min(|c1|+|c2|) , or
simjaccard = ccommon

|c1|+|c2|−ccommon
, or simdice = 2·ccommon

|c1|+|c2| [97].

• Truncate Begin/End: It considers only the first/last n characters of the two strings.
If the considered substrings are equal, then the similarity of the two input strings
is 1 and otherwise 0.

• Geographic distance: Using the latitude and longitude of geographic locations,
the distance between them can be computed in kilometer. Two locations can be
assumed as similar if the distance of them is less than a defined threshold β.

38

3.3. FAMER BATCH PIPELINE

Figure 3.6: Sequence of transformations for the match classification

Match Classification
FAMER offers both threshold-based and rule-based classification methods as well as the
combination of them. Figure 3.6 shows that the DataSet of paired vertices and the cor-
responding list of similarity values are the input of match classification and the output
is a DataSet of created edges. Initially, the similarity values of each pair are evaluated
against the selection rules specified in the selection configuration (see Appendix A for
more details about selection configurations) and then an edge is created in accordance
with each selected pair.

FAMER benefits from ML-based classification approaches such as decision trees, meth-
ods from the Weka library (J48, IBk, RandomForest), Flink implementation of Random
Forest and word embedding training with JFastText which are not a part of this disser-
tation.

3.3.3 ClusteRing

If the candidate matching pairs are classified individually, it may lead to a long chain
of entities that are related to each other through transitive closures. Thus, two entities
with a very low or even no similarity are considered as matches. Moreover, the special re-
strictions of some input data sources such as one-to-one mapping or source-consistency
constraints can not be satisfied. Therefore, clustering is applied on the similarity graph

Table 3.1: ER clustering algorithms classification

2 clean sources Single source Multiple (>2) clean sources
Multiple (>2)
combined sources
(clean & dirty)

Max-Both,
Hungarian Algorithm,
Stable Marriage,
…

Correlation clustering,
Center,
Merge Center,
Star,
Hierarchical Agglomerative Clustering (HAC),
Affinity Propagation (AP),
…

SplitMerge,
CLIP,
…

Extended AP,
MSCD HAC,
…

39

CHAPTER 3. FAMER

Figure 3.7: Sequence of transformations for clustering approaches implemented with Gelly

as the last step of the ER pipeline. Clustering aims at removing false edges as well as
cutting transitive closure chains such that only true missing edges are added.

Table 3.1 classifies the clustering algorithms that have already been employed in ER
applications. For two clean sources only one-to-one mapping is allowed. Therefore,
only algorithms that generate clusters with maximum size of two (each cluster contains
at most one entity from each source) are applicable. In contrast, generic-purpose algo-
rithms are leveraged for deduplicating in a single source [68]. The contribution of this
dissertation is on clustering for multiple (> 2) clean sources as well as multiple combined
clean and dirty sources. FAMER however includes the single source clustering methods
implemented in both sequential and parallel fashion. The clustering algorithms for two
clean sources and single source deduplication listed in Table 3.1 are explained in Sec-
tion 2.2.1. Furthermore, Chapter 4 and Chapter 5 focus on the clustering algorithms for
multi-source ER.

For implementing a majority of clustering algorithms we use Gelly library which is
the graph processing engine of Apache Flink. In particular, we employ Gelly graphs
that are comprised of a DataSet of vertices and a DataSet of edges. Listing 3.2 depicts
the Gelly graph class. Each vertex the same as each edge is comprised of a key K and a
value. As shown in Figure 3.7 for exploiting the Gelly ScatterGather iterations, FAMER
initially transforms the Gradoop logical graph to a Gelly graph. Then, the clustering
algorithm specified in clustering configuration (see Appendix A for more details about
clustering configurations) is executed through a number of ScatterGather iterations and
finally the resulted Gelly graph is again transformed to a Gradoop logical graph.

Listing 3.2: Gelly graph

class Graph<K, VV, EV> graph {
DataSet<Vertex<K, VV>> vertices;
DataSet<Edge<K, EV>> edges;

}

40

3.4. FAMER INCREMENTAL PIPELINE

3.3.4 PostpRocessing

The postprocessing task mainly aims at writing data to the disk or computing the quality
of output results. The list of different preprocessing tasks are as follows:11

• WRITE_GRAPH: Writes Gradoop graph data to disk.

• QUALITY: Evaluates the quality of a similarity computation or a clustering and
writes the results as a comma-separated file to a given file path.

A postprocessing configuration can include an array of tasks e.g. it is possible to store
a similarity graph as well as calculating and storing its quality measures in the same
postprocessing job.

3.4 FAMER IncRemental Pipeline

The incremental FAMER workflow is indicated in Figure 3.8. The input of the workflow
is a stream of new entities from existing sources or from a new source plus the already
determined clustered similarity graph from previous iterations. The Linking part here
focuses on the new entities and does not re-link among previous entities. We also sup-
port the linking among new entities to provide additional links in the similarity graph
that may lead to better cluster results. The output of the linking is a grouped similarity
graph composed of existing clusters and the group of new entities and the newly created
links (the light-blue colored group in the middle of Figure 3.8).

The Incremental Clustering/Repairing part supports two methods for integrating the
group of new entities into clusters. In the base (non-repairing) approach the new entities
are either added to a similar existing cluster or they form a new cluster. The repairing
approach however is able to repair existing clusters to achieve a better cluster assignment
for new entities. The details of the incremental clustering approaches are explained in
Chapter 6.

Listing 3.3 depicts the configuration overview of one complete job including one incre-
mental repairing task. The configuration file can include multiple jobs as well. It should
be noted that FAMER can not be initiated with an incremental task. It is important that
at list the first task is a normal batch ER that produces a clustered similarity graph which
can be given into the input of the framework again. The preprocessing task reads the
clustered similarity graph and at least one more raw graph (not linked) as input. In the

11https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/
Configuration/PostProcessing-Configuration-(JSON)

41

https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/Configuration/PostProcessing-Configuration-(JSON)
https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/Configuration/PostProcessing-Configuration-(JSON)

CHAPTER 3. FAMER

Figure 3.8: FAMER incremental workflow

Linking part the new entities are linked to the old ones and optionally with each other.
Then the incremental repairing task applies one of the repairing methods specified by
user to integrate the newly linked entities with the rest of similarity graph. Finally, the
Postprocessing task writes the output down on HDFS.

Listing 3.3: FAMER incremental configuration file

[
[
{
"task": "PREPROCESSING",
"config":{}

},
{
"task": "LINKING",
"config":{}

},
{
"task":"INCREMENTAL_REPAIRING",
"config":{}

},
{
"task":"POSTPROCESSING",
"config":[]

},
]

]

42

3.5. VISUALIZATION TOOL

3.5 Visualization Tool

During the continuous development of FAMER, it was challenging to investigate the cor-
rectness and efficiency of the certain algorithms and to understand the problems. Such
an investigation may lead to introduce improved matching and clustering algorithms
or even an extra postprocessing step of repair. However, to identify (or debug) any oc-
curring issues with limited effort and time we see the need for a comprehensive and
powerful approach to visually analyze similarity graphs and ER clusterings. Unfortu-
nately, general purpose graph visualization tools like Gephi12 or Graphviz13 have lim-
ited capabilities to analyze ER clusterings. They additionally are not capable of proper
visualization of large (Big Data) similarity graphs with vertex and edge properties.

In this section we introduce SIMG-VIZ, the visualization system for entity resolution
and clustering that allows us to investigate different match and clustering techniques for
multi-source entity resolution. SIMG-VIZ offers the following key features:

• SIMG-VIZ offers analyzing precomputed similarity graphs and clusterings from
existing ER tools. It additionally supports executing and analyzing ER match tasks
directly with FAMER.

• Different graph and ER cluster visualization techniques and layouts can be applied
to choose the best visualizations.

• To increase performance, some layouts can be precomputed on a server with either
parallel or serial computation. This provides a significant optimization potential
in particular for force-directed layouts [11].

• To support visualization of large graphs, preprocessing techniques such as sam-
pling (also executed in parallel on the server) can be selected to obtain a fast
overview of large similarity graphs and their clustering results.

• Clusters and their overlaps as well as edges annotated with their type and simi-
larity are visualized by using a simple but useful cake-like visual metaphor. Users
can interact with clusters and select individual clusters for investigation.

12https://gephi.org
13http://www.graphviz.org

43

https://gephi.org
http://www.graphviz.org

CHAPTER 3. FAMER

FAMER Server

Visualization Server
(Gradoop/Flink)

Client
JS/HTML

Preprocessing

Compound Layout

FD Layout

Action: Sampling, Layouting, ...

Graph, Vertex positions

Corresponding parameters

Canvas/Map

WebGL

Canvas

Figure 3.9: SIMG-VIZ architecture

3.5.1 OveRview

The SIMG-VIZ system consists of three modules: (1) the FAMER server, (2) a visualization
server in JAVA and (3) a web-based GUI-client written in JavaScript (see Figure 3.9).

The FAMER server is used to link several sources and executes defined matching tasks.
However, SIMG-VIZ allows the user to load similarity graphs and clustering results com-
puted by other tools as well. The visualization server offers several preprocessing (e.g.
for sampling) and layouting algorithms. The preprocessing algorithms are implemented
in distributed fashion on top of Gradoop and Apache Flink whereas graph layoutings
are currently only implemented as non-distributed algorithms. The web-based client,
provides an interactive visualization of similarity graphs and ER-clusterings. SIMG-VIZ
offers investigating vertex and edge properties as well as triggering server-side compo-
nents like matching, clustering, preprocessing and layouting. The user is able to trigger
server based REST-interfaces through a client-side GUI. The visualization server and the
FAMER server both respond with JSON results. In the following sections each compo-
nent is described in detail.

3.5.2 Client (Web-based HTML/JS FRontend)

Figure 3.10 indicates an overview of the web-based client of SIMG-VIZ. The top part of
the GUI shows the options that enable the user to choose between different clustering
and match configurations. Moreover, the user can select layouting options, i.e. which

44

3.5. VISUALIZATION TOOL

Figure 3.10: An overview of SIMG-VIZ

layout to use and where the computation should take place. Computing the layout on the
server gives significant improvements for large graphs. Additionally, the visualization
parameters can be set and tuned via the GUI (the right side in Figure 3.10). SIMG-VIZ
offers a couple of preprocessing algorithms such as sampling that can be further ap-
plied on the similarity graph before visualization. To improve interactivity, additionally
styling tasks such as changing vertex or edge sizes are performed on the client. Table 3.2
lists the drawing task types along with the statistics computations and other operations
supported by SIMG-VIZ.

Table 3.2: Actions in SIMG-VIZ

Action Description
Draw graph (Cytoscape) Draws a sim-graph in Cytoscape14.
Draw graph (WebGL) Draws a sim-graph in WebGL based on VivaGraph.
Compute only Executes preprocessing and sampling without visualization.
Compute labels/keys Computes all labels and property-keys of the vertices

and edges for filtering in the left part of the UI.
Save as image Exports an image of the drawn graph.
Remove selected node Removes a selected node.
Degree Distribution Computes the degree distribution of the graph.
Graph Statistics Computes additional basic statistics of a graph.

45

CHAPTER 3. FAMER

Table 3.3: Preprocessing algorithms in SIMG-VIZ

Preprocessing Description
Graph sampling Computes a statistical sampling of a graph. Currently

SIMG-VIZ implements vertex, edge and page rank sam-
pling.

Graph summary Computes a graph summary by grouping dense sub-
graphs of a graph to generate a compact overview of a
large graph [83]. In SIMG-VIZ the Flink implementation
is used.

Cluster neighbor filtering In particular for ER-Clustering a filtering to neighbors of
clusters is needed. The user specifies a cluster ID (at the
right part of UI) and that cluster together with its neigh-
bor clusters is visualized.

Cluster sizes filtering Only the clusters with specific sizes are visualized.
Cluster Aggregation It visualizes a graph in which the cluster vertices are

grouped together.

3.5.3 Visualization SeRveR

The visualization server offers preprocessing and layouting services. The preprocessing
algorithms are implemented in a distributed fashion on top of Gradoop and Apache Flink.
Table 3.3 lists currently implemented preprocessing components.

All layouting algorithms are available both for the client and the server as non dis-
tributed algorithms. We observed that executing layouting algorithms that need itera-
tions like the force directed layout [55] should not be executed on the client within a
browser. Executing it on a server brings significant runtime improvements, even with-
out distributing the computation to multiple processing nodes. When the layout compu-
tation is done on the server, the positions of the vertices along with the graph are sent
to the client. Implementing parallel versions of layouting to be run on top of Apache
Flink or Gradoop are left as future work.

3.5.4 ClusteR Visualization

In this section, we describe some specific features of SIMG-VIZ which are designed par-
ticularly for the visualization of ER clusters.

These features are explained along a real world ER-example of integrating four duplicate-
free data sources namely Freebase (Fb), New York Times (nyt), DBpedia (db), and Geon-

46

3.5. VISUALIZATION TOOL

Figure 3.11: A visualization of all clusters

ames (geo). We initially compute a similarity graph and apply different clustering tech-
niques with FAMER. A result cluster includes only vertices from these four sources which
are most probably the same real world entities. An edge connects two vertices which
have a high value of computed similarity measure. In Figure 3.11 we initially visual-
ize the complete clustering result. Clusters are shown with different colors to indicates
cluster membership. Users can identify clusters that may warrant a closer inspection,
e.g., clusters with more than four vertices or singleton clusters. It is possible to zoom
in and inspect the properties of each vertex. Since generic graph layouting algorithms
often have problems in visualizing large similarity graphs (e.g., problem of edge clutter-
ing) we applied a compound layout for cluster visualization. Such compound layouts of
graphs like CoSE-Bilkent [42] visualize vertices in a cluster (referred to as compound in
the paper) close to each other while the whole graph is visualized by using a modified
force-directed algorithm. Figure 3.12b shows a visualization of such a compound layout
that is computed on the server. Vertices of a cluster share the same color and are closely
grouped together to form a compound.

To get a cleaner picture, a user can interactively select a specific cluster or enter a
cluster ID to only visualize a specific cluster for closer inspection. Often we also need to
visualize a cluster together with its neighboring clusters (see Figure 3.12a). The vertex
labels here refer to the corresponding data source for that entity. The scenario illustrates
a problem case since there are more than four cluster members with some data sources
having two entities in the same cluster which should not be possible for duplicate-free
sources. There is also a singleton cluster that might have to be merged with another

47

CHAPTER 3. FAMER

(a) Each cluster is
indicated with a
unique color

(b) Multicolored vertices
belong to more than one
cluster

(c) The strength degree of
edges are visualized by
different colors and styles

Figure 3.12: SIMG-VIZ output

cluster. Based on such observations we are now able to re-assess the used clustering
algorithms and investigate new approaches for cluster repair.

We also provide support for visualizing clustering result of specific clustering algo-
rithms like Star[68]. The Star clustering computes cluster representatives and all neigh-
bors of those representatives are assigned to the corresponding cluster. In SIMG-VIZ,
those cluster representatives are highlighted with a black outline (see Section 3.5.4). It
happens that a vertex is a neighbor of several cluster representatives so that such vertex
will belong to multiple clusters. These multi-assignments are represented as pie charts
on nodes. Each piece of a pie chart which has a specific color specifies a cluster as-
signment. For example, Figure 3.12b contains a pie chart with three pieces which means
that node (entity) is assigned to three clusters. Obviously, some cluster postprocessing is
needed to select the best cluster for each entity that has been assigned to several clusters.

SIMG-VIZ provides special visualization support for evaluating clusters when the per-
fect cluster result is available for comparison. As shown in Figure 3.12c there are differ-
ent edge colors: green for edges that link two perfect match entities and red for (wrong)
edges based on the ground truth. Hence, clusters containing red edges should be investi-
gated more closely. Finally, we implemented a map-visualization of geo-referenced data
so that entities can be plotted onto a map. With the help of this map-visualization we
are able to identify false matches within a given dataset.

3.5.5 Web-based Visualization LibRaRies

Drawing large graphs within a browser is problematic. We investigated several differ-
ent Javascript-based visualization libraries and observed that there are significant per-
formance differences. Three groups of libraries can be found: (1) SVG-based libraries

48

3.5. VISUALIZATION TOOL

compute SVG-nodes and tags. They are often feature rich but do not scale well due to
many generated SVG-Elements. (2) The second group relies on HTML-Canvas. These
libraries are typically faster but interactivity is harder to realize. Still they mostly do
not scale well for very large graphs. (3) WebGL-based libraries offer the best scalability
but are still not as feature rich as existing libraries in the other two categories. We fi-
nally decided to use the Canvas-based Cytoscape15 library for small graphs up to 2000
vertices, because it gives more flexibility regarding the style of edges and vertices. For
example, the feature of drawing a pie chart on vertices is already available in Cytoscape.
For large graphs, we use VivaGraph16, which is a WebGL-based library with less support
for vertex and edge attributes, styling and coloring. However, for very large graphs the
user anyway would not be able to see those details.

15http://js.cytoscape.org
16https://github.com/anvaka/VivaGraphJS

49

http://js.cytoscape.org
https://github.com/anvaka/VivaGraphJS

4
Multi-source Clean Clustering

This chapter is based on [131, 157, 158, 160]. In [158] a comparative evaluation of dif-
ferent existing clustering algorithms for ER is provided. Additionally, in [160] new clus-
tering and repairing schemes are proposed. The clustering algorithm named as CLIP in-
tends to create source-consistent clusters and the repairing scheme (RLIP) modifies the
output of other clustering algorithms so that overlapping or source-inconsistent clusters
are resolved. CLIP and RLIP were presented at the ESWC 2018. All approaches are inte-
grated in FAMER and provided as open source1. Additionally, another novel clustering
scheme for multiple clean sources is compared with the existing approaches of FAMER
[157]. Later, FAMER was applied for the KDD DI2KG data matching challenge 2019 [131]
and succeeded to win the competition.

4.1 Motivation

While entity resolution and the corresponding problems such as link discovery are in-
tensely investigated research topics, this problem is still not sufficiently solved for the
large-scale integration of data from many sources as needed for knowledge graphs. In
our research, we aim at scalable ER approaches for Big Data that are able to deal with
large data volumes and multiple data sources. We therefore need ER approaches that
support clustering matching entities.

1https://git.informatik.uni-leipzig.de/dbs/FAMER/-/tree/master/
famer-clustering

51

https://git.informatik.uni-leipzig.de/dbs/FAMER/-/tree/master/famer-clustering
https://git.informatik.uni-leipzig.de/dbs/FAMER/-/tree/master/famer-clustering

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

Evidently for more than two sources a binary linking of entities is not sufficient but
all matches of the same entity should be clustered together to derive a fused entity rep-
resentation in the knowledge graph. There are several known approaches for such an
entity clustering [68] that FAMER integrated parallel implementations of them. In this
chapter six clustering schemes, including connected components as the baseline, Corre-
lation clustering [7], two variations of Star clustering [4], Center [69] and Merge Center
clustering[69] are introduced.

As explained in Chapter 3, clustering is applied on a similarity graph where entities
are represented as vertices and edges link pairs of entities with a similarity above a
predefined threshold. The clustering schemes use this graph to determine groups of
matching entities aiming at maximizing the similarity between entities within a cluster
and minimizing the similarity between entities of different clusters. In fact clustering
tries to find additional links by considering indirect matches and to eliminate weaker
links in favor of more plausible ones. This chapter focuses on duplicate-free (clean)
sources. For clean data sources without duplicates2 each cluster should contain at most
one entity per source. As mentioned in Chapter 2 (Section 2.2), we call clusters violating
this restriction source-inconsistent.

Analyzing the clusters determined by the different clustering schemes, we observed
some common problems in particular overlapping clusters and source-inconsistent clus-
ters. Algorithms like Star clustering can associate entities to more than one cluster lead-
ing to cluster overlaps and thus wrong clusters. Moreover, while the similarity graphs
determined by FAMER never link entities from the same clean source, the transitive clus-
tering of linked entities, e.g., with the baseline approach connected components, can eas-
ily lead to source-inconsistent clusters which should be avoided or repaired. Therefore,
we proposed and evaluated new algorithms to create high-quality entity clusters or to
repair clusters determined by other approaches so that the observed cluster problems
are avoided.

In addition to illustrating the problems and solutions mentioned above, this chapter
outlines the use of the tool FAMER for the DI2KG 2019 challenge3. FAMER could reason-
ably well solve the entity resolution task of the challenging dataset and be the challenge
winner. The challenge task additionally entailed schema matching which was solved by
Daniel Obraczka.

Specifically, this chapter provides the following contributions:

• Integration of six previously existing clustering algorithms.
2If necessary, the individual sources could be deduplicated before the entity resolution with other

sources (see Section 4.5).
3http://di2kg.inf.uniroma3.it/2019/#challenge

52

http://di2kg.inf.uniroma3.it/2019/#challenge

4.2. GENERIC CLUSTERING SCHEMES

• The proposal of a new clustering approach called CLIP (Clustering based on LInk
Priority) to determine high quality, overlap-free and source-consistent entity clus-
ters. Its cluster decisions are based on a link prioritization considering not only
link similarities but also the so-called link strength and link degree.

• The proposal of an approach called RLIP (cluster Repair based on LInk Priority) to
repair entity clusters such that the overlap and source inconsistency problems are
resolved. It includes a component to resolve overlapping clusters and uses CLIP
to produce source-consistent clusters.

• Comprehensive evaluation of the cluster quality and scalability of the former ap-
proaches as well as the new approaches for different datasets. Moreover, The new
approaches are compared with another multi-source clean clustering algorithm
SplitMerge [120].

• Application of FAMER for the schema and entity matching tasks of the DI2KG
2019 challenge [131].

Section 4.2 describes the considered clustering algorithms and their distributed imple-
mentation. In Section 4.3 we define concepts and describe the new algorithms which
are evaluated in Section 4.4. In Section 4.5, we describe FAMER solutions for the DI2KG
2019 challenge and we report the results. Finally, we briefly discuss related work in
Section 4.6 and conclude in Section 4.7.

4.2 GeneRic ClusteRing ScHemes

In this section, we present the considered generic clustering approaches for entity res-
olution and their parallel implementation. The parallel implementations are based on
the vertex-centric programming model to iteratively execute a user-defined program in
parallel over all vertices of a graph. In particular, we use the two-step Scatter-Gather
model of Gelly (see Section 2.2.1). Section 2.2.1 gave a brief explanation of the follow-
ing algorithms. In this section we focus on the vertex-centric implementation of them.
The implementation for one of the clustering schemes (Center) is explained in detail; the
other implementations follow similar approaches.

4.2.1 Connected components

The subgraphs of a graph that are not connected to each other are called connected
components. Having the input similarity graph, the connected components are easy

53

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

to determine in a vertex-centric way by letting every vertex iteratively add all its direct
neighbors to its cluster. The approach is therefore easy to implement with Scatter-Gather
(as shown in [81]). In the evaluation, we use this approach as a baseline for the compar-
ison with the other clustering schemes.

4.2.2 CenteR clusteRing

In contrast to connected components, the Center clustering algorithm [69] utilizes the
similarity values (weights) of the edges in the similarity graph (see Section 2.2.1).

We proposed and implemented a parallel version of the Center algorithm (see Algo-
rithm 1). In each round of the algorithm for all unassigned vertices, the outgoing edge
with the highest weight must be found. The vertices on both sides of this edge are then
processed. If one of them is a cluster center, the other will belong to the cluster of that
vertex (line 6-line 8). In case one of them is assigned to another cluster (line 9), i.e, both
vertices belong to different clusters, the edge between these two vertices is removed

Algorithm 1: Parallel Center
Data: G=(V , E)

1 assignVertexPriorities (V)
/* priority according to a random permutation of

vertices */
2 Center ← {}
3 for vi ∈ V in Parallel do
4 repeat
5 vnn ← argmax

j
(e(vi,vj))

6 if (vnn ∈ Center) then
7 vi.setClusterId (nn)
8 V ← V−{vi}
9 else if (vnn /∈ V) then
10 E ← E −{e(vi,vnn)}
11 else
12 vk ← argmax

j
(e(vnn,vj))

13 if ((i = k ∧ i > nn) ∨ (vnn = Null)) then
14 Center ← Center ∪ {vi}
15 vi.setClusterId (i)
16 V ← V−{vi}

17 until (vi ∈ V)

54

4.2. GENERIC CLUSTERING SCHEMES

(line 10). When both vertices are unassigned and the edge between them is for both the
outgoing edge with the highest weight (line 13, i = k), then one of them is assumed
as center (line 14) and the other will belong to the same cluster in the next round. For
selecting the center in this case we make use of initially assigned (line 1) vertex priorities
as done in the sequential algorithm. Hence, the vertex with higher priority is considered
as center (line 16, i > nn). If a vertex is not connected to any other vertex (line line 13,
vnn = Null), it is a singleton. The algorithm iterates until all vertices are assigned to a
cluster (line line 17).

We implemented parallel Center using the Scatter-Gather model (see Algorithm 2).
The algorithm applies two phases that are iteratively executed for all vertices. Phase
one (Scatter1, Gather1) finds the nearest neighbour vertex for each vertex vi (the neigh-
boring vertex with the currently highest edge weight), and phase two (Scatter2, Gather2)
processes the status of the found vertex and assigns vi to an existing cluster or considers
it as a center. Again, we initially assign a priority per vertex (line 2). In phase one, for
each vertex vi the neighbor with the K-highest edge weight (nearest neighbor NN) is
found (line 14-line 18). K is a helper variable that prevents choosing already assigned

Algorithm 2: Scatter-Gather Center
Data: G=(V ,E)

1 Algorithm Center
2 assignVertexPriorities (V)
3 for (vi ∈ V) do
4 vi.K ← 1
5 end
6 repeat
7 Phase1: Scatter1 (Vertex)
8 Gather1 (Vertex, MessageIterator)
9 Phase2: Scatter2 (Vertex)

10 Gather2 (Vertex, MessageIterator)
11 until (V̸= {})
12 end
13 Procedure Scatter1 (Vertex v)
14 for (e ∈ getOutEdges()) do
15 msg.Src← v.getId()
16 msg.W eight← e.getW eight()
17 sendMessageT o(edge.target(), msg)
18 end
19 end
20 Procedure Gather1 (Vertex v, MessageIterator messages)
21 Array ← messages.Sort()

/* Messages are sorted based on their weights

descendingly */

22 v.NN ← Array[v.K].getSrc()
23 end

24 Procedure Scatter2 (Vertex v)
25 msg.Src← v.getId()
26 msg.NN ← v.getNN()
27 msg.P riority ← v.getP riority()
28 for (e ∈ getOutEdges()) do
29 msg.W eight← e.getW eight()
30 sendMessageT o(edge.target(), msg)
31 end
32 end
33 Procedure Gather2 (Vertex v, MessageIterator messages)
34 Array ← messages.Sort()

/* sorted based on weights descendingly */

35 for (i : v.K → Array.Size()) do
36 m← Array[i]
37 if (m.getSrc().isCenter()) then
38 v.ClustereId← m.getId()
39 v.assigned← true
40 break

41 end
42 else if (m.getSrc().isAssigned()) then
43 v.K + +
44 end
45 else if (v.NN= Null ∨ (v.NN = m.getSrc() ∧ v.Priority

> m.getPriority())) then
46 v.ClustereId← m.getSrc()
47 v.center ← true
48 v.assigned← true
49 break

50 end
51 end
52 end

55

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

vertices as neighbor. It is attached to each vertex and initialized with 1 (line 3-line 5). It
will be incremented in phase two when a vertex neighbor has been assigned to a cluster
(line 42-line 44). In phase two, all neighbors of a vertex vi are sorted and processed in
descending order of the edge weights (for the edge to vi) (line 34-line 41). Then, vertex
vi is set as center similar to Algorithm 1 (line 45-line 50).

4.2.3 MeRge CenteR

The Merge Center clustering algorithm [69] is a modified version of Center. In contrast
to Center, it merges two clusters if a vertex in one cluster is similar to the center of
another cluster (see Section 2.2.1). Our parallel implementation for Merge Center is
very similar to parallel Center but applies an extra iteration for merging clusters. This
iteration is initiated right after all vertices are assigned to a cluster. The merge processing
is repeated until there are no further cluster changes.

4.2.4 StaR clusteRing

The Star clustering algorithm [4] initially computes the degree for each vertex of the
similarity graph. Then, in each iteration, the unassigned vertex with the highest degree
becomes center and all its direct neighbors are assigned to its cluster. The algorithm
terminates when all vertices are assigned to a cluster. In contrast to all other clustering
approaches, Star clustering can result in overlapping clusters (see Section 2.2.1). As a
consequence, it introduces the need of a post-processing to select the best cluster for
entities that have been assigned to several clusters.

Our parallel version of the Star algorithm is described in Algorithm 3. Initially, the
degree of all vertices is computed and if the degree of a vertex is greater than the degree
of all its neighbors, that vertex becomes a center (line 4-line 7). If the degree of two
adjacent vertices is equal, the one with higher priority is assumed as center. Similar
to the previous parallel algorithms, vertex priority is initially determined by generating
a random permutation of vertices (line 1). Then, each center and all its neighbors are
considered as a cluster. (line 8-line 12). The Scatter-Gather version of Algorithm 3 uses
three phases. In the first phase the degree of each vertex is computed. In the second
phase, centers are selected, and in the final phase, clusters are grown around centers.

We use two methods for computing the degree of vertices resulting into algorithms
Star-1 and Star-2. For Star-1, we count the number of outgoing edges of a vertex, while
Star-2 is based on the average similarity degrees of the outgoing edges of a vertex.

56

4.2. GENERIC CLUSTERING SCHEMES

Algorithm 3: Parallel Star
Data: G=(V , E)

1 V ← {v1, ..., vn}
/* A random permutation of vertices */

2 Center ← {}
3 repeat
4 for (vi ∈ V) in Parallel do
5 vmax ← argmax

vj∈{vj |e(vi,vj)∈E}∪{vi}
(computeDegree(vj)))

6 if (vi = vmax) then
7 Center ← Center ∪ {vi}

8 for (vi ∈ V) in Parallel do
9 for (e(vi, vj) ∈ E) do
10 if (vj ∈ Center) then
11 vi.addClusterId(vj.getId())
12 V ← V −{vi}

13 until (V ̸= {})

4.2.5 CoRRelation ClusteRing

As explained in Section 2.2.1, correlation clustering aims at finding a clustering that
either maximizes agreements (sum of positive edge weights within a cluster plus the
absolute value of the sum of negative edge weights between clusters) or minimizes dis-
agreements (absolute value of the sum of negative edge weights within a cluster plus the
sum of positive edge weights across clusters). Gionis et al. [61] propose an approximate
and iterative solution for this optimization problem that randomly selects an unassigned
vertex as a cluster center in each round. Then, all unassigned neighbors of the selected
center are added to the cluster and marked as assigned. The algorithm terminates when
there is no unassigned vertex left.

This simple algorithm suffers from too many rounds making it unsuitable for very
large graphs. Some studies therefore proposed parallel solutions [26, 135] that select
multiple centers in each round. They also address the newly introduced concurrency
problem to avoid that a vertex is assigned to more than one center at a time. We imple-
mented the parallel pivot approach of [26], called CCPivot, since it fits well the Scatter-
Gather paradigm. In each round of this algorithm, several vertices are considered as
active nodes, i.e., as candidates for becoming a cluster center (or pivot). In the next step,
active nodes that are adjacent to each other are removed from the set of active nodes; the
remaining vertices become centers. Then, adjacent vertices of each center are assigned

57

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

to that center and form a cluster. If one vertex is adjacent of more than one center at the
same time, it will belong to the one with higher priority. As in the other algorithms, the
vertex priorities are determined in a preprocessing phase.

Our Scatter-Gather implementation of this algorithm uses three Scatter-Gather phases:
one for computing the current maximum degree of the graph, one for selecting active
nodes and applying the concurrency-aware rule to select final centers, and one for grow-
ing clusters around centers.

4.3 Clean ClusteRing AlgoRitHms

This section introduces the novel approaches for clustering multi-source clean clustering.
We first define the main concepts and then describe the CLIP and RLIP algorithms.

4.3.1 Concepts

Maximum link: An entity from a source A may have several links to entities of a source
B. From these links, the one with the highest similarity value is called maximum link.
For example, for entity a1 in Figure 4.1a the maximum link with respect to source B is
the one with similarity 0.95 to entity b1. Based on this concept we define the strength of
links and classify links into strong, normal, and weak links. Considering a link ℓ between
entity ei from source A and entity ej from another source B we define these link types
as follows:
Strong link: Link ℓ is classified as a strong link, if it is the maximum link from both
sides, i.e. for ei to source B and for ej to source A. In Figure 4.1a, entity a1 from source
A has a strong link, colored in green, to b1 in source B. Note that an entity can have

(a) Link features (b) Complete cluster (c) Cluster association
degree

Figure 4.1: Clean clustering concepts

58

4.3. CLEAN CLUSTERING ALGORITHMS

several strong links to different sources; e.g., a1 is also strongly linked to c2 from source
C .
Normal link: Link ℓ is called a normal link, if it is the maximum link for only one of the
two sides. In Figure 4.1a, the link between a1 and b2 is a normal link (colored in blue) as
it is the maximum link from b2 to source A, but not the maximum link from a1 to source
B.
Weak link: Link ℓ is a weak link, if it is not the maximum link for any of the two sides.
In Figure 4.1a, the link between a1 and b0 is such a weak link and shown with a red
dashed line.
Link degree: The link degree is the minimum vertex degree of its two end point vertices.
In Figure 4.1a, the vertex degree of a1 is 4 and the vertex degree of b1 is 3, so that the
link degree between a1 and b1 is min(4, 3) = 3.
Linkprioritization: Our clustering approach is based on the introduced link features to
prioritize links based on their link similarity value, link strength (strong, normal, weak),
and link degree. Links with higher similarity value, higher strength and lower degree
have priority over links with lower similarity, lower strength and higher degree.
Complete cluster: A source-consistent cluster that contains entities from all sources is
called a complete cluster. The green-colored cluster in Figure 4.1b is a complete cluster
for four sources A, B, C, and D as it contains one entity from each source.
Cluster association degree: An entity e that is shared between two or more clusters
will be in some cases assigned to the cluster with the highest association degree. The
association degree of e for cluster C of size k corresponds to the average similarity of e

to the k−1 other entities ei in C , i.e., it is determined by the ratio of the sum of similarity
values of the intra-cluster links involving e and k − 1. In Fig. 4.1c, entity b1 is member
of the gray and black clusters of sizes 4 and 5, respectively. Assuming a link similarity
of 1 for the shown links, the association degree for b1 is 2/3 for the gray cluster and 1/4
for the black cluster. Hence, b1 will be preferably assigned to the gray cluster.

4.3.2 Entity clusteRing witH CLIP

The proposed CLIP algorithm favors strong links for finding clusters while weak links
will be ignored. This helps to find good clusters even when the similarity graph contains
many links with lower similarity values. The approach works in two main phases. In
the first phase, CLIP determines all complete clusters based on strong links between
entities from all sources. The second phase also considers normal links and iteratively
clusters the remaining entities based on link priorities such that no source-inconsistent
or overlapping clusters are generated.

59

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

Algorithm 4: CLIP
Input :G= (V ,E)
Output :Cluster set CS
/* PHASE 1 */

1 determineLinkStrength (E)
/* Links are classified so that E= EStrong ∪ ENormal ∪ EWeak */

2 G ′= (V , EStrong)
3 CS ′← connectedComponents (G ′)
4 CS ← getCompleteClusters (CS ′)
/* PHASE 2 */

5 V ′← V- VComplete, E ′← (EStrong- EComplete) ∪ ENormal

6 G ′= (V ′, E ′)
/* Vertices and links of the complete clusters are removed from the current

graph G′ */

7 CS ′← connectedComponents (G ′)
8 for (clusteri ∈ CS ′) in Parallel do
9 if (isSourceConsistent (clusteri)) then
10 CS ← CS ∪ clusteri

11 else
12 Assume vt ∈ Vclusteri as a cluster t = 1, 2, ..., n
13 CS i← {c1, c2,, cn}
14 intraLinks← Eclusteri
15 repeat
16 ℓci,cj

← getMaxPriority (intraLinks)
17 merge (ci, cj)
18 updateClusterSet (CS i)
19 removedLinks← removeConflictingLinks (intraLinks)
20 intraLinks← intraLinks− removedLinks

21 until (intraLinks ̸= {})

22 CS ← CS ∪
m∪

i=1
CS i

The pseudocode of CLIP is shown in Algorithm 4. Its input is a similarity graph G
and the output is the cluster set CS . Figure 4.2 illustrates the algorithm for entities from
four data sources A, B, C, and D. Entities with the same index are assumed to belong
to the same cluster, e.g. entity a0 from source A and b0 from source B. The sample
similarity graph in the example already links most matching entities but also contains
wrong links, e.g. (b0, c1). In phase 1, we start with determining the strength of all links
(line 1 of Algorithm 4). Then we only use strong links to determine graph G ′ (line 2). We
then apply connectedComponents on G ′ to identify complete clusters and add these to
the output (line 3-line 4). In the example of Figure 4.2, the second graph in the upper

60

4.3. CLEAN CLUSTERING ALGORITHMS

Figure 4.2: CLIP example

half differentiates between strong, normal, and weak links by showing them as green,
blue and dashed lines, respectively. Focusing on strong links, we obtain four connected
components in the example, one of which (for index 0) results in a complete cluster that
is added to the output of phase 1.

For phase 2, we remove the vertices and edges from the complete clusters. Further-
more, we ignore weak links and only consider strong and normal links in the updated
graph G ′ (line 5-line 6 of Algorithm 4). Again we use connectedComponents to con-
sider the resulting connected components as possible clusters (line 7). Afterwards these
components clusteri are processed in parallel (line 8). If the cluster clusteri is already
a source-consistent cluster, it is directly added to the CLIP output (line 9-line 10). Oth-
erwise the component/cluster is source-inconsistent and will be iteratively processed
as outlined below. In the example of Figure 4.2, phase 2 is illustrated in the lower part
which starts with a reduced similarity graph that has no longer the entities from the com-
plete cluster determined in phase 1 and that only contains strong and normal links. We
then obtain two connected components one of which (with index 3) is already a source-
consistent cluster that is thus added to the output. The remaining source-inconsistent
component/cluster needs further processing.

61

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

In the processing of source-inconsistent clusters/components we initially consider
each entity of component clusteri as a cluster ci of its own (lines line 12-line 13). We
then iteratively process the intra-component links (line 15-line 21) in the order of their
maximal link priority and merge linked entity pairs from different sources into larger
clusters such that no source inconsistency is created (line 17). For merged clusters, the
cluster set is updated accordingly (line 18). Links from the newly formed cluster to en-
tities of the same sources already present in the formed cluster (conflicting links) are
removed from the intra-component link set (line 19-line 20). The process for each com-
ponent terminates when the corresponding intra-component link set is empty (line 21).
The union of all cluster sets CS i determined in this way for the different components
combined with the previously determined clusters in phase 1 form the final output of
CLIP (line 22). In the example of Figure 4.2, we start with the link between a2 and b2 in
the third graph for phase 2 and merge these entities into a new cluster. The link to a1

from this newly formed cluster is considered as a conflicting link and therefore removed.
In the next iterations the link priorities are updated and a new link with maximum pri-
ority is selected and clusters are merged. In the example this leads to adding entities
c2 and d2 to the previously determined cluster while the link of this cluster to entity a1

is in conflict and will be removed. Similarly, the cluster with index 1 can be generated.
Together with the output of phase 1, four clusters are found in the example.

CLIP creates disjoint clusters since it operates on connected components which are
by definition disjoint. Furthermore, the iterative processing of source-inconsistent com-
ponents adds each entity to at most one cluster thereby avoiding cluster overlaps.

4.3.3 ClusteR RepaiR witH RLIP

As explained in Section 4.1, RLIP aims at repairing the output of clustering algorithms
by first resolving overlapping clusters, if necessary, and second by using CLIP to repair
source-inconsistent clusters. We thus focus on overlap resolution.

The RLIP approach to resolve overlapping clusters also uses the intra-cluster links
between entities4 and favors strong links to select the cluster to which an overlapped
entity should be assigned. In particular, overlapped entities that have only strong links
to one cluster are assigned to this cluster and for overlapped entities with strong links
to several clusters we choose the cluster with the highest association degree for this
entity. Overlapped entities with no strong link are kept as singletons. The cluster deci-
sion cannot be made directly if an overlapped entity is only strongly linked to another

4RLIP could also repair cluster results determined outside FAMER by computing the similarity links
between entities within clusters beforehand.

62

4.3. CLEAN CLUSTERING ALGORITHMS

overlapped entity since the best result will depend on the cluster decision for the other
overlapped entity. We therefore treat such cases in a second iteration of the algorithm.
If in the second iteration the entity still is linked to only overlapped entities, all of them
will become singletons.

Algorithm 5 outlines overlap resolution in more detail. The input is a set of cluster
graphs CS and the output is a set of disjoint clusters CSoutput. The cluster graphs in
the output can be merged into a similarity graph as input for the subsequent execution

Algorithm 5: Overlap Resolution

Input :CS =
m∪

i=1
CS i (Vi, Ei)

Output :CSoutput

1 CSoutput← determineLinkStrength (CS)
/* Links are classified so that Ei= Ei(Strong) ∪ Ei(Normal) ∪ Ei(Weak) */

2 for (iterationNo := 1 to 2) do
3 OV ← getOverlappedVertices (CSoutput)

/* OV Vertices that belong to more than one cluster */

4 for v ∈ OV in Parallel do
5 adjacentV ertices← getStronglyLinkedPairs (v)
6 if (adjacentV ertices.size() = 0) then
7 updateClusterSet (CSoutput, v)

/* remove v and its associating links from all clusters. */

8 CSoutput← CSoutput ∪ (formCluster(v))
/* v is a singleton. */

9 else
10 associatedClusters← {}
11 for (vn ∈ adjacentV ertices) do
12 if (vn /∈ OV) then
13 associatedClusters←

associatedClusters ∪ getCluster(vn)

14 if (associatedClusters.size() = 0 ∧ iterationNo > 1) then
15 updateClusterSet(v)
16 CSoutput← CSoutput ∪(formCluster(v))
17 else
18 resolvedCluster ←

argmax
associatedClusters

(association(clusteri, v))

19 updateClusterSet (v)

20 iterationNo + +
21 return CSoutput

63

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

of CLIP. In line line 1, we first determine and store the strength of links in the input
cluster graphs. Then, we determine the overlapped entities and process them in parallel
in one or two iterations. For overlapped entity v, we store all strongly linked entities
in adjacentVertices (line 5). If there is no such entity, the overlapped entity is kept as a
singleton (line 6-line 8). Otherwise, the clusters of non-overlapped entities (line 11) of
adjacentVertices are determined and stored in the set associatedClusters (line 10-line 13).
If there is no such cluster, i.e., all strongly linked entities are overlapped entities, and we
are in the first iteration we wait and this entity will become a singleton in the second
iteration (line 14-line 16). Otherwise, the cluster association degree of the overlapped
entity v to all members of associatedClusters is determined and v is assigned to the cluster
with the maximal association degree (line 17-line 19). Obviously, if there is only one
element in associatedClusters, v will go to this cluster.

Figure 4.3 illustrates overlap resolution for four input clusters (C1, C2, C3, and C4)
where entities a0, a5 and d4 belong to two clusters and entity b2 even to three clusters.
The algorithm starts by determining the strength of the links. In the second box of Fig-
ure 4.3, strong, normal and weak links are shown by green, blue and dashed red lines.
The output of the first iteration (third box) shows that entity a5 is considered as a single-
ton because it is not strongly linked to any other entity. Entity a0 is assigned to cluster
C1 because of a higher association degree to C1 than to C2. Entity d4 is strongly linked
only to the overlapped entity b2 so we do not decide about d4 in this iteration. Entity
b2 has strong links to non-overlapped entities only to cluster C3 so it is removed from
clusters C2 and C4. In the second iteration (last box), the remaining overlapped entity
d4 is also resolved. It is linked to entity b2 which has been assigned to cluster C3 in
the previous iteration, so d4 is now also assigned to C3 and removed from cluster C4.
We have thus resolved all overlaps although the resulting clusters are not necessarily

Figure 4.3: Overlap resolution (example)

64

4.4. EVALUATION

source-consistent (e.g., cluster C3 has two entities from source D). So the output of over-
lap resolution is then processed by CLIP to obtain both disjoint and source-consistent
clusters.

4.4 Evaluation

The goal of our evaluation is to comparatively evaluate the effectiveness and efficiency of
the considered clustering approaches and their distributed implementations for different
datasets and configurations. We first describe the used datasets from three domains
and the considered configurations. We then analyze the relative match and clustering
effectiveness of the clustering schemes. Finally, we evaluate the runtime performance
and scalability of the approaches.

4.4.1 Datasets and configuRation setup

For our evaluation we use datasets from three domains for different numbers of duplicate-
free sources. Table 4.1 shows the main characteristics of the datasets in particular the
number of clusters and match pairs of the perfect ER result. The smallest dataset DS-
G contains geographical real-world entities from four different data sources (DBpedia,
Geonames, Freebase, NYTimes) and has already been used in the OAEI competition5.
For our evaluation we focused on a subset of settlement entities as we had to manually
determine the perfect clusters and thus the perfect match pairs.

For the two larger evaluation datasets DS-M and DS-P we applied advanced data gen-
eration and corruption tools [76] to be able to evaluate the ER quality and scalability
for larger datasets and a controlled degree of corruption. DS-M is based on real records
about songs from the MusicBrainz database but uses the DAPO data generator to create
duplicates with modified attribute values [76]. The generated dataset consists of five
sources and contains duplicates for 50% of the original records in two to five sources.

Table 4.1: Overview of evaluation datasets

General information Perfect result
domain entity properties #entity #src #clusters #links

DS-G geography label, longitude, latitude 3,054 4 820 4,391
DS-M music artist, title, album, year, length 19,375 5 10,000 16,250
DS-P1 persons name, surname, suburb, postcode 5,000,000 5 3,500,840 3,331,384
DS-P2 10,000,000 10 6,625,848 14,995,973

5OAEI 2011 IM: http://oaei.ontologymatching.org/2011/instance/

65

http://oaei.ontologymatching.org/2011/instance/

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

Table 4.2: Default blocking and match configuration for different datasets

dataset blocking key similarity functions match rule

DS-G prefixLength1 (label) sim1: Jarowinkler (name) sim1 ≥ θ &
sim2: geographical distance sim2 ≤ 1358 km

DS-M prefixLength1 (album) sim1: 3Gram (title) sim1 ≥ θ

DS-P prefixLength3 (surname) sim1: Jarowinkler (name) sim1≥ 0.9 &
sim2: Jarowinkler (surname) sim2 ≥ 0.9 &
sim3: Jarowinkler (suburb) sim3 ≥ θ &
sim4: Jarowinkler (postcode) sim4 ≥ θ

All duplicates are generated with a high degree of corruption to stress-test the ER and
clustering approaches. DS-P is based on real person records from the North-Carolina
voter registry and synthetically generated duplicates using the tool GeCo [31]. We con-
sider two configurations with either 5 or 10 sources each having 1 million entities; i.e.
we process up to 10 million person records. Each source is duplicate-free, but 50% of
the entities are replicated in all sources without any corruption. Moreover, 25% of en-
tities are corrupted and replicated in all sources, and the remaining 25% are corrupted
but present in only some sources. For the generation of corrupted records we applied
a moderate corruption rate of 20%, i.e., most attribute values remained unchanged. The
datasets are available on our website6.

To generate the similarity graphs for the different datasets as the input of the clus-
tering schemes, we experimented with a large spectrum of blocking and match config-
urations. Table 4.2 lists the default configurations that resulted already in good match
quality even without clustering. All configurations apply standard blocking with dif-
ferent blocking keys. The match rules specify the conditions when a pair of entities is
considered a match. As shown in Table 4.2, we use different similarity functions (string
similarity functions or geographical distance) to compute attribute similarities and re-
quire the similarities to reach or exceed a minimal fixed or variable similarity threshold
θ.

4.4.2 MatcHality of clusteRing appRoacHes

CLIP quality: We first evaluate the cluster quality achieved with the new CLIP cluster-
ing scheme in comparison with six known clustering schemes for the three datasets. For
this purpose we assume that all entities in the determined clusters match with each other
and determine the precision, recall and F-measure compared to the matches of the per-
fect cluster result. Figure 4.4 shows the achieved results for these metrics and different

6https://dbs.uni-leipzig.de/de/research/projects/object_
matching/benchmark_datasets_for_entity_resolution

66

https://dbs.uni-leipzig.de/de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/de/research/projects/object_matching/benchmark_datasets_for_entity_resolution

4.4. EVALUATION

Precision Recall F-Measure
D

S-
G

Sheet1

Page 1

0.75 0.8 0.85 0.9
ConCom 0.07941 0.49942 0.83128 0.94106
CCPivot 0.85013 0.9331 0.9653 0.9818
Center 0.988 0.99053 0.99332 0.99552
MCenter 0.13271 0.58119 0.86527 0.95156
Star1 0.50236 0.72673 0.8798 0.95056
Star2 0.86681 0.92533 0.96251 0.97323
InputGraph 0.84089 0.91963 0.96395 0.98127
CLIP 0.99745 0.99696 0.99641 0.99702

Split 0.997908436 0.9978937515 0.9978453435 0.998911861
Split+Merge 0.9976798144 0.9976635514 0.9976122254 0.998927039

threshold edgNo pr rec fm
0.75 5097 0.84089 0.97609 0.90346
0.8 4616 0.91963 0.96675 0.9426
0.85 4272 0.96395 0.93783 0.95071
0.9 3577 0.98127 0.79936 0.88102

0.75 0.8 0.85 0.9
0.8

0.85

0.9

0.95

1

Threshold (θ)θ))

Sheet1

Page 1

0.75 0.8 0.85 0.9
ConCom 0.98133 0.97449 0.95263 0.8399
CCPivot 0.90216 0.93152 0.91731 0.7798
Center 0.86153 0.85468 0.82942 0.70861
MCenter 0.97848 0.9713 0.9435 0.80972
Star1 0.97802 0.97404 0.95263 0.83842
Star2 0.97745 0.96967 0.94124 0.80301
InputGraph 0.97609 0.96675 0.93783 0.79936
CLIP 0.97836 0.9713 0.94899 0.83762

Split 0.9779093601 0.9710772034 0.949214302 0.836255978
Split+Merge 0.9792757914 0.9724436347 0.9514916875 0.848098383

threshold edgNo pr rec fm
0.75 5097 0.84089 0.97609 0.90346
0.8 4616 0.91963 0.96675 0.9426
0.85 4272 0.96395 0.93783 0.95071
0.9 3577 0.98127 0.79936 0.88102

0.75 0.8 0.85 0.9
0.8

0.85

0.9

0.95

1

Threshold (θ)θ))

Sheet1

Page 1

0.75 0.8 0.85 0.9
ConCom 0.14693 0.66039 0.88783 0.88761
CCPivot 0.87526 0.9323 0.94069 0.86921
Center 0.92044 0.9176 0.904 0.82791
MCenter 0.23348 0.72588 0.90268 0.87493
Star1 0.66377 0.8324 0.91477 0.89097
Star2 0.91881 0.94698 0.95176 0.87996
InputGraph 0.90346 0.9426 0.95071 0.88102
CLIP 0.98781 0.98397 0.97212 0.9104

Split 0.9878076835 0.9843028624 0.9729225023 0.9103756043
Split+Merge 0.9883921388 0.9848921693 0.9740062944 0.917354354

threshold edgNo pr rec fm
0.75 5097 0.84089 0.97609 0.90346
0.8 4616 0.91963 0.96675 0.9426
0.85 4272 0.96395 0.93783 0.95071
0.9 3577 0.98127 0.79936 0.88102

0.75 0.8 0.85 0.9
0.8

0.85

0.9

0.95

1

Threshold (θ)θ))

D
S-

M

Sheet1

Page 1

0.35 0.4 0.45
ConCom 0.00268 0.10376 0.5256
CCPivot 0.72404 0.82121 0.88206
Center 0.7649 0.82278 0.87117
MCenter 0.00789 0.35679 0.65772
Star1 0.36609 0.55642 0.69243
Star2 0.57727 0.68125 0.76266
InputGraph 0.67094 0.7906 0.86113
CLIP 0.84801 0.90006 0.93925

Split 0.9340698759 0.9619301269 0.9758889853
Split+Merge 0.9350348028 0.9633081383 0.9755225304

threshold #Edge Precision Recall FM
0.35 18738 0.67094 0.77366 0.71865
0.4 14771 0.7906 0.71865 0.75291
0.45 12213 0.86113 0.6472 0.73899

0.35 0.4 0.45
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold (θ)θ))

Sheet1

Page 1

0.35 0.4 0.45
ConCom 0.82191 0.77015 0.70449
CCPivot 0.69594 0.66973 0.61404
Center 0.58062 0.54914 0.50692
MCenter 0.79154 0.73942 0.67418
Star1 0.80874 0.76092 0.69708
Star2 0.77625 0.72209 0.65215
InputGraph 0.77366 0.71865 0.6472
CLIP 0.79588 0.75538 0.69649

Split 0.8012307692 0.7556923077 0.6924307692
Split+Merge 0.8432 0.8078153846 0.7553846154

threshold #Edge Precision Recall FM
0.35 18738 0.67094 0.77366 0.71865
0.4 14771 0.7906 0.71865 0.75291
0.45 12213 0.86113 0.6472 0.73899

0.35 0.4 0.45
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold (θ)θ))

Sheet1

Page 1

0.35 0.4 0.45
ConCom 0.00534 0.18289 0.60204
CCPivot 0.70952 0.73761 0.72388
Center 0.66014 0.65867 0.64089
MCenter 0.01563 0.48133 0.66581
Star1 0.50402 0.6428 0.69474
Star2 0.66213 0.70108 0.70308
InputGraph 0.71865 0.75491 0.73899
CLIP 0.82112 0.8214 0.79986

Split 0.86257 0.8465 0.81008
Split+Merge 0.88675 0.87874 0.85145

threshold #Edge Precision Recall FM
0.35 18738 0.67094 0.77366 0.71865
0.4 14771 0.7906 0.71865 0.75291
0.45 12213 0.86113 0.6472 0.73899

0.35 0.4 0.45
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold (θ)θ))

D
S-

P2

Sheet1

Page 1

0.75 0.8 0.85
ConCom 0.06113 0.32244 0.51617
CCPivot 0.71028 0.74759 0.81147
Center 0.83424 0.85267 0.86927
MCenter 0.18795 0.46792 0.63862
Star1 0.60334 0.68374 0.74613
Star2 0.66698 0.71881 0.78319
InputGraph 0.69119 0.73551 0.80082
CLIP 0.86524 0.88344 0.89769

Split 0.847025244 0.852125322 0.8727707041
Split+Merge 0.8173001706 0.8209678726 0.8314202118

runId edgeNo pre re fm
0.75 19249904 0.69119 0.88726 0.77705
0.8 18048266 0.73551 0.88521 0.80345
0.85 16505850 0.80082 0.88145 0.8392

0.75 0.8 0.85
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold (θ)θ))

Sheet1

Page 1

0.75 0.8 0.85
ConCom 0.88 0.88 0.88
CCPivot 0.87 0.87 0.87
Center 0.87 0.87 0.87
MCenter 0.87 0.87 0.87
Star1 0.88 0.88 0.88
Star2 0.88 0.88 0.88
InputGraph 0.88726 0.88521 0.88145
CLIP 0.861 0.86098 0.85884

Split 0.830686145 0.8306486681 0.8386791574
Split+Merge 0.8802372477 0.8802204432 0.8890200056

runId edgeNo pre re fm
0.75 19249904 0.69119 0.88726 0.77705
0.8 18048266 0.73551 0.88521 0.80345
0.85 16505850 0.80082 0.88145 0.8392

phase1 g1 0.84782 0.87842 0.86285 1.47157
phase2 g1 0.89769 0.85884 0.87783 1.46014
phase1 g2 0.82616 0.88035 0.85239 1.4881
phase2 g2 0.88344 0.86098 0.87206 1.47587
phase1 g3 0.80529 0.88055 0.84124 1.50554
phase2 g3 0.86524 0.861 0.86312 1.49402

0.75 0.8 0.85
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold (θ)θ))

Sheet1

Page 1

0.75 0.8 0.85
ConCom 0.11443 0.47382 0.65365
CCPivot 0.78159 0.80342 0.83749
Center 0.8528 0.86228 0.86971
MCenter 0.30937 0.61254 0.74164
Star1 0.72004 0.77433 0.81191
Star2 0.76308 0.79585 0.83283
InputGraph 0.77705 0.80345 0.8392
CLIP 0.86312 0.87206 0.87783

Split 0.8387761317 0.841249946 0.8553853842
Split+Merge 0.847601997 0.8495622712 0.8592558973

runId edgeNo pre re fm
0.75 19249904 0.69119 0.88726 0.77705
0.8 18048266 0.73551 0.88521 0.80345
0.85 16505850 0.80082 0.88145 0.8392

phase1 g1 0.84782 0.87842 0.86285 1.47157
phase2 g1 0.89769 0.85884 0.87783 1.46014
phase1 g2 0.82616 0.88035 0.85239 1.4881
phase2 g2 0.88344 0.86098 0.87206 1.47587
phase1 g3 0.80529 0.88055 0.84124 1.50554
phase2 g3 0.86524 0.861 0.86312 1.49402

0.75 0.8 0.85
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold (θ)θ))

Sheet1

Page 1

0.75 0.8 0.85
InputGraph 0.77705 0.80345 0.8392
ConCom 0.11443 0.47382 0.65365
CCPivot 0.78159 0.80342 0.83749
Center 0.8528 0.86228 0.86971
MergeCenter 0.30937 0.61254 0.74164
Star1 0.72004 0.77433 0.81191
Star2 0.76308 0.79585 0.83283
CLIP 0.86312 0.87206 0.87783

Split 0.8387761317 0.841249946 0.8553853842
Split+Merge 0.847601997 0.8495622712 0.8592558973

runId edgeNo pre re fm
0.75 19249904 0.69119 0.88726 0.77705
0.8 18048266 0.73551 0.88521 0.80345

0.85 16505850 0.80082 0.88145 0.8392

phase1 g1 0.84782 0.87842 0.86285 1.47157
phase2 g1 0.89769 0.85884 0.87783 1.46014
phase1 g2 0.82616 0.88035 0.85239 1.4881
phase2 g2 0.88344 0.86098 0.87206 1.47587
phase1 g3 0.80529 0.88055 0.84124 1.50554
phase2 g3 0.86524 0.861 0.86312 1.49402

0.75 0.8 0.85

0 .5

0 .5 5

0 .6

0 .6 5

0 .7

0 .7 5

0 .8

0 .8 5

0 .9

0 .9 5

1

InputGraph ConCom CCPivot Center MergeCenter Star1 Star2 CLIP

Threshold (θ)θ))

Figure 4.4: Cluster quality of CLIP vs other clustering approaches

similarity thresholds θ for the seven clustering schemes (CLIP, Connected Components,
CCPivot, Center, MergeCenter, Star-1, Star-2) as well as for the similarity graph used as
input to the clustering schemes (although this graph has only links but no clusters). The
results for the six previous approaches correspond to those reported in [158].

We observe that CLIP achieves an excellent quality result and outperforms all previ-
ous algorithms in terms of precision and F-measure for all three datasets. Recall is com-
parable to the best approaches and only slightly worse compared to approaches such
as Connected Components achieving the best possible recall (albeit at the expense of
the poorest precision). A closer inspection of the CLIP behavior showed that its good
recall is already achieved by determining the connected components for finding com-
plete clusters and source-consistent clusters involving only strong and normal links. By

67

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

contrast, the CLIP iterations to split source-inconsistent components into several source-
consistent clusters is primarily helpful to improve precision. The excellent precision of
CLIP, even for lower similarity thresholds, is further due to the ignorance of weak links.
This behavior is especially helpful for the relatively dirty dataset DS-M where we had
to use very low similarity thresholds to achieve a sufficient recall. CLIP here achieves a
F-Measure of 82% compared to only 65-75% for the other clustering schemes. Interest-
ingly, the previous clustering schemes had even problems to outperform the link quality
of the similarity graph due to wrong clustering decisions while CLIP achieves clear im-
provements compared to the similarity graphs by correctly clustering matching entities
and removing wrong links between non-matching entities.

We additionally compared the CLIP quality with SplitMerge algorithm. The Split-
Merge approach [120, 121] is a multi-source clustering algorithm that cluster entities
in two phases of splitting and merging. It needs extra linking configuration parameters
such as blocking configuration and similarity function for computing additional links be-
tween entities and similarity thresholds for the split and merge phases. The SplitMerge
approach consists of three main phases: (1) determining initial clusters by applying con-
nected components and making the components source-consistent, (2) splitting clusters
to ensure a high intra-cluster similarity and (3) merging similar clusters.

In Figure 4.5, we compare the obtained precision, recall and F-Measure results for CLIP
and SplitMerge algorithms as well as the results for a SplitMerge variation called Split
that leaves out the merge phase for faster processing. We experimented SplitMerge with
different values for the split and merge thresholds and we found that the split threshold
should be chosen lower than the similarity threshold θ so that clusters are only split
when there are links with a low similarity. By contrast, the merge threshold should be
higher than θ so that only very similar clusters should be merged. The shown results
refer to a fixed setting per dataset, e.g., a split threshold of 0.4 and a merge threshold of
0.8 for DS-G.

The recall of SplitMerge is always better than the recall of Split because it is based on
connected components and the final merge phase helps to find additional links. A closer
inspection of the CLIP behavior showed that its good recall is already achieved by deter-
mining the connected components for finding complete clusters and source-consistent
clusters involving only strong and normal links. Comparing Split and SplitMerge, Split-
Merge always achieves a slightly better F-Measure because its merge phase leads to a
better recall than for Split that more than outweighs a somewhat reduced precision. For
DS-M, Split and SplitMerge are better than CLIP due to the higher precision and recall
while CLIP outperforms SplitMerge for DS-P due to a better precision.

68

4.4. EVALUATION

Precision Recall F-Measure
D

S-
G

0.75 0.8 0.85 0.9

0.8

0.85

0.9

0.95

1

Threshold (θ)

0.75 0.8 0.85 0.9

0.8

0.85

0.9

0.95

1

Threshold (θ)

0.75 0.8 0.85 0.9

0.8

0.85

0.9

0.95

1

Threshold (θ)

D
S-

M

0.35 0.4 0.45

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold (θ)

0.35 0.4 0.45

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold (θ)

0.35 0.4 0.45

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold (θ)

D
S-

P2

0.75 0.8 0.85

InputGraph 0.69119 0.73551 0.80082

CLIP 0.86524 0.88344 0.89769

Split 0.847025244 0.852125322 0.8727707041

Split+Merge 0.8173001706 0.8209678726 0.8314202118

runId edgeNo pre re fm

0.75 19249904 0.69119 0.88726

0.8 18048266 0.73551 0.88521

0.85 16505850 0.80082 0.88145

0.75 0.8 0.85

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold (θ)

0.75 0.8 0.85

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold (θ)

0.75 0.8 0.85

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold (θ)

InputGraph CLIP Split Split+Merge

Figure 4.5: Cluster quality of CLIP vs Split/SplitMerge

DS-G DS-M DS-P2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6: Average F-Measure results with range between minimal and maximal values

69

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

These observations are confirmed by Figure 4.6 showing the average F-Measure results
of the clustering schemes over all threshold configurations. The vertical lines show the
F-Measure spread between the minimal and maximal value for the different threshold
values used to determine the input similarity graphs. We again observe the low and
highly variable match quality of connected components and MergeCenter. By contrast,
the remaining algorithms including the top-performing SplitMerge and CLIP algorithms
are more robust and achieve much better F-Measure values. CLIP is similarly effective as
Split and SplitMerge but it is easier to configure since it does not require the specification
of additional similarity thresholds for splitting and merging.

RLIP quality: We now study the cluster quality achieved with the proposed repair
approach RLIP when applied to the cluster results of the six previous clustering schemes.
Figure 4.7 summarizes the achieved F-Measure results (averages over all considered val-
ues for similarity threshold θ) for the three datasets with the original clustering schemes
only (blue bars on the left) and with additionally applying RLIP (red bars on the right).
On the right we also show the average F-measure results for CLIP. We observe that RLIP
can improve F-measure for all algorithms indicating an excellent effectiveness of the
proposed cluster repair. The biggest improvements are achieved for the two poorest per-
forming clustering schemes, Connected Component and MergeCenter, that both achieve
a high recall but low precision. Here the CLIP component of RLIP achieves a substantial
improvement in precision; the already high recall of the input enables that the repaired

DS-G DS-M

DS-P2

Figure 4.7: Cluster quality without and with repair using RLIP

70

4.4. EVALUATION

results for ConnectedComponent and MergeCenter are among the best overall. In fact,
the repaired results for ConnectedComponent are essentially identical to the CLIP re-
sults. Overlap resolution is only applied to the results of Star-1 and Star-2 and helps to
also achieve very good quality for their repaired clusters. The clusters determined with
CCPivot and Center can be improved to a lesser degree since these algorithms remove
already many links thus hurting recall. The only exception is DS-P for which all clus-
tering schemes achieve a similarly high recall so that the repaired results after applying
RLIP are also close together for all algorithms.

4.4.3 Runtimes and speedup

We determine the runtimes of the clustering algorithms on a shared nothing cluster with
16 worker nodes. Each worker consists of an E5-2430 6(12) 2.5 Ghz CPU, 48 GB RAM,
two 4 TB SATA disks and runs openSUSE 13.2. The nodes are connected via 1 Gigabit
Ethernet. Our evaluation is based on Hadoop 2.6.0 and Flink 1.1.2. We run Apache Flink
standalone with 6 threads and 40 GB memory per worker. In our experiments, we vary
the number of workers by setting the parallelism parameter to the respective number
of threads (e.g., 4 workers correspond to 24 threads). The runtime of all algorithms is
measured for the largest dataset DS-P with 5 and 10 parties applying the configuration
from Table 4.2 with θ = 0.80. The DS-P input data size is thus doubled for 10 parties
compared to 5 parties. We only evaluate the runtimes for the clustering algorithms since
the time to determine the similarity graphs is the same for all clustering approaches.
Some clustering approaches could not be executed for 1 or 2 workers only due to high
memory requirements. We thus evaluate the runtimes for configurations between 4 and
16 workers.

Table 4.3: Runtimes for clustering schemes (seconds)

dataset DS-P1 DS-P2
#workers 4 8 16 4 8 16
ConCom 51 57 55 101 79 79
CCPivot 1530 1008 688 - - 1303
Center 390 208 117 1986 864 423
MergeCenter 640 349 194 3767 1592 695
Star-1 288 149 85 783 367 197
Star-2 214 124 67 720 317 173
Split 255 145 86 873 445 278
SplitMerge 1754 1423 1168 4792 3618 2819
CLIP 190 101 69 674 351 228

71

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

4 Center 390.75

4MCenter 640.75

4 Star1 288.5

4 Star2 214.25

16 CLIP 69.6

8 CLIP 101.2

4 CLIP 190.5

4 8

Split 255 145

SplitMerge 1754 1423

4 8 16

1

2

4

Linear

ConCom

CCPiv

Center

MergeCenter

Star1

Star2

Split

SplitMerge

CLIP

No. of Workers

S
p

e
e

d
 u

p

(a) DS-P1

lgorithm

onCom

CPivot

enter

MCenter

tar1

tar2

onCom

CPivot

enter

MCenter

tar1

tar2 Linear

onCom ConCom

CPivot CCPiv

enter Center

MCenter MergeCente

tar1 Star1

tar2 Star2

Split

plit 278 SplitMerge

plit 445 CLIP

plit 873

plitMerge 2819

4 8 16

1

2

4

Linear

ConCom

CCPiv

Center

MergeCenter

Star1

Star2

Split

SplitMerge

CLIP

No. of Workers

S
p

e
e

d
 u

p

(b) DS-P2

Figure 4.8: Speedup

Table 4.3 shows the measured runtimes for the two DS-P datasets. The increased
dataset size for 10 parties leads to higher runtimes for all algorithms although to dif-
ferent degrees. As expected, the fastest runtimes are achieved by the simple connected
components approach. By contrast, CCPivot and SplitMerge have the worst runtimes
due to large memory requirements and a high message overhead for iterative process-
ing. CCPivot even suffered from out-of-memory errors and could only be executed for
16 workers for the bigger dataset (10 parties).

The Split approach is much faster than SplitMerge and among the fastest of all al-
gorithms. This shows that the final merge phase is the main performance bottleneck
of SplitMerge since it requires the similarity computation for a large number of cluster
pairs and an expensive iterative merge processing. CLIP is even faster than Split and
thus among the fastest algorithms.

Except for connected components, all algorithms can reduce their runtimes by apply-
ing more workers, especially for the larger dataset with 10 parties. Figure 4.8 shows the
resulting speedup values. For DS-P with 5 parties, most algorithms except the iterative
CCPivot and SplitMerge approaches achieve an almost linear speedup. By contrast, the
high-quality approaches Split and CLIP scale well for this dataset.

For the bigger dataset with 10 parties, speedup values are mostly even better and partly
super-linear. The latter, however, is an artifact for the slower algorithms like Merge
Center that perform poorly for 4 workers because of memory bottlenecks (its runtime
for 4 workers is almost 6 times higher for 10 parties than for 5 parties). The substantially
increased aggregate memory capacity for 8 and 16 workers thus enabled super-linear
runtime improvements but without reaching the absolute runtimes of fast algorithms

72

4.5. CASE STUDY

like Star-2. Again, SplitMerge scales poorly due to the overly expensive merge phase
while Split and CLIP achieve both low absolute runtimes and good speedup.

The high runtimes for SplitMerge (and CCPivot) are heavily influenced by the under-
lying Flink and Gelly systems and its approaches for iterative processing leading to high
memory and communication overhead.

4.5 Case Study

We outline the use of the tool FAMER to address the schema and entity matching tasks for
the DI2KG 2019 challenge7. We have shown that the FAMER tool could reasonably well
solve the entity resolution task of the challenging 2019 DI2KG dataset. While there is still
room for improvement, our approach determined matches that helped the conference
organizers to enhance the golden truth (which thus may be more a silver truth). We
could also provide a reasonable solution for (simplified) property matching, but more
effort is necessary to achieve a full-fledged solution.

4.5.1 TasK Definition

The challenge comprised of three main tasks:

• Entity Resolution

• Schema Alignment

• Knowledge Graph Augmentation

Each task required participants to build a knowledge graph consisting of a set of pre-
defined entities and properties. Participants were provided with a set of selected HTML
pages regarding products from a variety of sources, each page correlated with a JSON
file containing the result of an automated process of specifications extraction. The JSON
files consist of a series of key and value pairs extracted from the associated HTML page
as depicted in Listing 4.1.

Participants were also provided with a set of records from the manually built ground
truth in order to have the possibility of training models. The ground truth was parti-
tioned in two parts. One part was available in the download for training or testing by
the users. The second part was going to be used by the challenge organizers for evaluat-
ing submitted solutions and was not disclosed to participants.

7http://di2kg.inf.uniroma3.it/2019/#challenge

73

http://di2kg.inf.uniroma3.it/2019/#challenge

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

Listing 4.1: A json file example
1 {
2 "<page title>": "Nikon Coolpix S3600 Digital Camera - Silver (VNA550AA) | Camerafarm

Australia",
3 "battery batteries": "Rechargeable Li-ion Battery EN-EL19",
4 "brand": "Nikon Web Site",
5 "charging time": "2 hours and 50 minutes (when using Charging AC Adapter EH-70P and

when no charge remains) (Approx.)",
6 "date added": "28/4/2014",
7 "exposure compensation": "2 EV in steps of 1/3",
8 "exposure control": "Programmed auto exposure Exposure compensation (-2.0 to +2.0 EV

in steps of 1/3 EV)",
9 "exposure metering": "Matrix Center-weighted (digital zoom less than 2x) Spot (

digital zoom 2X or more)",
10 "exposure modes": "Auto Scene Scene Auto Selector Smart Portrait",
11 "incamera image editing": "Copy Crop D-Lighting Filter Effects Glamour Retouch

Print Order Protect Quick Retouch Red eye correction Rotate Image Slide Show
Small Picture Voice Memo",

12 "manuf no": "VNA550AA",
13 "our price": "122.05",
14 "part no": "316972",
15 "rating": "Not Rated",
16 "rrp": "$149.00",
17 "ship weight": "2 KG\nDetails",
18 "usually ships": "1-3 Days\nMore info",
19 "you save": "$26.95",
20 "power sources": "One Rechargeable Li-ion Battery EN-EL19 (supplied) AC Adapter EH-6

2G (available separately)"
21 }

4.5.2 PRepaRation

In this section the preparation steps including the schema matching part done by my
colleague Daniel Obraczka is explained.

To illustrate the data quality problems in the given dataset of the DI2KG challenge, we
show in Table 4.4 two matching Nikon camera products from different sources. We ob-
served significant differences in the set of properties and property values. For example,
the first entity owns the property features while the second camera does neither con-
tain this property nor the corresponding value (Slimline). This may happen even among
entities of the same source. Moreover, the same property values are not represented
similarly in different entities. For example, in the first camera the property camera reso-
lution with the value 16 Megapixels is represented as ”approx resolution”: ”16MP” for the
second camera. Altogether, the challenge includes 24 sources with vastly heterogenu-
ous schemas. For example, the source ”www.ebay.com” has over 2000 properties some of
which are likely duplicate properties such as ”maximum shutter speed” and ”max shutter
speed”.

FAMER currently expects to be provided with already matched properties for entity
resolution. For the DI2KG challenge, we therefore need to first align the properties
before we can apply our entity resolution approach. To this end, prior to performing the

74

4.5. CASE STUDY

Table 4.4: Example raw data

property value
”35mm equivalent” ”25-300mm”

”<page title>”
”Nikon Coolpix S6800 Digital
Camera (Black) | UK Digital
Cameras”

”brand” ”Nikon”
”camera resolution” ”16 Megapixels”
”colour” ”Black”
”features” ”Slimline”
”hd video” ”Full HD (1080P)”
”lcd size” ”3.0””
”lens tele mm” ”300”
”lens wide mm” ”25”
”mpn” ”VNA520E1”
”optical zoom” ”23”
”optical zoom range” ”18x and higher”

”<page title>”
”Nikon Coolpix S6800 Price in
India with Offers, Reviews & Full
Specifications | PriceDekho.com”

”color” ”Black”

”amazon” ”Infibeam Ebay Homeshop18
Snapdeal Flipkart”

”digital zoom” ”4x”

”bangalore” ”Hyderabad Chennai Mumbai
Delhi Pune”

”approx resolution” ”16 MP”
”external memory” ”Yes”
”face detection” ”NA”
”gps” ”NA”
”hdmi” ”NA”
”maximum shutter speed” ”1/2000 sec”
”metering” ”NA”
”minimum shutter speed” ”1 sec”
”optical zoom” ”18x”
”screen size” ”3 Inches”
”usb” ”Yes”
”video display resolution” ”NA”
”wifi” ”Yes; Wi-Fi 802.11 b/g/n”

entity matching, an incremental schema matching was performed. The schema matching
initially starts with preprocessing on the input dataset to derive some statistics and to
perform data cleaning steps. In particular, both entity and schema matching are focused
on the most frequent properties since infrequent properties are unlikely to be present
for all matching pairs of entities so that their use is of limited value. For example, the
property energy consumption per year only occurs in one entity in the entire dataset and
will therefore most likely not have a corresponding property in other sources and is
thus useless for entity resolution. Therefore, for each source the k (≤ 10) most frequent
properties are determined.

Moreover data cleaning is performed to harmonize property values to make similar-
ity computations more meaningful. For example, different units are used for weight in
different sources. Comparing values in ounces with values in grams would lead to a
poor similarity value and we therefore transform both into the same unit. Further data

75

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

cleaning procedures are performed, such as lowercasing strings and using canonical ab-
breviations.

The incremental property matching aims at calculating a combined similarity between
properties of a new source and already considered properties of previous sources of
the same category. The similarity between two properties is based on the similarity of
property names and the aggregated similarity of all property values. The property values
are derived from all relevant matches for the considered sources from the training data.

The calculated similarities are used to build and update a similarity graph consisting
of the properties as vertices and the similarities as edges. This graph is given to FAMER’s
Clustering module to determine new property clusters. This is iteratively done until no
more sources are left to integrate. The resulting property clusters can now be used in
the entity resolution step by fusing all members of a cluster to a new property.

4.5.3 Entity MatcHing

FAMER assumes the knowledge of matching properties for both blocking and pair-wise
linking. We therefore use the schema matching result and data cleaning for the most
frequent properties to harmonize the entities before entity resolution. Table 4.5 indi-
cates the improved data of Table 4.4 after preprocessing and property alignment. As
illustrated we consider only a subset of the properties and both the property names and
some property values have been harmonized.

FAMER provides many options to perform entity resolution for the prepared dataset
and we aim at a comparative evaluation of several configurations. In particular, we can
apply a batch-like (static) matching and clustering for all (24) sources at once or we can
apply an incremental approach that iteratively adds and matches one source after the
other. We decided to compare a batch-like approach, which we will denote as 1step,
and an alternative approach dubbed 2step, in which we first deduplicate each source

Table 4.5: Example data after preprocessing and property alignment

property value
page title nikon coolpix s6800 digital black
manufacturer nikon
resolution 16 mp
color black
optical zoom 18x
screen size 3.0 inch
page title nikon coolpix s6800
resolution 16 mp
color black
optical zoom 18x
digital zoom 4x
screen size 3.0 inch

76

4.5. CASE STUDY

independently, fuse duplicate entities and then perform matching and clustering on the
deduplicated sources.

In both cases blocking is done on the manufacturer property that is needed for a suf-
ficiently low runtime. The camera products lacking the value of manufacturer form a
special block and are matched with all other entities.

The most promising linking configuration used the following weighted similarity:

sim(e1, e2) = ω1 ∗ productSim(e1, e2) + ω2 ∗ JaroWinkler(e1, e2),

where ωi are weights. The similarity productSim is 0 or 1 depending on whether the
product codes of the entities e1 and e2 match. The product codes are extracted from the
page title attribute. Finally, JaroWinkler is the JaroWinkler similarity performed on
the concatenation of all respective properties of the entities except the page title.

The third approach we submitted utilized machine learning. We used the provided
training data as input to Magellan’s [92] XGBoost [24] implementation. As before we
used the first 2 letters of manufacturers. Negative training examples were created by
taking the most dissimilar entities in a block. Since Magellan is only able to perform
pairwise matching we ran this approach for all possible data source pairs, where training
data was available. The trained classifiers were then used to classify unseen entity pairs
and the resulting classifier probabilities were used to create a similarity graph of all
sources. Finally, FAMER’s Clustering module was used on this similarity graph.

4.5.4 Results

In this section we will describe the performance of our approaches on the tasks schema
matching and entity matching of the DI2KG challenge 2019. We present the evaluation
of our results at the time of our submission, as well as the results obtained from the
workshop organizers. Unfortunately, we could not directly use the ground truth for a
comprehensive evaluation but had to rely on the results determined by the workshop
organizers.

As described in Section 4.5.3, we submitted results of three different entity resolution
approaches. While we initially also wished to employ word embeddings in these meth-
ods, in initial tests this technique did not prove as promising for the given dataset. The
first two approaches consist of manually created configurations of our system, while
the third utilized machine learning. For the weighted similarity, used in the first two ap-
proaches, the best weights were determined to be ω1 = 0.6 and ω2 = 0.4. The results are
presented in Table 4.6. Before submission we created a test dataset to avoid only evalu-

77

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

Table 4.6: Performance of ER approaches on training data and ground truth

Measure Training data Ground truth
1step 2step ML(train) ML(test) 1step 2step ML

F-Measure 0.91 0.88 0.59 0.60 0.64 0.56 0.002
Precision 0.99 0.98 0.77 0.77 0.78 0.59 0.06

Recall 0.84 0.79 0.48 0.50 0.54 0.54 0.001

ating the machine learning approach on the data we trained on. To obtain this test data,
the entities with the most similar page titles in a block where regarded as true matches,
and the most dissimilar entities where regarded as non-matches. At the time of submis-
sion we already observed that our manually created configurations were superior to the
machine learning approach. We attribute this to the low number of training examples
(especially per source-pair). The conference organizers informed us that our first two
approaches enabled them to augment their ground truth with roughly 800 new entities
that were previously not identified as matching indicating that the considered ground
truth is not yet in a perfect state. We can see a huge difference between the performance
on the training data set and the larger ground truth. This might indicate that the train-
ing data generally contains simpler examples, or our methods overfit to the training data.
The bad performance of the machine learning approach on the whole ground truth is not
explainable at this point and might be due to some error. Unfortunately, a more detailed
analysis of this issue was not yet possible due to the unavailability of the ground truth
for us.

Our 1step method outperformed the 2step method. We assume, deduplicating each
source and fusing detected duplicate entities in one entity, may create false links in the
2nd step between the wrongly fused entities and other entities from other sources ex-
plaining the relatively low precision for the ground truth (Table 4.6). The more detailed
comparison of 1-step vs. 2-step approaches is another topic for future study.

4.6 Related WoRKs

Most previous ER algorithms try to find matches either in a single source or between
two sources only. For a single source, matching entities are typically grouped within
disjoint clusters such that any two entities in a cluster should match with each other
and no entity should match with entities of other clusters. For two sources, the match
result is mostly a binary mapping consisting of pairs of matching entities (also called
match correspondences or links). Binary match mappings may be postprocessed to de-
termine clusters of matching entities, e.g., by calculating the transitive closure of the

78

4.7. CONCLUSION

correspondences (connected components) in the simplest case. In FAMER, we extend
this approach to more than two sources by first determining a similarity graph with bi-
nary match links between entities and then determining clusters of matching entities
within the similarity graph. A similar use of similarity graphs has been considered in
[144].

Hassanzadeh and colleagues [68] comparatively evaluated several clustering methods
for single-source ER. The FAMER tool includes distributed versions for a subset of the
best algorithms from [68] and supports their use for clustering entities from multiple
sources. While the problem of cluster overlaps was already observed in [68], consider-
ing multiple sources also leads to the problem of source-inconsistent clusters that we
addressed in this chapter. Clustering entities from multiple sources of course leads to
increased difficulties to achieve high performance and effectiveness compared to con-
sidering only one or two data sources. We aimed at supporting scalability and effi-
ciency by applying both blocking and parallel processing. Furthermore, we proposed
advanced clustering methods that avoided the problems of previous clustering schemes
and achieved a better match and cluster quality. We are not aware of other tools sup-
porting a parallel entity clustering for multiple sources.

Repair was already studied in pairwise ontology matching, e.g., to ensure that map-
pings only contain 1:1 matches or to correct other mapping-induced inconsistencies [21,
145]. However, repair for multiple source mappings was not covered. For entity reso-
lution, [173] and [127] already investigated repair techniques mainly by exploiting the
transitive closure of matches to add or remove match links. The repair of entity clus-
ters proposed in [173] depends on manual user feedback which is difficult to provide for
large datasets. Ngonga et. al. are not concerned with entity clusters but focus on finding
missing/wrong links and also try to repair entities replicated in different sources [127].
By contrast, CLIP and RLIP avoid/repair overlapping and source-inconsistent clusters in
multi-source entity resolution utilizing different link features. Moreover, CLIP and RLIP
are implemented as parallel algorithms on Apache Flink to allow for large-scale entity
resolution.

4.7 Conclusion

This chapter proposed a new method called CLIP to cluster matching entities from mul-
tiple sources as well as a repair method called RLIP to improve entity clusters deter-
mined by other clustering schemes. The approaches avoided or resolved overlapping
and source-inconsistent clusters and utilized several features of similarity links in a new

79

CHAPTER 4. MULTI-SOURCE CLEAN CLUSTERING

way, in particular the link strength. Our evaluation for three datasets showed that the
new approaches achieve excellent cluster quality and outperform previous clustering
schemes to a large degree. The RLIP repair approach could improve the quality for
all considered clustering schemes and achieved comparable quality than applying CLIP
alone. The parallel implementations for CLIP and RLIP achieved good speedup values
thereby supporting scalability to larger datasets.

SplitMerge with numerous trial and error experiments for finding the best threshold
could compete and even be superior than CLIP. The output quality of SplitMerge is highly
dependent on the input linking configurations and the runtime and scalability are not
convincing.

80

5
Multi-source Clean/Dirty Clustering

The subsequent chapter is based on [38, 101, 102, 156]. Previous approaches for match-
ing and clustering entities between multiple (> 2) sources either treated the different
sources as a single source or assumed that the individual sources are duplicate-free, so
that only matches between sources have to be found. This chapter proposes and evalu-
ates a general Multi-Source Clean Dirty (MSCD) scheme with an arbitrary combination
of clean (duplicate-free) and dirty sources. For this purpose, we extend a constraint-
based clustering algorithm called Affinity Propagation (AP) as well as the Hierarchi-
cal Cluster Analysis (HCA) for entity clustering with clean and dirty sources (MSCD-
AP/MSCD-HAC). We also consider parallel solutions of them for improved scalability.
Our evaluation considers a full range of datasets containing 0% to 100% of clean sources.
We compare our proposed algorithms with other clustering schemes of FAMER in terms
of both match quality and runtime. The proposed algorithms outperform previous meth-
ods and achieve an excellent precision in MSCD scenarios. The MSCD clustering concept
was presented on the BTW conference in 2021 and published in the corresponding pro-
ceeding.

5.1 Motivation

As described in Chapter 4, most previous ER approaches focus on finding matches in
either a single source or between two sources. Multi-source ER aims at finding matching
entities in an arbitrary number of sources which is more challenging than dealing with 1-

81

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

2 sources since not only the degree of heterogeneity but also the variance in data quality
generally increases with the number of sources.

In Chapter 4, the clustering approaches for clustering matches in a single source and
clean multi-source are investigated. In this chapter, we investigate a so-called Multi-
Source Clean Dirty (MSCD) entity clustering approach that is able to utilize clean sources
but can also deal with dirty sources so that only a fraction (possibly 0%) of the sources
have to be clean. The goal is to achieve better match quality than with a general cluster-
ing scheme when there are clean sources while avoiding the limitation of requiring that
all sources have to be clean. While one could first deduplicate dirty sources and then ap-
plying a clustering for clean sources, the effort to determine these source-specific dedu-
plication approaches is immense and perhaps not completely successful1. Consequently,
it is much more flexible to support a mix of both dirty and clean sources. For this pur-
pose, we propose extensions to the Affinity Propagation (AP) clustering approach [53]
that converts the problem of clustering into a constraint optimization problem. Our ex-
tension MSCD-AP adds a new constraint to deal with clean sources. We also consider a
hierarchical variation of MSCD-AP for improved scalability. In addition, we investigate
the use of Hierarchical Agglomerative Clustering (HAC) for MSCD entity clustering. The
provided parallel implementations of all methods are based on Apache Flink.

This chapter makes the following contributions:

• Consideration of a mix of clean and dirty sources for multi-source entity resolu-
tion.

• Proposal of an extended version of Affinity Propagation clustering, MSCD-AP, for
clustering entities of a mix of clean and dirty sources.

• Proposal of hierarchical variation of MSCD-AP for improved scalability and pro-
viding parallel implementations for the clustering schemes based on Apache Flink.

• Proposal of MSCD-HAC algorithm for multi-source entity clustering with a com-
bination of clean and dirty sources. The clusters to merge in the next iteration can
be selected based on the maximal, minimal, or average similarity of their cluster
members. The approach utilizes the clustering constraint for clean sources and
can optionally ignore so-called weak links in the similarity graph for improved
quality and runtime.

• Proposal of parallel MSCD-HAC to support scalability.
1We experimented with such an approach for a data integration challenge [131] but it performed

worse than with matching dirty sources (see Section 4.5)

82

5.2. AFFINITY PROPAGATION FOR MULTI-SOURCE CLEAN/DIRTY DATASETS

• Comprehensive evaluation of match quality, runtimes and scalability of the new
approaches for different datasets and comparison with previous clustering schemes.

Section 5.2 initially gives a brief summary of the standard AP algorithm and presents
the new methods in detail. Section 5.3 elaborates on hierarchical cluster analysis and its
newly introduced usage for multi-source clustering. Finally, Section 5.4 shows the eval-
uation results. We discuss the related work in Section 5.5 and conclude in Section 5.6.

5.2 Affinity PRopagation foR Multi-souRce
Clean/DiRty Datasets

In this section we briefly explain the standard Affinity Propagation algorithm [53] and
then present the Multi-Source clean/Dirty Affinity Propagation (MSCD-AP) and its scal-
able version in detail.

5.2.1 Affinity PRopagation

The Affinity Propagation clustering algorithm [53] groups entities by identifying so-
called exemplars. An exemplar is the entity that best represents all the entities of a
cluster. The non-exemplar entities are assigned to the most appropriate exemplar. The
goal of AP is to find exemplars and cluster assignments in a way that the sum of sim-
ilarities inside clusters are maximized. In [63], AP is solved by the iterative max-sum
algorithm on a factor graph. The factor graph is a bipartite graph between the exemplar
assignments (variable nodes) and so-called factor nodes representing two constraints,
called the g- and h-constraints.

Figure 5.12 illustrates such a factor graph for AP. Variable nodes and factor nodes are
represented as circles and rectangles respectively. For clustering n entities, the factor
graph is represented by a n2 binary matrix B. The variable bij has the value 1 if the data-
point (entity) j is the exemplar of i. The factor nodes gi and hj assure a valid clustering by
applying the constraints. The g-constraint enforces that a datapoint has to have exactly
one exemplar. It means in each row of the binary matrix there must be exactly one vari-
able with value 1. The h-constraint assures that a datapoint selects itself as its exemplar,
if it is already chosen as exemplar by at least one other datapoint. It means, if there exists
at least one 1 in a column of the binary matrix, then the diagonal element bjj of that col-
umn must be set to 1 too. The cluster assignments are based on the similarity between

2The figure is from the paper ”Extended Affinity Propagation: Global Discovery and Local Insights”
(arxiv: 1803.04459)

83

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

Figure 5.1: Factor graph of AP

(a) AP clustering example (b) Binary matrix (c) Oscillation

Figure 5.2: Affinity Propagation concepts

entities so that similarity values are also represented as factor nodes (factor node Sij

provides the similarity information between entities i and j). Figure 5.2a illustrates an
example clustering of AP where five entities 0-4 from three (differently colored) sources
X , Y and Z are grouped in three clusters. The corresponding output binary matrix in
Figure 5.2b shows that entities 0, 1 and 3 are the exemplars of the three clusters. As de-
scribed above, the rows of the binary matrix illustrate the exemplar (cluster) assignment
while the columns depict the clusters. The group of 1 values in column j represents the
entities of the cluster with exemplar j.

AP aims at finding a cluster assignment maximizing the sum of similarities within
clusters. This optimization problem can be formulated with the energy function shown
in Eq. (5.1). Maximizing Eq. (5.1) requires to find an optimal configuration of the vari-
ables in B so that the sum of the similarities between entities and their exemplars is
maximized and the two constraints are met. An exact maximization of the energy func-

84

5.2. AFFINITY PROPAGATION FOR MULTI-SOURCE CLEAN/DIRTY DATASETS

tion is computationally intractable because a special case of this maximization problem
is the NP-hard k-median problem [53].

E(B) =
∑
ij

sijbij +
∑

i

gi(B(i, :)) +
∑

j

hj(B(:, j)) (5.1)

with

gi(B(i, :)) =


0 if

∑
j

bij = 1

−∞ otherwise
hj(B(:, j)) =


0 if bjj = max

i
bij

−∞ otherwise

The proposed iterative max-sum algorithm uses several parameters that affect the
clustering result and that deal with the problem of non-convergence. The most impor-
tant parameter is called preference. It defines the self-similarity Sii of an entity i. The
higher the preference value is chosen the more likely the entity becomes an exemplar.
Parameters to deal with non-convergence are the noise level and the damping factor λ.
AP suffers from oscillation between solutions that are similarly well suited for optimiz-
ing the energy function. For the similarity matrix in the top portion of Figure 5.2c, the
symmetrical similarity values between entities 0 and 1 make both equally well suited as
an exemplar. In such a situation, AP does not converge and oscillates between the two
solutions with either entity 0 or 1 as the exemplar as shown in the bottom part of Fig-
ure 5.2c. Oscillation is avoided by adding a tiny amount of noise to the similarity values.
The damping factor has a similar goal and is related to the used message passing imple-
mentation for the iterative computation and leads to an adaptation of values exchanged
between iterations. If oscillations nevertheless occur, the noise or the damping factor
must be adapted (see next section).

5.2.2 MSCD Affinity PRopagation

For clustering mixed datasets of clean and dirty sources, we propose an extension to AP
called MSCD-AP. Since clean sources have no duplicates every cluster should have at
most one entity of a clean source. This is now controlled by an additional clean-source
consistency constraint. It means that in each column of the binary assignment matrix B,
value 1 is only allowed for at most one (row) entity of a clean source. Figure 5.3a shows
a possible clustering of MSCD-AP for the running example when sources X and Y are
clean. There are four source-consistent clusters with at most one entity per clean source.
In the corresponding binary matrix, each column has at most one entity with value 1 per

85

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

(a)MSCD-AP clustering example (b) Messages of the MSCD-AP
factor graph

Figure 5.3: MSCD-AP concepts

clean source. For example, the column (cluster) for exemplar entity 1 has two associated
entities (1 and 2) from different sources.

Our proposed clean-source consistency constraint is expressed in Eq. (5.2). It uses a
function t to assign penalty 0 if the constraint is obeyed and a large penalty otherwise.
The constraint requires that for a column j the value 1 is allowed for at most one data-
point from a clean source Q. The t function is used in an extended energy function as
listed in Eq. (5.3).

tQj(B(i ∈ Q, j) =


0 if

∑
i ∈ Q

bij ≤ 1

−∞ otherwise
(5.2)

E(B) =
∑
ij

sijbij +
∑

i

gi(B(i, :)) +
∑

j

hj(B(:, j)) +
∑
Q

∑
i∈Q, j

tQj(B(i, j)) (5.3)

Figure 5.4 illustrates the extension of the AP factor graph to cluster our running ex-
ample data. For clean sources X and Y , additional factor nodes tx and ty (marked in red
and green) are added to each column of the binary matrix. The factor node txj assures
the clean-source consistency constraint for source X and column j. It is connected to
the variable node bij only if entity i is from data source X . The clean-source constraint
may get in conflict with the h-constraint of AP. The h-constraint enforces a datapoint

86

5.2. AFFINITY PROPAGATION FOR MULTI-SOURCE CLEAN/DIRTY DATASETS

Figure 5.4: The factor graph of MSCD-AP for the running example

to choose itself as its own exemplar, if it is selected by at least one other datapoint. So
the diagonal element bjj of column j is enforced to be 1, if there is any other 1 in that
column. On the other hand, the clean-source constraint enforces bjj to be 0, if another
datapoint of the same clean source selected it as its exemplar. So the two constraints
enforce different values for bjj and thus the algorithm may struggle to converge. This
situation is simply avoided in our implementation by not having links between entities
of the same clean source which is a default feature of the linking component of FAMER.

For the traditional AP clustering, the max-sum optimization has been implemented
by a message passing algorithm [63]. The messages are exchanged between factor and
variable nodes of the factor graph to reflect the mutual dependencies within an iterative
process. The messages are computed differently depending on whether the recipient
node is a variable node or a factor node. Figure 5.3b shows the messages exchanged
between the nodes of the new factor graph of MSCD-AP. The grey-colored factor nodes
enforce the g and h constraints while the new factor node t (marked in yellow) applies
the clean-source consistency constraint via the θ and γ messages.

87

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

We build on the formulae from [64] to update messages for the original constraints and
specify the new message formulas for our MSCD extension. In the max-sum algorithm,
outgoing messages of a variable node summarize all incoming messages to that node,
except of the node to which the new message will be sent. Due to the new constraint,
all outgoing messages from variable nodes to factor nodes are now modified because the
new factor nodes tQj are additional neighbours of bij . As sum of the incoming messages
from the neighbouring nodes, except of the recipient, the modified messages β and ρ as
well as the new message γ are easily deduced as listed in Eq. (5.4) - Eq. (5.6).

The message formulas from factor nodes to variable nodes do not change in AP when
a new factor node is added. Therefore, the incoming messages of α (Eq. (5.7)) and η

(Eq. (5.8)) remain unchanged compared to AP. The new incoming message θ from the
new factor node tQj is expressed in Eq. (5.9). The variable assignments that maximize
the energy function are calculated by Eq. (5.10).

βij = sij + αij + θij (5.4) ρij = sij + ηij + θij (5.5) γij = sij + αij + ηij (5.6)

αij =


∑

k ̸=j max(0, ρkj) i = j

min[0, ρjj + ∑
k ̸={i,j}max(0, ρkj)] i ̸= j

(5.7)

ηij = −max
k ̸=j

βik (5.8) θij = min(0,−max
k ̸=i

[γkj]) (5.9)

bij =

1 αij + ρij > 0

0 αij + ρij ≤ 0
(5.10)

Eq. (5.11)-Eq. (5.23) explain the derivation of the message θ (Eq. (5.9)) from the max-
sum algorithm. In MSCD-AP, θ is a message from a factor node to a variable node. Thus,
θ is derived from Eq. (5.11) of the max-sum algorithm [64, 95].

µf→x(x) = max
n(f)\{x}

lnf(x, y1, ..., ym) +
∑

yi∈n(f)\{x}
µyi→f (yi)

 (5.11)

The binary variable bij either obtains the value 1 or 0. Firstly, we investigate both cases
by considering all possible configurations of all neighboring variable nodes bkj(k ̸= i) of
tQj and then according to Eq. (5.12) [64], we combine them in order to to get a scalar
value for the θ message.

µij = µij(1)− µij(0) (5.12)

88

5.2. AFFINITY PROPAGATION FOR MULTI-SOURCE CLEAN/DIRTY DATASETS

For bij = 1: Eq. (5.13) shows θ for the case that i chooses j as its exemplar. All
neighbors of tQj are from the same clean source Q. Let q be the number of entities in
Q. All incoming messages µbkj→tQj

(bkj) of tQj are defined as γkj(bkj). In order to not
violating the clean source constraint, no other datapoint in Q is allowed to choose j as
its exemplar. Therefore, all other neighboring variable nodes bkj(k ̸= i) of tQj are set to
0. This is the only configuration that satisfies the clean source constraint and thus the
optimal one. According to Eq. (5.2), the tQj function evaluates its maximum value of 0.

θij(1) = max
bkj ,k ̸=i

[ln tQj(b1j = 0, ..., bij = 1, ..., bqj = 0) +
∑

bkj ,k ̸=i

γkj(bkj = 0)]

=
∑
k ̸=i

γkj(0)
(5.13)

For bij = 0: There is more flexibility for finding the optimal solution if datapoint i

does not choose j as its exemplar. In order to guarantee the clean source consistency,
utmost one of the bkj variables is allowed to be set to 1. There are q possible solutions
that satisfy the clean source constraint: q − 1 for each bkj being set to 1 and one for all
bkj variables being set to 0. Let the case when all bkj are set to 0 be x (Eq. (5.14)) and the
case when exactly one of the bkj is set to 1 be y (Eq. (5.15)). The message for bij = 0 in
Eq. (5.16) is the maximum of the two cases x and y.

x = 0 +
∑
k ̸=i

γkj(0) (5.14) y = max
k ̸=i

[0 + γkj(1) +
∑

p ̸∈{k,i}
γpj(0)] (5.15)

θij(0) = max
bkj ,k ̸=i

[ln tQj(b1j, ..., bij = 0, ..., bqj) +
∑

bkj ,k ̸=i

γkj(bkj)]

= max(x, y)
(5.16)

θij(1) and θij(0) combined: In Eq. (5.17) - 5.23, we bring both formulas for the cases
bij = 0 and bij = 1 together. According to Eq. (5.12), the scalar message is the difference
of the message values for the two settings of the binary variable.

Eq. (5.20) is transformed to Eq. (5.21) by the transformation a−max(b0, b1, ..., bn) =
−max(b0 − a, b1 − a, ..., bn − a). Subtracting the two sums in Eq. (5.20), only −γkj(0)
is left (Eq. (5.22)) and then Eq. (5.22) is transformed to Eq. (5.23), according to Eq. (5.12).

89

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

θij = θij(1)− θij(0) (5.17)
= x−max(x, y) (5.18)
= min(0, x− y) (5.19)
= min(0,

∑
k ̸=i

γkj(0)−maxk ̸=i[γkj(1) +
∑

p ̸∈{k,i}
γpj(0)]) (5.20)

= min(0,−maxk ̸=i[γkj(1) +
∑

p̸∈{k,i}
γpj(0)−

∑
k ̸=i

γkj(0)]) (5.21)

= min(0,−maxk ̸=i[γkj(1)− γkj(0)]) (5.22)
= min(0,−maxk ̸=i[γkj]) (5.23)

The pseudo code of the MSCD-AP is listed in Algorithm 6. The inputs of the algo-
rithm are the similarity matrix S, the source information (srcInfo) specifying the clean
sources, the damping factor (λ), two preference values for datapoints of dirty (pdirty)
and clean (pclean) sources, the noiseLevel specifying the decimal position of the similar-
ity values where random Gaussian noise is added, and adaptation steps for preference
values (steppref) and damping factor (stepdmp). The adaptation steps are real values in
(0,1] that are used to increase the original values towards the maximum 1 or decrease
them towards 0. The output of the algorithm is the binary matrix B with the exemplar
assignment of every entity.

After the initialization of the messages and output matrix (line 2 and line 3) the diag-
onal elements sjj of the similarity matrix are set to the defined preference values and

Algorithm 6: MSCD-AP
Data: S, srcInfo, λ, pdirty, pclean, noiseLevel, steppref , stepdmp

Result: B with exemplar assignments
1 repeat
2 initializeMessages();
3 initializeB();
4 modifyS(pdirty , pclean, noiseLevel, srcInfo);
5 for iteration = 0 : max do
6 updateMessages(λ);
7 updateB();
8 if isConverged() then break;
9 soultionFound← isSolutionFound(B);

10 if ¬soultionFound then adaptParameters(steppref , stepdmp);
11 until soultionFound;

90

5.2. AFFINITY PROPAGATION FOR MULTI-SOURCE CLEAN/DIRTY DATASETS

the noise is added to all similarity values in line 4. The iterative message passing starts
in line 5. In each iteration, the messages are updated in line 6 according to Eq. (5.4) to
Eq. (5.8). Additionally, α and ρ messages are damped in order to prevent oscillations. Fi-
nally in line 7, the binary matrix values are updated according to Eq. (5.10). If no changes
are observed in the binary matrix after a specific number of iterations, the algorithm con-
verges and is ended (line 8). Otherwise it ends after a maximal number of iterations. If
the algorithm stops but the solution is not found yet (line 9 and line 10), then it has to be
restarted with adapted parameters. For this purpose, function adaptParameters
initially decreases the preference values by preference adaption step (steppref) until the
minimum value 0. If convergence is still not reached, the preference values are then
increased step by step until the maximum 1 is reached. In case of no success, the prefer-
ence values are reset to their original values and the damping factor λ is now increased
by damping adaption step (stepdmp). These process continues until the algorithm finds a
valid solution.

5.2.3 Scalable MSCD Affinity PRopagation

Clustering large datasets is a challenge for AP since its time and memory complexity
grows quadratically with the number of entities and thus the data volume3. Liu et al.
[106] proposed Hierarchical Affinity Propagation (HAP) to make AP suitable for clus-
tering large-scale datasets. Following a divide and conquer strategy, HAP clusters the
dataset by executing AP several times on different levels of data.

Figure 5.5 illustrates the hierarchical clustering for three levels. In the first (the lowest)
hierarchy level, the dataset is randomly divided into equal-sized partitions of maximal
size M . Then AP is executed on each partition, resulting into a set of so called local

Figure 5.5: HAP for three hierarchy levels h (l: local exemplar, g: global exemplar)

3In the case of a sparse similarity matrix, the time complexity reduces to Nklog(N) with k being the
average connectivity of the similarity matrix [187].

91

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

exemplars for each partition. In the next hierarchy level, the exemplars of the previous
level are merged and again partitioned. This process is repeated until the input size of a
hierarchy level is lower or equal to M . The execution of AP on the top hierarchy level
determines the global exemplars for the dataset. All non-exemplar entities are assigned
to the global exemplar with the highest similarity. Thus, AP is executed once for each
partition of each hierarchy level with a complexity of O(M2).

Unfortunately, applying the hierarchical algorithm for MSCD-AP does not guarantee
the clean-source consistency. This is because, the clustering of local exemplars by MSCD-
AP on intermediate hierarchy levels violates the clean-source constraint when two local
exemplars from a previous level are clustered together although they have associated
entities from the same clean source. A naive solution is to extend each local exemplar
with the source information of the entities assigned to it in the previous hierarchy level.
This could be used in subsequent cluster decisions to avoid that more than one entity
of a clean source is assigned to an exemplar. This approach, however, can lead to poor
clustering results. A bad decision in a lower level of the hierarchy, where an entity of
a clean source with a low similarity is assigned to a local exemplar, can prevent that a
much more similar entity from the respective source is merged at a higher level resulting
in poor cluster decisions.

A more promising solution is to assign entities to global exemplars separately for clean
and dirty sources. Initially, HAP is executed using MSCD-AP to determine local and
global exemplars on the partitions. As in HAP, dirty source entities are then assigned to
the exemplars with the highest similarity. By contrast, clean source entities are assigned
using the Hungarian algorithm [96, 114]. Given the similarities between these entities
and exemplars, the Hungarian algorithm finds a 1:1 assignment between entities of a
clean source and exemplars (i.e., each exemplar is assigned to at most one entity of a
clean source) so that the overall similarity of all assignments is maximized. If the number
of entities from a clean source exceeds the number of exemplars, the excess points form
singleton clusters. When a global exemplar is from a clean source, the clean-source
consistency is also enforced since there is no similarity link between entities of the same
clean source, i.e., only entities from dirty sources can be assigned to such an exemplar.

The Hungarian algorithm has a computational complexity of O(mk2) for a m × k

cost matrix [35] with k global exemplars and m entities from one clean source. The
complexity is higher compared to AP, but the bipartite matching is executed on small
subsets of the dataset (m, k ≪ n). Thus, the combination of HAP with MSCD-AP and
the Hungarian algorithm is still more suitable for large datasets than MSCD-AP. We call
this combination MSCD-HAP and comparatively evaluate it in the next section.

92

5.3. HIERARCHICAL CLUSTERING FOR MULTI-SOURCE CLEAN/DIRTY DATASETS

5.3 HieRaRcHical ClusteRing foR Multi-souRce
Clean/DiRty Datasets

In this section we briefly explain the basic Hierarchical Cluster Analysis (HCA) [176]
and then present the Multi-Source clean/Dirty Hierarchical Agglomerative Clustering
(MSCD-HAC) and its scalable version in detail.

5.3.1 HieRaRcHical ClusteR Analysis

Hierarchical Cluster Analysis (HCA) [176] comprises clustering algorithms that pursue
building a hierarchy of clusters where a higher-level cluster combines two clusters of
the level and this construction principle is recursively applied leading to a hierarchy
of clusters. The hierarchies can be formed in a bottom-up or top-down manner. The
bottom-up approach known as agglomerative merges the two most similar clusters as
one cluster that is moved up the hierarchy. In contrast, the top-down approach is divisive
and initially assumes all entities build a single cluster. Then, it performs splitting this
cluster into two clusters in a recursive manner. Each splitted cluster moves one step
down the hierarchy [152].

The results of hierarchical clustering form a binary tree that can be visualized as a
dendrogram [128]. The decision on merging (in agglomerative approach) or splitting (in
divisive approach) is based on a greedy strategy [116]. Due to the fact that there are
2n possibilities for splitting a set of n entities, the divisive approach is not usually fea-
sible for practical applications [85]. Therefore, we focus on Hierarchical Agglomerative
Clustering (HAC).

The agglomerative approach is listed in Algorithm 7 [103]. The algorithm initially as-
sumes each entity as a cluster (line 1) and it then selects and merges the two most similar
clusters as one cluster (line 3-line 4). The process of selecting and merging continues in
an iterative way until a stopping condition is satisfied (line 5). The hierarchical cluster-
ing scheme may lead into totally different clustering results depending on the approach

Algorithm 7: Hierarchical Agglomerative Clustering
1 Initialize each entity as a cluster
2 do
3 Select the best two clusters to merge
4 Merge selected clusters into one cluster
5 while stopping condition is satisfied;

93

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

to determine the similarity between clusters and depending on the stopping condition
[85]. The rule that determines the most similar clusters is known as linkage strategy.
There is a wide range of linkage strategies for computing the similarity of two clusters
(inter-cluster similarity), each of them showing a different impact on the final clustering
result [85, 117].

We implement and evaluate three commonly used approaches with low computation
cost. Considering two clusters ci and cj , the similarity of them computed by different
linkage strategies is defined as follows: [85]

S-LINK (single-linkage) is referred to as the nearest-neighbor strategy. It determines
the cluster similarity based on the two closest entities from each cluster, i.e., considering
the maximal similarity between members of the two clusters. The single linkage implies
that Simci,cj

= max{sim(em, en)} where em ∈ ci and en ∈ cj . This is an optimistic
approach that ignores that there may be dissimilar members in the two clusters which
might help to improve recall at the expense of precision.

C-LINK (complete-linkage) is known as the furthest-neighbor strategy. The two most
dissimilar entities of two cluster determine the inter-cluster similarity, i.e. based on the
minimum similarity between members of the two clusters. The complete linkage implies
that Simci,cj

= min{sim(em, en)} where em ∈ ci and en ∈ cj . This is a conservative or
pessimistic approach that might help to improve precision at the expense of recall.

A-LINK (average-linkage) defines the cluster similarity as the average similarity of
the entities of two clusters: Simci,cj

= 1
|ci|·|cj |

∑
em∈ci,en∈cj

sim(em, en).

The application of HAC results in a set of clusterings, one at each level of the cluster

Figure 5.6: Hierarchical clustering example

94

5.3. HIERARCHICAL CLUSTERING FOR MULTI-SOURCE CLEAN/DIRTY DATASETS

Table 5.1: Linkage types

Cluster pair S-LINK C-LINK A-LINK
c0, c1 0.80 0.00 0.48
c0, c2 0.75 0.50 0.62
c1, c2 0.60 0.60 0.40

hierarchy. Determining the optimal clustering from the hierarchy is not a trivial deci-
sion with large datasets. Therefore, metrics such as number of clusters or a minimum
merge threshold are used as the stopping criteria. Due to the fact that the number of
output clusters are not predefined in ER applications, we use the a merge threshold as
stopping condition. Hence, the algorithms stops as soon as there is no further pair of
cluster whose similarity is exceeding the merge threshold.

Figure 5.6 shows an example of three clusters along with the similarities between en-
tities (from the similarity graph). Table 5.1 lists the inter-cluster similarity of all possible
cluster pairs for our three linkages types. For S-LINK (first column), the most similar
cluster pair is {c0, c1} because the maximum link between these clusters has the high-
est similarity compared with the two other cluster pairs. For C-LINK (second column)
we have cluster similarity 0 for {c0, c1} due to the missing similarity links for cluster
members. Thus, c1 and c2 with inter-cluster similarity 0.6 are the most similar clusters.
For A-LINK, the cluster pair {c0, c2} has the highest average similarity. Hence, we have
different merge decisions for each of the three strategies.

5.3.2 MSCD HieRaRcHical AgglomeRative ClusteRing

Performing ER for a mixed collection of clean and dirty data sources requires to de-
termine source-consistent clusters as the final output. Therefore, the ER pipeline should
take clean sources into account in both linking and clustering phases. Hence, the linking
phase does not create similarity links between entities of the same clean source. How-
ever the indirect connections (transitive closures) can still lead to source-inconsistent
clusters. To address this issue, we propose an extension to Hierarchical Agglomerative
clustering called Multi-Source Clean/Dirty HAC (MSCD-HAC). The proposed algorithm
aims at clustering datasets of combined clean and dirty sources. Our extension to HAC
introduces the following contributions:

1. When picking the most similar cluster pair, the algorithm checks whether merg-
ing them would lead to a source inconsistent cluster. Such pairs are ignored to

95

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

ensure that only source-consistent clusters are determined. If the source consis-
tency constraint is not satisfied, then the pair is removed from the candidate pairs
set and thus the algorithm skips computing the inter-cluster similarity of them.
For our running example (Figure 5.6), merging clusters c0 and c1 for all linking
strategies would thus be forbidden under the assumption that X and Y are clean
sources.

2. When there are several clean sources, the algorithm can remove weak inter-links
of clean sources in order to improve output quality. When this option is chosen
(by a parameter), a similarity graph with removed weak links is processed for
clustering. For the example of Figure 5.6, ignoring the weak link between entities
e1 and e2 would decrease the maximal similarity between clusters c0 and c1 from
0.8 to 0.7. Therefore, S-LINK does not decide on merging them.

The pseudo code of MSCD-HAC is shown in Algorithm 8. The input of the algorithm is
a similarity graph G in which the vertices V represent entities and each edge in the edges
E connects two similar entities and stores the similarity value of them. Further input
parameters are the stopping merge threshold T , linkage strategy, weak link strategy
weakF lag, and the set of clean sources S . The algorithm guarantees to create a set of
source-consistent clusters CS as output. If the weak link strategy is selected, weak links
are removed prior to performing the clustering process (line 1-line 2). As for the basic
Hierarchical Agglomerative clustering, the algorithm first initializes the output cluster
set CS by assuming each entity as a cluster (line 4). Then, it iterates over all cluster
pairs in CS (line 8). If merging a cluster pair would lead to a source-consistent cluster
(line 9), the inter-cluster similarity of the pair is computed using the linkage method in
line 10. The pair with the maximum similarity is considered as candidate pair for merging
(line 11-line 14) and if the similarity of candidate pair (simmax) is higher than T , then the
clusters of the candidate pair are merged and the cluster set is updated (line 17-line 20).
The iterative algorithm terminates when simmax is lower than the minimum threshold
T (line 21).

5.3.3 Scalable MSCD Affinity PRopagation

We initially define the concept of Reciprocal Nearest Neighbour (RNN) in order to describe
the parallel vaariation of MSCD-HAC.
Reciprocal Nearest Neighbour (RNN): If entity ei is the nearest neighbour of entity
ej (NN(ej) = ei) and vice versa (NN(ei) = ej), then ei and ej are reciprocal nearest
neighbours. In [160] such links have been called strong links.

96

5.3. HIERARCHICAL CLUSTERING FOR MULTI-SOURCE CLEAN/DIRTY DATASETS

Algorithm 8: MSCD-HAC
Input
:

G(V , E), T , linkage, weakF lag, S

Output :Cluster Set CS
1 if weakF lag then
2 G(V , E ′)← removeWeakLinks(G(V , E), S)
3 end
4 CS ← initializeClusters(V)
5 do
6 simmax ← 0
7 candidatePair ← {}
8 foreach ci, cj ∈ CS do
9 if isSourceConsistent(ci, cj , S) then
10 sim← computeSim(ci, cj, linkage)
11 if sim > simmax then
12 simmax ← sim
13 candidatePair ← ci, cj

14 end
15 end
16 end
17 if simmax > T then
18 merge(candidatePair)
19 CS ← update(CS)
20 end
21 while simmax > T ;

For parallelizing our approaches, we follow the concept of Reciprocal Nearest Neigh-
bour (RNN) which has been used for parallel graph clustering algorithms including HAC
[116] and Center clustering [158]. If two clusters are both at the same time the near-
est neighbor of each other, it means they are the two most similar clusters that can be
merged with each other. This is utilized in our parallel MSCD-HAC algorithm shown
in Algorithm 9. The input and output are the same as for the sequential MSCD-HAC
(Algorithm 8). Similar to the sequential algorithm in line 1-line 3 weak links are option-
ally removed and cluster set initialization is done (line 4). Then, for each cluster ci in the
cluster set CS the nearest neighbour which satisfies the source consistency constraint is
determined (line 7-line 8). If any source-consistent nearest neighbour cj is found (line 9)
and the nearest neighbour of cj is ci, then ci and cj are assumed as RNN (line 10) and
thus will be merged and the CS is updated (lines line 11-line 12). Any occurring merge
represents a change in the cluster set CS which sets the isChanged flag as true (line 13).
The iterative algorithms terminates when no change is possible in the CS (line 17).

97

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

Algorithm 9: Parallel MSCD-HAC
Input
:

G(V , E), T , linkage, weakF lag, S

Output :Cluster Set CS
1 if weakF lag then
2 G(V , E ’)← removeWeakLinks(G(V , E), S)
3 end
4 CS ← initializeClusters(V)
5 do
6 isChanged← false
7 foreach ci ∈ CS in Parallel do
8 cj ← findConsistentNN(ci, T , S)
9 if cj ̸= Null then
10 if findNN(cj) = ci then
11 merge(ci, cj)
12 CS ← update(CS)
13 isChanged← true

14 end
15 end
16 end
17 while isChanged

The algorithm is implemented on top of Apache Flink framework using the Gelly
library for parallel graph processing. Each clustered vertex stores the cluster-ID as a
vertex property so that vertices with the same cluster-ID belong to the same cluster. In
order to facilitate computing inter-cluster similarity and updating cluster information,
each cluster is represented by a center vertex which maintains all cluster information.
The center vertex is chosen randomly and stores the list of cluster members, the list of
neighbour centers, the list of links to the neighbour centers, and the list of data sources
of the members. We use the scatter-gather iteration processing of Gelly that provide
sending messages from center vertex to any target vertex such as neighbor centers and
cluster members. For merging two clusters, one cluster accepts the cluster-ID and cen-
ter of the other cluster. Then, all lists of the center are updated. Each iteration of the
algorithm consists of four supersteps explained as follows:

1. During the first scatter-gather step the source-consistent RNNs are found. In ad-
dition, the center status of one cluster center in each RNN is removed.

2. The old centers (vertices that lost their center status in the previous superstep)
now produce the following messages to complete the cluster merge: one for each

98

5.4. EVALUATION RESULTS

cluster member informing it about the new cluster center and cluster-ID, one for
the new center including the new cluster members, and one for each neighbor
including the new centerID. In the gather step vertices that receive any message
from the old center update their information. The neighbor centers can update
their edges accordingly so that all edges in the edge list are only connecting center
vertices.

3. Now that all edges are adjusted, the old center vertices produce messages for their
new cluster centers including all their neighbors and corresponding link values.

4. In the last step the nearest neighbor vertices are recalculated. If the similarity
to the nearest neighbour is less than the stopping threshold, the vertex will not
produce any messages during the following phase. Thus, after each round of four
iterations the number of active vertices as well as the number of clusters decreases.

5.4 Evaluation Results

This section presents the cluster effectiveness and efficiency of the proposed MSCD ex-
tensions of AP in comparison to standard AP and previous clustering schemes. Firstly,
the used datasets from four domains is described and then the effectiveness of the pro-
posed algorithm is comparatively analyzed. Finally, the evaluation of runtime perfor-
mance and scalability are presented.

5.4.1 Datasets

We evaluate the new approaches with four datasets of clean sources that have also been
used in previous studies [157, 158, 160]. Table 5.2 gives an overview of the datasets from
four domains (geography, camera, music, persons) including available properties and
number of entities. For the evaluation of mixed datasets of clean and dirty sources, we
use the dataset of the ACM SIGMOD 2020 Programming Contest4. It contains approxi-
mately 30k product specifications from 24 dirty sources. For our purposes, we determine
a subset called DS-C focusing on camera products and excluding sourcewww.alibaba.com5.
Table 5.3 lists the 23 remaining sources and their number of entities with and without
duplicates. The matching result of the SIGMOD contest winner is considered as the

4http://www.inf.uniroma3.it/db/sigmod2020contest/index.html
5The source mostly contains non-camera entities.

99

http://www.inf.uniroma3.it/db/sigmod2020contest/index.html

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

Table 5.2: Overview of evaluation datasets

General information Perfect result
domain entity properties #entity #src #clusters #links

DS-G geography label, longitude, latitude 3,054 4 820 4,391
DS-M music artist, title, album, year, length 19,375 5 10,000 16,250
DS-C camera heterogeneous key-value pairs 21,023 23 3,910 368,546
DS-P1 persons name, surname, suburb, postcode 5,000,000 5 3,500,840 3,331,384
DS-P2 10,000,000 10 6,625,848 14,995,973

Table 5.3: Overview of camera dataset
(DS-C)

Source name ID #entity #entity
dedup.

buy.net 1 358 244
cammarkt.com 2 198 94
www.buzzillions.com 3 832 630
www.cambuy.com.au 4 118 56
www.camerafarm.com.au 5 120 59
www.canon-europe.com 6 164 163
www.ebay.com 7 14,009 3,255
www.eglobalcentral.co.uk 8 190 75
www.flipkart.com 9 118 47
www.garricks.com.au 10 130 69
www.gosale.com 11 895 578
www.henrys.com 12 181 137
www.ilgs.net 13 102 64
www.mypriceindia.com 14 347 279
www.pcconnection.com 15 211 126
www.price-hunt.com 16 327 282
www.pricedekho.com 17 366 325
www.priceme.co.nz 18 740 475
www.shopbot.com.au 19 516 334
www.shopmania.in 20 630 556
www.ukdigitalcameras.co.uk 21 129 73
www.walmart.com 22 195 115
www.wexphotographic.com 23 147 87

sum 21,023 8,123

Table 5.4: MSCD datasets

Name %cln1 cln2 #cln3 #dirt4
DS-C0 0 0 21,023

DS-C26 26 1-6,
8-23 4,868 14,009

DS-C32 32 7 3,255 7,014

DS-C50 50
7, 18,
19,20,
22, 23

4,822 4,786

DS-C62A 62

1, 4, 6
7, 9, 11,
13, 15,

17, 19, 20

5,748 3,536

DS-C62B 62

2, 3, 5,
7, 8, 10,
12, 14,
16, 18,
21-23

5,630 3,478

DS-C80 80 1-12
14-18 6,894 1,719

DS-C100 100 1-23 8,123 0
1 Percentage of entities from clean

sources
2 Clean source IDs
3 Number of entities from clean sources
4 Number of entities from dirty sources

golden truth. It achieved f-measure of 99% by extensive domain-specific preprocessing
and matching camera entities against a prepared list of nearly all available cameras in
the market. Our matching and clustering approaches are generic and applicable to dif-
ferent datasets. Our goal is not to achieve the best possible result but to enable a fair
comparison of the clustering schemes based on reasonably good input similarity graphs
for different datasets.

Using DS-C, we create eight datasets with different combinations of clean and dirty
sources and thus different degrees of dirtiness. As shown in Table 5.4, we name the
datasets according to the percentage of entities from clean sources, where DS-C0 and
DS-C100 means that all entities are from dirty and clean sources, respectively. For the
mixed cases, an important distinction is whether a clean or dirty version of source 7
(www.ebay.com) is considered because it is the largest source and contains many dupli-

100

5.4. EVALUATION RESULTS

Table 5.5: Linking configurations of clean multi-source datasets

Blocking key Similarity function

DS-G prefixLength1 (label) Jaro Winkler (label) & geographical distance
DS-M prefixLength1 (album) Trigram (title)
DS-P1/P2 prefixLength3 (surname) + prefixLength3 (name) avg (Trigram (name) + Trigram (surname)

+ Trigram (postcode) + Trigram (suburb))

cates. In DS-C62A and DS-C62B, the clean form of source 7 is included, while all other
sources that are clean in 62A are dirty in 62B and vice versa.

The blocking and matching configurations for the clean datasets are listed in Table 5.5
and correspond to the ones in previous studies [157, 160]. For the camera dataset, we ex-
tracted the manufacturer name, a list of model names, manufacturer part number (mpn),
european article number (ean), digital and optical zoom, camera dimensions, weight,
product code, sensor type, price and resolution from the heterogeneous product specifi-
cations. In order to reduce the number of comparisons, standard blocking with a com-
bined key of manufacturer name and model number is applied. Within these blocks, all
pairs with exactly the same model name, mpn or ean are classified as matches. We as-
sign a similarity value to the matched pairs determined from a weighted average of the
3Gram similarity of string values and a numerical similarity of numerical values (within
a maximal distance of 30%).

5.4.2 Qality Results

To evaluate the quality of the clustering results, we use the standard metrics precision,
recall and their harmonic mean, f-measure w.r.t. the links of the perfect cluster results
(last column of Table 5.2).
Quality of MSCD-AP: We compare the quality of the AP and the proposed MSCD-
AP approaches with seven previous clustering schemes that are included in the FAMER
system [157] including the CLIP approach tailored to clean sources and six general ap-
proaches for dirty sources (connected components, correlation clustering CCPivot, two
variants of star clustering and two variants of center clustering). We also provide the
quality of the input similarity graph (without clustering) in our figures. For AP and
MSCD-AP we manually determined suitable parameter configurations. We use the in-
terval [0.01, 0.7] for preference values and set a higher preference value for clean sources
than for dirty sources to choose exemplars preferably from clean sources. The damping
factor is set to 0.5 and noise is added to the similarity values from the third decimal place.
For the smaller datasets DS-G, DS-M and DS-C, we used a partition size of 1000 while
for the person datasets we apply MSCD-HAP with partition size 400 to reduce runtimes.

101

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

When the size of a connected component is smaller than the partition size, MSCD-AP is
executed. Higher similarity thresholds (sim th) result in fewer links and smaller compo-
nents that are mostly executed without partitioning. In DS-G and DS-C, partitioning is
never used and thus AP and MSCD-AP are executed.

We first analyze cluster quality for the datasets with only clean sources. Figure 5.7
shows the precision, recall and f-measure results for the three datasets DS-G, DS-M and
DS-P2 for different similarity thresholds to generate the input similarity graph. As ex-
pected, the f-measure results are the best for the CLIP approach tailored to ER for clean
sources. However, the proposed MSCD-AP approach achieves about the same quality for
two datasets (DS-G, DS-P2) and performs better than the six general clustering schemes
for DS-M. It also outperforms AP in all cases. These surprisingly good results are mainly
due to an excellent precision of MSCD-AP which can outweigh its comparatively low

Precision Recall F-Measure

D
S-

G
D

S-
M

D
S-

P2

sim th sim th sim th

Figure 5.7: MSCD-AP evaluation for MSC datasets

102

5.4. EVALUATION RESULTS

recall. The recall is limited since AP and MSCD-AP strongly depend on the relative sim-
ilarity values and can even consider a high similarity value such as 0.8 as low if it is
below the average of the considered value range, e. g.[0.8, 1.0]. This leads to more small
clusters and thus a lower recall compared to other algorithms. Due to the clean-source
constraint, MSCD-AP creates more exemplars than AP and therefore obtains a lower
recall compared to AP but a much better precision.

Figure 5.8 shows the quality of the clustering results for the camera datasets with
different degrees of dirtiness. Due to space constraints we show results for five of the
eight cases but the results for the remaining datasets confirm the overall outcome (see
Appendix B). We observe that MSCD-AP achieves the best f-measure for all cases with a
mix of dirty and clean sources. For the case of only clean sources (DS-C100) it is only out-
performed by CLIP. For dirty sources only (DS-C0) MSCD-AP is identical to AP which
is among the best approaches. As a result, MSCD-AP is the best or among the best ap-
proaches over all configurations while other schemes like CLIP are good in only one
configuration. Another strong point of MSCD-AP is that its f-measure is nearly stable
over all similarity values used to determine the input similarity graph while the general
clustering schemes depend on finding a suitable threshold value. Like for the datasets
of clean sources only, the good results of MSCD-AP are mainly due to its excellent pre-
cision in all cases that outweighs its lower recall results.
Quality of MSCD-HAC: Figure 5.9 shows the average precision and recall results for
graphs with the lowest match threshold (sim th) for merge thresholds in [0,1). The top
row shows the results for clean sources only while the lower row shows results for MSCD
sources (mix of clean and dirty camera sources). We compare the basic hierarchical
clustering schemes (S-Link, C-Link, etc.) with the ones applying the proposed MSCD
extension. For all datasets except DC-C0 (with only dirty sources), MSCD approaches
improve precision dramatically while keeping the same recall; for DS-C0, MSCD-HAC
has the same results as the basic HAC. Hence, the new MSCD approaches can clearly out-
perform the basic HAC schemes. Ignoring weak link for the basic schemes can help to
improve precision in several cases but to a much smaller degree that with MSCD. As ex-
pected, C-Link (S-LINK) achieves the highest (lowest) precision and the lowest (highest)
recall for all datasets due to the use of the minimal (maximal) similarity between clus-
ter members to determine merge candidates. A-LINK follows a more moderate strategy
compared to the strict C-LINK and relaxed S-LINK strategies. In addition, applying the
MSCD strategy or removing weak links improves S-LINK the most while C-LINK yields
the same results as basic HAC. Due to the fact that entities of the same clean source
are never directly linked to each other, C-LINK obtains source-consistent clusters as the
MSCD approaches.

103

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

Precision Recall F-Measure

D
S-

C0
D

S-
C3

2
D

S-
C5

0
D

S-
C8

0
D

S-
C1

00

sim th sim th sim th

Figure 5.8: MSCD-AP evaluation for MSCD datasets

104

5.4. EVALUATION RESULTS

Precision
Re

ca
ll

0 0.2 0.4 0.6 0.8 10.4

0.6

0.8

1

DS-G, sim th = 0.75
0 0.2 0.4 0.6 0.8 1

DS-M, sim th = 0.35
0 0.2 0.4 0.6 0.8 1

DS-C100, sim th = 0.30
0 0.2 0.4 0.6 0.8 1

DS-P2, sim th = 0.60

0 0.2 0.4 0.6 0.8 10.4

0.6

0.8

1

DS-C0, sim th = 0.30
0 0.2 0.4 0.6 0.8 1

DS-C26, sim th = 0.30
0 0.2 0.4 0.6 0.8 1

DS-C50, sim th = 0.30
0 0.2 0.4 0.6 0.8 1

DS-C80, sim th = 0.30
0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

PrecisionMSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak
MSCD A-LINK A-LINK A-LINK w/o weak

Figure 5.9: Precision/Recall for hierarchical clustering schemes.

0.75 0.80 0.85 0.900.5

0.6

0.7

0.8

0.9

1

D
S-

G

Precision

0.75 0.80 0.85 0.900.5

0.6

0.7

0.8

0.9

1
Recall

0.75 0.80 0.85 0.900.5

0.6

0.7

0.8

0.9

1
F-Measure

0.35 0.40 0.450.5

0.6

0.7

0.8

0.9

1

D
S-

M

0.35 0.40 0.450.5

0.6

0.7

0.8

0.9

1

0.35 0.40 0.450.5

0.6

0.7

0.8

0.9

1

0.60 0.70 0.800.5

0.6

0.7

0.8

0.9

1

sim th

D
S-

P2

0.60 0.70 0.800.5

0.6

0.7

0.8

0.9

1

sim th
0.60 0.70 0.800.5

0.6

0.7

0.8

0.9

1

sim th0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ

D
S
-C

10
0

MSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak MSCD A-LINK A-LINK A-LINK w/o weak ConCom CCPiv MSCD-AP CLIP0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ

D
S
-C

10
0

MSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak MSCD A-LINK A-LINK A-LINK w/o weak ConCom CCPiv MSCD-AP CLIP

Figure 5.10: MSCD-HAC evaluation for MSC datasets

Figure 5.10 and Figure 5.11 show the results of our proposed approaches for differ-
ent match (sim th) and merge thresholds (equal match and merge threshold) for clean
(MSC) and mixed (MSCD) datasets in comparison with the baseline algorithms con-
nected components, Correlation clustering (CCPivot variation) [26] as popular ER clus-
tering schemes, the MSC algorithm named CLIP [160] and the MSCD-AP approach based
on Affinity Propagation [102]. As expected for MSC datasets (Figure 5.10), connected

105

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

D
S-

C0

Precision

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1
Recall

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1
F-Measure

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

D
S-

C3
2

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

D
S-

C5
0

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

D
S-

C8
0

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

0.30 0.50 0.700.6

0.7

0.8

0.9

1

sim th

D
S-

C1
00

0.30 0.50 0.700.6

0.7

0.8

0.9

1

sim th
0.30 0.50 0.700.6

0.7

0.8

0.9

1

sim th0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ

D
S
-C

10
0

MSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak MSCD A-LINK A-LINK A-LINK w/o weak ConCom CCPiv MSCD-AP CLIP0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ

D
S
-C

10
0

MSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak MSCD A-LINK A-LINK A-LINK w/o weak ConCom CCPiv MSCD-AP CLIP

Figure 5.11: MSCD-HAC evaluation for MSCD datasets

components and S-LINK obtain the lowest precision. Removing weak links improves
precision for S-LINK but it is still not sufficient to compete with the best algorithms.
The C-LINK approaches and MSCD-AP achieve the best precision but at the cost of low
recall. In contrast, CLIP and MSCD S-LINK obtain similarly high recall and precision.
Therefore, for all datasets, MSCD S-LINK and CLIP are superior in terms of F-Measure
and outperform the basic HAC approaches as well as the previous MSCD-AP approach
for mixed datsets. For the bigger dataset DS-P2, CLIP and MSCD S-LINK obtain lower

106

5.4. EVALUATION RESULTS

precision compared to MSCD A-LINK, because they form clusters with the maximum
possible size (10, one entity per source) which leads to obtaining false positives. There-
fore, MSCD A-LINK surpasses MSCD S-LINK and CLIP for the low threshold 0.6.

For MSCD datasets (Figure 5.11), MSCD-HAC and HAC give the same results for the
dataset with all dirty sources (DS-C0). Therefore, for DS-C0, MSCD S-LINK along with
connected components obtains the lowest precision and the highest recall. As the ratio of
clean sources increases MSCD S-LINK obtains better precision while keeping the recall
high. Therefore, for all MSCD datasets, MSCD S-LINK obtains the best F-Measure. The
algorithm CLIP yields very low F-Measure, because it is designed for clustering clean
datasets. The algorithm MSCD-AP can not compete with MSCD-HAC approaches due
to its lower recall (about 10% less than MSCD S-LINK). When the dataset comprises a
large portion of or only dirty sources, the strict method MSCD C-LINK obtains the best
results for lower thresholds. In all datasets except for DS-C0, CCPiv can not compete
with the best algorithms in both terms of precision and recall. With DS-C0, CCPiv is
slightly better than A-LINK due to the higher recall it achieves (see Appendix C for the
evaluation of DS-P1 and the remaining camera datasets).

5.4.3 Runtimes and Speedup

We evaluate runtimes and speedup behavior for the larger datasets from the person do-
main. The speedup of MSCD approaches are determined for the parallel execution with
different numbers of workers. The experiments are performed on a shared nothing clus-
ter with 16 worker nodes. Each worker consists of an E5-2430 6(12) 2.5 Ghz CPU, 48
GB RAM, two 4 TB SATA disks and runs openSUSE 13.2. The nodes are connected via
1 Gigabit Ethernet. Our evaluation is based on Hadoop 2.6.0 and Flink 1.9.0. We run
Apache Flink standalone with 6 threads and 40 GB memory per worker.

MSCD-HAP: Table 5.6 lists the runtime of each clustering approach for a parallel ex-
ecution on 16 workers. As expected, the larger dataset DS-P2 leads to higher runtimes

Table 5.6: Runtimes for clustering schemes (seconds)

DS-P1 DS-P2
threshold 0.6 0.7 0.8 0.6 0.7 0.8
HAP 116 70 63 393 162 130
MSCD-HAP 564 134 93 1434 330 205
CCPivot 558 532 426 1395 1131 964
CLIP 119 90 81 362 236 195
Center 270 179 156 1089 726 603
ConCom 51 40 37 107 66 57
MCenter 417 255 210 1619 991 730
Star1 224 130 124 626 330 273
Star2 162 130 124 460 267 233

107

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

DS-P1 DS-P2

Figure 5.12: Speedup of MSCD-HAP for different similarity thresholds

than for DS-P1 while a higher similarity thresholds reduce runtimes due to the lower
number of edges in the similarity graph. MSCD-HAP is slower than HAP because the
calculations for the clean-source constraint and the exemplar assignment by the Hungar-
ian algorithm need additional runtime. The clean-source constraint of MSCD-AP also
leads to more exemplars and potentially more entities of the same source that are equally
well suited to be an exemplar. Thus, oscillations occur more frequently for MSCD-AP
compared to AP leading to more parameter adaptations to find a converging solution.

For the lowest threshold, MSCD-HAP along with CCPivot and MergeCenter are among
the slowest algorithms. Yet with higher similarity thresholds the runtime of MSCD-HAP
improves significantly making it one of the fastest algorithms. This is because a high
minimum threshold avoids that a large number of entities are connected in the similar-
ity graphs resulting in mostly small clusters and reduced work for the the Hungarian
algorithm. Moreover, oscillations occur less in such cases.

Figure 5.12 depicts the speedup of MSCD-HAP with partition size 100 for different
similarity thresholds and for 1 to 16 worker machines. We observe that close to perfect
speedup is achieved for the larger dataset DS-P2 and for a lower similarity threshold
(bigger similarity graph) for the smaller DS-P1 dataset. For the higher thresholds the
needed computations for DS-P1 cannot utilize 16 machines so that a good speedup is
only achieved until 8 workers.

Figure 5.13 investigates the effect of partition size on both runtime and clustering
quality. We observe that larger partition sizes lead to much higher runtimes but also
to improved clustering quality. These effects are most pronounced for smaller similarity
threshold such as 0.6 that lead to bigger similarity graphs and thus to more computations.
With larger partition sizes there are more entities and more similarity values in each
partition. Therefore, the probability of finding good local and global exemplars rises
and consequently the precision is improved. Yet recall drops slightly, because on bigger

108

5.4. EVALUATION RESULTS

runtimes (sec) Precision Recall F-Measure
D

S-
P1

D
S-

P2

sim th sim th sim th sim th

Figure 5.13: Clustering quality and runtime for different partitions sizes of MSCD-HAP

partitions more exemplars can be found and AP generally tends to form many small
clusters. While the runtime is up to seven times higher for partition size 400 compared to
100 (for DS-P2) for threshold 0.6, these differences largely go away for higher thresholds
and much smaller similarity graphs. This is also the case for clustering quality, where
similarity value 0.7 or higher leads to about the same f-measure for all partition sizes.

MSCD-HAC:We evaluate runtimes and speedup behavior for the larger datasets from
the person domain for the graph with match and merge threshold 0.8. Table 5.7 lists run-
times of all introduced approaches evaluated on 16 machines. The first row shows that
S-LINK is the slowest algorithm but MSCD S-LINK improves the runtime of S-LINK dra-
matically. Moreover, removing weak links decreases runtime slightly. Neither applying
MSCD strategy nor removing weak links improves the runtime of C-LINK and A-LINK,

Table 5.7: Runtimes (seconds)

DS-P1 DS-P2
- MSCD NW - MSCD NW

S-LINK 2256 130 2149 6818 506 6789
C-LINK 128 128 130 422 417 401
A-LINK 127 129 128 430 417 411
ConCom 37 59
CCPiv 463 1030
MSCD-AP 93 207
CLIP 80 200

109

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

4 8 1620

21

22

No. of Machines

Sp
ee

du
p

MSCD S-LINK
S-LINK
S-LINK w/o weak
MSCD C-LINK
C-LINK
C-LINK w/o weak
MSCD A-LINK
A-LINK
A-LINK w/o weak
Linear

Figure 5.14: HAC speedup

because the approaches are strict enough in merging clusters. The last four rows of
Table 5.7 list the runtime of approaches that are compared with HAC-based schemes.
Among them connected components is the fastest approach while CLIP and MSCD-AP
are 1.4x-2x faster and CCPiv is 2x-3.5x slower than HAC-based approaches. Figure 5.14
shows the speedup for DS-P1 with 5M entities. All approaches have speedup close to
linear expect S-LINK. Removing weak links improves the speedup of S-LINK but it is
still far from linear speedup. The approaches can not utilize 16 machines so that a good
speedup is achieved until 8 workers.

5.5 Related WoRKs

Most previous entity clustering approaches focus on finding matches in a single (dirty)
source. Example approaches include Connected components, Center and Merge-Center
clustering [69], Affinity Propagation [53], Ricochet clustering [179], Markov clustering
[169] and Correlation clustering [7]. Hassanzadeh at al. [68] comparatively evaluated
many of these algorithms for a single source. In Chapter 4 we have shown that these
approaches can be adapted for multi-source entity clustering and we comparatively eval-
uated several approaches for such a setting. We further presented new multi-source en-
tity clustering approaches such as CLIP [160] that work for clean (duplicate-free) data
sources and can outperform the more general approaches for dirty sources. In this chap-
ter, we compared the new MSCD entity clustering approaches based on Affinity Propa-

110

5.6. CONCLUSION

gation and Hierarchical Agglomerative clustering with these previous methods for dirty
and clean sources.

Affinity Propagation is a constraint-based clustering algorithm that was firstly intro-
duced by Frey et al. [53]. Hierarchical Affinity Propagation [62] gives the possibility
of AP clustering in multiple layers which provides scalable solution to standard AP. Hi-
erarchical clustering is a popular clustering approach that has also been employed for
ER [108]. Moreover, collective [14] and progressive [178] entity resolution utilize hi-
erarchical clustering for performing ER task effectively and efficiently. Collective ER
determines matches based on their common neighbours while progressive ER follows
the pay-as-you-go logic in order to perform ER in real-time. Recently, Yan et al. [184]
propose a modified hierarchical clustering that aims at avoiding so-called hard conflicts
introduced by systematically missing information in different sources. The conflicts may
occur due to systematically missing information from different sources. Hierarchical
clustering moreover supports results with multiple confidence levels that is utilized for
determining final matches with preferable precision/recall trade-off. Many approaches
try to make hierarchical clustering faster which is inherently iterative and thus sequen-
tial. Some approaches reduce the hierarchical clustering to the problem of creating the
Minimum Spanning Tree (MST) [36] while others approximate the results by utilizing
Locality-Sensitive Hashing (LSH) [87]. Another option considered is to partition data
evenly on processing nodes before performing clustering [37, 72, 78]. Furthermore, a
method based on the concept of Reciprocal Nearest Neighbors (RNN) that fits graph
clustering can be applied [115, 116].

In this chapter we extend the usage of hierarchical clustering for efficient and effective
clustering of entities from a combination of arbitrary portion of clean and dirty sources.
We further enable the algorithm to improve the final results by removing potential false
links (weak links) in a preprocessing step. To improve scalability, the parallel variant is
implemented based on the RNN concept using scatter-gather iterations [81].

5.6 Conclusion

In this chapter, we studied how to support multi-source entity clustering for a mix of
clean (duplicate-free) and dirty data sources. The proposed extension of Affinity Propa-
gation and Hierarchical clustering, showed to be highly effective and perform better than
previous methods for mixed configuration where a subset of the sources is duplicate-free.
To improve runtimes we proposed the use of parallel versions and provided parallel im-

111

CHAPTER 5. MULTI-SOURCE CLEAN/DIRTY CLUSTERING

plementations of the algorithms. The parallel implementations achieved good speedup
values thereby supporting scalability to larger datasets.

Comparing the proposed MSCD clustering algorithms, MSCD-HAC approaches al-
ways exceed MSCD-AP algorithm. On the other hand MSCD-AP results in the best
precision with better speedup behavior. However, the scalable variation of MSCD-AP
(MSCD-HAP), is an approximation of the original algorithm and may result in poor re-
sults compared to the original MSCD-AP. The evaluation of MSCD-HAC with different
linkage types showed that MSCD S-LINK obtains superior cluster results compared to
previous clustering schemes specifically for MSCD datasets with dirty sources. For the
case of clean sources the same or better quality than the best methods such as CLIP is
achieved. In some cases such as for larger clusters (many sources), MSCD S-LINK is
outperformed by other linkage strategies. We will therefore investigate how to automat-
ically select the best linkage strategy for MSCD clustering.

112

6
Incremental Entity Resolution

This chapter is based on [159]. Incremental entity resolution is needed for the comple-
tion of knowledge graphs integrating data from multiple sources. Compared to previous
approaches we aim at reducing the dependency on the order in which new sources and
entities are added. For this purpose, we consider sets of new entities for an optimized as-
signment of them to entity clusters. We also propose the use of a light-weight approach
to repair entity clusters in order to correct wrong clusters. The new approaches are in-
tegrated within the FAMER framework for parallel and scalable entity clustering. A de-
tailed evaluation of the new approaches for real-world workloads shows their high effec-
tiveness. In particular, the repair approach outperforms other incremental approaches
and achieves the same quality than with batch-like entity resolution showing that its
results are independent from the order in which new entities are added. Our approaches
were presented at ESWC 2020.

6.1 Motivation

Knowledge graphs (KG) physically integrate numerous entities with their properties and
relationships as well as associated metadata about entity types and relationship types in
a graph-like structure [146]. The KG entities are typically integrated from numerous
sources, such as other knowledge graphs or web pages. The initial KG may be created
from a single source (e.g., a pre-existing knowledge graph such as DBpedia) or a static
integration of multiple sources. KG completion (or extension) refers to the incremental
addition of new entities and entire sources. The addition of new entities requires solving

113

CHAPTER 6. INCREMENTAL ENTITY RESOLUTION

several challenging tasks, in particular an incremental entity resolution to match and
cluster new entities with already known entities in the KG [131].

Most previous work on entity resolution (ER) deals with static ER to match entities
from one or several static data sources. Such static approaches are not sufficient to
add entities to an in-use KG where the majority of already integrated entities is largely
unaffected by new entities and should not have to be re-integrated for every update. ER
for entities of multiple sources typically groups or clusters matching entities and these
clusters can then be used to fuse (merge) the properties of the matching entities to obtain
an enriched entity description for the KG. Incremental ER thus requires to update these
entity clusters for new entities. A naive approach is to simply add a new entity either to
the most similar existing cluster or to create a new cluster if there is no similar one [122,
177]. However, this approach typically suffers from a strong dependency on the order
in which new entities are added. In particular, wrong cluster decisions, e.g., due to data
quality problems, will not be corrected and can lead to further errors when new entities
are added. The overall ER quality can thus be much worse than for batch ER where all
entities are simultaneously integrated.

We therefore propose and evaluate new approaches for incremental entity clustering
that reduce the dependency on the order in which new entities and sources are added.
The approaches have been developed for the framework FAMER that supports a parallel
ER for entities from multiple sources [160]. As described in Chapter 3, for batch ER,
FAMER first applies pairwise linking among entities and derives a so-called similarity
graph. This graph is input for entity clustering that determines a set of clusters where
each cluster groups the matching entities from several sources. These linking and clus-
tering steps now need to become incremental while preserving a similarly high quality
than for batch ER.

Specifically, the following contributions are made in this chapter:

• A proposal of several approaches for incremental linking and clustering. For an
optimized cluster assignment, we consider the addition of sets of entities and so-
called max-both assignments that add an entity to the most similar cluster only
when there is no more similar new entity from the respective data source. Fur-
thermore, we optionally can link new entities with themselves before updating
entity clusters. We also support the fusion of cluster members to a single entity
which simplifies and speed-ups incremental clustering as new entities need no
longer be compared to several entities of a cluster.

114

6.2. INCREMENTAL APPROACHES

• A proposal of a new method called n-depth reclustering for incremental ER that is
able to repair existing clusters for improved quality and a reduced dependency on
the insert order of new entities.

• The evaluation of the incremental approaches for datasets of three domains in
terms of cluster quality and runtime efficiency. We also provide a comparison to
a previous approach for incremental cluster repair [66] and with batch ER.

• All methods are implemented on top of Apache Flink framework for improved
runtimes and high scalability to large datasets.

Section 6.2 presents the new methods in detail and Section 6.3 is the evaluation. A
discussion of related work is presented in Section 6.4. Finally, we conclude in Section 6.5.

6.2 IncRemental AppRoacHes

As explained in Chapter 3 the input of the workflow is a stream of new entities from exist-
ing sources or from a new source plus the already determined clustered similarity graph
from previous iterations. The linking part now focuses on the new entities and does not
re-link among previous entities. We also support the linking among new entities to pro-
vide additional links in the similarity graph that may lead to better cluster results. The
output of the linking is a grouped similarity graph composed of existing clusters and the
group of new entities and the newly created links (the light-blue colored group in the
middle of Figure 6.1).

The Incremental Clustering/Repairing part supports two methods for integrating the
group of new entities into clusters. In the base (non-repairing) approach calledMax-Both
Merge (MBM) the new entities are either added to a similar existing cluster or they form a
new cluster. A more sophisticated approach is able to repair existing clusters to achieve

Figure 6.1: FAMER workflow for incremental entity resolution

115

CHAPTER 6. INCREMENTAL ENTITY RESOLUTION

a better cluster assignment for new entities by reclustering a portion of the existing
clustered graph. The method is named n-depth reclustering (nDR) where n is a parameter
to control the portion of the similarity graph that is considered for reclustering.

The output of incremental clustering is a fully clustered graph. The clusters can op-
tionally be fused in the Fusion component so that all entities are represented by a single
entity called cluster representative. Fusion can improve linking efficiency since new en-
tities only have to be compared with the cluster representatives instead of all cluster
members. On the other hand, we loose the possibility to recluster if we retain only a
single fused entity per cluster.

In the rest of this chapter, we first define the main concepts in Section 6.2.1. We then
describe the general incremental ER process in Section 6.2.2 and the base approach MB
in Section 6.2.3. Finally, the repairing method is described in Section 6.2.4.

6.2.1 Concepts

Grouped similarity graph: A grouped similarity graph GG is a similarity graph where
each entity can be associated to a group or cluster. Clustered entities have a cluster-id of
the cluster they belong to. The grouped similarity graph allows us to maintain already
determined clusters together with the underlying similarity graph as input for incremen-
tal changes such as adding new entities. A grouped similarity graph may also include
new entities with their similarity links to other entities. Figure 6.2a shows a grouped
similarity graph with four groups cg0, cg1, cg2, cg3 and group gnew with new entities.
There are links between entities of the same group, so-called intra-links, as well as links
between entities of different groups (inter-links) resulting in group neighborhoods.
Fused similarity graph: A fused similarity graph is a clustered similarity graph in
that each cluster is only represented with a cluster representative. The cluster represen-
tative combines the property values of the original cluster members and also records the
ids of the originating data sources as provenance information (see sample cluster repre-
sentatives in Figure 6.5a).
Max-Both link: An entity from a source A may have several links to entities of a
source B. From these links, the one with the highest similarity value is called maximum
link. If a link is a maximum link from both sides, it is a max-both or strong link. In
Figure 6.2b, for entity a1 the maximum link to source B is the one to entity b1 (similarity
0.95). This link is also maximum for b1 so that it is a max-both link. By contrast, the link
between c2 and b1 is only the maximum link for one side (c2) and the link between a1 to
b0 for none of the sides.
n-depth neighbor graph: If a group in a grouped similarity graph is linked to the

116

6.2. INCREMENTAL APPROACHES

(a) Sample grouped similarity graph (b) Max-Both concept

Figure 6.2: Incremental clustering concepts

other groups via inter-links, the graphs directly linked to it are called 1-depth neighbor
graphs. Recursively, the 1-depth neighbors of the n-depth neighbors are the (n+1)-depth
neighbors. For example in Figure 6.2a, Gnew is the 1-depth neighbor of cg1 and cg3 and
also 2-depth neighbor of cg0 and cg2.

6.2.2 IncRemental Entity Resolution

Incremental ER limits linking and clustering to the new entities rather than processing
all entities as for batch ER. At the same time the resulting linkage and cluster quality
should be similar to batch ER which means that the order in which entities are added
should ideally have no impact on quality. The latter requirement is a main reason for
re-clustering as otherwise wrong cluster decisions can impact further cluster decisions
and thus lead to increasing quality problems.

Incremental ER entails the two main steps of Linking and Clustering. The input of
linking is an existing clustered graph CGexist and a set of new entities Enew from already
known sources or from a new source. For illustration, we consider a running example
with existing entities from four sources (shown in part (a) of Figure 6.3) and new entities

Figure 6.3: Running example: existing entities, new entities and blocking

117

CHAPTER 6. INCREMENTAL ENTITY RESOLUTION

(a) Linking input (b) w/o new-input-linking (c) with new-input-linking

Figure 6.4: Incremental linking

to be integrated (shown in part (b) of Figure 6.3). As typical for real-world data, the
entity properties are partly erroneous. Figure 6.4a shows the clustered similarity graph
indicating that the previous entities form four clusters named cg0 to cg3. Note, that the
colors indicate the originating source and that every cluster contains at most one entity
per source.

For the linking of new entities we optionally support a linking among new entities.
While this introduces additional computations, the additionally found links may lead to
better clusters. Note that this new-input-linking is not applicable if all new entities are
from the same source due to the assumption of duplicate-free sources. To limit the num-
ber of comparisons we apply blocking and only compare new entities with other entities
of the same block. For the running example we assume that the two initial letters of the
surname are used as blocking key (specified in the configuration) as shown in part (c) of
Figure 6.3. Without new-input-linking, we only compare new entities (marked in blue)
with previous entities of the same block. With new-input-linking, we additionally link
new entities among each other, e.g., for blocking key su. All links between new enti-
ties with a similarity above a threshold (specified in the configuration) are added to the
similarity graph. Figure 6.4b and Figure 6.4c illustrate the resulting grouped similarity
graphs without and with new-input-linking, respectively. The only difference occurs for
the new entity 10 which is not linked with any previous entity but a link with the new
entity 12 is generated by new-input-linking so that entity 10 may be added to the same
cluster.

The clustering part (second step of incremental ER) uses the determined grouped sim-
ilarity graph GG and the clustering configuration as input. The clustering configuration
specifies either one of the base methods or the repair method with their parameters (to
be explained in Section 6.2.3 and Section 6.2.4). The output is an updated clustered graph
CGupdated that includes the new entities within updated clusters.

118

6.2. INCREMENTAL APPROACHES

(a) Linking input (b) Linking output with fused clustered graph

Figure 6.5: Fusion example

The sketched process is similar when we choose to fuse all entities of a cluster to build
cluster representatives and when we use a fused similarity graph instead of a clustered
similarity graph. The reduced number of entities in this graph reduces the number of
comparisons and can thus lead to a more efficient linking. Figure 6.5a shows the fused
similarity graph of the running example to which the new entities have to be compared.
The cluster representatives (fused entities) may contain per property multiple values
from the original entities. When linking a new entity we can choose to only link to clus-
ter representatives that do not yet include an entity from the same source. For example,
in Figure 6.5b, the link between entity 9 and cluster cg0 does not need to be created (in-
dicated as dashed line) since this cluster already contains an entity of the same source.

6.2.3 Max-BotH MeRge

The max-both merge approach integrates new entities into already existing clusters or
creates new clusters for them. The decision is based on the max-both (strong) links
between new entities and already clustered entities. In case of new-input-linking, we
first apply a pre-clustering among the linked new entities to create source-consistent
clusters which may then be merged with the existing clusters. The case without new-
input-linking can be viewed as a special case where each new entity forms a singleton
cluster.

If GG is a grouped similarity graph consisting of Gnew, CGexist and Lexist_new, the max-
both approach merges a new cluster n ∈ Gnew with an existing cluster c ∈ CGexist if there
is a max-both link l(ei, ej) ∈ Lexist_new between a new entity ei ∈ n and an entity ej ∈ c

and the two clusters n and c have only entities from different sources. Hence, max-both
merge assigns a new cluster to the maximally similar existing cluster and merges them
only if this does not violate source consistency. For the example in Figure 6.6, we would
assign entity 9 neither to cluster cg0 nor to cg1 if the link between entity 9 and entity 1
of cg0 has a higher similarity than the link with entity 3 of cg1.

119

CHAPTER 6. INCREMENTAL ENTITY RESOLUTION

Figure 6.6: Max-Both merge

The further processing of the selected max-both links has to consider that max-both
links ensure the maximal entity similarity only w.r.t. a fixed pair of sources. Hence, it
is possible that clusters can have several max-both links referring to entities of different
sources. As a result, it may be possible to merge more than two clusters as long as source
consistency is ensured. For the example in Figure 6.6, we would merge three clusters
including cg6, cg7 and cg3, because the links from the new entities 11 and 12 to the
existing entity 7 are max-both links and merging all of the associating clusters (cg6, cg7

and cg3) as one cluster still keeps the source consistency constraint. When merging more
than two clusters is not possible due to the source consistency constraint, we determine
for each existing cluster cgi, the linked new clusters as candidates. These candidate
clusters are sorted and processed according to the link similarity and the cluster size
giving preference for merging to higher similarity values and bigger candidate clusters.

Figure 6.6 illustrates the max-both merge algorithm for the grouped similarity graph
of Figure 6.4c. The left part of the Figure 6.6 shows the result after pre-clustering the new
entities resulting in clusters cg4 to cg7. Then, the links are selected that are max-both and
that connect mergeable clusters as shown in the middle part of Figure 6.6 (the links from
the new clusters cg4 and cg5 to clusters cg0 and cg2 would lead to source inconsistency
and are thus removed). The right part of Figure 6.6 indicates the final merge result with
six instead of eight clusters. The existing cluster cg3 is linked to two new clusters cg6

and cg7. Assuming that both links have the same similarity value, the sort order would
first consider the bigger cluster cg7 and merge it. Then, cluster cg6 is considered and also
merged with cg3 since source consistency is preserved.

For fused clusters, we use the provenance information in the cluster representatives to
avoid linking new entities to clusters containing already an entity from the same source
(Figure 6.5b). This leads to an incremental clustering result corresponding to the one for
the max-both approach.

120

6.2. INCREMENTAL APPROACHES

6.2.4 n-DeptH ReclusteRing

The approaches described so far cannot add a new entity to an existing cluster if there is
already another entity of the respective source. This can lead to wrong cluster decisions,
e.g., if the previously added entity is less similar to the other cluster members than the
new entity. Our n-depth reclustering scheme addresses this problem to obtain better
clusters and to bcome largely independent from the order in which new entities are
added. At the same time, we want to limit the amount of reclustering in order to maintain
good efficiency.

The approach reclusters the new entities in Gnew with their neighbors in the existing
clustered graph CGexist. The parameter n controls the depth up to which the neighboring
clusters and their entities are reconsidered thereby allowing us to control the scope of
processing and associated overhead. For n = 1, the algorithm only re-evaluates entities
of the existing clusters directly connected to the new entities. For n = 2, the neighbors
of 1-depth neighbors are also selected. The selected portion of the grouped similarity
graph GG , Gnew and the neighbors, are reclustered using a static clustering scheme.

Algorithm 10 outlines this process. In line 1, the neighbors up to depth n are deter-
mined. The union of the found neighbor clusters (including their intra- and inter-links)
with the subgraph of new entities Gnew forms the portion (Greclustering) of the grouped sim-
ilarity graph to be re-clustered (line 2). In line 3, the static clustering scheme is applied
leading to an updated set of clusters. Any clustering algorithm can be used for the
batchClustering. In our experiments in Section 6.3 we used the CLIP algorithm
that was shown in [160] to achieve better quality than other ER clustering approaches.

Figure 6.7 illustrates the algorithm for n = 1. The portion of the input to be reclustered
consists of the new graph Gnew and its 1-depth neighbor clusters (cg0 to cg3). The output
(right part of the Figure 6.7) shows that the previous cluster cg2 is changed so that the
new entity 8 is included instead of the previous member 6 from the same source.

Algorithm 10: n-Depth Reclustering
Input: grouped similarity graph GG (Gnew, CGexist, Lexist_new), configuration

config
Output: updated Clustered Graph CGupdated

1 CGneighbors← getNeighbors(GG, n)
2 Greclustering←CGneighbors∪ Gnew∪ Lexist_new

3 CGnew← batchClustering(Greclustering, conf.getClustering())
4 CGupdated← GG
5 updateGraph(GG, CGnew)
6 return CGupdated

121

CHAPTER 6. INCREMENTAL ENTITY RESOLUTION

Figure 6.7: 1-depth reclustering (1DR)

(a) 2nd increment input (b) 1DR output (c) 2DR output

Figure 6.8: nDR example

Figure 6.8a shows the output of Figure 6.7 as existing clustered graph and the next
increment of new entities (13, 14 and 15). By performing 1-depth reclustering (1DR),
a small portion of the graph including clusters cg1 and cg2 plus the new entities are
reclustered. As illustrated in Figure 6.8b only cluster cg1 is modified and the entities 14
and 15 create a new cluster. For the same input choosing n = 2 would end to reclustering
a bigger portion of the existing clustered graph compared with 1-depth reclustering. As
illustrated in Figure 6.8c, the 2-depth neighbour cluster cg4 and the 1-depth neighbor
clusters, cg1 and cg2 are modified by the reclustering.

The introduced reclustering of existing clusters depends on the intra-cluster links.
Therefore, the repairing method is not applicable for fused clusters.

6.3 Evaluation

We now evaluate the effectiveness and efficiency of the proposed incremental cluster-
ing/repairing algorithms in comparison to the batch ER approach of FAMER and the
Greedy incremental cluster repair of [66]. We first describe the used datasets from three
domains. We then analyze comparatively the match quality of the proposed algorithms.
Finally, we evaluate runtime performance.

122

6.3. EVALUATION

6.3.1 Datasets

We use datasets from four domains with different numbers of duplicate-free sources.
The datasets are publicly available and have been used in prior ER studies1. Table 6.1
shows the main characteristics of the datasets in particular the number of clusters and
match pairs of the perfect ER result. The datasets are explained thoroughly in Chapter 4
and Chapter 5. As explained in Section 5.4, we use the dataset of ACM SIGMOD 2020
Programming Contest2 for the camera products. It contains camera specifications from
24 sources. The DS-C100 dataset is the result of removing the source www.alibaba.com
3 and deduplicating each source individually.

We evaluate our proposed methods with two scenarios of incremental ER. In the first
scenario, called sources-wise, a complete new source is added to the existing clustered
graph in each increment. In the second scenario, called entity-wise, specific portions
of new entities from already existing sources are added to the clustered graph. For this
case, we consider the four configurations listed in Table 6.2. Each configuration specifies
the percentage of entities from each source that is added to the knowledge base in each
increment. For example, in configuration conf1, the initial KG only contains 20% of the
entities from each source. In each of the following four increments 20% of the entities
from each source are added.

For linking, we apply different configurations for each dataset (listed in Table 6.3). All
configurations use standard blocking with different blocking keys. The match rules rely
on different attribute similarities using either string similarity functions (Jaro Winkler,
Trigram) or geographical distance. For the camera dataset, we extracted the manufac-
turer name, a list of model names, manufacturer part number (mpn), european article
number (ean), digital and optical zoom, camera dimensions, weight, product code, sen-
sor type, price and resolution from the heterogeneous product specifications. In order to
reduce the number of comparisons, standard blocking with a combined key of manufac-

Table 6.1: Evaluation datasets

general information perfect result
domain entity properties #entity #src #clusters #links

DS-G geography label, longtitude, latitude 3,054 4 820 4,391
DS-C100 cameras heterogeneous key-value pairs 8,123 23 3,910 16,014
DS-M music artist, title, album, year, length 19,375 5 10,000 16,250
DS-P persons name, surname, suburb, postcode 10,000,000 10 6,625,848 14,995,973

1https://dbs.uni-leipzig.de/research/projects/object_matching/
benchmark_datasets_for_entity_resolution

2http://www.inf.uniroma3.it/db/sigmod2020contest/index.html
3This source mostly contains non-camera entities.

123

https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
http://www.inf.uniroma3.it/db/sigmod2020contest/index.html

CHAPTER 6. INCREMENTAL ENTITY RESOLUTION

Table 6.2: Increment configurations

conf 1 2 3 4
base 20% 33% 50% 80%
inc 1 20% 33% 10% 10%
inc 2 20% 33% 10% 10%
inc 3 20% - 10% -
inc 4 20% - 10% -
inc 5 - - 10% -

Table 6.3: Linking configurations

blocking key similarity function

DS-G prefixLength1 (label) Jaro Winkler (label)
geographical distance

DS-M prefixLength1 (artist+title+album) Trigram (artist+title+album)

DS-P prefixLength4 (surname)
+ prefixLength4 (name) avg (Trigram (name)

+ Trigram (surname)
+ Trigram (postcode)
+ Trigram (suburb))

turer name and model number is applied. Within these blocks, all pairs with exactly the
same model name, mpn or ean are classified as matches. We assign a similarity value
to the matched pairs determined from a weighted average of the 3Gram similarity of
string values and a numerical similarity of numerical values (within a maximal distance
of 30%).

6.3.2 Evaluation Results

Initially we evaluate the quality and robustness of our proposed methods for source-wise
incremental ER. As described in Section 6.2.2, we do not need to perform new-input-
linking and pre-clustering in this scenario since sources are duplicate free.

To analyze the impact of the order in which we add sources, we start with the results
for the real-world datasets DS-G and DS-C100 where the sources differ strongly in size
and quality. We compare our proposed incremental methods against the batch cluster-
ing approach of FAMER as well as the re-implemented Greedy algorithm from [66]. In
Figure 6.9 and Figure 6.10, we show the obtained cluster quality results in terms of preci-
sion, recall and F-Measure for different similarity threshold of the linking phase which
influences the number and the quality of generated links that are input to clustering.

124

6.3. EVALUATION

Lower thresholds produce more links (good recall) at a higher chance of wrong links
(lower precision) while higher thresholds lead to the opposite behavior.

For DS-G, twelve different orders of adding sources are possible. We examined all of
them and report results for the best order ”ny, fb, geo, dp” (conf1) and the worst order
”dp, geo, ny, fb” (conf2) in Figure 6.9. For DS-C100 (Figure 6.10) similarly there are 253
different orders. We considered the best and the worst orders by adding sources in the
descending (conf1) and ascending (conf2) oder of their sizes. With a good insert order,
the quality of all approaches including MB (max-both merge) are close together and as
good as batch ER. However, for the worst order MB achieves substantially lower recall
and F-measure values indicating its strong dependency on the insert order. By contrast,
our proposed re-clustering approach nDR (n=1) strongly reduces the dependency on the
insert order and achieves the same quality as batch ER. The weakest results are observed
for the Greedy approach [66]. Greedy initially tries to merge new entities to a randomly
chosen neighboring cluster without considering the actual similarity value of the link.
Then, if merging is not possible, it tries to maximize the objective function of the clus-

Sheet1

Page 1

FM

0.75

Batch

inc3_1-ny geo fb dp_0.75 9 0.987688413

inc3_2-ny geo dp fb_0.75 7 0.987010001

inc3_3-ny dp geo fb_0.75 10 0.987347596

inc3_4-ny dp fb geo_0.75 2 0.987010001

inc3_5-ny fb geo dp_0.75 1 0.986537798

inc3_6-ny fb dp geo_0.75 11 0.988730451

inc3_7-geo fb dp ny_0.75 4 0.987918536

inc3_8-geo fb ny dp_0.75 12 0.986307675

inc3_9-geo dp fb ny_0.75 6 0.98838947

inc3_10-geo dp ny fb_0.75 3 0.988730451

inc3_11-fb dp geo ny_0.75 8 0.986307675

inc3_12-fb dp ny geo_0.75 5 0.987010001

inc3_1-ny geo fb dp_0.8

inc3_2-ny geo dp fb_0.8

inc3_3-ny dp geo fb_0.8

inc3_4-ny dp fb geo_0.8

inc3_5-ny fb geo dp_0.8

inc3_6-ny fb dp geo_0.8

inc3_7-geo fb dp ny_0.8

inc3_8-geo fb ny dp_0.8

inc3_9-geo dp fb ny_0.8 FM

inc3_10-geo dp ny fb_0.8 conf10-Max

inc3_11-fb dp geo ny_0.8 Batch

inc3_12-fb dp ny geo_0.8 0.75 0.987010001

inc3_1-ny geo fb dp_0.85 0.8 0.983844911

inc3_2-ny geo dp fb_0.85 0.85 0.972689076

inc3_3-ny dp geo fb_0.85 0.9 0.907515167

inc3_4-ny dp fb geo_0.85

inc3_5-ny fb geo dp_0.85 conf10-Max

inc3_6-ny fb dp geo_0.85 Batch

inc3_7-geo fb dp ny_0.85 0.75 0.987

inc3_8-geo fb ny dp_0.85 0.8 0.984

inc3_9-geo dp fb ny_0.85 0.85 0.973

inc3_10-geo dp ny fb_0.85 0.9 0.908

inc3_11-fb dp geo ny_0.85

inc3_12-fb dp ny geo_0.85

inc3_1-ny geo fb dp_0.9

inc3_2-ny geo dp fb_0.9

inc3_3-ny dp geo fb_0.9

inc3_4-ny dp fb geo_0.9

inc3_5-ny fb geo dp_0.9

inc3_6-ny fb dp geo_0.9

inc3_7-geo fb dp ny_0.9

inc3_8-geo fb ny dp_0.9

inc3_9-geo dp fb ny_0.9

inc3_10-geo dp ny fb_0.9

0.75 0.8 0.85 0.9
0.75

0.8

0.85

0.9

0.95

1

θ

P
re

c
is

io
n

Sheet1

Page 1

FM

0.75

Batch

inc3_1-ny geo fb dp_0.75 9 0.987688413

inc3_2-ny geo dp fb_0.75 7 0.987010001

inc3_3-ny dp geo fb_0.75 10 0.987347596

inc3_4-ny dp fb geo_0.75 2 0.987010001

inc3_5-ny fb geo dp_0.75 1 0.986537798

inc3_6-ny fb dp geo_0.75 11 0.988730451

inc3_7-geo fb dp ny_0.75 4 0.987918536

inc3_8-geo fb ny dp_0.75 12 0.986307675

inc3_9-geo dp fb ny_0.75 6 0.98838947

inc3_10-geo dp ny fb_0.75 3 0.988730451

inc3_11-fb dp geo ny_0.75 8 0.986307675

inc3_12-fb dp ny geo_0.75 5 0.987010001

inc3_1-ny geo fb dp_0.8

inc3_2-ny geo dp fb_0.8

inc3_3-ny dp geo fb_0.8

inc3_4-ny dp fb geo_0.8

inc3_5-ny fb geo dp_0.8

inc3_6-ny fb dp geo_0.8

inc3_7-geo fb dp ny_0.8

inc3_8-geo fb ny dp_0.8

inc3_9-geo dp fb ny_0.8 FM

inc3_10-geo dp ny fb_0.8 conf10-Max

inc3_11-fb dp geo ny_0.8 Batch

inc3_12-fb dp ny geo_0.8 0.75 0.987010001

inc3_1-ny geo fb dp_0.85 0.8 0.983844911

inc3_2-ny geo dp fb_0.85 0.85 0.972689076

inc3_3-ny dp geo fb_0.85 0.9 0.907515167

inc3_4-ny dp fb geo_0.85

inc3_5-ny fb geo dp_0.85 conf10-Max

inc3_6-ny fb dp geo_0.85 Batch

inc3_7-geo fb dp ny_0.85 0.75 0.987

inc3_8-geo fb ny dp_0.85 0.8 0.984

inc3_9-geo dp fb ny_0.85 0.85 0.973

inc3_10-geo dp ny fb_0.85 0.9 0.908

inc3_11-fb dp geo ny_0.85

inc3_12-fb dp ny geo_0.85

inc3_1-ny geo fb dp_0.9

inc3_2-ny geo dp fb_0.9

inc3_3-ny dp geo fb_0.9

inc3_4-ny dp fb geo_0.9

inc3_5-ny fb geo dp_0.9

inc3_6-ny fb dp geo_0.9

inc3_7-geo fb dp ny_0.9

inc3_8-geo fb ny dp_0.9

inc3_9-geo dp fb ny_0.9

inc3_10-geo dp ny fb_0.9

0.75 0.8 0.85 0.9
0.75

0.8

0.85

0.9

0.95

1

θ

R
e

c
a

ll

Sheet1

Page 1

FM

0.75

Batch

inc3_1-ny geo fb dp_0.75 9 0.987688413

inc3_2-ny geo dp fb_0.75 7 0.987010001

inc3_3-ny dp geo fb_0.75 10 0.987347596

inc3_4-ny dp fb geo_0.75 2 0.987010001

inc3_5-ny fb geo dp_0.75 1 0.986537798

inc3_6-ny fb dp geo_0.75 11 0.988730451

inc3_7-geo fb dp ny_0.75 4 0.987918536

inc3_8-geo fb ny dp_0.75 12 0.986307675

inc3_9-geo dp fb ny_0.75 6 0.98838947

inc3_10-geo dp ny fb_0.75 3 0.988730451

inc3_11-fb dp geo ny_0.75 8 0.986307675

inc3_12-fb dp ny geo_0.75 5 0.987010001

inc3_1-ny geo fb dp_0.8

inc3_2-ny geo dp fb_0.8

inc3_3-ny dp geo fb_0.8

inc3_4-ny dp fb geo_0.8

inc3_5-ny fb geo dp_0.8

inc3_6-ny fb dp geo_0.8

inc3_7-geo fb dp ny_0.8

inc3_8-geo fb ny dp_0.8

inc3_9-geo dp fb ny_0.8 FM

inc3_10-geo dp ny fb_0.8 conf10-Max

inc3_11-fb dp geo ny_0.8 Batch

inc3_12-fb dp ny geo_0.8 0.75 0.987010001

inc3_1-ny geo fb dp_0.85 0.8 0.983844911

inc3_2-ny geo dp fb_0.85 0.85 0.972689076

inc3_3-ny dp geo fb_0.85 0.9 0.907515167

inc3_4-ny dp fb geo_0.85

inc3_5-ny fb geo dp_0.85 conf10-Max

inc3_6-ny fb dp geo_0.85 Batch

inc3_7-geo fb dp ny_0.85 0.75 0.987

inc3_8-geo fb ny dp_0.85 0.8 0.984

inc3_9-geo dp fb ny_0.85 0.85 0.973

inc3_10-geo dp ny fb_0.85 0.9 0.908

inc3_11-fb dp geo ny_0.85

inc3_12-fb dp ny geo_0.85

inc3_1-ny geo fb dp_0.9

inc3_2-ny geo dp fb_0.9

inc3_3-ny dp geo fb_0.9

inc3_4-ny dp fb geo_0.9

inc3_5-ny fb geo dp_0.9

inc3_6-ny fb dp geo_0.9

inc3_7-geo fb dp ny_0.9

inc3_8-geo fb ny dp_0.9

inc3_9-geo dp fb ny_0.9

inc3_10-geo dp ny fb_0.9

0.75 0.8 0.85 0.9
0.75

0.8

0.85

0.9

0.95

1

θ

F
M

e
a

s
u

re

Figure 6.9: Source-wise cluster quality for dataset DS-G

pre

Page 1

method 0.3 0.5 0.7

greedy-cnf1 0.854947916666667 0.867045603031491 0.940980822305569

1dr-cnf1 0.922188528292148 0.930881296139021 0.96334599690446

mb-cnf1 0.913861839095484 0.928910891089109 0.959203909625328

greedy-cnf2 0.786159121125184 0.831187410586552 0.926272674078408

1dr-cnf2 0.922823346907116 0.932704278880807 0.962957746478873

mb-cnf2 0.862429200755192 0.882740532241556 0.947121773798699

batch 0.922 0.929 0.962

0.3 0.5 0.7

0.7

0.75

0.8

0.85

0.9

0.95

1

greedy-cnf1

1dr-cnf1

mb-cnf1

greedy-cnf2

1dr-cnf2

mb-cnf2

batch

0.3 0.5 0.7

0.7

0.75

0.8

0.85

0.9

0.95

1

θ

P
re

c
is

io
n

rec

Page 1

method 0.3 0.5 0.7

greedy-cnf1 0.820032471587361 0.828712376670413 0.830335956038466

1dr-cnf1 0.892531534906956 0.889783939053328 0.855064318721119

mb-cnf1 0.87317347321094 0.878793555638816 0.84569751467466

greedy-cnf2 0.701573623079805 0.725615086799051 0.790808042962408

1dr-cnf2 0.891532409142001 0.888847258648682 0.853877856875234

mb-cnf2 0.855751217684526 0.86168352691395 0.84557262395404

batch 0.892 0.889 0.853

0.3

0.7

0.75

0.8

0.85

0.9

0.95

1

0.3 0.5 0.7

0.7

0.75

0.8

0.85

0.9

0.95

1

θ

R
e

c
a

ll

fm

Page 1

method 0.3 0.5 0.7

greedy-cnf1 0.837126282909415 0.847445721583653 0.882202687012772

1dr-cnf1 0.907117697458192 0.909868778136075 0.905981209474659

mb-cnf1 0.893054446750758 0.903157489410859 0.898881624796734

greedy-cnf2 0.741461804982676 0.774821630992865 0.853196793101125

1dr-cnf2 0.906908051453073 0.910247801758593 0.905143311047859

mb-cnf2 0.859077231695085 0.872084939644821 0.893471017122497

batch 0.907 0.909 0.904

0.3 0.5 0.7

0.7

0.75

0.8

0.85

0.9

0.95

1

θ

F
M

e
a

s
u

re

Figure 6.10: Source-wise cluster quality for dataset DS-C100

125

CHAPTER 6. INCREMENTAL ENTITY RESOLUTION

Sheet1

Page 1

Batch MB 1DR Mbfused fm
inc1_bss_conf1_0.5 0.935389524 0.93538952 0.935389524 0.935389524062749 final
inc2_bss_conf1_0.5 0.944461063 0.94090591 0.944461063 0.939212157568486
inc3_bss_conf1_0.5 0.933966848 0.92922844 0.933966848 0.926863572433193 0.6
inc4_bss_conf1_0.5 0.940175896 0.93379386 0.940145609 0.931694253541122 0.7
inc1_bss_conf1_0.6 0.932761854 0.93276185 0.932761854 0.932761853736941 0.8
inc2_bss_conf1_0.6 0.94340002 0.9404534 0.94340002 0.940157163006246 0.9
inc3_bss_conf1_0.6 0.929678969 0.92626627 0.929569775 0.92573553538226 ave
inc4_bss_conf1_0.6 0.937930586 0.93243772 0.937900107 0.931898940505297
inc1_bss_conf1_0.7 0.919902254 0.91990225 0.919902254 0.919902253597611 0.6
inc2_bss_conf1_0.7 0.936118434 0.93090094 0.935915636 0.931104769669792 0.7
inc3_bss_conf1_0.7 0.907393953 0.90349352 0.907332886 0.90335969487913 0.8
inc4_bss_conf1_0.7 0.921208511 0.91119124 0.921208511 0.911039871769185 0.9
inc1_bss_conf1_0.8 0.855001441 0.85500144 0.855001441 0.855001441337561
inc2_bss_conf1_0.8 0.91011236 0.88905388 0.91011236 0.888841747984726
inc3_bss_conf1_0.8 0.828799616 0.81396339 0.828679517 0.813765428345595
inc4_bss_conf1_0.8 0.857895106 0.82989821 0.857895106 0.829412187927189

pre
Batch MB 1DR Mbfused pre

inc1_bss_conf1_0.5 0.989870568 0.98987057 0.989870568 0.989870568373664 final
inc2_bss_conf1_0.5 0.987077949 0.98637317 0.987077949 0.9844896248166
inc3_bss_conf1_0.5 0.985079727 0.98238188 0.985079727 0.979645511720983 0.6
inc4_bss_conf1_0.5 0.986545872 0.98200828 0.986479178 0.9793122159669 0.7
inc1_bss_conf1_0.6 0.995425958 0.99542596 0.995425958 0.995425957690109 0.8
inc2_bss_conf1_0.6 0.994910941 0.99424798 0.994910941 0.993823216187433 0.9
inc3_bss_conf1_0.6 0.992886297 0.99133591 0.992769679 0.99052077238151 ave
inc4_bss_conf1_0.6 0.993733646 0.99167707 0.993665221 0.990849220103986
inc1_bss_conf1_0.7 0.997057092 0.99705709 0.997057092 0.997057092407298 0.6
inc2_bss_conf1_0.7 0.996760959 0.9969439 0.996545023 0.997162191661209 0.7
inc3_bss_conf1_0.7 0.995829244 0.99555116 0.995828733 0.995672601384768 0.8
inc4_bss_conf1_0.7 0.996420646 0.99591301 0.996420646 0.995984228971963 0.9
inc1_bss_conf1_0.8 0.998653199 0.9986532 0.998653199 0.998653198653199
inc2_bss_conf1_0.8 0.998402191 0.99857041 0.998402191 0.998332142006195
inc3_bss_conf1_0.8 0.998408565 0.99850791 0.998263889 0.997912317327766
inc4_bss_conf1_0.8 0.998610657 0.99870141 0.998610657 0.998268098372012

rec
Batch MB 1DR Mbfused rec

inc1_bss_conf1_0.5 0.886592742 0.88659274 0.886592742 0.886592741935484 final
inc2_bss_conf1_0.5 0.905371822 0.89944561 0.905371822 0.897916268399924
inc3_bss_conf1_0.5 0.88789652 0.88153167 0.88789652 0.879478492967868 0.6
inc4_bss_conf1_0.5 0.897969231 0.89009231 0.897969231 0.888492307692308 0.7
inc1_bss_conf1_0.6 0.877520161 0.87752016 0.877520161 0.877520161290323 0.8

0.6 0.7 0.8 0.9
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Batch MB MB-fused 1DR

F
M

e
a

su
re

Figure 6.11: Source-wise incremental ER for DS-M (1st row) and DS-P (2nd row)

tering algorithm by iteratively splitting existing clusters and moving entities in between
clusters until no the objective function is not improved further. However, the random
assignment is problematic when a new entity has multiple neighboring clusters. We ob-
served that even after many iterations of merge, split and move, some entities do not
end up in the optimal cluster. Moreover, Greedy suffers from very long execution times
due to its iterative nature and some experiments for larger datasets could not even fin-
ish. Therefore, the quality (particularly precision) results as well as the run-times are
significantly lower than with our proposed approaches.

In Figure 6.11 we compare the cluster quality of our proposed methods against the
non-incremental batch clustering approach of FAMER for datasets M and P and differ-
ent similarity thresholds for linking. In all experiments, our incremental methods are
able to compete with batch clustering. For dataset M (first row in Figure 6.11) all meth-
ods achieve high values for precision but lower recall values. The recall of the max-both
approaches is consistently lower than nDR (n=1) which is like for dataset DS-G as effec-
tive as the batch approach. For the largest dataset P , the results are slightly different.
Surprisingly, here all incremental methods could achieve better precision than batch
clustering. This can be explained by the maximum possible cluster size of 10 while the
average cluster size is only about 1.5 for this dataset. In batch clustering 10 entities from
10 different sources can be linked and considered as one cluster. Incremental methods
do only touch the direct neighboring entities of the linked new entities. Hence, it is less
likely for them to create clusters of non-matching entities.

In Figure 6.12 we report the F-Measure results for entity-wise incremental ER with the
different increment configurations from Table 6.2. We evaluate all methods with and
without new-input-linking (we use subscript IL to indicate new-input-linking). MBIL

achieves higher F-Measure than MB due to better recall. The positive effect of new-
input-linking is also visible in the results for 1DR so that 1DRIL mostly achieves higher

126

6.3. EVALUATION

Batch MB IL MB MB Fused IL MB Fused 1DR IL 1DR

Figure 6.12: F-Measure results for entity-wise incremental ER

F-Measure than 1DR. The difference of methods with new-input-linking compared with
their counterparts without new-input-linking in conf3 and conf4 is lower because a
big portion of the dataset is already contained in the initial knowledge base and the data
increments only contain 10% of the dataset. Therefore, when the volume of data in a
new increment is much smaller than the volume of the existing knowledge graph, we
may save the overhead of new-input-linking and pre-clustering. The approach 1DRIL

with new-input-linking consistently achieves the best results in all scenarios and newer
achieves lower F-Measure than batch ER for our configurations.

6.3.3 Efficiency Evaluation

The run-times of all approaches are evaluated for the large dataset P and using a Hadoop
cluster with 16 worker nodes, each consisting of an E5-2430 6(12) 2.5 Ghz CPU, 48 GB
RAM and two 4 TB SATA disks. The nodes are connected via 1 Gigabit Ethernet. The
used software versions are Flink 1.6.0 and Hadoop 2.6.0. We run Apache Flink with 6
threads and 40 GB memory per worker.

Table 6.4 shows the accumulated runtimes when executing the methods on clusters
with 4, 8 and 16 workers for the large dataset P with a linking threshold of 0.7. As ex-
pected, all incremental approaches are faster than Batch. Moreover, the MB approaches
are faster than our 1DR method. The reason is, that MB methods just process newly
computed links while 1DR relies on intra-links of already existing clusters and the newly
computed links. All methods achieve their best runtime with 16 workers. Batch shows to

Table 6.4: Accumulated runtimes in seconds for source-wise ER

P tmin0.7

#W Batch MB MB-
fused 1DR

4 117 852 5 648 2220 21 179
8 33 791 2 178 1 562 4 283
16 8 542 1 778 1 184 2 513

127

CHAPTER 6. INCREMENTAL ENTITY RESOLUTION
Sheet1

Page 1

10 party-16 workers incremental src EMB

batch-linking Batch-clusteri Batch linking clustering MB

1,2 75 83 138 75 83 138

3 98 98 232 98 93 124

4 131 116 310 107 101 139

5 165 145 464 124 109 169

6 225 168 623 146 123 195

7 274 202 841 169 135 212

8 352 240 1474 187 154 241

9 408 278 1783 201 169 269

10 499 317 2677 223 189 291

Sum 2227 1647 8542 1330 1156 1778

10 party-8 workers incremental src EMB

batch-linking Batch-clusteri Batch linking clustering MB

1,2 80 71 136 80 71 136

3 99 93 279 102 78 114

4 150 120 745 136 101 157

5 238 155 748 145 111 200

6 312 195 1515 165 129 241

7 403 245 2755 192 152 284

8 526 301 4340 223 165 317

9 655 355 6221 254 194 345

10 787 438 17052 271 215 384

Sum 3250 1973 33791 1568 1216 2178

10 party-4 workers incremental src EMB

batch-linking Batch-clusteri Batch linking clustering MB

1,2 83 86 222 83 86 222

3 159 128 556 115 97 177

4 236 174 1506 170 137 245

5 379 249 3112 208 180 315

6 535 329 5599 259 209 384

7 714 424 9352 313 210 559

8 937 531 15380 369 257 665

9 1177 650 37805 432 307 1173

10 1466 770 44320 604 348 1908

Sum 5686 3341 117852 2553 1831 5648

Batch MB MB-Fused 1DR

16 W 8542 1778 1184 2513

8 W 33791 2178 1562 4283

4 W 117852 5648 2220 21179

140000

Accumulated Run Time

ti
m

e
(s

e
c
)

1,2 3 4 5 6 7 8 9 10
0.0 K

0.5 K

1.0 K

1.5 K

2.0 K

2.5 K

3.0 K

Runtime (seconds)

#Inc

Sheet1

Page 1

Batch MB 1DR Mbfused fm
inc1_bss_conf1_0.5 0.935389524 0.93538952 0.935389524 0.935389524062749 final
inc2_bss_conf1_0.5 0.944461063 0.94090591 0.944461063 0.939212157568486
inc3_bss_conf1_0.5 0.933966848 0.92922844 0.933966848 0.926863572433193 0.6
inc4_bss_conf1_0.5 0.940175896 0.93379386 0.940145609 0.931694253541122 0.7
inc1_bss_conf1_0.6 0.932761854 0.93276185 0.932761854 0.932761853736941 0.8
inc2_bss_conf1_0.6 0.94340002 0.9404534 0.94340002 0.940157163006246 0.9
inc3_bss_conf1_0.6 0.929678969 0.92626627 0.929569775 0.92573553538226 ave
inc4_bss_conf1_0.6 0.937930586 0.93243772 0.937900107 0.931898940505297
inc1_bss_conf1_0.7 0.919902254 0.91990225 0.919902254 0.919902253597611 0.6
inc2_bss_conf1_0.7 0.936118434 0.93090094 0.935915636 0.931104769669792 0.7
inc3_bss_conf1_0.7 0.907393953 0.90349352 0.907332886 0.90335969487913 0.8
inc4_bss_conf1_0.7 0.921208511 0.91119124 0.921208511 0.911039871769185 0.9
inc1_bss_conf1_0.8 0.855001441 0.85500144 0.855001441 0.855001441337561
inc2_bss_conf1_0.8 0.91011236 0.88905388 0.91011236 0.888841747984726
inc3_bss_conf1_0.8 0.828799616 0.81396339 0.828679517 0.813765428345595
inc4_bss_conf1_0.8 0.857895106 0.82989821 0.857895106 0.829412187927189

pre
Batch MB 1DR Mbfused pre

inc1_bss_conf1_0.5 0.989870568 0.98987057 0.989870568 0.989870568373664 final
inc2_bss_conf1_0.5 0.987077949 0.98637317 0.987077949 0.9844896248166
inc3_bss_conf1_0.5 0.985079727 0.98238188 0.985079727 0.979645511720983 0.6
inc4_bss_conf1_0.5 0.986545872 0.98200828 0.986479178 0.9793122159669 0.7
inc1_bss_conf1_0.6 0.995425958 0.99542596 0.995425958 0.995425957690109 0.8
inc2_bss_conf1_0.6 0.994910941 0.99424798 0.994910941 0.993823216187433 0.9
inc3_bss_conf1_0.6 0.992886297 0.99133591 0.992769679 0.99052077238151 ave
inc4_bss_conf1_0.6 0.993733646 0.99167707 0.993665221 0.990849220103986
inc1_bss_conf1_0.7 0.997057092 0.99705709 0.997057092 0.997057092407298 0.6
inc2_bss_conf1_0.7 0.996760959 0.9969439 0.996545023 0.997162191661209 0.7
inc3_bss_conf1_0.7 0.995829244 0.99555116 0.995828733 0.995672601384768 0.8
inc4_bss_conf1_0.7 0.996420646 0.99591301 0.996420646 0.995984228971963 0.9
inc1_bss_conf1_0.8 0.998653199 0.9986532 0.998653199 0.998653198653199
inc2_bss_conf1_0.8 0.998402191 0.99857041 0.998402191 0.998332142006195
inc3_bss_conf1_0.8 0.998408565 0.99850791 0.998263889 0.997912317327766
inc4_bss_conf1_0.8 0.998610657 0.99870141 0.998610657 0.998268098372012

rec
Batch MB 1DR Mbfused rec

inc1_bss_conf1_0.5 0.886592742 0.88659274 0.886592742 0.886592741935484 final
inc2_bss_conf1_0.5 0.905371822 0.89944561 0.905371822 0.897916268399924
inc3_bss_conf1_0.5 0.88789652 0.88153167 0.88789652 0.879478492967868 0.6
inc4_bss_conf1_0.5 0.897969231 0.89009231 0.897969231 0.888492307692308 0.7
inc1_bss_conf1_0.6 0.877520161 0.87752016 0.877520161 0.877520161290323 0.8

0.6 0.7 0.8 0.9
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Batch MB MB-fused 1DR

F
M

e
a

su
re

Figure 6.13: Incremental runtimes

have a better speedup, but starts at a much slower run-time. It is important to note that
with less resources (less number of workers), the Batch runtime is significantly higher
than the others. As expected, MB-fused performs slightly faster than MB.

In a further experiment we evaluated the runtimes of adding sources incrementally
for dataset P . Figure 6.13 shows results of all 10 increments (adding 1 source per incre-
ment) for 16 workers. In every increment the incremental approaches are faster than the
Batch method and MB-fused is faster than MB and both of them are faster than 1DR. In
later increments the differences become higher. For example in the 10th increment the
runtime of Batch is 5 times higher than 1DR. The reason is, that Batch clustering needs
to process all vertices and links in each increment, whereas MB and 1DR only need to
process a small fraction of links.

6.4 Related WoRKs

Relatively little work has been done on incremental ER to deal with new entities which
should be fast and not have to repeat the linkage of already linked entities. Most of these
approaches [13][34][177] focus on a single data source only. In these approaches, new
entities are either added to the most similar cluster (group) of entities or are considered
as new entities. These approaches do neither aim at an optimized cluster assignment for
sets of new entities nor do they repair previous match and cluster decisions.

Only little work coped with repairing previous cluster decisions for incremental ER
and the previous approaches focus on a single source. Gruenheid et al. [66] maintain the
clusters within a similarity graph and propose several approaches to update this graph
based on different portions of the graph. Furthermore, a greedy method is introduced to
use the updated graph to correct clusters by merging and splitting them or by moving
entities among clusters. Nascimento et al. [118] extend the approach of [66] by defining

128

6.5. CONCLUSION

six filters to limit the number of cluster updates. The filters improve runtime but also
reduce the quality. The evaluations in both [66] and [118] are limited to small single-
source datasets. In our evaluation we will also consider the greedy approach of [66].

To our knowledge, there is no previous method for multi-source incremental entity
clustering except the initial approach introduced in [122]. This method assumes duplicate-
free sources and provides an optimized addition for sets of new entities or entire new
sources which was shown to achieve better cluster quality than the isolated addition
of one new entity at a time. The most effective approach was a so-called max-both as-
signment where an entity e from a set S of new entities is only assigned to the cluster c
with the highest similarity to e (above a minimal similarity threshold) if there is no other
entity in S from the same source than e with a higher similarity.

Here, we substantially extend this simple approach by considering more options for
incremental linkage, in particular the optional linkage among new entities and the use
of cluster fusion. Moreover, we propose and evaluate a new repair method for incremen-
tal multi-source entity clustering. We also provide distributed implementations of the
approaches for improved performance.

6.5 Conclusion

In this chapter we proposed several new incremental methods for multi-source ER in-
cluding a new method that can repair previous linking and cluster decisions. Our eval-
uation with datasets from different domains shows that the incremental approaches are
much faster and similarly effective than batch ER. In particular, the introduced repair
and re-clustering approach nDR achieves the same quality than batch ER while being
still much faster. Its high effectiveness also shows that the quality does not depend on
the order in which new entities are added in contrast to the non-repairing approaches
such as max-both merge and previous repair schemes.

129

7
Conclusion and Outlook

7.1 Conclusion

This dissertation initiated with a comprehensive discussion about entity resolution and
the necessity of clustering in multi-source scenarios as the last step of the ER pipeline.
Furthermore, the existing clustering algorithms that have been already used in ER ap-
plications were overviewed. Finally, the framework FAMER (FAst Multi-source Entity
Resolution system) was introduced and a comprehensive elaboration on its Linking and
Clustering components has been given.

The focus of this thesis is on designing and developing exclusive clustering schemes
for different ER scenarios. To this end, existing clustering approaches initially were im-
plemented and incorporated for multiple clean data sources. They were comparatively
compared in terms of both efficiency and efficacy. By investigating the output of the im-
plemented clustering algorithms with the tool SIMG-VIZ (our developed visualization
tool for FAMER), new schemes for clustering and repairing were proposed in order to
overcome the deficiencies of the previously implemented approaches in multi-source
clean scenarios. Thereafter, particular clustering schemes were adapted to tackle the
more complicated multi-source scenarios such as having data from a dataset comprised
of various clean and dirty heterogeneous sources. Moreover, several approaches were
proposed to handle the incremental addition of new sources as well as new entities from
existing sources. Following the Big Data needs and requirements, all approaches can be
executed in parallel on different number of machines utilizing the Apache Flink frame-
work.

131

CHAPTER 7. CONCLUSION AND OUTLOOK

7.1.1 clean clusteRing

Previous research put little focus on clustering for the purpose of entity resolution specif-
ically when data is from multiple (> 2) data sources. This thesis initially starts with
investigating clustering algorithms for performing entity resolution in a single source
scenario and applies them in multi clean source datasets. Then, the existing clustering
methods are comparatively evaluated in both terms of efficiency and efficacy. With in-
vestigating the clustering results and considering ER-specific requirements for a cluster-
ing algorithm (e.g. the clustering scheme requires no the predefined number of clusters
or other domain specific parameters as input) a new clustering algorithm called CLIP
(Clustering based on LInk Priority) and a repairing method RLIP (Repairing based on
LInk Priority) are proposed.

One lesson learned by inspecting output of existing clustering schemes is that the
method should not be confined to the abstract value of similarities between entities (edge
weights). Therefore, CLIP classifies links into three groups by defining the concept of
link strength. In a multi clean source scenario, the link from an entity of source A to
an entity of source B with the highest similarity value from both sides is classified as a
Strong link. If the link has the highest similarity just from one side is a Normal link and
if it does not have the highest similarity from both sides the link is classified as a Weak
link. CLIP initially removes all weak links and then in the first phase forms clusters by
considering only strong links and finalizes a cluster if it is a source-consistent complete
cluster (i.e. the cluster contains entities from all sources), then in the second phase
the remaining unclustered entities are grouped into clusters by prioritizing strong and
normal links based on similarity value and strength. The impact rate of each criterion for
prioritizing links can be adjusted by input parameters. In the early variation of CLIP links
are prioritized dynamically i.e. after forming each cluster the remaining links were again
prioritized but for efficiency reasons we decided to perform the prioritization task only
once because the experiments also indicate the little impact of dynamic prioritization on
the output quality. CLIP yields the best results in both quality and runtime compared
with generic purpose clustering algorithms.

Probing the output of clustering algorithms reveals that some clustering schemes re-
sult in overlapping clusters which is improper in ER applications. Therefore, the repair-
ing method RLIP resolves the overlapping as well as source-inconstant clusters by the
link strength beside similarity values. RLIP improves the quality of output results of
other algorithms at the cost of the additional post-processing step.

The pivotal concept of link strength has been further investigated in other researches
and revealed positive effect on both quality and runtime. Considering max-both links

132

7.1. CONCLUSION

(strong links) as a post-processing method resulted in superior results compared to Stable
Marriage (SM) and MaximumWeight Matchings (MWM) methods for privacy-preserving
record linkage [51]. Moreover, removing weak links as a preprocessing step made exe-
cution of the novel clustering method Sort and Keep Best (SKB) [163] feasible.

7.1.2 clean/diRty clusteRing

In real world scenarios specially when data is from numerous sources, only a portion of
sources are clean. Thus, we were initially supposed to deduplicate each source individ-
ually in one round and then applying the CLIP algorithm in the second round in order
to produce the final resulting clusters. Following the two-round strategy may result in
low quality particularly when one or a few of sources has a very low quality which is
prevalent case in multi-source ER. Therefore, we investigated the problem with heteroge-
neous datasets comprised of data sources with various number of entities and dissimilar
quality. We created eight datasets each comprised of a combination of clean and dirty
sources. Totally, we considered a full range of datasets containing 0% to 100% of clean
sources. In order to devise a clustering scheme for multi-source clean/dirty (MSCD)
scenarios, we adapted Affinity Propagation (AP) which is a constrained-based cluster-
ing algorithm. We further extended AP by adding the source-consistency constraint to
it. The extensive evaluation showed superior results (up to 12% improvements in preci-
sion) compared to general-purpose clustering algorithms and standard AP especially in
precision. Moreover, we adapted Hierarchical Agglomerative Clustering (HAC) and pro-
posed the MSCD-HAC. The basic HAC initially considers each entity as a cluster and then
merges the two most similar clusters iteratively until a condition is satisfied. In order to
assess the two most similar clusters we applied three different linkage types based on the
maximum link (single linkage), the minimum link (complete linkage), and the average
similarity (average linkage) between two clusters. An extensive evaluation of compar-
ing the linkage types as well as comparison with MACD-AP and generic-purpose algo-
rithms revealed that MSCD SLINK (MSCD-HAC with single linkage strategy) results in
superior clusters compared to other linkage types (up to 8% improvement in F-Measure),
generic-purpose schemes and MSCD-AP algorithm.

7.1.3 incRemental clusteRing

Most previous work on entity resolution deals with static ER to match entities from one
or several static data sources. Such static approaches are not sufficient to handle evolv-
ing data and ever increasing number of sources of Big Data. Due to the fact that the

133

CHAPTER 7. CONCLUSION AND OUTLOOK

majority of already integrated entities are largely unaffected by new entities, they do
not need to be re-integrated for every update. Therefore, novel approaches are needed
to integrate new data without requiring re-computations of previous results. The incre-
mental approaches are further expected to yield results with the overall quality the same
as batch ER where all entities are simultaneously integrated.

To this end, we developed approaches for integrating new data to the already existing
integrated data. The incremental pipeline of the FAMER supports incremental addition
of new sources as well as addition of new entities to the existing sources. The Linking
part of FAMER is capable of maintaining previously computed results including links and
clusters and creating new links between either existing and new entities or among new
entities. The output of linking is a grouped similarity graph which comprised of already
clustered entities that are clustered in previous iterations plus the newly linked entities.
The incremental clustering/repairing of FAMER encompasses two main approaches for
incorporating new entities and sources. One approach considers the so-called max-both
assignments that adds an entity to the most similar cluster only when there is no more
similar new entity from the respective data source. It furthermore supports the fusion
of cluster members to a single entity which simplifies and speed-ups incremental clus-
tering as new entities need no longer be compared to several entities of a cluster. The
output quality of the basic method is dependent to the order of entering new entities
or sources. Thus, we developed a sophisticated method called n-depth reclustering (nDR)
(where n is a parameter to control the portion of the similarity graph that is consid-
ered for reclustering) which is able to repair existing clusters for improved quality and
a reduced dependency on the insert order of new entities. The output of incremental
clustering is a fully clustered graph.

The incremental approaches are evaluated for datasets of four domains in terms of
cluster quality and runtime efficiency. We also provide a comparison to a previous ap-
proach for incremental cluster repair [66] and with batch ER. A detailed evaluation of the
new approaches for real-world workloads shows their high effectiveness. In particular,
the repair approach outperforms other incremental approaches and achieves the same
quality than with batch-like entity resolution showing that its results are independent
from the order in which new entities are added.

7.1.4 paRallelization of all stRategies

In order to serve the voluminous data, scalability has been one of the most important
aspects that is considered and evaluated in this thesis. Therefore, the proposed frame-
work FAMER is implemented on top of Apache Flink with the aim of developing scalable

134

7.1. CONCLUSION

solutions for data integration. To this end all approaches are in fact designed as parallel
algorithms that are implemented using the Flink APIs and are executable on different
number of machines in a distributed fashion by Flink engine.

In Linking part, we implemented blocking approaches in order to reduce the number of
comparisons. Both standard blocking and sorted neighborhood methods can be simply
implemented using grouping transformation of FAMER, but the naive implementation
leads to load balancing problem due to the block skews. Thus, the proposed blocking
methods for Map/Reduce were adapted according to Flink APIs and were implemented
for FAMER. The method named as Pair Range [89] implements standard blocking by
distributing comparisons evenly on each machine using the partitioner transformation
of Flink. Prior to partitioning the statistics of each block is computed by a chain of
grouping, join and map transformations. Due to the fact that the big blocks are spitted
into multiple blocks, a number of pairs are replicated for each partition. Similarly, the
load balanced sorted neighborhood [91] distributes entities evenly on each task manager
by a map transformation. Then, the last windowSize-1 entities of each task manager are
replicated for the subsequent task manager in order to produce correct blocking results.
Finally, pairs of candidate entities are generated inside each task manager by sliding
down a window implemented by grouping transformation.

Due to the fact that clustering is inherently an iterative task, the vertex-centric model
is used to implement most of the approaches in Clustering part. Gelly library of Flink
includes various variations that implement the vertex-centric programming paradigm.
In scatter-gather variation, the vertices are able to send messages to any other vertices
accessible by vertex ID and update their stored information (status) by the received mes-
sages. If a vertex does not receive any message during one superstep, then it is out of
sending and receiving game. Therefore, when there is no need to update a vertex status,
the iterative execution is terminated. For implementing each iteration of the clustering
algorithms, one or multiple supersteps were designed in a specific order. In each itera-
tion, a group of vertices store their final cluster-ID and thus are removed from the graph.
Vertices with the same cluster-ID belong to the same cluster. Nevertheless, CLIP is not
implemented on top of Gelly. It initially computes the strength of edges by grouping
neighboring entities (vertices) by the source of the other end. Then, in phase one, the
components formed by strong links that comprise of entities from all sources are consid-
ered as clusters. In the next phase, the remaining vertices are clustered by prioritizing
normal and strong edges. Again a grouping transformation assists on processing the re-
maining components so that each component is processed on a task manager in parallel
with other components.

135

CHAPTER 7. CONCLUSION AND OUTLOOK

The scalable variation of Affinity Propagation (AP) is named Hierarchical Affinity
Propagation (HAP) that follows the divide and conquer strategy. HAP performs AP
on multiple hierarchy levels by initially dividing the dataset into equal-sized partitions
randomly. Then, a set of local exemplars are produced for each partition by performing
AP locally on each partition. By merging the exemplars of each level and repeating the
process, the number of entities on top hierarchy level is small enough (less or equal to
a predefined parameter M) to stop the partitioning process. The exemplars determined
on the top level are considered as the global exemplars for the dataset. Finally, all non-
exemplar entities are assigned to a global exemplar with the highest similarity.

The evaluations showed that FAMER scales very well with increasing number of data
sources. On the other hand, utilizing the whole capacity of our configured cluster (16
machines) did not result in the maximum expected speed-up in most cases. This is ex-
plained by the incompatibility of the Flink underlying system with graph-structure data
which leads to large communication overhead [154]. Therefore, improving data distribu-
tion techniques tailored to Apache Flink optimizer and scheduler may result in achieving
a better speedup behavior.

7.2 OutlooK

This thesis is dedicated to developing an ER framework that adapts with big data require-
ments. The focus of the research is mostly on clustering and repairing methods when
data is from multiple sources. Considering the big data needs and requirements such as
variety, velocity and volume, there are still room for improvements in both efficacy and
efficiency aspects. Moreover, implementing the state of the art techniques such deep
learning based methods sounds promising and opens doors for upgrading FAMER to a
knowledge graph. Appraising comprehensive findings of this thesis, various important
directions for future research are elaborated in the following sections.

7.2.1 ReinfoRcing vaRiety suppoRt

Considering numerous sources as input of the ER framework implies dealing with un-
structured, semi-structured or structured but highly heterogeneous data in different for-
mats (XML, JSON, data from SPARQLE endpoints or relational databases). Therefore, ER
frameworks must be capable of performing ER task in presence of schema heterogene-
ity by adapting their ER pipeline according to the new requirements. To this end, one
solution is augmenting the ER process with a schema matching or schema refinement

136

7.2. OUTLOOK

preprocessing step and the other solution is developing schema-agnostic blocking and
matching methods.

In order to augment FAMER with schema matching, the linking and specifically clus-
tering modules can be utilized to define a schema matching operator. For example, by
reusing existing links of Linked Data, the entity attributes as well as the corresponding
values of linked entities can be matched together in order to produce clusters of match-
ing attributes. Moreover, supplementing FAMER with schema refinement operators [70]
facilitates finding syntactically similar attributes which increases the performance of the
next workflow steps [138].

Applying traditional blocking methods for complicated data implies the essential need
for background knowledge as well as many trials and errors to find the optimal block-
ing configuration. Therefore, developing learning-based approaches to automate this
process is an essential. Furthermore, schema agnostic blocking methods such as token
blocking [136] and its successor refinements [107, 137] make the FAMER capable of pro-
cessing loosely structured data. Token blocking considers entities with at least a com-
mon token in their attribute values in the same block. Finally, in the matching part, the
supervised and unsupervised methods that learn matching rules [126] manage matching
noisy and unstructured data.

7.2.2 ReinfoRcing velocity suppoRt

Velocity refers to the challenge of continuous increase of data volume over time. In
order to cover this specification of Big Data we developed incremental methods (see
Chapter 6) which covers adding new entities from existing sources or even adding a
new source to the knowledge graph. However, adding other operations such change and
delete would be also interesting. Moreover, adapting an incremental blocking scheme
such as the ones introduced in [30, 148] for FAMER would boost the performance of
incremental methods enormously, because the experiments show that runtime is already
mostly wasted in Linking part. Due to the fact that variety is still existing augmenting
FAMER with incremental schema matching method [52, 162] seems essential .

Another interesting topic is considering entities with their associating temporal in-
formation. Performing ER then allows the system to keep track of one entity over time
[29]. For example, grouping all publication records according to their authors allows us
to view the publication history of each author [25]. FAMER is capacitated to augment
temporal entity resolution by embedded temporal graph analysis of Gradoop [153, 154].

137

CHAPTER 7. CONCLUSION AND OUTLOOK

7.2.3 StoRing and utilizing pRovenance infoRmation

In this dissertation we utilized the cleanliness status of data sources to cluster entities
of multiple sources. Expanding the use of provenance information may result in design-
ing sophisticated approaches for improving the quality of matching and merging [105].
Provenance information regarding the provenance of existing results focuses on describ-
ing both the origins and the processing of data [75]. In Entity Resolution applications
beside the information related to data sources such as validity periods and security re-
quirement, the details of matching and classification processes can further be stored and
utilized [174]. For example, keeping the matching rule for a pair of matched entities be-
side the pure similarity value facilitates understanding and debugging of the whole ER
pipeline [134]. Therefore, resolving inconsistent matched entities and grouping them
into clusters as well as repairing process in incremental ER would be accomplished in a
more accurate way.

7.2.4 UtilizingveRsatiletypes ofentityattRibutesandleveR-
aging exteRnal Knowledge

Matching entities from multiple heterogeneous data sources implies that each source
may carry a piece of information that can not be obtained from other sources. Catching
all specifications of an entity leads into forming an accurate description that facilitates
data integration accuracy. To this end, different data types such as factual, textual, or
image-based attributes should be considered in the resolving task. This topic is covered
as multi-modal entity resolution. A recent work [180] shows that extending the attribute-
based matching system to incorporate image data for product matching task results in
improved recall and overall quality.

Another interesting topic is to augment FAMER with word embeddings in both block-
ing [45, 186] and pair comparison steps [45, 113] as well as schema matching [5]. Word
embeddings are vectorial representations of words that are resulted by pretraining words
(phrases or even characters) over large and generic corpora. Therefore, these methods
provide a representation of words which is independent of a specific domain or a partic-
ular ER task [138]. The examples of such pretrained models are word2vec [109], GloVe
[143], and fastText [18].

7.2.5 ReHabilitatingFAMERtoa semanticKnowledgegRapH

FAMER is already a graph-based framework which aims at discovering identical links
between entities. Considering other types of relations as well as different types of enti-

138

7.2. OUTLOOK

ties will reinforce the framework enormously. Consequently FAMER would not be re-
stricted to a single domain i.e. it will be able to cover many domains that exist in the real
world. Possessing all mentioned criteria [142] makes the framework a knowledge graph
which augmenting it by completion and correction operators and pipelines facilitates
the data integration task. Furthermore, utilizing methods such as graph embeddings be-
side similarity of entity attributes assists integrating multiple knowledge graphs with
high accuracy [132]. Graph embeddings for ER facilitate determining the similarity of
entities based on the similarity of their graph neighborhood.

139

A
FAMER Configurations

A.1 PRepRocessing

Listing A.1, Listing A.2, and Listing A.3 depict the configuration of different preprocess-
ing tasks that are defined in Chapter 3.

Listing A.1: Read logical graph configuration

{
"task":"READ",
"return":"LOGICAL_GRAPH",
"path":"path/to/graphDataFolder"

}

Listing A.2: Read data from a given benchmark dataset

{
"task":"BENCHMARK",
"name":"ABT_BUY",
"return":"LOGICAL_GRAPH",
"path":"path/to/benchmarkDataFolder"

}

141

APPENDIX A. FAMER CONFIGURATIONS

Listing A.3: Read and combine any number of Gradoop logical graphs to a Gradoop graph collection

{
"task":"COMBINE",
"return":"GRAPH_COLLECTION",
"graphs": "[...]"

}

A.2 LinKing

A.2.1 BlocKing

Listing A.4 depicts a configuration example that specifies the blocking details for FAMER.
The selected blocking method is Sorted Neighborhood with window size of 20. The key
is generated from the five initial letters of the category property. The parallelism degree
specifies the number of task managers that are employed by Apache Flink. The blocking
method uses this number in order to splitting comparisons evenly on the task managers.

Listing A.4: FAMER blocking configuration

"blockingMethod":"SortedNeighborhoodComponent",
"windowSize":"20",
"parallelismDegree":"96",
"keyGenerationComponent":{

"keyGenerationMethod":"PrefixLengthComponent",
"attribute":"category",

"prefixLength":"5"
}

A.2.2 PaiR-wise CompaRison

Listing A.5 depicts a configuration example that specifies the similarity computation
details of FAMER for a dataset containing cameras. The list of similarity components
constitute of two similarity components. The first one computes the Truncate Begin
similarity degree of the brands of two cameras and the second one computes the Edit
distance similarity between the models. Each similarity component has the weight of
0.5 that specifies the effect of the computed similarity on the final aggregated similarity
value.

Listing A.6 depicts a similarity aggregation configuration. It implies computing the ag-
gregated similarity value by the mathematical expression brand_similarity+model_similarity

3 .

142

A.2. LINKING

Listing A.5: Similarity components configuration

"similarityComponents":[
{

"id":"camera_brand",
"sourceGraph":"*",
"targetGraph":"*",
"sourceLabel":"camera",
"targetLabel":"camera",
"sourceAttribute":"brand",
"targetAttribute":"brand",
"similarityMethod":"TruncateBeginComponent",
"length":"4",
"weight":"0.5"

},
{

"id":"camera_model",
"sourceGraph":"*",
"targetGraph":"*",
"sourceLabel":"camera",
"targetLabel":"camera",
"sourceAttribute":"model",
"targetAttribute":"model",
"similarityMethod":"EditDistanceComponent",
"weight":"0.5"

}
]

If the computed value is bigger than 0.3, then an edge with the computed similarity
value is generated. If the ”rule components” part is empty (Listing A.7), then by default
the weighted average of all similarity degrees are computed as the aggregated similarity
value.

A.2.3 Classification

FAMER offers both threshold-based and rule-based classification methods as well as the
combination of them. The set of basic rule components are listed as ”(”, ”)”, ”similarity id”
and ”selection operations”. The user-defined selection rule can be defined as shown in
Listing A.8. It classifies the pairs with camera_model ≥ 0.7 AND camera_priceUSD ≥ 0.8
as true matches only if their aggregated similarity value is bigger than or equal to 0.5.
More sophisticated selection rules such as (camera_model ≥ 0.7 AND camera_priceUSD ≥
0.8) OR (camera_model > 0.5 AND camera_weightKg > 0.6) can be defined by combining

143

APPENDIX A. FAMER CONFIGURATIONS

Listing A.6: Similarity aggregation sample configuration

"similarityComponents":[
"aggregationRule":{

"aggregationThreshold":"0.3",
"ruleComponents":[
{

"componentType":"OPEN_PARENTHESIS"
},
{

"componentType":"SIMILARITY_FIELD_ID",
"value":"camera_brand"

},
{

"componentType":"ARITHMETIC_OPERATOR",
"value":"PLUS"

},
{

"componentType":"SIMILARITY_FIELD_ID",
"value":"camera_model"

},
{

"componentType":"CLOSE_PARENTHESIS"
},
{

"componentType":"ARITHMETIC_OPERATOR",
"value":"DIVISION"

},
{

"componentType":"CONSTANT",
"value":"3"

}
]

}
]

Listing A.7: Similarity aggregation sample configuration

"similarityComponents":[
"aggregationRule":{

"aggregationThreshold":"0.2",
}

]

144

A.3. CLUSTERING

Listing A.8: Selction rule configuration (camera_model ≥ 0.7 AND camera_priceUSD ≥ 0.8)

"selectionComponent":{
"selectionMethod":"MANUAL",
"aggregationRule":{
"aggregationThreshold":"0.5",

}
"selectionRule":{
"ruleComponents":[
{
"componentType":"CONDITION",
"conditionId":"con1",
"similarityFieldId":"camera_model",
"operator":"GREATER_EQUAL",
"threshold":"0.7",
"defaultOnAttributeNull":"true"

},
{
"componentType":"SELECTION_OPERATOR",
"value":"AND"

},
{
"componentType":"CONDITION",
"conditionId":"con2",
"similarityFieldId":"camera_priceUSD",
"operator":"GREATER_EQUAL",
"threshold":"0.8"

}
]

}

the available rule components. It may happen that a similarity field is not available for
a pair due to the absence of corresponding properties in the paired entity. In this case
the default value can be defined via defaultOnAttributeNull.

A.3 ClusteRing

Listing A.9 depicts the FAMER configuration for clustering. The configuration speci-
fies ”Center” algorithm as ”clusteringMethod”. All algorithms are using ”maxIteration”,
which can mostly be set to ”MAX_VALUE” or a specific integer value in the json config-
uration. It specifies the maximum number of iterations for the clustering algorithm. In
case ”maxIteration” is set to ”MAX_VALUE”, the clustering algorithm terminates when

145

APPENDIX A. FAMER CONFIGURATIONS

Listing A.9: Clustering configuration
"clustering":{

"clusteringMethod":"CENTER",
"prioritySelection":"MIN",
"isEdgesBiDirected":false,
"clusteringOutputType":"GRAPH",
"maxIteration":"MAX_VALUE"

}

all vertices are clustered. The rest of lines in the configuration file identifies the input
parameters of the clustering algorithm.

The list of clustering algorithms supported by FAMER (listed in Table 3.1) as well as
their configuration are explained in FAMER wiki 1.

A.4 PostpRocessing

Listing A.10 depicts the configuration for writing a logical graph to the disk.

Listing A.10: Write logical graph configuration

{
"task":"WRITE_GRAPH",
"path":"path/to/graphDataFolder",
"overwrite":"false"

}

A.5 IncRemental ConfiguRations

Listing A.11 shows that FAMER linking is capable of keeping already existing edges
of the grouped similarity graph (through ”keepCurrentEdges”) and not recompute the
similarity of them (through ”recomputeSimilarityForCurrentEdges”). The rest of linking
configuration is the same as batch linking configuration. Each task configuration is
explained in Section 3.3.

Listing A.12 specifies the configuration for the repairing method MBM as an example.
Beside the required parameters of the repairing method, the ”clusterIdPrefix” prevents

1https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/
Configuration/Clustering-Configuration-(JSON)

146

https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/Configuration/Clustering-Configuration-(JSON)
https://git.informatik.uni-leipzig.de/dbs/FAMER/-/wikis/Home/Configuration/Clustering-Configuration-(JSON)

A.5. INCREMENTAL CONFIGURATIONS

Listing A.11: FAMER incremental linking configuration

{
"keepCurrentEdges":"true",
"recomputeSimilarityForCurrentEdges":"false",
"blockingComponents":[

...
],
"similarityComponents":[

...
],
"selectionComponent":{

...
}

}

Listing A.12: FAMER incremental repairing configuration

{
"repairingMethod":"MBM",
"delta":"0.0",
"clusterIdPrefix":"mbm",
"isSCRemoving":"false",
"clustering": {

"clusteringMethod":"CONNECTED_COMPONENTS",
"clusteringOutputType":"GRAPH",
"maxIteration":"MAX_VALUE"

}
}

creating repetitive cluster ids that has been generated in the previous incremental re-
pairing tasks.

147

B
MSCD-AP Quality Results

Figure B.1 shows the precision, recall and f-measure results for DS-P1. Similar to the
results depicted in Chapter 5 (Figure 5.7), the f-measure of the proposed approach MSCD-
AP competes with the CLIP approach due to the high precision.

Precision Recall F-Measure

D
S-

P1

sim th sim th sim th

Figure B.1: MSCD-AP evaluation for DS-P1 dataset

148

Precision Recall F-Measure
D

S-
C2

6
D

S-
C6

2A
D

S-
C6

2B

sim th sim th sim th

Figure B.2: MSCD-AP evaluation for camera datasets

Figure B.2 shows the precision, recall and f-measure results for DS-C26, DS-C62A and
DS-C62B. Similar to the results depicted in Chapter 5 (Figure 5.8), for DS-C26 that the
ratio of clean sources is too little, MSCD-AP is identical to AP while for DS-62A and
DS-C62B it achieves the best F-Measure.

149

C
MSCD-HAC Quality Results

Figure C.2 confirms the conclusions of Chapter 5 (Figure 5.11). For the clean dataset DS-
P1, MSCD S-LINK competes with CLIP approach which is tailored to clustering clean
sources.

0.60 0.70 0.800

0.2

0.4

0.6

0.8

1

θ

D
S-

P1

Precision

0.60 0.70 0.800

0.2

0.4

0.6

0.8

1

θ

Recall

0.60 0.70 0.800

0.2

0.4

0.6

0.8

1

θ

F-Measure

0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ

D
S
-C

10
0

MSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak MSCD A-LINK A-LINK A-LINK w/o weak ConCom CCPiv MSCD-AP CLIP0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ

D
S
-C

10
0

MSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak MSCD A-LINK A-LINK A-LINK w/o weak ConCom CCPiv MSCD-AP CLIP

Figure C.1: MSCD-HAC evaluation for DS-P1 dataset

150

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

D
S-

C2
6

Precision

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

Recall

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

F-Measure

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

D
S-

C6
2A

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

D
S-

C6
2B

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ

D
S
-C

10
0

MSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak MSCD A-LINK A-LINK A-LINK w/o weak ConCom CCPiv MSCD-AP CLIP0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ

D
S
-C

10
0

MSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak MSCD A-LINK A-LINK A-LINK w/o weak ConCom CCPiv MSCD-AP CLIP

Figure C.2: MSCD-HAC evaluation for camera datasets

Figure C.2 shows the quality results for DS-C26, DS-C62A, and DS-C62B. As concluded
in Chapter 5 (Figure 5.11), MSCD S-LINK obtains better precision while keeping the same
recall as the ratio of clean sources increases.

151

APPENDIX C. MSCD-HAC QUALITY RESULTS

152

Bibliography

[1] uRl: https://github.com/scify/JedAIToolkit (visited on
02/07/2021).

[2] uRl: https://hadoop.apache.org/docs/r1.2.1/mapred_
tutorial.html (visited on 04/03/2021).

[3] Nir Ailon, Moses Charikar, and Alantha Newman. “Aggregating Inconsistent In-
formation: Ranking and Clustering”. In: J. ACM 55.5 (2008), 23:1–23:27. doi: 10
.1145/1411509.1411513.

[4] Javed A. Aslam, Ekaterina Pelekhov, and Daniela Rus. “The Star Clustering Algo-
rithm for Static and Dynamic Information Organization”. In: J. Graph Algorithms
Appl. 8 (2004), pp. 95–129. doi: 10.7155/jgaa.00084.

[5] Daniel Ayala, Inma Hernández, David Ruiz, and Erhard Rahm. “LEAPME:
Learning-based Property Matching with Embeddings”. In: CoRR abs/2010.01951
(2020).

[6] Eric Bair. “Semi-supervised Clustering Methods”. In: CoRR abs/1307.0252 (2013).
arXiv: 1307.0252.

[7] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. “Correlation Clustering”. In: 43rd
Symposium on Foundations of Computer Science (FOCS 2002), 16-19 November 2002,
Vancouver, BC, Canada, Proceedings. IEEE Computer Society, 2002, p. 238. doi: 1
0.1109/SFCS.2002.1181947.

[8] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. “Correlation Clustering”. In:
Mach. Learn. 56.1-3 (2004), pp. 89–113. doi: 10.1023/B:MACH.000003
3116.57574.95.

[9] Nilesh Bansal, Fei Chiang, Nick Koudas, and Frank Wm. Tompa. “Seeking Stable
Clusters in the Blogosphere”. In: Proceedings of the 33rd International Conference
on Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007, ed.
by Christoph Koch et al. ACM, 2007, pp. 806–817. uRl: http://www.vldb.
org/conf/2007/papers/research/p806-bansal.pdf.

153

https://github.com/scify/JedAIToolkit
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1145/1411509.1411513
https://doi.org/10.7155/jgaa.00084
https://arxiv.org/abs/1307.0252
https://doi.org/10.1109/SFCS.2002.1181947
https://doi.org/10.1109/SFCS.2002.1181947
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1023/B:MACH.0000033116.57574.95
http://www.vldb.org/conf/2007/papers/research/p806-bansal.pdf
http://www.vldb.org/conf/2007/papers/research/p806-bansal.pdf

BIBLIOGRAPHY

[10] Nils Barlaug and Jon Atle Gulla. “Neural Networks for Entity Matching: A Sur-
vey”. In: ACM Trans. Knowl. Discov. Data 15.3 (2021), 52:1–52:37. doi: 10.114
5/3442200.

[11] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999. isbn: 0-
13-301615-3.

[12] Kedar Bellare, Carlo Curino, Ashwin Machanavajihala, Peter Mika, Mandar
Rahurkar, and Aamod Sane. “WOO: A Scalable and Multi-tenant Platform for
Continuous Knowledge Base Synthesis”. In: Proc. VLDB Endow. 6.11 (2013),
1114–1125. doi: 10.14778/2536222.2536236.

[13] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su, Steven Eui-
jong Whang, and Jennifer Widom. “Swoosh: A Generic Approach to Entity Res-
olution”. In: VLDB J. 18.1 (2009), pp. 255–276. doi: 10.1007/s00778-008-
0098-x.

[14] Indrajit Bhattacharya and Lise Getoor. “Collective Entity Resolution In Relational
Data”. In: ACM Trans. Knowl. Discov. Data 1.1 (2007), p. 5. doi: 10.1145/121
7299.1217304.

[15] Indrajit Bhattacharya and Lise Getoor. “Entity Resolution in Graphs”. In: Mining
graph data 311 (2006). uRl: https://drum.lib.umd.edu/bitstrea
m/handle/1903/4021/4758.pdf?sequence=1.

[16] Mikhail Bilenko, Beena Kamath, and Raymond J. Mooney. “Adaptive Blocking:
Learning to Scale Up Record Linkage”. In: Proceedings of the 6th IEEE International
Conference on Data Mining (ICDM 2006), 18-22 December 2006, Hong Kong, China.
IEEE Computer Society, 2006, pp. 87–96. doi: 10.1109/ICDM.2006.13.

[17] Jens Bleiholder and Felix Naumann. “Data Fusion”. In: ACM Comput. Surv. 41.1
(2008), 1:1–1:41. doi: 10.1145/1456650.1456651.

[18] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. “Enrich-
ing Word Vectors with Subword Information”. In: Trans. Assoc. Comput. Linguis-
tics 5 (2017), pp. 135–146. uRl: https://transacl.org/ojs/index.
php/tacl/article/view/999.

[19] Dhruba Borthakur. “The Hadoop Distributed File System: Architecture and De-
sign”. In: Hadoop Project Website 11.2007 (2007), p. 21.

154

https://doi.org/10.1145/3442200
https://doi.org/10.1145/3442200
https://doi.org/10.14778/2536222.2536236
https://doi.org/10.1007/s00778-008-0098-x
https://doi.org/10.1007/s00778-008-0098-x
https://doi.org/10.1145/1217299.1217304
https://doi.org/10.1145/1217299.1217304
https://drum.lib.umd.edu/bitstream/handle/1903/4021/4758.pdf?sequence=1
https://drum.lib.umd.edu/bitstream/handle/1903/4021/4758.pdf?sequence=1
https://doi.org/10.1109/ICDM.2006.13
https://doi.org/10.1145/1456650.1456651
https://transacl.org/ojs/index.php/tacl/article/view/999
https://transacl.org/ojs/index.php/tacl/article/view/999

BIBLIOGRAPHY

[20] David Guy Brizan and Abdullah Uz Tansel. “A. Survey of Entity Resolution and
Record Linkage Methodologies”. In: Communications of the IIMA 6.3 (2006), p. 5.
uRl: https://scholarworks.lib.csusb.edu/ciima/vol6
/iss3/5.

[21] Andrea Calı,̀ Thomas Lukasiewicz, Livia Predoiu, and Heiner Stuckenschmidt. “A
Framework for Representing Ontology Mappings Under Probabilities and Incon-
sistency”. In: Proc. URSW. URSW’07 (2007). doi: http://dl.acm.org/
citation.cfm?id=2889833.2889835.

[22] Lucian Carata et al. “A Primer on Provenance”. In: Commun. ACM 57.5 (2014),
pp. 52–60. doi: 10.1145/2596628.

[23] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. “Apache Flink™: Stream and Batch Processing in a Single
Engine”. In: IEEE Data Eng. Bull. 38.4 (2015), pp. 28–38. uRl: http://sites.
computer.org/debull/A15dec/p28.pdf.

[24] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, ed. by
Balaji Krishnapuram et al. ACM, 2016, pp. 785–794. doi: 10.1145/293967
2.2939785.

[25] Yueh-Hsuan Chiang. “Towards Large-scale Temporal Entity Matching”. PhD the-
sis. The University of Wisconsin-Madison, 2013.

[26] Flavio Chierichetti, Nilesh N. Dalvi, and Ravi Kumar. “Correlation Clustering in
MapReduce”. In: The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014,
ed. by Sofus A. Macskassy et al. ACM, 2014, pp. 641–650. doi: 10.1145/262
3330.2623743.

[27] Peter Christen. Data Matching - Concepts and Techniques for Record Linkage, En-
tity Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
Springer, 2012. isbn: 978-3-642-31163-5. doi: 10.1007/978-3-642-311
64-2.

[28] Peter Christen. “Febrl -: An Open Source Data Cleaning, Deduplication and Record
Linkage System with a Graphical User Interface”. In: Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Las
Vegas, Nevada, USA, August 24-27, 2008, ed. by Ying Li et al. ACM, 2008, pp. 1065–
1068. doi: 10.1145/1401890.1402020.

155

https://scholarworks.lib.csusb.edu/ciima/vol6/iss3/5
https://scholarworks.lib.csusb.edu/ciima/vol6/iss3/5
https://doi.org/http://dl.acm.org/citation.cfm?id=2889833.2889835
https://doi.org/http://dl.acm.org/citation.cfm?id=2889833.2889835
https://doi.org/10.1145/2596628
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2623330.2623743
https://doi.org/10.1145/2623330.2623743
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1145/1401890.1402020

BIBLIOGRAPHY

[29] Peter Christen and Ross W. Gayler. “Adaptive Temporal Entity Resolution on
Dynamic Databases”. In: Advances in Knowledge Discovery and Data Mining, 17th
Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia, April 14-17, 2013, Pro-
ceedings, Part II, ed. by Jian Pei et al. Vol. 7819. Lecture Notes in Computer Science.
Springer, 2013, pp. 558–569. doi: 10.1007/978-3-642-37456-2_47.

[30] Peter Christen, Ross W. Gayler, and David Hawking. “Similarity-aware Indexing
for Real-time Entity Resolution”. In: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM 2009, Hong Kong, China, Novem-
ber 2-6, 2009, ed. by David Wai-Lok Cheung et al. ACM, 2009, pp. 1565–1568. doi:
10.1145/1645953.1646173.

[31] Peter Christen and Dinusha Vatsalan. “Flexible and Extensible Generation and
Corruption of Personal Data”. In: 22nd ACM International Conference on Informa-
tion and Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27 -
November 1, 2013, ed. by Qi He et al. ACM, 2013, pp. 1165–1168. doi: 10.1145
/2505515.2507815.

[32] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. “An Overview of End-to-End Entity Resolution for Big
Data”. In: ACM Comput. Surv. 53.6 (2021), 127:1–127:42. doi: 10.1145/3418
896.

[33] Xu Chu, Ihab F. Ilyas, and Paraschos Koutris. “Distributed Data Deduplication”.
In: Proc. VLDB Endow. 9.11 (2016), pp. 864–875. doi: 10.14778/2983200.2
983203.

[34] Gianni Costa, Giuseppe Manco, and Riccardo Ortale. “An Incremental Cluster-
ing Scheme for Data De-duplication”. In: Data Min. Knowl. Discov. 20.1 (2010),
pp. 152–187. doi: 10.1007/s10618-009-0155-0.

[35] Hong Cui, Jingjing Zhang, Chunfeng Cui, and Qinyu Chen. “Solving Large-scale
Assignment Problems by Kuhn-Munkres Algorithm”. In: Proceedings of the 2nd
International Conference on Advances in Mechanical Engineering and Industrial
Informatics (AMEII 2016). Atlantis Press, 2016, pp. 822–827. isbn: 978-94-6252-
188-9. doi: https://doi.org/10.2991/ameii-16.2016.160.

[36] Elias Dahlhaus. “Parallel Algorithms for Hierarchical Clustering and Applica-
tions to Split Decomposition and Parity Graph Recognition”. In: J. Algorithms
36.2 (2000), pp. 205–240. doi: 10.1006/jagm.2000.1090.

156

https://doi.org/10.1007/978-3-642-37456-2_47
https://doi.org/10.1145/1645953.1646173
https://doi.org/10.1145/2505515.2507815
https://doi.org/10.1145/2505515.2507815
https://doi.org/10.1145/3418896
https://doi.org/10.1145/3418896
https://doi.org/10.14778/2983200.2983203
https://doi.org/10.14778/2983200.2983203
https://doi.org/10.1007/s10618-009-0155-0
https://doi.org/https://doi.org/10.2991/ameii-16.2016.160
https://doi.org/10.1006/jagm.2000.1090

BIBLIOGRAPHY

[37] Manoranjan Dash, Simona Petrutiu, and Peter Scheuermann. “pPOP: Fast yet
accurate parallel hierarchical clustering using partitioning”. In: Data Knowl. Eng.
61.3 (2007), pp. 563–578. doi: 10.1016/j.datak.2006.07.004.

[38] Lucie David. “A Distributed Hierarchical Clustering Algorithm for Multi-source
Entity Resolution”. Bachelor’s Thesis. University of Leipzig, 2021. uRl: https:
//dbs.uni-leipzig.de/file/Bachelorarbeit_LucieDavi
d3752995_ElektronischeFassung.pdf.

[39] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing
on Large Clusters”. In: 6th Symposium on Operating System Design and Imple-
mentation (OSDI 2004), San Francisco, California, USA, December 6-8, 2004. 2004,
pp. 137–150. uRl: http://www.usenix.org/events/osdi04/
tech/dean.html.

[40] AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. Principles of Data Integration.
Morgan Kaufmann, 2012. isbn: 978-0-12-416044-6. uRl: http://research.
cs.wisc.edu/dibook/.

[41] AnHai Doan et al. “Magellan: Toward Building Ecosystems of Entity Matching
Solutions”. In: Commun. ACM 63.8 (2020), pp. 83–91. doi: 10.1145/340547
6.

[42] Ugur Dogrusöz, Erhan Giral, Ahmet Cetintas, Ali Civril, and Emek Demir. “A
Layout Algorithm for Undirected Compound Graphs”. In: Inf. Sci. 179.7 (2009),
pp. 980–994. doi: 10.1016/j.ins.2008.11.017.

[43] Xin Luna Dong and Divesh Srivastava. “Big Data Integration”. In: Proc. VLDB
Endow. 6.11 (2013), pp. 1188–1189. doi: 10.14778/2536222.2536253.

[44] Uwe Draisbach, Peter Christen, and Felix Naumann. “Transforming Pairwise Du-
plicates to Entity Clusters for High-quality Duplicate Detection”. In: ACM J. Data
Inf. Qual. 12.1 (2020), 3:1–3:30. doi: 10.1145/3352591.

[45] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad
Ouzzani, and Nan Tang. “Distributed Representations of Tuples for Entity Reso-
lution”. In: Proc. VLDB Endow. 11.11 (2018), pp. 1454–1467. doi: 10.14778/3
236187.3236198.

[46] Adil Fahad et al. “A Survey of Clustering Algorithms for Big Data: Taxonomy and
Empirical Analysis”. In: IEEE Trans. Emerg. Top. Comput. 2.3 (2014), pp. 267–279.
doi: 10.1109/TETC.2014.2330519.

157

https://doi.org/10.1016/j.datak.2006.07.004
https://dbs.uni-leipzig.de/file/Bachelorarbeit_LucieDavid3752995_ElektronischeFassung.pdf
https://dbs.uni-leipzig.de/file/Bachelorarbeit_LucieDavid3752995_ElektronischeFassung.pdf
https://dbs.uni-leipzig.de/file/Bachelorarbeit_LucieDavid3752995_ElektronischeFassung.pdf
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
http://research.cs.wisc.edu/dibook/
http://research.cs.wisc.edu/dibook/
https://doi.org/10.1145/3405476
https://doi.org/10.1145/3405476
https://doi.org/10.1016/j.ins.2008.11.017
https://doi.org/10.14778/2536222.2536253
https://doi.org/10.1145/3352591
https://doi.org/10.14778/3236187.3236198
https://doi.org/10.14778/3236187.3236198
https://doi.org/10.1109/TETC.2014.2330519

BIBLIOGRAPHY

[47] Ivan P Fellegi and Alan B Sunter. “A Theory for Record Linkage”. In: Journal of
the American Statistical Association 64.328 (1969), pp. 1183–1210. doi: 10.108
0/01621459.1969.10501049.

[48] Jeffrey Fisher, Peter Christen, Qing Wang, and Erhard Rahm. “A Clustering-Based
Framework to Control Block Sizes for Entity Resolution”. In: Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Sydney, NSW, Australia, August 10-13, 2015, ed. by Longbing Cao et al.
ACM, 2015, pp. 279–288. doi: 10.1145/2783258.2783396.

[49] Gary William Flake, Robert Endre Tarjan, and Kostas Tsioutsiouliklis. “Graph
Clustering and Minimum Cut Trees”. In: Internet Mathematics 1.4 (2003), pp. 385–
408. doi: 10.1080/15427951.2004.10129093.

[50] Lester Randolph Ford and Delbert R Fulkerson. “Maximal Flow Through a Net-
work”. In: Canadian journal of Mathematics 8 (1956), pp. 399–404.

[51] Martin Franke, Ziad Sehili, Marcel Gladbach, and Erhard Rahm. “Post-processing
Methods for High Quality Privacy-Preserving Record Linkage”. In: Data Privacy
Management, Cryptocurrencies and Blockchain Technology - ESORICS 2018 Interna-
tional Workshops, DPM 2018 and CBT 2018, Barcelona, Spain, September 6-7, 2018,
Proceedings, ed. by Joaquıń Garcıá-Alfaro et al. Vol. 11025. Lecture Notes in Com-
puter Science. Springer, 2018, pp. 263–278. doi: 10.1007/978-3-030-00
305-0_19.

[52] Michael J. Franklin, Alon Y. Halevy, and David Maier. “From Databases to Datas-
paces: A New Abstraction for Information Management”. In: SIGMOD Rec. 34.4
(2005), pp. 27–33. doi: 10.1145/1107499.1107502.

[53] Brendan J. Frey and Delbert Dueck. “Clustering by Passing Messages Between
Data Points”. In: science 315.5814 (2007), pp. 972–976.

[54] Carol Friedman and Robert Sideli. “Tolerating Spelling Errors During Patient Val-
idation”. In: Computers and Biomedical Research 25.5 (1992), pp. 486–509. doi:
https://doi.org/10.1016/0010-4809(92)90005-U.

[55] Thomas M. J. Fruchterman and Edward M. Reingold. “Graph Drawing by Force-
directed Placement”. In: Softw. Pract. Exper. 21.11 (Nov. 1991), pp. 1129–1164. issn:
0038-0644. doi: 10.1002/spe.4380211102.

[56] D. Gale and L. S. Shapley. “College Admissions and the Stability of Marriage”.
In: Am. Math. Mon. 120.5 (2013), pp. 386–391. doi: 10.4169/amer.math.
monthly.120.05.386.

158

https://doi.org/10.1080/01621459.1969.10501049
https://doi.org/10.1080/01621459.1969.10501049
https://doi.org/10.1145/2783258.2783396
https://doi.org/10.1080/15427951.2004.10129093
https://doi.org/10.1007/978-3-030-00305-0_19
https://doi.org/10.1007/978-3-030-00305-0_19
https://doi.org/10.1145/1107499.1107502
https://doi.org/https://doi.org/10.1016/0010-4809(92)90005-U
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.4169/amer.math.monthly.120.05.386
https://doi.org/10.4169/amer.math.monthly.120.05.386

BIBLIOGRAPHY

[57] Diego García-Gil, Sergio Ramírez-Gallego, Salvador García, and Francisco Her-
rera. “A Comparison on Scalability for Batch Big Data Processing on Apache
Spark and Apache Flink”. In: Big Data Analytics 2.1 (Mar. 2017). doi: 10.1186
/s41044-016-0020-2.

[58] Lise Getoor and Ashwin Machanavajjhala. “Entity Resolution for Big Data”. In:
The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, ed. by Inderjit S. Dhillon
et al. ACM, 2013, p. 1527. doi: 10.1145/2487575.2506179.

[59] Lise Getoor and Ashwin Machanavajjhala. “Entity Resolution: Theory, Practice
& Open Challenges”. In: Proc. VLDB Endow. 5.12 (2012), pp. 2018–2019. doi: 10
.14778/2367502.2367564.

[60] Phan H Giang. “A Machine Learning Approach to Create Blocking Criteria for
Record Linkage”. In: Health care management science 18.1 (2015), pp. 93–105. doi:
10.1007/s10729-014-9276-0.

[61] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. “Clustering Aggrega-
tion”. In: ACM ACM Trans. on Knowledge Discovery from Data (TKDD) 1.1 (2007),
p. 4. doi: 10.1145/1217299.1217303.

[62] Inmar E. Givoni, Clement Chung, and Brendan J. Frey. “Hierarchical Affinity
Propagation”. In: UAI 2011, Proceedings of the Twenty-Seventh Conference on Un-
certainty in Artificial Intelligence, Barcelona, Spain, July 14-17, 2011, ed. by Fábio
Gagliardi Cozman et al. AUAI Press, 2011, pp. 238–246. arXiv: 1202.3722.

[63] Inmar E. Givoni and Brendan J. Frey. “A Binary Variable Model for Affinity Prop-
agation”. In: Neural Comput. 21.6 (2009), pp. 1589–1600. doi: 10.1162/neco.
2009.05-08-785.

[64] Inmar-Ella Givoni. “Beyond Affinity Propagation: Message Passing Algorithms
for Clustering”. PhD thesis. University of Toronto (Canada), 2012. uRl: https:
//central.bac-lac.gc.ca/.item?id=NR97319&op=pdf&
app=Library&oclc_number=1019492051.

[65] Nizar Grira, Michel Crucianu, and Nozha Boujemaa. “Unsupervised and Semi-
supervised Clustering: A Brief Survey”. In: A review of machine learning tech-
niques for processing multimedia content 1 (2004), pp. 9–16.

[66] Anja Gruenheid, Xin Luna Dong, and Divesh Srivastava. “Incremental Record
Linkage”. In: PVLDB 7.9 (2014), pp. 697–708. doi: 10.14778/2732939.27
32943.

159

https://doi.org/10.1186/s41044-016-0020-2
https://doi.org/10.1186/s41044-016-0020-2
https://doi.org/10.1145/2487575.2506179
https://doi.org/10.14778/2367502.2367564
https://doi.org/10.14778/2367502.2367564
https://doi.org/10.1007/s10729-014-9276-0
https://doi.org/10.1145/1217299.1217303
https://arxiv.org/abs/1202.3722
https://doi.org/10.1162/neco.2009.05-08-785
https://doi.org/10.1162/neco.2009.05-08-785
https://central.bac-lac.gc.ca/.item?id=NR97319&op=pdf&app=Library&oclc_number=1019492051
https://central.bac-lac.gc.ca/.item?id=NR97319&op=pdf&app=Library&oclc_number=1019492051
https://central.bac-lac.gc.ca/.item?id=NR97319&op=pdf&app=Library&oclc_number=1019492051
https://doi.org/10.14778/2732939.2732943
https://doi.org/10.14778/2732939.2732943

BIBLIOGRAPHY

[67] Huadong Guo, Lizhe Wang, Fang Chen, and Dong Liang. “Scientific Big Data and
Digital Earth”. In: Chinese science bulletin 59.35 (2014), pp. 5066–5073.

[68] Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, and Hyun Chul Lee. “Framework
for Evaluating Clustering Algorithms in Duplicate Detection”. In: Proc. VLDB
Endow. 2.1 (2009), pp. 1282–1293. doi: 10.14778/1687627.1687771.

[69] Oktie Hassanzadeh and Renée J. Miller. “Creating Probabilistic Databases from
Duplicated Data”. In: VLDB J. 18.5 (2009), pp. 1141–1166. doi: 10.1007/s00
778-009-0161-2.

[70] Oktie Hassanzadeh et al. “Discovering Linkage Points over Web Data”. In: Proc.
VLDB Endow. 6.6 (2013), pp. 444–456. doi: 10.14778/2536336.2536345.

[71] Taher H. Haveliwala, Aristides Gionis, and Piotr Indyk. “Scalable Techniques for
Clustering the Web”. In: Proceedings of the Third International Workshop on the
Web and Databases, WebDB 2000, Adam’s Mark Hotel, Dallas, Texas, USA, May
18-19, 2000, in conjunction with ACM PODS/SIGMOD 2000. Informal proceedings,
ed. by Dan Suciu et al. 2000, pp. 129–134. uRl: http://www.research.
att.com/conf/webdb2000/PAPERS/8c.ps.

[72] William Hendrix, Md. Mostofa Ali Patwary, Ankit Agrawal, Wei-keng Liao, and
Alok N. Choudhary. “Parallel Hierarchical Clustering on Shared Memory Plat-
forms”. In: 19th International Conference on High Performance Computing, HiPC
2012, Pune, India, December 18-22, 2012. IEEE Computer Society, 2012, pp. 1–9.
doi: 10.1109/HiPC.2012.6507511.

[73] Mauricio A. Hernández and Salvatore J. Stolfo. “Real-world Data is Dirty: Data
Cleansing and The Merge/Purge Problem”. In: DataMin. Knowl. Discov. 2.1 (1998),
pp. 9–37. doi: 10.1023/A:1009761603038.

[74] Mauricio A. Hernández and Salvatore J. Stolfo. “The Merge/Purge Problem for
Large Databases”. In: Proceedings of the 1995 ACM SIGMOD International Confer-
ence on Management of Data, San Jose, California, USA, May 22-25, 1995, ed. by
Michael J. Carey et al. ACM Press, 1995, pp. 127–138. doi: 10.1145/22378
4.223807.

[75] Melanie Herschel, Ralf Diestelkämper, and Houssem Ben Lahmar. “A Survey on
Provenance: What for? What Form? What from?” In:VLDB J. 26.6 (2017), pp. 881–
906. doi: 10.1007/s00778-017-0486-1.

[76] Kai Hildebrandt, Fabian Panse, Niklas Wilcke, and Norbert Ritter. “Large-Scale
Data Pollution with Apache Spark”. In: IEEE Trans. Big Data 6.2 (2020), pp. 396–
411. doi: 10.1109/TBDATA.2016.2637378.

160

https://doi.org/10.14778/1687627.1687771
https://doi.org/10.1007/s00778-009-0161-2
https://doi.org/10.1007/s00778-009-0161-2
https://doi.org/10.14778/2536336.2536345
http://www.research.att.com/conf/webdb2000/PAPERS/8c.ps
http://www.research.att.com/conf/webdb2000/PAPERS/8c.ps
https://doi.org/10.1109/HiPC.2012.6507511
https://doi.org/10.1023/A:1009761603038
https://doi.org/10.1145/223784.223807
https://doi.org/10.1145/223784.223807
https://doi.org/10.1007/s00778-017-0486-1
https://doi.org/10.1109/TBDATA.2016.2637378

BIBLIOGRAPHY

[77] Anil K. Jain. “Data Clustering: 50 Years Beyond K-means”. In: Pattern Recognit.
Lett. 31.8 (2010), pp. 651–666. doi: 10.1016/j.patrec.2009.09.011.

[78] Chen Jin, Ruoqian Liu, Zhengzhang Chen, William Hendrix, Ankit Agrawal, and
Alok N. Choudhary. “A Scalable Hierarchical Clustering Algorithm Using Spark”.
In: First IEEE International Conference on Big Data Computing Service and Applica-
tions, BigDataService 2015, Redwood City, CA, USA, March 30 - April 2, 2015. IEEE
Computer Society, 2015, pp. 418–426. doi: 10.1109/BigDataService.2
015.67.

[79] Stephen C Johnson. “Hierarchical Clustering Schemes”. In: Psychometrika 32.3
(1967), pp. 241–254. doi: 10.1007/BF02289588.

[80] Martin Junghanns, Max Kießling, Niklas Teichmann, Kevin Gómez, André Pe-
termann, and Erhard Rahm. “Declarative and Distributed Graph Analytics with
GRADOOP”. In: Proc. VLDB Endow. 11.12 (2018), pp. 2006–2009. doi: 10.1477
8/3229863.3236246.

[81] Martin Junghanns, André Petermann, Martin Neumann, and Erhard Rahm. “Man-
agement and Analysis of Big Graph Data: Current Systems and Open Challenges”.
In: Handbook of Big Data Technologies, ed. by Albert Y. Zomaya et al. Springer,
2017, pp. 457–505. doi: 10.1007/978-3-319-49340-4_14.

[82] Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gómez, and Er-
hard Rahm. “Analyzing Extended Property Graphs with Apache Flink”. In: Pro-
ceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics, San Fran-
cisco, California, USA, July 1, 2016, ed. by Akhil Arora et al. ACM, 2016, 3:1–3:8.
doi: 10.1145/2980523.2980527.

[83] Martin Junghanns, André Petermann, Niklas Teichmann, and Erhard Rahm. “The
Big Picture: Understanding Large-scale Graphs Using Graph Grouping with
Gradoop”. In: Datenbanksysteme für Business, Technologie und Web (BTW 2017),
17. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme” (DBIS),
6.-10. März 2017, Stuttgart, Germany, Proceedings, ed. by Bernhard Mitschang et
al. Vol. P-265. LNI. GI, 2017, pp. 629–632. uRl: https://dl.gi.de/20.5
00.12116/674.

[84] Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi. “High-Level Programming
Abstractions for Distributed Graph Processing”. In: IEEE Trans. Knowl. Data Eng.
30.2 (2018), pp. 305–324. doi: 10.1109/TKDE.2017.2762294.

161

https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1109/BigDataService.2015.67
https://doi.org/10.1109/BigDataService.2015.67
https://doi.org/10.1007/BF02289588
https://doi.org/10.14778/3229863.3236246
https://doi.org/10.14778/3229863.3236246
https://doi.org/10.1007/978-3-319-49340-4_14
https://doi.org/10.1145/2980523.2980527
https://dl.gi.de/20.500.12116/674
https://dl.gi.de/20.500.12116/674
https://doi.org/10.1109/TKDE.2017.2762294

BIBLIOGRAPHY

[85] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduc-
tion to Cluster Analysis. John Wiley, 1990. isbn: 978-0-47187876-6. doi: 10.10
02/9780470316801.

[86] Mayank Kejriwal and Daniel P. Miranker. “An Unsupervised Algorithm for Learn-
ing Blocking Schemes”. In: 2013 IEEE 13th International Conference on Data Min-
ing, Dallas, TX, USA, December 7-10, 2013, ed. by Hui Xiong et al. IEEE Computer
Society, 2013, pp. 340–349. doi: 10.1109/ICDM.2013.60.

[87] Hisashi Koga, Tetsuo Ishibashi, and Toshinori Watanabe. “Fast Agglomerative
Hierarchical Clustering Algorithm Using Locality-Sensitive Hashing”. In: Knowl.
Inf. Syst. 12.1 (2007), pp. 25–53. doi: 10.1007/s10115-006-0027-5.

[88] Lars Kolb, Andreas Thor, and Erhard Rahm. “Dedoop: Efficient Deduplication
with Hadoop”. In: Proc. VLDB Endow. 5.12 (2012), pp. 1878–1881. doi: 10.1477
8/2367502.2367527.

[89] Lars Kolb, Andreas Thor, and Erhard Rahm. “Load Balancing for MapReduce-
based Entity Resolution”. In: IEEE 28th International Conference on Data Engineer-
ing (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012, ed. by
Anastasios Kementsietsidis et al. IEEE Computer Society, 2012, pp. 618–629. doi:
10.1109/ICDE.2012.22.

[90] Lars Kolb, Andreas Thor, and Erhard Rahm. “Multi-pass Sorted Neighborhood
Blocking with MapReduce”. In: Comput. Sci. Res. Dev. 27.1 (2012), pp. 45–63. doi:
10.1007/s00450-011-0177-x.

[91] Lars Kolb, Andreas Thor, and Erhard Rahm. “Parallel Sorted Neighborhood Block-
ing with MapReduce”. In: Datenbanksysteme für Business, Technologie und Web
(BTW), 14. Fachtagung des GI-Fachbereichs ”Datenbanken und Informationssys-
teme” (DBIS), 2.-4.3.2011 in Kaiserslautern, Germany, ed. by Theo Härder et al.
Vol. P-180. LNI. GI, 2011, pp. 45–64. uRl: https://dl.gi.de/20.500.1
2116/19619.

[92] Pradap Konda et al. “Magellan: Toward Building Entity Matching Management
Systems over Data Science Stacks”. In: Proc. VLDB Endow. 9.13 (2016), pp. 1581–
1584. doi: 10.14778/3007263.3007314.

[93] Hanna Köpcke, Andreas Thor, and Erhard Rahm. “Comparative Evaluation of
Entity Resolution Approaches with FEVER”. In: Proc. VLDB Endow. 2.2 (2009),
pp. 1574–1577. doi: 10.14778/1687553.1687595.

162

https://doi.org/10.1002/9780470316801
https://doi.org/10.1002/9780470316801
https://doi.org/10.1109/ICDM.2013.60
https://doi.org/10.1007/s10115-006-0027-5
https://doi.org/10.14778/2367502.2367527
https://doi.org/10.14778/2367502.2367527
https://doi.org/10.1109/ICDE.2012.22
https://doi.org/10.1007/s00450-011-0177-x
https://dl.gi.de/20.500.12116/19619
https://dl.gi.de/20.500.12116/19619
https://doi.org/10.14778/3007263.3007314
https://doi.org/10.14778/1687553.1687595

BIBLIOGRAPHY

[94] Hanna Köpcke, Andreas Thor, and Erhard Rahm. “Learning-Based Approaches
for Matching Web Data Entities”. In: IEEE Internet Comput. 14.4 (2010), pp. 23–31.
doi: 10.1109/MIC.2010.58.

[95] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. “Factor Graphs
and the Sum-Product Algorithm”. In: IEEE Trans. Inf. Theory 47.2 (2001), pp. 498–
519. doi: 10.1109/18.910572.

[96] Harold W. Kuhn. “The Hungarian Method for the Assignment Problem”. In:Naval
research logistics quarterly 2.1-2 (1955), pp. 83–97. doi: 10.1002/nav.3800
020109.

[97] Karen Kukich. “Techniques for Automatically Correcting Words in Text”. In:ACM
Comput. Surv. 24.4 (1992), pp. 377–439. doi: 10.1145/146370.146380.

[98] Simon Lacoste-Julien, Konstantina Palla, Alex Davies, Gjergji Kasneci, Thore Grae-
pel, and Zoubin Ghahramani. “SIGMa: Simple Greedy Matching for Aligning
Large Knowledge Bases”. In: The 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14,
2013, ed. by Inderjit S. Dhillon et al. ACM, 2013, pp. 572–580. doi: 10.1145/2
487575.2487592.

[99] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and Bongki
Moon. “Parallel Data Processing with MapReduce: A Survey”. In: SIGMOD Record
40.4 (2011), pp. 11–20. doi: 10.1145/2094114.2094118.

[100] Maurizio Lenzerini. “Data Integration: A Theoretical Perspective”. In: Proceedings
of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 3-5, Madison, Wisconsin, USA, ed. by Lucian Popa et al.
ACM, 2002, pp. 233–246. doi: 10.1145/543613.543644.

[101] Stefan Lerm. “Verteiltes Clustering für Multi-Source Entity Resolution Gemis-
chter Datensammlungen aus Duplikatfreien und Duplikatbehafteten Quellen”.
MA thesis. University of Leipzig, 2021. uRl:https://dbs.uni-leipzig.
de/file/Masterarbeit_Stefan_Lerm_zweiseitig.pdf.

[102] Stefan Lerm, Alieh Saeedi, and Erhard Rahm. “Extended Affinity Propagation
Clustering for Multi-source Entity Resolution”. In: Datenbanksysteme für Busi-
ness, Technologie undWeb (BTW 2021), 19. Fachtagung des GI-Fachbereichs „Daten-
banken und Informationssysteme” (DBIS), 13.-17. September 2021, Dresden, Ger-
many, Proceedings, ed. by Kai-Uwe Sattler et al. Vol. P-311. LNI. Gesellschaft für
Informatik, Bonn, 2021, pp. 217–236. doi: 10.18420/btw2021-11.

163

https://doi.org/10.1109/MIC.2010.58
https://doi.org/10.1109/18.910572
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1145/146370.146380
https://doi.org/10.1145/2487575.2487592
https://doi.org/10.1145/2487575.2487592
https://doi.org/10.1145/2094114.2094118
https://doi.org/10.1145/543613.543644
https://dbs.uni-leipzig.de/file/Masterarbeit_Stefan_Lerm_zweiseitig.pdf
https://dbs.uni-leipzig.de/file/Masterarbeit_Stefan_Lerm_zweiseitig.pdf
https://doi.org/10.18420/btw2021-11

BIBLIOGRAPHY

[103] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive
data sets. Cambridge university press, 2020.

[104] Jinfeng Li et al. “A Comparison of General-purpose Distributed Systems for Data
Processing”. In: 2016 IEEE International Conference on Big Data, BigData 2016,
Washington DC, USA, December 5-8, 2016. 2016, pp. 378–383. doi: 10.1109
/BigData.2016.7840626.

[105] Jixue Liu, Selasi Kwashie, Jiuyong Li, Lin Liu, and Michael Bewong. “Linking
Graph Entities with Multiplicity and Provenance”. In:CoRR abs/1908.04464 (2019).
arXiv: 1908.04464.

[106] Xiaonan Liu, Meijuan Yin, Junyong Luo, and Wuping Chen. “An Improved Affin-
ity Propagation Clustering Algorithm for Large-scale Data Sets”. In: Ninth Inter-
national Conference on Natural Computation, ICNC 2013, Shenyang, China, July
23-25, 2013, ed. by Haiying Wang et al. IEEE, 2013, pp. 894–899. doi: 10.1109
/ICNC.2013.6818103.

[107] Yongtao Ma and Thanh Tran. “TYPiMatch: Type-specific Unsupervised Learning
of Keys and Key Values for Heterogeneous Web Data Integration”. In: Sixth ACM
International Conference onWeb Search and DataMining,WSDM 2013, Rome, Italy,
February 4-8, 2013, ed. by Stefano Leonardi et al. ACM, 2013, pp. 325–334. doi:
10.1145/2433396.2433439.

[108] Abdullah-Al Mamun, Robert Aseltine, and Sanguthevar Rajasekaran. “Efficient
Record Linkage Algorithms Using Complete Linkage Clustering”. In: PloS one
11.4 (2016), e0154446. doi: 10.1371/journal.pone.0154446.

[109] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
“Distributed Representations of Words and Phrases and Their Compositional-
ity”. In: Advances in Neural Information Processing Systems 26: 27th Annual Con-
ference on Neural Information Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United States, ed. by Christopher
J. C. Burges et al. 2013, pp. 3111–3119. uRl: https : / / proceedings .
neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4
923ce901b-Abstract.html.

[110] Alvaro E. Monge. “Matching Algorithms within a Duplicate Detection System”.
In: IEEE Data Eng. Bull. 23.4 (2000), pp. 14–20. uRl: http://sites.compu
ter.org/debull/A00DEC-CD.pdf.

164

https://doi.org/10.1109/BigData.2016.7840626
https://doi.org/10.1109/BigData.2016.7840626
https://arxiv.org/abs/1908.04464
https://doi.org/10.1109/ICNC.2013.6818103
https://doi.org/10.1109/ICNC.2013.6818103
https://doi.org/10.1145/2433396.2433439
https://doi.org/10.1371/journal.pone.0154446
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
http://sites.computer.org/debull/A00DEC-CD.pdf
http://sites.computer.org/debull/A00DEC-CD.pdf

BIBLIOGRAPHY

[111] Alvaro E. Monge and Charles Elkan. “The Field Matching Problem: Algorithms
and Applications”. In: Proceedings of the Second International Conference onKnowl-
edge Discovery and Data Mining (KDD-96), Portland, Oregon, USA, ed. by Evange-
los Simoudis et al. AAAI Press, 1996, pp. 267–270. uRl: http://www.aaai.
org/Library/KDD/1996/kdd96-044.php.

[112] Erwan Moreau, François Yvon, and Olivier Cappé. “Robust Similarity Measures
for Named Entities Matching”. In: COLING 2008, 22nd International Conference
on Computational Linguistics, Proceedings of the Conference, 18-22 August 2008,
Manchester, UK, ed. by Donia Scott et al. 2008, pp. 593–600. uRl: https://
www.aclweb.org/anthology/C08-1075/.

[113] Sidharth Mudgal et al. “Deep Learning for Entity Matching: A Design Space Ex-
ploration”. In: Proceedings of the 2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, ed. by Gau-
tam Das et al. ACM, 2018, pp. 19–34. doi: 10.1145/3183713.3196926.

[114] James Munkres. “Algorithms for the Assignment and Transportation Problems”.
In: Journal of the society for industrial and applied mathematics 5.1 (1957), pp. 32–
38. uRl: https://www.jstor.org/stable/2098689.

[115] Fionn Murtagh. “A Survey of Recent Advances in Hierarchical Clustering Algo-
rithms”. In: Comput. J. 26.4 (1983), pp. 354–359. doi: 10.1093/comjnl/26
.4.354.

[116] Fionn Murtagh and Pedro Contreras. “Algorithms for Hierarchical Clustering:
An Overview”. In: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2.1 (2012),
pp. 86–97. doi: 10.1002/widm.53.

[117] Fionn Murtagh and Pedro Contreras. “Methods of Hierarchical Clustering”. In:
CoRR abs/1105.0121 (2011). arXiv: 1105.0121.

[118] Dimas C. Nascimento, Carlos Eduardo Santos Pires, and Demetrio Gomes Mestre.
“Heuristic-based Approaches for Speeding up Incremental Record Linkage”. In: J.
Syst. Softw. 137 (2018), pp. 335–354. doi: 10.1016/j.jss.2017.11.074.

[119] Felix Naumann and Melanie Herschel.An Introduction to Duplicate Detection. Syn-
thesis Lectures on Data Management. Morgan & Claypool Publishers, 2010. doi:
10.2200/S00262ED1V01Y201003DTM003.

165

http://www.aaai.org/Library/KDD/1996/kdd96-044.php
http://www.aaai.org/Library/KDD/1996/kdd96-044.php
https://www.aclweb.org/anthology/C08-1075/
https://www.aclweb.org/anthology/C08-1075/
https://doi.org/10.1145/3183713.3196926
https://www.jstor.org/stable/2098689
https://doi.org/10.1093/comjnl/26.4.354
https://doi.org/10.1093/comjnl/26.4.354
https://doi.org/10.1002/widm.53
https://arxiv.org/abs/1105.0121
https://doi.org/10.1016/j.jss.2017.11.074
https://doi.org/10.2200/S00262ED1V01Y201003DTM003

BIBLIOGRAPHY

[120] Markus Nentwig, Anika Groß, Maximilian Möller, and Erhard Rahm. “Distributed
Holistic Clustering on Linked Data”. In: On the Move to Meaningful Internet Sys-
tems. OTM 2017 Conferences - Confederated International Conferences: CoopIS,
C&TC, and ODBASE 2017, Rhodes, Greece, October 23-27, 2017, Proceedings, Part
II, ed. by Hervé Panetto et al. Vol. 10574. Lecture Notes in Computer Science.
Springer, 2017, pp. 371–382. doi: 10.1007/978-3-319-69459-7_25.

[121] Markus Nentwig, Anika Groß, and Erhard Rahm. “Holistic Entity Clustering for
Linked Data”. In: IEEE International Conference on Data Mining Workshops, ICDM
Workshops 2016, December 12-15, 2016, Barcelona, Spain, ed. by Carlotta Domeni-
coni et al. IEEE Computer Society, 2016, pp. 194–201. doi: 10.1109/ICDMW.
2016.0035.

[122] Markus Nentwig and Erhard Rahm. “Incremental Clustering on Linked Data”. In:
2018 IEEE International Conference on Data Mining Workshops, ICDM Workshops,
Singapore, Singapore, November 17-20, 2018, ed. by Hanghang Tong et al. IEEE,
2018, pp. 531–538. doi: 10.1109/ICDMW.2018.00084.

[123] Howard B Newcombe, James M Kennedy, SJ Axford, and Allison P James. “Au-
tomatic Linkage of Vital Records”. In: Science 130.3381 (1959), pp. 954–959.

[124] Howard B. Newcombe and James M. Kennedy. “Record Linkage: Making Maxi-
mum Use of the Discriminating Power of Identifying Information”. In: Commun.
ACM 5.11 (1962), pp. 563–566. doi: 10.1145/368996.369026.

[125] Axel-Cyrille Ngonga Ngomo and Sören Auer. “LIMES - A Time-Efficient Ap-
proach for Large-Scale Link Discovery on the Web of Data”. In: IJCAI 2011, Pro-
ceedings of the 22nd International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011, ed. by Toby Walsh. IJCAI/AAAI,
2011, pp. 2312–2317. doi: 10.5591/978-1-57735-516-8/IJCAI11-
385.

[126] Axel-Cyrille Ngonga Ngomo and Klaus Lyko. “EAGLE: Efficient Active Learn-
ing of Link Specifications Using Genetic Programming”. In: The Semantic Web:
Research and Applications - 9th Extended Semantic Web Conference, ESWC 2012,
Heraklion, Crete, Greece, May 27-31, 2012. Proceedings, ed. by Elena Simperl et al.
Vol. 7295. Lecture Notes in Computer Science. Springer, 2012, pp. 149–163. doi:
10.1007/978-3-642-30284-8_17.

[127] Axel-Cyrille Ngonga Ngomo, Mohamed Ahmed Sherif, and Klaus Lyko. “Unsu-
pervised Link Discovery Through Knowledge Base Repair”. In: Proc. ESWC (2014),

166

https://doi.org/10.1007/978-3-319-69459-7_25
https://doi.org/10.1109/ICDMW.2016.0035
https://doi.org/10.1109/ICDMW.2016.0035
https://doi.org/10.1109/ICDMW.2018.00084
https://doi.org/10.1145/368996.369026
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-385
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-385
https://doi.org/10.1007/978-3-642-30284-8_17

BIBLIOGRAPHY

ed. by Valentina Presutti et al., pp. 380–394. doi: 10.1007/978-3-319-0
7443-6_26.

[128] Frank Nielsen. Introduction to HPC with MPI for Data Science. Undergraduate Top-
ics in Computer Science. Springer, 2016. isbn: 978-3-319-21902-8. doi: 10.100
7/978-3-319-21903-5.

[129] Jordi Nin, Victor Muntés-Mulero, Norbert Martıńez-Bazan, and Josep Lluıś Larriba-
Pey. “On the Use of Semantic Blocking Techniques for Data Cleansing and Inte-
gration”. In: Eleventh International Database Engineering and Applications Sympo-
sium (IDEAS 2007), September 6-8, 2007, Banff, Alberta, Canada, ed. by Bipin C. De-
sai et al. IEEE Computer Society, 2007, pp. 190–198. doi: 10.1109/IDEAS.2
007.4318104.

[130] Natalya Fridman Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patter-
son, and Jamie Taylor. “Industry-scale Knowledge Graphs: Lessons and Chal-
lenges”. In: Commun. ACM 62.8 (2019), pp. 36–43. doi: 10.1145/333116
6.

[131] Daniel Obraczka, Alieh Saeedi, and Erhard Rahm. “Knowledge Graph Comple-
tion with FAMER (DI2KG Challenge Winner)”. In: Proceedings of the 1st Interna-
tional Workshop on Challenges and Experiences from Data Integration to Knowl-
edge Graphs co-located with the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD 2019), Anchorage, Alaska, August 5,
2019, ed. by Donatella Firmani et al. Vol. 2512. CEUR Workshop Proceedings.
CEUR-WS.org, 2019. uRl: http://ceur-ws.org/Vol-2512/paper1
.pdf.

[132] Daniel Obraczka, Jonathan Schuchart, and Erhard Rahm. “EAGER: Embedding-
Assisted Entity Resolution for Knowledge Graphs”. In:CoRR abs/2101.06126 (2021).
arXiv: 2101.06126.

[133] Benjamin Okner. “Data Matching and Merging: An Overview”. In: Annals of Eco-
nomic and Social Measurement, Volume 3, number 2. NBER, 1974, pp. 347–352. uRl:
https://www.nber.org/system/files/chapters/c10114
/c10114.pdf.

[134] Sarah Oppold and Melanie Herschel. “Provenance for Entity Resolution”. In: Prove-
nance and Annotation of Data and Processes - 7th International Provenance and
Annotation Workshop, IPAW 2018, London, UK, July 9-10, 2018, Proceedings, ed. by
Khalid Belhajjame et al. Vol. 11017. Lecture Notes in Computer Science. Springer,
2018, pp. 226–230. doi: 10.1007/978-3-319-98379-0_25.

167

https://doi.org/10.1007/978-3-319-07443-6_26
https://doi.org/10.1007/978-3-319-07443-6_26
https://doi.org/10.1007/978-3-319-21903-5
https://doi.org/10.1007/978-3-319-21903-5
https://doi.org/10.1109/IDEAS.2007.4318104
https://doi.org/10.1109/IDEAS.2007.4318104
https://doi.org/10.1145/3331166
https://doi.org/10.1145/3331166
http://ceur-ws.org/Vol-2512/paper1.pdf
http://ceur-ws.org/Vol-2512/paper1.pdf
https://arxiv.org/abs/2101.06126
https://www.nber.org/system/files/chapters/c10114/c10114.pdf
https://www.nber.org/system/files/chapters/c10114/c10114.pdf
https://doi.org/10.1007/978-3-319-98379-0_25

BIBLIOGRAPHY

[135] Xinghao Pan, Dimitris S. Papailiopoulos, Samet Oymak, Benjamin Recht, Kan-
nan Ramchandran, and Michael I. Jordan. “Parallel Correlation Clustering on
Big Graphs”. In: Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, ed. by Corinna Cortes et al. 2015, pp. 82–90. arXiv:
1507.05086.

[136] George Papadakis, Ekaterini Ioannou, Claudia Niederée, Themis Palpanas, and
Wolfgang Nejdl. “Eliminating the Redundancy in Blocking-based Entity Resolu-
tion Methods”. In: Proceedings of the 2011 Joint International Conference on Digital
Libraries, JCDL 2011, Ottawa, ON, Canada, June 13-17, 2011, ed. by Glen Newton
et al. ACM, 2011, pp. 85–94. doi: 10.1145/1998076.1998093.

[137] George Papadakis, Ekaterini Ioannou, Themis Palpanas, Claudia Niederée, and
Wolfgang Nejdl. “A Blocking Framework for Entity Resolution in Highly Het-
erogeneous Information Spaces”. In: IEEE Trans. Knowl. Data Eng. 25.12 (2013),
pp. 2665–2682. doi: 10.1109/TKDE.2012.150.

[138] George Papadakis, Ekaterini Ioannou, Emanouil Thanos, and Themis Palpanas.
The Four Generations of Entity Resolution. Synthesis Lectures on Data Manage-
ment. Morgan & Claypool Publishers, 2021. doi: 10.2200/S01067ED1V0
1Y202012DTM064.

[139] George Papadakis, George Papastefanatos, Themis Palpanas, and Manolis
Koubarakis. “Scaling Entity Resolution to Large, Heterogeneous Data with En-
hanced Meta-blocking”. In: Proceedings of the 19th International Conference on
Extending Database Technology, EDBT 2016, Bordeaux, France, March 15-16, 2016,
Bordeaux, France, March 15-16, 2016, ed. by Evaggelia Pitoura et al. OpenProceed-
ings.org, 2016, pp. 221–232. doi: 10.5441/002/edbt.2016.22.

[140] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.
“A Survey of Blocking and Filtering Techniques for Entity Resolution”. In: CoRR
abs/1905.06167 (2019). arXiv: 1905.06167.

[141] George Papadakis et al. “Three-dimensional Entity Resolution with JedAI”. In:
Information Systems 93 (2020), p. 101565. doi: 10.1016/j.is.2020.101
565.

[142] Heiko Paulheim. “Knowledge Graph Refinement: A Survey of Approaches and
Evaluation Methods”. In: Semantic Web 8.3 (2017), pp. 489–508. doi: 10.3233
/SW-160218.

168

https://arxiv.org/abs/1507.05086
https://doi.org/10.1145/1998076.1998093
https://doi.org/10.1109/TKDE.2012.150
https://doi.org/10.2200/S01067ED1V01Y202012DTM064
https://doi.org/10.2200/S01067ED1V01Y202012DTM064
https://doi.org/10.5441/002/edbt.2016.22
https://arxiv.org/abs/1905.06167
https://doi.org/10.1016/j.is.2020.101565
https://doi.org/10.1016/j.is.2020.101565
https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-160218

BIBLIOGRAPHY

[143] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “Glove: Global
Vectors for Word Representation”. In: Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, ed. by
Alessandro Moschitti et al. ACL, 2014, pp. 1532–1543. doi: 10.3115/v1/d1
4-1162.

[144] Maria Pershina, Mohamed Yakout, and Kaushik Chakrabarti. “Holistic Entity
Matching Across Knowledge Graphs”. In: 2015 IEEE International Conference on
Big Data, Big Data 2015, Santa Clara, CA, USA, October 29 - November 1, 2015.
IEEE Computer Society, 2015, pp. 1585–1590. doi: 10.1109/BigData.20
15.7363924.

[145] Catia Pesquita, Daniel Faria, Emanuel Santos, and Francisco M. Couto. “To Re-
pair or Not to Repair: Reconciling Correctness and Coherence in Ontology Ref-
erence Alignments”. In: Proceedings of the 8th International Conference on On-
tology Matching. OM’13 (2013), pp. 13–24. uRl: http://dl.acm.org/
citation.cfm?id=2874493.2874495.

[146] Erhard Rahm. “The Case for Holistic Data Integration”. In: Advances in Databases
and Information Systems - 20th East European Conference, ADBIS 2016, Prague,
Czech Republic, August 28-31, 2016, Proceedings. 2016, pp. 11–27. doi: 10.1007
/978-3-319-44039-2_2.

[147] Erhard Rahm and Hong Hai Do. “Data Cleaning: Problems and Current
Approaches”. In: IEEE Data Eng. Bull. 23.4 (2000), pp. 3–13. uRl: http://
sites.computer.org/debull/A00DEC-CD.pdf.

[148] Banda Ramadan, Peter Christen, Huizhi Liang, and Ross W. Gayler. “Dynamic
Sorted Neighborhood Indexing for Real-Time Entity Resolution”. In: ACM J. Data
Inf. Qual. 6.4 (2015), 15:1–15:29. doi: 10.1145/2816821.

[149] Vibhor Rastogi, Nilesh N. Dalvi, and Minos N. Garofalakis. “Large-Scale Collec-
tive Entity Matching”. In: Proc. VLDB Endow. 4.4 (2011), pp. 208–218. doi: 10.1
4778/1938545.1938546.

[150] David Reinsel, John Gantz, and John Rydning. Data Age 2025 - The Digitization
of the World From Edge to Core. Tech. rep. IDC, Nov. 2018. uRl: https://www.
seagate.com/files/www- content/our- story/trends/
files/idc-seagate-dataage-whitepaper.pdf.

[151] Marko A. Rodriguez and Peter Neubauer. “Constructions from Dots and Lines”.
In: CoRR abs/1006.2361 (2010). doi: 10.1002/bult.2010.1720360610.

169

https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1109/BigData.2015.7363924
https://doi.org/10.1109/BigData.2015.7363924
http://dl.acm.org/citation.cfm?id=2874493.2874495
http://dl.acm.org/citation.cfm?id=2874493.2874495
https://doi.org/10.1007/978-3-319-44039-2_2
https://doi.org/10.1007/978-3-319-44039-2_2
http://sites.computer.org/debull/A00DEC-CD.pdf
http://sites.computer.org/debull/A00DEC-CD.pdf
https://doi.org/10.1145/2816821
https://doi.org/10.14778/1938545.1938546
https://doi.org/10.14778/1938545.1938546
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://doi.org/10.1002/bult.2010.1720360610

BIBLIOGRAPHY

[152] Lior Rokach and Oded Maimon. “Clustering Methods”. In: The Data Mining and
Knowledge DiscoveryHandbook, ed. by Oded Maimon et al. Springer, 2005, pp. 321–
352.

[153] Christopher Rost, Andreas Thor, and Erhard Rahm. “Temporal Graph Analysis
using Gradoop”. In: Datenbanksysteme für Business, Technologie und Web (BTW
2019), 18. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme”
(DBIS), 4.-8. März 2019, Rostock, Germany, Workshopband, ed. by Holger Meyer
et al. Vol. P-290. LNI. Gesellschaft für Informatik, Bonn, 2019, pp. 109–118. doi:
10.18420/btw2019-ws-11.

[154] Christopher Rost et al. “Distributed Temporal Graph Analytics with GRADOOP”.
In: The VLDB Journal (2021), pp. 1–27. doi: 10.1007/s00778-021-0066
7-4.

[155] M. Ali Rostami, Alieh Saeedi, Eric Peukert, and Erhard Rahm. “Interactive Visu-
alization of Large Similarity Graphs and Entity Resolution Clusters”. In: Proceed-
ings of the 21th International Conference on Extending Database Technology, EDBT
2018, Vienna, Austria, March 26-29, 2018. 2018, pp. 690–693. doi: 10.5441/00
2/edbt.2018.86.

[156] Alieh Saeedi, Lucie David, and Erhard Rahm. “Matching Entities from Multi-
ple Sources with Hierarchical Agglomerative Clustering”. In: submitted to ic3k
(2021).

[157] Alieh Saeedi, Markus Nentwig, Eric Peukert, and Erhard Rahm. “Scalable Match-
ing and Clustering of Entities with FAMER”. In: CSIMQ 16 (2018), pp. 61–83. doi:
10.7250/csimq.2018-16.04.

[158] Alieh Saeedi, Eric Peukert, and Erhard Rahm. “Comparative Evaluation of Dis-
tributed Clustering Schemes for Multi-source Entity Resolution”. In: Advances
in Databases and Information Systems - 21st European Conference, ADBIS 2017,
Nicosia, Cyprus, September 24-27, 2017, Proceedings. 2017, pp. 278–293. doi: 10
.1007/978-3-319-66917-5_19.

[159] Alieh Saeedi, Eric Peukert, and Erhard Rahm. “Incremental Multi-source Entity
Resolution for Knowledge Graph Completion”. In: The Semantic Web - 17th In-
ternational Conference, ESWC 2020, Heraklion, Crete, Greece, May 31-June 4, 2020,
Proceedings, ed. by Andreas Harth et al. Vol. 12123. Lecture Notes in Computer
Science. Springer, 2020, pp. 393–408. doi: 10.1007/978-3-030-49461-
2_23.

170

https://doi.org/10.18420/btw2019-ws-11
https://doi.org/10.1007/s00778-021-00667-4
https://doi.org/10.1007/s00778-021-00667-4
https://doi.org/10.5441/002/edbt.2018.86
https://doi.org/10.5441/002/edbt.2018.86
https://doi.org/10.7250/csimq.2018-16.04
https://doi.org/10.1007/978-3-319-66917-5_19
https://doi.org/10.1007/978-3-319-66917-5_19
https://doi.org/10.1007/978-3-030-49461-2_23
https://doi.org/10.1007/978-3-030-49461-2_23

BIBLIOGRAPHY

[160] Alieh Saeedi, Eric Peukert, and Erhard Rahm. “Using Link Features for Entity
Clustering in Knowledge Graphs”. In: The Semantic Web - 15th International Con-
ference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings. 2018,
pp. 576–592. doi: 10.1007/978-3-319-93417-4_37.

[161] Seref Sagiroglu and Duygu Sinanc. “Big Data: A Review”. In: 2013 International
Conference on Collaboration Technologies and Systems, CTS 2013, San Diego, CA,
USA, May 20-24, 2013, ed. by Geoffrey Charles Fox et al. IEEE, 2013, pp. 42–47.
doi: 10.1109/CTS.2013.6567202.

[162] Anish Das Sarma, Xin Dong, and Alon Y. Halevy. “Bootstrapping Pay-As-You-
Go Data Integration Systems”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, ed. by Jason Tsong-Li Wang. ACM, 2008, pp. 861–874. doi: 10.114
5/1376616.1376702.

[163] Ziad Sehili, Florens Rohde, Martin Franke, and Erhard Rahm. “Multi-Party Pri-
vacy Preserving Record Linkage in Dynamic Metric Space”. In: Datenbanksys-
teme für Business, Technologie und Web (BTW 2021), 19. Fachtagung des
GI-Fachbereichs, Datenbanken und Informationssysteme” (DBIS), 13.-17. September
2021, Dresden, Germany, Proceedings, ed. by Kai-Uwe Sattler et al. Vol. P-311. LNI.
Gesellschaft für Informatik, Bonn, 2021, pp. 257–278. doi: 10.18420/btw2
021-13.

[164] Hermes Senger et al. “BSP Cost and Scalability Analysis for MapReduce Opera-
tions”. In: Concurr. Comput. Pract. Exp. 28.8 (2016), pp. 2503–2527. doi: 10.10
02/cpe.3628.

[165] Giovanni Simonini, Sonia Bergamaschi, and H. V. Jagadish. “BLAST: a Loosely
Schema-aware Meta-blocking Approach for Entity Resolution”. In: Proc. VLDB
Endow. 9.12 (2016), pp. 1173–1184. doi: 10.14778/2994509.2994533.

[166] Amit Singhal. Introducing the Knowledge Graph: things, not strings. 2012. uRl:
https://blog.google/products/search/introducing-
knowledge-graph-things-not/ (visited on 05/16/2012).

[167] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems - principles
and paradigms, 2nd Edition. Pearson Education, 2007. isbn: 978-0-13-239227-3.

[168] Jeffrey D. Ullman. “Designing Good MapReduce Algorithms”. In:XRDS 19.1 (2012),
pp. 30–34. doi: 10.1145/2331042.2331053.

171

https://doi.org/10.1007/978-3-319-93417-4_37
https://doi.org/10.1109/CTS.2013.6567202
https://doi.org/10.1145/1376616.1376702
https://doi.org/10.1145/1376616.1376702
https://doi.org/10.18420/btw2021-13
https://doi.org/10.18420/btw2021-13
https://doi.org/10.1002/cpe.3628
https://doi.org/10.1002/cpe.3628
https://doi.org/10.14778/2994509.2994533
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://doi.org/10.1145/2331042.2331053

BIBLIOGRAPHY

[169] Stijn Marinus Van Dongen. “Graph Clustering by Flow Simulation”. PhD thesis.
University of Utrecht, 2000. uRl: http://dspace.library.uu.nl/
handle/1874/848.

[170] Jorge Veiga, Roberto R. Expósito, Xoán C. Pardo, Guillermo L. Taboada, and
Juan Touriño. “Performance Evaluation of Big Data Frameworks for Large-scale
Data Analytics”. In: 2016 IEEE International Conference on Big Data, BigData 2016,
Washington DC, USA, December 5-8, 2016. 2016, pp. 424–431. doi: 10.1109
/BigData.2016.7840633.

[171] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. “Silk - A Link
Discovery Framework for the Web of Data”. In: Proceedings of the WWW2009
Workshop on LinkedData on theWeb, LDOW2009,Madrid, Spain, April 20, 2009, ed.
by Christian Bizer et al. Vol. 538. CEUR Workshop Proceedings. CEUR-WS.org,
2009. uRl: http://ceur-ws.org/Vol-538/ldow2009_paper13
.pdf.

[172] Hongzhi Wang, Jianzhong Li, and Hong Gao. “Efficient Entity Resolution Based
on Subgraph Cohesion”. In: Knowl. Inf. Syst. 46.2 (2016), pp. 285–314. doi: 10.1
007/s10115-015-0818-7.

[173] Qing Wang, Jingyi Gao, and Peter Christen. “A Clustering-Based Framework for
Incrementally Repairing Entity Resolution”. In: Proc.PAKDD (2016), ed. by James
Bailey et al., pp. 283–295. doi: 10.1007/978-3-319-31750-2_23.

[174] Qing Wang, Klaus-Dieter Schewe, and Woods Wang. “Provenance-Aware Entity
Resolution: Leveraging Provenance to Improve Quality”. In: Database Systems
for Advanced Applications - 20th International Conference, DASFAA 2015, Hanoi,
Vietnam, April 20-23, 2015, Proceedings, Part I, ed. by Matthias Renz et al. Vol. 9049.
Lecture Notes in Computer Science. Springer, 2015, pp. 474–490. doi: 10.100
7/978-3-319-18120-2_28.

[175] Yandong Wang, Robin Goldstone, Weikuan Yu, and Teng Wang. “Characteriza-
tion and Optimization of Memory-Resident MapReduce on HPC Systems”. In:
2014 IEEE 28th International Parallel and Distributed Processing Symposium,
Phoenix, AZ, USA, May 19-23, 2014. IEEE Computer Society, 2014, pp. 799–808.
doi: 10.1109/IPDPS.2014.87.

[176] Joe H Ward Jr. “Hierarchical grouping to optimize an objective function”. In: Jour-
nal of the American statistical association 58.301 (1963), pp. 236–244.

172

http://dspace.library.uu.nl/handle/1874/848
http://dspace.library.uu.nl/handle/1874/848
https://doi.org/10.1109/BigData.2016.7840633
https://doi.org/10.1109/BigData.2016.7840633
http://ceur-ws.org/Vol-538/ldow2009_paper13.pdf
http://ceur-ws.org/Vol-538/ldow2009_paper13.pdf
https://doi.org/10.1007/s10115-015-0818-7
https://doi.org/10.1007/s10115-015-0818-7
https://doi.org/10.1007/978-3-319-31750-2_23
https://doi.org/10.1007/978-3-319-18120-2_28
https://doi.org/10.1007/978-3-319-18120-2_28
https://doi.org/10.1109/IPDPS.2014.87

BIBLIOGRAPHY

[177] Michael J. Welch, Aamod Sane, and Chris Drome. “Fast and Accurate Incremental
Entity Resolution Relative to an Entity Knowledge Base”. In: 21st ACM Interna-
tional Conference on Information and Knowledge Management, CIKM’12, Maui, HI,
USA, October 29 - November 02, 2012. 2012, pp. 2667–2670. doi: 10.1145/239
6761.2398719.

[178] Steven Euijong Whang, David Marmaros, and Hector Garcia-Molina. “Pay-As-
You-Go Entity Resolution”. In: IEEE Trans. Knowl. Data Eng. 25.5 (2013), pp. 1111–
1124. doi: 10.1109/TKDE.2012.43.

[179] Derry Tanti Wijaya and Stéphane Bressan. “Ricochet: A Family of Unconstrained
Algorithms for Graph Clustering”. In: Database Systems for Advanced Applica-
tions, 14th International Conference, DASFAA 2009, Brisbane, Australia, April 21-23,
2009. Proceedings, ed. by Xiaofang Zhou et al. Vol. 5463. Lecture Notes in Com-
puter Science. Springer, 2009, pp. 153–167. doi: 10.1007/978-3-642-00
887-0_13.

[180] Moritz Wilke and Erhard Rahm. “Towards Multi-modal Entity Resolution for
Product Matching”. In: 32nd GI-Workshop on Foundations of Databases (Grund-
lagen von Datenbanken). 2021. uRl: https://dbs.uni-leipzig.de/
en/publication/title/towards_multi_modal_entity_
resolution_for_product_matching.

[181] William E Winkler and Yves Thibaudeau. An Application of the Fellegi-Sunter
Model of Record Linkage to the 1990 US Decennial Census. Tech. rep. RR1991/09, US
Bureau of the Census, Washington, DC, 1991. uRl:https://www.seagate.
com/files/www-content/our-story/trends/files/idc-
seagate-dataage-whitepaper.pdf.

[182] Dongkuan Xu and Yingjie Tian. “A Comprehensive Survey of Clustering Algo-
rithms”. In: Annals of Data Science 2.2 (2015), pp. 165–193. doi: 10.1007/s4
0745-015-0040-1.

[183] Rui Xu and Donald C. Wunsch II. “Survey of Clustering Algorithms”. In: IEEE
Trans. Neural Networks 16.3 (2005), pp. 645–678. doi: 10.1109/TNN.2005
.845141.

[184] Yan Yan, Stephen Meyles, Aria Haghighi, and Dan Suciu. “Entity Matching in the
Wild: A Consistent and Versatile Framework to Unify Data in Industrial Appli-
cations”. In: Proceedings of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19,

173

https://doi.org/10.1145/2396761.2398719
https://doi.org/10.1145/2396761.2398719
https://doi.org/10.1109/TKDE.2012.43
https://doi.org/10.1007/978-3-642-00887-0_13
https://doi.org/10.1007/978-3-642-00887-0_13
https://dbs.uni-leipzig.de/en/publication/title/towards_multi_modal_entity_resolution_for_product_matching
https://dbs.uni-leipzig.de/en/publication/title/towards_multi_modal_entity_resolution_for_product_matching
https://dbs.uni-leipzig.de/en/publication/title/towards_multi_modal_entity_resolution_for_product_matching
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/TNN.2005.845141

BIBLIOGRAPHY

2020, ed. by David Maier et al. ACM, 2020, pp. 2287–2301. doi: 10.1145/331
8464.3386143.

[185] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing”. In: Proceedings of the 9th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA,
April 25-27, 2012, ed. by Steven D. Gribble et al. USENIX Association, 2012, pp. 15–
28. uRl: https://www.usenix.org/conference/nsdi12/tech
nical-sessions/presentation/zaharia.

[186] Wei Zhang, Hao Wei, Bunyamin Sisman, Xin Luna Dong, Christos Faloutsos, and
David Page. “AutoBlock: A Hands-off Blocking Framework for Entity Matching”.
In: WSDM ’20: The Thirteenth ACM International Conference on Web Search and
Data Mining, Houston, TX, USA, February 3-7, 2020, ed. by James Caverlee et al.
ACM, 2020, pp. 744–752. doi: 10.1145/3336191.3371813.

[187] Xiangliang Zhang. “Contributions to Large Scale Data Clustering and Streaming
with Affinity Propagation. Application to Autonomic Grids”. PhD thesis. PARIS:
University PARIS-SUD, 2010. uRl: https://www.lri.fr/~marc/the
sesTAO/ZhangPhD.pdf.

[188] Chen Zhao and Yeye He. “Auto-EM: End-to-end Fuzzy Entity-Matching Using
Pre-trained Deep Models and Transfer Learning”. In: The World Wide Web Con-
ference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, ed. by Ling Liu
et al. ACM, 2019, pp. 2413–2424. doi: 10.1145/3308558.3313578.

174

https://doi.org/10.1145/3318464.3386143
https://doi.org/10.1145/3318464.3386143
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://doi.org/10.1145/3336191.3371813
https://www.lri.fr/~marc/thesesTAO/ZhangPhD.pdf
https://www.lri.fr/~marc/thesesTAO/ZhangPhD.pdf
https://doi.org/10.1145/3308558.3313578

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Scientific Contributions
	Structure of Thesis

	Background
	Entity Resolution
	Clustering
	Distributed Data Processing
	Quality Measurements

	FAMER
	Motivation
	Data Model and Data Structures
	FAMER Batch Pipeline
	FAMER Incremental Pipeline
	Visualization Tool

	Multi-source Clean Clustering
	Motivation
	Generic Clustering Schemes
	Clean Clustering Algorithms
	Evaluation
	Case Study
	Related Works
	Conclusion

	Multi-source Clean/Dirty Clustering
	Motivation
	Affinity Propagation for Multi-source Clean/Dirty Datasets
	Hierarchical Clustering for Multi-source Clean/Dirty Datasets
	Evaluation Results
	Related Works
	Conclusion

	Incremental Entity Resolution
	Motivation
	Incremental Approaches
	Evaluation
	Related Works
	Conclusion

	Conclusion and Outlook
	Conclusion
	Outlook

	Appendix FAMER Configurations
	Preprocessing
	Linking
	Clustering
	Postprocessing
	Incremental Configurations

	Appendix MSCD-AP Quality Results
	Appendix MSCD-HAC Quality Results
	Bibliography

