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Abstract

The goal of this thesis is to study the complexity of NP-Hard problems, using the
Max-Cut and the Max-k-Cut problems, and the study of fitness landscapes.
The Max-Cut and Max-k-Cut problems are well studied NP-hard problems
specially since the approximation algorithm of Goemans and Williamson (1995)
which introduced the use of Semidefinite Programming (SDP) to solve relaxed
problems. In order to prove the existence of a performance guarantee, the rounding
step from the SDP solution to a Max-Cut solution is simple and randomized.
For the Max-k-Cut problem, there exist several approximation algorithms but
many of them have been proved to be equivalent. Similarly as in Max-Cut, these
approximation algorithms use a simple randomized rounding to be able to get a
performance guarantee.

Ignoring for now the performance guarantee, one could ask if there is a rounding
process that takes into account the structure of the relaxed solution since it is
the result of an optimization problem. In this thesis we answered this question
positively by using clustering as a rounding method.

In order to compare the performance of both algorithms, a series of experiments
were performed using the so-called G-set benchmark for the Max-Cut problem
and using the Random Graph Benchmark of Goemans and Williamson (1995) for
the Max-k-Cut problem. With this new rounding, larger cut values are found
both for the Max-Cut and the Max-k-Cut problems, and always above the value
of the performance guarantee of the approximation algorithm. This suggests that
taking into account the structure of the problem to design algorithms can lead to
better results, possibly at the cost of a worse performance guarantee. An example
for the vertex k-center problem can be seen in Garcia-Diaz et al. (2017), where
a 3-approximation algorithm performs better than a 2-approximation algorithm
despite having a worse performance guarantee.

Landscapes over discrete configurations spaces are an important model in
evolutionary and structural biology, as well as many other areas of science, from
the physics of disordered systems to operations research. A landscape is a function
defined on a very large discrete set V that carries an additional metric or at least
topological structure into the real numbers R. We will consider landscapes defined
on the vertex set of undirected graphs. Thus let G = G(V, E) be an undirected
graph and f : V → R an otherwise arbitrary function. We will refer to the triple
(V, E, f) as a landscape over G.
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We say two configurations x, y ∈ V are neutral if f(x) = f(y). We colloquially
refer to a landscape as “neutral” if a substantial fraction of adjacent pairs of
configurations are neutral. A flat landscape is one where f is constant. The
opposite of flatness is ruggedness and it is defined as the number of local optima
or by means of pair correlation functions.

These two key features of a landscape, ruggedness and neutrality, appear to
be two sides of the same coin. Ruggedness can be measured either by correlation
properties, which are sensitive to monotonic transformation of the landscape, and
by combinatorial properties such as the lengths of downhill paths and the number of
local optima, which are invariant under monotonic transformations. The connection
between the two views has remained largely unexplored and poorly understood.
For this thesis, a survey on fitness landscapes is presented, together with the first
steps in the direction to find this connection together with a relation between the
covariance matrix of a random landscape model and its ruggedness.
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Several combinatorial problems are of interest not only theoretically but also for its
wide variety of applications, however many of these problems are hard to solve. The
NP-Hard and NP-Complete problems fall into these category, and are of interest
because of the applications in efficient routing of transport vehicles, network design,
cryptography and in general in computer science. For these problems, it is not
known if an optimal solution can be found in polynomial time and this question
has been unanswered for more than 45 years.

However, for many problems there exists a structure that can be used to find
solutions efficiently, which are close to the global optima, or at least guarantee local
optimality. For application purposes this is enough, since the worst case scenario
happens rarely in real-life applications. For some particular types of instances it
may even happen that the problems can be solved in polynomial time, like planar
graphs for the Max-Cut problem (Hadlock, 1975).

The fitness landscape of a discrete optimization problem can be seen as the
behavior of the objective function among all possible solutions. Let f be the

objective function objective function, i.e., the function we want to maximize (or minimize) and let
X be a finite set containing all the possible validconfigurations configurations, i.e., an element
x ∈ X is a valid solution of the problem with value f(x). For example, in evolution,
an element of X is the particular chain of DNA of an individual and f is a function
that measures its fitness. Another example in physics are spin glasses; assume
there are n particles with only 2 spin values represented as ±1, then the set of
configurations X is an n dimensional vector where each entry can only be 1 or
-1, and the function to optimize (minimize in this case) is the Hamiltonian energy
of the system (V. M. d. Oliveira and Fontanari, 1997; Thouless, Anderson, and
Palmer, 1977).

The analysis of fitness landscapes provides a hindsight of what makes a problem
difficult since informally it can be interpreted as the plot of the objective function
f over the space of configurations X (Figure 1). For example Krząkała and
Zdeborová (2008), Krząkała, Montanari, et al. (2007), and Zdeborová and Krząkała
(2007) show that increasing the number of constraints in random CSPs (constraint
satisfaction problems) decreases the number of viable solutions in the same way a
phase transition occur in physical phenomena. Additionally, properties of the fitness
landscape of a problem can help in the design of better algorithms or heuristics,
specially methods that use local information to find the solution (Neidhart, Szendro,
and Krug, 2013). Properties such as ruggedness (large number of local optima as
seen in Figure 1a) or neutrality (large number of points with similar fitness values
as seen in Figure 1b) are clear examples of properties to consider, since a rugged
landscape has a large number of local optima making local search algorithms stop
before reaching a global optimum; meanwhile for flat landscapes most algorithms
will find the global optimum without a problem. One extreme case happens in
convex optimization (Figure 1c), where the landscape of the problem has only one
local optimum which coincides with the global optimum.

For some problems, describing the landscape from the underlying structure
may not be possible, therefore probabilistic models of fitness landscapes are used
(Stadler and Happel, 1999). There are several models that can be defined, and for
some of them properties such as the number of local optima has been found. The
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(a) (b) (c)

Figure 1: Approximate representations of rugged (a), neutral (b) and convex (c) fitness
landscapes. The landscape of a discrete optimization problem is not a smooth function,
but rather a set of discrete points such as the intersections on the grid drawn over the
plot in these examples.

correlation matrix of a fitness landscape should contain most of the structure and
information of the problem, therefore one may ask if properties such as the number
of local optima can be seen as a function of the entries of this matrix (Stadler,
1996).

Unless P = NP , there cannot be polynomial time algorithms that solve NP-
Complete and NP-hard problems for any instance, however we can design an
algorithm which guarantees that the solution obtained is in an interval around the
global optimum. These algorithms are called approximation algorithms and utilize
several techniques such as probability theory, semidefinite programming and convex
optimization among others (Williamson and Shmoys, 2011).

The Max-Cut problem is an NP-hard problem and its objective is to find
a 2-partition of the node set of a graph such that it maximizes the number of
edges that have end points in different partitions. Formally, let G = (V, E) be an
undirected graph where V and E are the set of nodes and edges respectively, let
i ∈ V be a node and let (i, j) ∈ E represent an edge with endpoints i and j. Then
the goal of the Max-Cut problem is to find a bipartition A, B ⊆ V such that
the number of edges (i, j) with i ∈ A and j ∈ B or vice versa is maximized (Karp,
1972). An example for a bipartite graph can be seen in Figure 2

One of the most known approximation algorithms, was done by Goemans and
Williamson (1995) and instead of directly solving Max-Cut, it solves a relaxed
problem which can be solved in polynomial time and then it rounds this solution
to turn it into a valid solution to the Max-Cut problem. This approximation
algorithm returns a solution that is guaranteed to be ≈ 0.87 times the global
optimum. The rounding process of this approximation algorithm is done so that
a proof of the performance guarantee can be done. This leads to ask if different
rounding processes can give better solutions than the approximation algorithm,
and in this thesis it was shown that it can be done using clustering. The proof of
whether this approach still is an approximation algorithm has yet to be found, but
the numerical data suggest a positive answer.

This approach can be generalized to the Max-k-Cut problem. Instead of
partitioning the node set of a graph into two sets, it is now partitioned into k sets.
It has the same objective, find a k partition that maximizes the number of edges
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Figure 2: A bipartite graph together with the maximum cut partition A and B.
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Figure 3: A graph consisting of two cliques of size 5 joined with one edge. Each color
represent a partition and we have k = 4 partitions. A clique of size m will need k = m in
order to have all edges in the cut, therefore this is the best result possible for k = 4.

with end nodes in different partitions (Figure 3). There are several approximation
algorithms for this problem, but most of them are equivalent versions of each others
(Klerk, Pasechnik, and Warners, 2004; Newman, 2018). However, the rounding
procedure remains the same as in the Max-Cut (k = 2) case, and can still be
replaced with clustering in order to find better solutions (Chapter 7). Similarly as
for Max-Cut, the data suggest that an approximation guarantee exists, but it has
yet to be found.
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Document Structure

The thesis is divided in three main parts. The first part, “Introduction and Theo-
retical Background”, contains definitions and concepts that are needed in order to
explain the methods and results found. The topic of Chapter 2 is NP-Complete
and NP-Hard problems, how to find approximate solutions for them and some
examples and iconic problems. In Chapter 3 positive semidefinite matrices are
introduced together with some properties, followed by the definition of Semidefinite
Programming problems. Chapter 4 expands on fitness landscapes, examples of
some models and the problems encountered with trying to relate the covariance
matrix with the number of local optima for the Sherrington-Kirkpatrick model. The
last chapter of the first part of the thesis, Chapter 5 explains all the clustering
methods used in this work.

The second part,“Methods and Findings” consists of the main results of this work.
In Chapter 6 the Max-Cut problem is introduced together with the best known
approximation algorithm for it. Then, a variation of the approximation algorithm
using clustering is presented together with numerical results. The Subsection 6.3.2
is based on Rodriguez-Fernandez et al. (2020) and apart from those results, spectral
clustering was used and is presented in Subsection 6.3.3. Additionally, a Laplacian
and Gram matrix spectrum analysis was performed to give more intuition about the
structure and difficulty of the problem (Section 6.4). Finally an algorithm based
on constantly minimizing in the distortion space of clustering and maximization
in cut space was designed and presented in the last section. For Chapter 7,
the generalization Max-k-Cut is presented together with the best approximation
algorithms. The new approach of using clustering as a rounding method is presented
together with numerical results in Subsection 7.3.4 and Section 7.4.

Finally, the last part of the thesis contains the conclusions and future work for
some of the problems discussed above.
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One of the most studied problems in computational complexity are the NP-complete
and NP-hard problems. There is a wide variety of problems that fall into this
category, for example the traveling salesman problem, edge coloring, maximum
satisfiability and maximum cut among others, with a wide variety of applications
such as network design, efficient routing of vehicles, and many others.

2.1 Definitions

A problem belongs to the complexity class P if it can be solved in polynomial time
for any instance. The class NP consists of all decision problems that can check if
a given solution is correct in polynomial time. A problem in theNP-Complete NP-Complete
class belongs to the NP class and any other problem in NP can be reduced to it,
i.e., it can be seen as a particular case of it. A problem in theNP-Hard NP-Hard class
does not need to be in NP, but all problems in NP can be reduced to it. Clearly P
is contained in NP (since problems itself can be solved in polynomial time), but
until now, a proof of whether the NP class is contained or not in the P class has
not been found. This is the “P versus NP” problem and it is one of the most
important question in the field, one of the Millennium Prize Problems, and has
been unsolved for more than 45 years. The implications of the answer will have an
impact on many fields including cryptography, mathematics, algorithm design and
many others, specially if P = NP .

2.2 Methods to Approximate Solutions

Although the answer to P = NP is still unknown, there are many approaches
to obtain “good” solutions in polynomial time. NP-hard problems can not be,
simultaneously:

• Solved exactly,

• in polynomial time and

• for any instance.

One approach is to ignore the last constraint, and focus on a particular type of
instances. For example, the Max-Cut problem can be solved exactly and in
polynomial time for planar graphs (Hadlock, 1975). Another approach is to solve a
problem in polynomial time, but instead of finding the optimal solution, give one
that is guaranteed to be inside an interval close to the optimum. This is called
anApproximation Algorithm Approximation Algorithm, and the solution obtained is guaranteed to be
between the optimum and α times the optimum, where α ∈ R is the performance
guarantee and takes the values α < 1 for maximization problems and α > 1 for
minimization problems. Formally, if OPT is the optimal solution of the problem,
and S is the solution obtained by an approximation algorithm, then:
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αOPT ≤ S ≤ OPT for maximization with α < 1
OPT ≤ S ≤ αOPT for minimization with α > 1

There are several methods and tools used in the design of approximation algorithms,
and it depends on the problem to be solved. For example: greedy algorithms for
the set cover and the k-center problem, linear programming for the Steiner tree and
the facility location, local search for finding a minimum degree spanning tree, and
semidefinite programming for the Max-Cut, Max-k-Cut and coloring problem.

The Max-Cut problem can be formulated as a quadratic integer optimization
problem, and in order to find an approximation algorithm, one consider a relaxation
of the problem, in which the variables are no longer integers but vectors in a
real space. This new relaxed problem is a particular instance of a semidefinite
programming problem, which can be solved in polynomial time. However, the
solution obtained may not be a valid solution for the original problem, therefore
one must round it. In Chapter 6 this approximation algorithm is discussed in detail
and in Chapter 7 a similar algorithm for the Max-k-Cut problem is presented.

The approximation algorithm for the Max-Cut problem was found by Goemans
and Williamson (1995), and several approximation algorithm follow the same
procedure: first a problem is relaxed into another one that contains it but can be
solved efficiently, then solve the new problem and finally find a way to round the
solution of the relaxation to the original problem.

Formally, a Problem Relaxationrelaxation of a problem PR is another problem PS for which all
instances of problem PR are valid, but not necessarily the other way around. This
implies that the optimum found by the relaxation PS gives an upper bound of
the optimum of PR for maximization and a lower bound for minimization. Using
relaxations to find approximation algorithms is frequently used, and often the
relaxed problems are instances of linear programming or semidefinite programming
(Chapter 3) which can be solved in polynomial time with interior point methods
(Karmarkar, 1984).

Let us take the set cover problem as an example of both relaxing and rounding a
problem. Let E = {e1, . . . , en} be a set containing n elements and let S1, . . . , Sm ⊆
E be subsets of E with associated weights w1, . . . , wm. The goal of the set cover
problem is to select a collection I ⊆ {1, . . . , m} of subsets such that all elements
of E are contained in at least one subset (ei ∈ Sj for some j ∈ I) and the sum of
weights of all the selected subsets is minimized. We can formulate this problem as
an integer program, i.e., an optimization problem where the variables can only take
integer values. Let xi ∈ {0, 1} be an integer variable where the value 1 represents
that the subset Si is used in the set cover (i ∈ I); and 0 that Si is not used in the
set cover (i /∈ I). The integer programming version of the set cover problem reads
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as follows:

Minimize
m∑

i=1
wixi

subject to:
∑

j|ei∈Sj

xj ≥ 1 ∀i = 1, . . . , n

xi ∈ {0, 1} ∀i = 1, . . . , m

(2.1)

where the first constraint is to assure that every element belong to at least one
Sj . In general, integer optimization problems cannot be solved in polynomial time,
therefore we need to relax this problem into another that can be solved efficiently
and contains the original one. The main difficulty of an integer optimization problem
is the last constraint, i.e., the integer part, and if we “relax” this constraint allowing
xi to be a real number yi we obtain the following linear programming problem:

Minimize
m∑

i=1
wiyi

subject to:
∑

j|ei∈Sj

yj ≥ 1 ∀i = 1, . . . , n

yi ≥ 0 ∀i = 1, . . . , m

(2.2)

which can be solved in polynomial time. In order for a problem to be a relaxation,
two things must be satisfied: first, all the feasible solutions of the original problem
have to be feasible in the relaxed problem; and second, the value of the objective
function for solutions of the original problem must be the same as the value for the
relaxed problem. We can give an intuition of this relaxation process in the context
of fitness landscapes. Imagine that Figure 4 is the plot of the landscape of some
function f , i.e., it is the plot of the objective function f over the search space. In
Figure 4a we can see the integer problem together with its relaxation on Figure 4b.
Since many algorithms utilize local information, we can see why it may be easier to
work with the relaxed problem; we are making the search space larger but more
well-behaved.

Returning to the set cover example, we can easily see that an instance of
Equation 2.1 is feasible on the relaxed problem (Equation 2.2), and since the
objective functions are the same, Equation 2.2 is a valid relaxation for the set cover
problem. However, since the relaxed problem has a larger search space, in general
the optimum of the relaxed problem is not feasible for the original problem. We
need toRounding round this solution to one of its nearest feasible solutions of the original
problem. Looking at Figure 4b, the minimum point of the surface may not be
one of the green points which are the feasible values for the integer programming.
Therefore, we must devise a method to convert this optimum into one of the nearest
feasible (green) points. Let ZLP and ZIP be the global minimum for the relaxed
and the original problem respectively, then ZLP ≤ ZIP since it contains all the
solutions of the integer program and more. Let ZR be the value obtained after
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(a) Integer optimization problem (b) Relaxed problem

Figure 4: Fitness landscape of an integer optimization problem and its relaxation. Any
point on the surface represents a feasible solution for the relaxed problem and the green
circles represent the solutions where the variables are restricted to be integers.

rounding the optimal solution of the relaxed problem ZLP , if there exists a number
α ≥ 1 (for minimization problems), such that ZR ∈ [ZIP , αZIP ], then the whole
procedure is called an α-approximation algorithm. There exist several methods for
rounding solutions, which depend on the properties and structure of each particular
problem. However there are two classes of rounding methods, deterministic and
randomized. The rounding method for the set cover problem is simple, letting
t be the maximum number of times an element appears among all the sets Sj ,
we convert the optimum of Equation 2.2 y∗

i into a feasible solution for the set
cover problem by setting x∗

i = 1 if yi ≥ 1/t and 0 otherwise. Then, one needs to
show that the set of x∗

i are feasible for Equation 2.1, that the solution obtained
is guaranteed to be in the interval [ZIP , αZIP ] with α = t, and that it is found
in polynomial time. For more detail on these proofs, see Williamson and Shmoys
(2011). This procedure has to be done in general for any rounding, i.e., show that
the rounded solution is feasible in the original problem and that there exists an
approximation guarantee α.

Another way of modifying the search space to guide local search algorithms
towards the global optimum is discussed in Klemm, Mehta, and Stadler (2012).
Assume we have an integer minimization problem and let us rename the objective
function as the energy, allowing us to view the optimization problem in the context
of an energy-minimization problem. The idea is to change the original encoding
of a problem X into a larger space Y together with a mapping α : Y → X

⋃
∅,

where ∅ represents configurations that are non-feasible in the original problem. If
the encoding Y have a larger density of low-energy states than X, even a random
selection of configurations in Y will give lower energy values than in X. This idea
was performed for the traveling salesman, the number partition and the Max-Cut
problems in Klemm, Mehta, and Stadler (2012).

Additionally, since the relaxation of a problem can be solved in polynomial
time, it can be used in the design of branch-and-bound algorithms (Land and
Doig, 1960). A branch-and-bound algorithm starts with the entire solution space
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of a problem and then starts to partition it, for example by adding constraints on
variables. Assume we have integer binary variables xi = ±1, then we can partition
the solution space into two subspaces by adding the restrictions xi = 1 and xi = −1.
If we see this procedure as a graph, the starting node and root is the complete
problem, and it will branch into two nodes based on the restrictions defined below.
Each subsequent node can branch into smaller subproblems the same way as before
and if we continue this procedure we will end with the decision tree of the problem,
where the leaves are all possible solutions of the problem. At some point during
the search space division, we can obtain reasonable size subproblems for which
we can use the optimum of the relaxation to find a bound of the optimal value
at that particular node, which can be cut from the decision tree if it does not
contain the optimum of the original problem, thus eliminating it together with all
of its subproblems and reducing the size of the solution space. A more detailed
explanation of this process can be found in Bader, Hart, and Phillips (2005) and
Benaïchouche et al. (1996).

2.3 Examples and Iconic Problems

In this section we will present a list of NP-Complete and NP-Hard problems together
with one of the best known performance guarantees and the type of method this
approximation algorithm uses (Williamson and Shmoys, 2011).

• Set Cover. This NP-Hard problem consists of a set of elements E =
{e1, e2, . . . , en} together with m subsets S1, S2, . . . , Sm ⊆ E with associated
positive weights w1, . . . , wm ≥ 0. The goal of Set Cover, as its name implies,
is to find a group of sets Si such that they “cover” all elements in E with
a minimal sum of weights. Formally, we want to find I ⊆ {1, . . . , m} such
that

⋃
i∈I Si = E and the sum

∑
i∈I wi is minimized. For this problem,

there are both a Linear Programming (LP) and a greedy algorithms. The
LP method relaxes the problem to an instance of LP which can be solved
in polynomial time, then this solution can be rounded to be valid for the
Set Cover problem and it will give an f -approximation algorithm, where f is
the maximum number of times any element ei repeats among different sets
Sj . The greedy algorithm (valid only for unitary weight sets) is simple, just
add a subset Sj if at the current point of the algorithm it is the one that
contains the maximum number of uncovered elements ej . This will give a
performance guarantee of H(s), where H is the n-th harmonic number and
s is the maximum cardinality among all sets in S. Refer to Slavík (1996) for
a more detailed analysis of the greedy algorithm.

• Scheduling Jobs with Deadlines on a Single Machine. For this problem,
n jobs J1, . . . , Jn must be processed on a single machine. These jobs have a
release time ri, which means that job Ji cannot be processed before time ri,
and a deadline or due date di, which marks the latest point in time for which
it has to be finished. Additionally, each job has a processing time pi, i.e.,
the amount of time job i takes to be processed. Assume that the starting
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time is 0, and all ri ≥ 0. Assume we have a scheduling of the jobs and job
Ji finishes at time Ci in this assignment. Then the lateness Li for this job
is equal to Ci − di. The goal of this problem is to find a scheduling such
that the maximum lateness among all jobs is minimized. A simple greedy
algorithm consists of processing the job with earliest due date as soon as the
machine is free. This greedy algorithm is a 2-approximation algorithm, i.e.,
it has a performance guarantee of α = 2.

• k-center Problem. Let G = (V, E) be a complete undirected graph with
positive distances dij between any pair of nodes i and j. We will require
that the distance measure satisfies the triangle inequality, that dii = 0 and
dij = dji for all i, j ∈ V . The objective is to form k groups such that nodes
belonging in one group are similar or close to each other. Let S ⊆ V such
that |S| = k be the set that contains the k centers for all the groups. Then
a node i will be assigned to its closest center in S. In order to quantify how
good this assignment is, we define the distance from a node i to the set S as
d(i, S) = minj∈S dij , and the radius of S as maxi∈V d(i, S). The goal of the
k-center problem is to find a set of centers S with minimum radius. There is
a greedy 2-approximation algorithm, which starts by randomly selecting a
node as first center of S, then it includes as next center the node with largest
distance to the current set S and repeat until |S| = k.

• Traveling Salesman Problem (TSP). This problem is one of the most
studied NP-complete problems, and it consists of n cities {1, 2, . . . , n} with
a matrix of costs C, where cij represent the cost or distance to go from city i
to j. This matrix is assumed to be symmetric and with diagonal 0. This can
also be seen as a complete undirected graph where the nodes are the cities
and the edge weights are the costs cij . The goal of the Traveling Salesman
Problem (TSP) is to find a tour with minimum cost that visits all cities only
once and starts and ends on the same city. In the context of graphs, this is
the equivalent of finding a Hamiltonian cycle with minimum cost. Christofides
(1976) designed a 3/2-approximation algorithm using minimum spanning
trees, perfect matchings and Eulerian circuits. This was the best known
approximation algorithm until 2020, where Karlin, Klein, and Gharan (2020)
designed a variation with a performance guarantee of 3/2− 10−36.

• Hamiltonian Path. As discussed above, finding a Hamiltonian cycle is
NP-Hard, but even finding a Hamiltonian path is NP-hard. A Hamiltonian
path must visit all nodes once, but it is not necessary to start and end on the
same node.

• Minimum Degree Spanning Tree. A spanning tree of a graph G = (V, E)
is a minimal subset of edges F ⊆ E for which there is a path between any
pair of nodes using the edges of F . For this problem, the goal is to find a
spanning tree T such that the maximum degree of nodes in T is minimized.
This problem is NP-hard, and there exists an algorithm that finds an optimal
tree of maximum degree at most OPT + 1, which is the best possible result



16 Chapter 2. NP-Complete and NP-Hard Problems

unless P=NP. The algorithm starts with an arbitrary tree and then does local
changes in order to reduce the degree of nodes.

• Edge Coloring. Let G = (V, E) be an undirected graph. We will say G is
k-edge-colorable if there exist an assignment of k colors to the edges such
that edges with the same endpoint have different colors. The goal of edge
coloring is to find the smallest k for which a k-edge-coloring exists. Let ∆ be
the maximum degree among all the vertices of G. Note that ∆ is a lower
bound on k. For graphs with ∆ = 3, the edge coloring decision problem
for k = 3 is NP-complete. There is a greedy/local search approximation
algorithm with performance guarantee of ∆ + 1 for this case. The greedy part
is to find uncolored edges and color them until a coloring with ∆ + 1 colors
is not possible anymore. Then, doing local changes of some edge colors, the
coloring can be corrected.

• Vertex Coloring. It is the analogous of the edge coloring but for vertices. In
this problem, the idea is to find the smallest number of colors to assign to
the vertices such that no pair of vertices joined by an edge share the same
color. The smallest number of colors required to color a graph G is called the
chromatic number, denoted by χ(G). This problem is NP-complete, however
it has been shown that a coloring of ∆ + 1 exists, where ∆ is the maximum
degree among the nodes of G. There is a greedy algorithm that greatly
depends on the initial ordering of the nodes. The idea is to start assigning
colors 0, 1, 2, . . . to nodes using the smallest color value that has no conflict,
i.e., assign to node i the smallest color value such that its neighbors have all
different colors.

• Bin-Packing Problem. For this NP-hard problem, we have n objects with
sizes 1 > s1 ≥ s2 ≥ · · · ≥ sn > 0 and the idea is to pack this objects into the
minimum number possible of size 1 bins, i.e., a bin can contain several objects
as long as their sum of sizes is less than 1. This is related to the partition
problem, an NP-complete decision problem that consists of n positive integer
numbers b1, . . . , bn whose total sum B is even, and the goal is to find a
bipartition S and T of the numbers such that the sum of numbers in S is
equal to the sum of numbers in T . The partition problem can be reduced
to the bin-packing problem by setting the sizes ai = 2bi/B and checking if
the objects can be packed using only two bins. For the First-Fit-Decreasing
algorithm, the pieces have to be ordered in a non-increasing size manner,
then the algorithm packs each piece in order in the first bin until a piece does
not fit anymore, then it opens a new bin and continues packing the pieces in
order and in the first bin in which it fits, until a new piece cannot be packed
in any of the existing bins and so on. Assuming OPT is the optimal number
of bins needed, the First-Fit-Decreasing algorithm is a (11/9)OPT + 6/9
(Dósa, 2007) approximation algorithm.

• Weighted Completion Times on a Single Machine. This NP-hard problem
is similar to the scheduling jobs with deadlines on a single machine problem.
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Assume we have n jobs with processing time pi ≥ 0, release date ri ≥ 0 and
weight wi ≥ 0. The goal is to find the minimum weighted sum of completion
times Cj , i.e., minimize

∑n
j=1 wjCj , where Cj is the time when job j finishes

processing. There is a 3-approximation algorithm using a relaxed LP problem,
and a 2-approximation algorithm using a randomized rounding of an Integer
Programming (IP) relaxation.

• Minimum-Cost Steiner Tree. Let G = (V, E) be an undirected graph with
edge cost cij for all edges (i, j) ∈ E. Let R ⊆ V a subset of nodes called
terminals. The goal of this NP-hard problem is to find a tree that contains
all terminals with minimum cost. Note that this problem includes both the
shortest path (if R has only two terminals) and the minimum spanning tree
(if R = V ) problems. Byrka et al. (2010) designed a ln(4) + ϵ ≤ 1.39
approximation algorithm by doing a iterative randomized rounding technique
on a LP relaxation of the problem.

• Maximum Satisfiability. Let x1, . . . , xn be n Boolean variables, i.e., each
variable xi can be true or false. Let C1, . . . , Cm be m clauses, where each
clause Ci has an associated weight wi and is a disjunction of variables xj

and their negation x̄j . For the general Maximum Satisfiability (MAX SAT)
problem, the number of variables in a clause is not fixed, but if clauses must
have at most k variables, then we refer to this problem as MAX kSAT. The
goal of MAX SAT is to find values of the variables xi such that the weight
sum of the satisfied clauses is maximized. A simple random assignment of
the variables gives an expected 1/2 approximation algorithm. Rounding a LP
relaxation of the problem gives a 1− 1/e approximation algorithm.

• Max-Cut. Let G = (V, E) be an undirected weighted graph. The goal of
Max-Cut is to partition the node set into two disjoint sets A and B, such
that the weight of edges having one end node in A and the other one in
B is maximized. For the Max-k-Cut problem, the goal is to partition the
node set into k disjoint sets such that the weights of edges with end nodes
in different sets is maximized. A broader definition and some approximation
algorithms for the Max-Cut and the Max-k-Cut problem are presented in
Chapter 6 and Chapter 7 respectively.
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Semidefinite Programming (SDP) is a convex optimization problem that appears
often as the relaxation of several combinatorial optimization problems, such as
graph coloring, Max-Cut and Max-k-Cut. The objective of an SDP problem
is to optimize a linear function of a positive semidefinite matrix subject to linear
constraints. An instance of SDP can be solved efficiently (in polynomial time) using
interior point methods, making it a very useful tool in the design of approximation
algorithms. Before talking about SDP, we need to introduce the concept of a
Positive Semidefinite (PSD) matrix.

3.1 Positive Semidefinite Matrices

Let X ∈ Rn×n be a symmetric matrix. Then X is aPositive Semidefinite
Matrix

positive semidefinite matrix
if

vT Xv ≥ 0 for any v ∈ Rn

Let Sn denote the set of symmetric n × n matrices and let Sn
+ be the set of

symmetric n× n positive semidefinite matrices. Some properties of PSD matrices
are (Helmberg, 2000):

• If X ∈ Sn, then X = QDQT for some orthonormal matrix Q and some
diagonal matrix D. A matrix Q is orthonormal if Q−1 = QT .

• If X = QDQT as above, then the columns of Q form a set of n orthogonal
eigenvectors.

• X ⪰ 0 if and only if X = QDQT where the eigenvalues (i.e. the diagonal
entries of D) are all nonnegative.

• If X ⪰ 0 and if Xii = 0, then Xji = Xij = 0 ∀j = 1, . . . , n.

• Consider the matrix M =
(

P ν
νT d

)
, where P ⪰ 0, ν is a vector and d is a

scalar. Then M ⪰ 0 if and only if d− νT P −1ν ≥ 0.

• X = vvT ⪰ 0 ∀v ∈ Rn.

• If X ⪰ 0, X can be written as X = NT N .

• If X is symmetric, then
∑n

j=1 Xjj =
∑n

j=1 λj .

• If X is symmetric, then det (X) =
∏n

i=1 λi.

We also need to define a linear function of a matrix. Let X ∈ Sn
+ and C ∈ Rn×n,

then aLinear Function of a
Matrix

linear function C(X) = C ·X is defined as:

C ·X := Tr(CT X) =
n∑

i=1

n∑
i=1

CijXij (3.1)
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where Tr(X) is the trace of matrix X. Since X is symmetric, without loss of
generality we can assume that C is also symmetric.

Lastly, let A ∈ Rm×n and B ∈ Rp×q. Then, the Kronecker product is the block
matrix A⊗B ∈ Rpm×qn defined as:

A⊗B =

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB


3.2 Definition

Let X ∈ Sn
+, C ∈ Sn, A1, A2, . . . , Am ∈ Sn and b ∈ Rn. Then a Semidefinite Programsemidefinite

program is the following optimization problem:

minimize
X

C ·X

subject to Ai ·X = bi, i = 1, . . . , m

X ⪰ 0

(3.2)

For an SDP problem, the matrix X is the variable, the objective function is C ·X,
X must satisfy m linear equations and it must lie in the cone of PSD matrices. The
m + 1 matrices C, A1, . . . , Am and the vector b are the data of the SDP problem.

SDP is a particular problem of convex optimization and it can be solved efficiently
with interior point methods, therefore it is widely used as relaxed problems of NP-
complete or NP-hard problems.

The dual problem of Equation 3.2 (SDD) is:

maximize
m∑

i=1
yibi

subject to
m∑

i=1
yiAi + S = C,

S ⪰ 0

(3.3)

Given multipliers y1, . . . , ym, the objective is to maximize the linear function∑m
i=1 yibi. The constraints restrict the matrix S = C −

∑m
i=1 yiAi to be positive

semidefinite (S = C −
∑m

i=1 yiAi ⪰ 0).

3.3 Complex Semidefinite Programming

In the previous sections we worked with matrices over the reals, however SDP can
be generalized over the complex space. Instead of working with symmetric matrices
M ∈ Rn×n, we will consider Hermitian matrices Z ∈ Hn, where Hn is the set of
Hermitian matrices of dimension n× n. An instance of a Complex Semidefinite
Programming (CSDP) problem is defined as:
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maximize
Z

C · Z

subject to Ai · Z = bi, i = 1, . . . , m

Z ⪰ 0
Z ∈ Hn

(3.4)

where A · B =
∑

i,j B̄ijAij is the generalization of Equation 3.1 for complex
numbers. As shown in Goemans and Williamson (2004), a Z ∈ Hn CSDP problem
is reducible to an SDP problem with a symmetric matrix X ∈ S2n. Defining the
mapping T(Z) : Hn → S2n as

T(Z) =
(

ReZ −ImZ
ImZ ReZ

)
the equivalent SDP version of Equation 3.4 is

maximize
Y

T(C) · Y

subject to T(Ai) · Y = 2bi, i = 1, . . . , m(
Eij 0
0 −Eij

)
· Y = 0, i, j = 1, . . . , n, i < j(

0 Eij

Eij 0

)
· Y = 0, i, j = 1, . . . , n, i < j

Y ⪰ 0
Y ∈ S2n

(3.5)

where the matrix Eij has 1 in positions (i, j) and (j, i) and 0 elsewhere. Since
CSDP can be reduced to an instance of SDP, it implies that it can also be solved
in polynomial time up to a given degree of accuracy.
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Figure 5: Hamming graph H3
2 where each node represent a particular spin configuration

of 3 binary spin particles.

The fitness landscape of a problem is closely related to its complexity or difficulty,
and in order to understand what makes a problem hard to solve, it is convenient
to analyze its fitness landscape. We can analyze the fitness landscape of several
discrete optimization problems, such as genetic algorithms, evolution of DNA,
physics of disordered systems and many computational problems such as Max-Cut
or the Traveling Salesman Problem (TSP).

4.1 Definition

AFitness Landscape fitness landscape of a problem Π consists of two ingredients (Stadler, 1995):

• a finite set V of configurations with a notion of neighborhood and

• a cost or fitness function f : V → R.

We can see V as a graph Γ, where each vertex is a solution of problem Π, and the
edges are the neighborhood: if two solutions (or nodes of Γ) are joined by an edge,
it means that we can go from one solution to the other with a simple step. This
simple step depends on the problem Π.

For example, if problem Π models the energy of n, 2-spin particles, a configura-
tion or a node of V is the vector Σ containing all the spin values of the n particles,
i.e, Σ = (σ1, . . . , σn) where σi = ±1 is the spin value of particle i. Different values
of σi will give a different Σ vector and therefore it will represent a different node
of V . One particular neighborhood for this problem is to put an edge between
spin configurations if you can go from one to the other by flipping (changing the
sign) only one spin, i.e., Σi and Σj will differ in only one entry. With this notion
of neighborhood, the graph Γ will be a Hamming graph Hn

2 and an example for
n = 3 can be seen in Figure 5. Finally, the fitness function f for the 2-spin n
particles problem is the energy Hamiltonian and the problem consists of finding the
configuration Σ∗ with lowest energy.

We will denote a configuration x ∈ V as x = (x1, x2, . . . , xn). We will call the
entry xi aLocus locus, and it can only take the values +1 or -1. Therefore x ∈ {±1}n.
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4.2 Properties

The main goal of analyzing the landscape of a problem is to find the “best” possible
value of the cost function among all the configurations in V , which can be the
lowest state of energy for the spin particles problem, or the highest fitness function
of an individual. A configuration x ∈ V is a Local Minimumlocal minimum if f(x) ≤ f(y) ∀y
neighbor of x; and x ∈ V is a Global Minimumglobal minimum if f(x) ≤ f(y) ∀y ∈ V .

Since many approaches utilize local information to optimize, it is easy for an
algorithm to get stuck in a local optimum, therefore the global optimum will be
hard to compute in a landscape with a large number of local optima. One extreme
case is a “convex” landscape, which only has one local optimum which coincides
with the global optimum and can be found efficiently. One of the definitions of

RuggednessRuggedness of a landscape is the number of local optima, and it is a crucial
property of landscapes as it “measures” the difficulty of a problem, but it is not
trivial to calculate (Stadler, 2002).

Basins of local minima are separated by saddle points and fitness barriers. Let x
and y be two local minima and let p be a path in V from x to y. A Fitness Barrierfitness barrier
is defined as:

f [x, y] = min {max [f(z) | z ∈ p] | p is a path from x to y} (4.1)

and points z ∈ V that satisfy Equation 4.1 are called Saddle Pointssaddle points. The barrier
enclosing a local minimum is the height of the lowest saddle point that give access
to a more favorable minimum:

B(x) = min {f [x, y]− f(x) | y is a local minimum and f(y) < f(x)} (4.2)

4.3 Random Field Models

For some problems, we cannot hope to describe landscapes from their underlying
biological, chemical or geometrical structure, therefore one approach taken is to
consider probabilistic models of fitness landscapes.

The set {f : V → R} together with a measure µ{f} form the probability space
Ξ, which we call a Random Fieldrandom field on the graph Γ (Stadler and Happel, 1999). This
measure can be seen as the form P (c1, c2, . . . , c|V |) which is the probability that
for all configurations xi, it holds simultaneously that f(xi) ≤ ci, where ci ∈ R.
Since we are working with random models, we need to define the expected value of
a random variable X defined on the random field, which is given by

E[X] :=
∫
R|V |

XdP (c1, . . . , cn)

Given the Adjacency matrix A, and the diagonal degree matrix D, the Laplacian
matrix −∆ of Γ is

−∆ := D −A

which is useful since we can do Fourier expansions of random fields using an
orthonormal set of eigenvectors of the graph Laplacian.
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TheCovariance Matrix covariance matrix C of a random field is defined component wise as

Cx,y = Cov[f(x), f(y)] = E[f(x)f(y)]− E[f(x)]E[f(y)] (4.3)

and is symmetric and non-negative definite. This matrix contains all the structure
of the problem, therefore it can be that a relation between the covariance matrix
and the number of local optima exists.

4.4 Landscape Models

In this section we define some of the most common landscape models:

• The House of Cards (HoC) (Kingman, 1978). One of the simplest models.
The fitness value f(x) for each configuration x is assigned independently at
random from some probability distribution.

• Sherrington Kirkpatrick (or 2-spin model) (Sherrington and Kirkpatrick,
1975). This models a spin glass of n particles with 2 spin states, represented
by {+1,−1}:

HSK(x) :=
∑
i<j

Jijxixj (4.4)

where the coupling constants Jij are i.i.d. Gaussian random variables with
mean 0 and variance 1.

• P-spin model (Amitrano, Peliti, and Saber, 1989). A generalization of the
Sherrington Kirkpatrick model in which each spin interacts with another p−1
spins, with random energy function (Derrida, 1981; Gross and Mezard, 1984):

Hp(x) := −
∑

1≤i1<···<ip≤n

Ji1i2...ipxi1 . . . xip (4.5)

where the coupling constants Ji1i2...ip
are i.i.d. Gaussian random variables

with distribution

P(Ji1i2...ip
) =

√
np−1

πp! exp
[
−

J2
i1i2...ip

np−1

p!

]

• NK Model (Kauffman and Levin, 1987). In this model, the fitness f(x) of a
configuration x is given by

f(x) =
n∑

i=1
fi(xbi,1 , xbi,2 , . . . , xbi,K

) (4.6)

where fi is an independent HoC landscape for the locus i, depending on K
loci and the indices bi,j represent which K loci are being considered.
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• Rough Mount Fuji model (Neidhart, Szendro, and Krug, 2014). It is a
simplified version of the model introduced by (Aita and Husimi, 2000) which
is designed to have tunable ruggedness. It consists of two parts, an additive
fitness landscape and an uncorrelated random HoC landscape. Let x and x′

be two configurations, then we will denote as D(x, x′) =
∑n

i (xi − x′
i)2 the

distance between the two configurations, which is the number of different loci
values between x and x′. Let x∗ be a configuration with maximal fitness of
the additive part of the landscape. Then, the fitness for a configuration x is
defined as F (x) = −cD(x, x∗)+η(x), where c > 0 and η(x) is a HoC model,
i.e., the value of η(x) is assigned independent and identically at random for all
configurations x. If c = 0 the model becomes an uncorrelated HoC landscape,
and with large values of c the additive part of the landscape dominates. The
parameter that controls the ruggedness of the landscape is

θ = c√
var(η)

and increasing the value of θ will decrease the ruggedness.

4.4.1 NK Model
Note that the values of all the bi were left undefined in Equation 4.6, and exactly
these values model the interaction scheme between loci. Some models of interaction
shown in Figure 6 (Krug and Schmiegelt, 2013; Nowak and Krug, 2015) are:

• Adjacent neighborhood. Each sub-landscape fi depends on the i-th locus
and its K − 1 following neighbors. That is,

bi = (xi, xi+1, . . . , xi+K)

each element modulo n.

• Random neighborhood. The neighborhood set bi contains i and K − 1
other numbers, which are chosen at random from {1, 2, . . . , n}.

• Block neighborhood. With n an integer multiple of K, n is divided into
n/K disjoint K-subsets and each block effectively behaves as an independent
HoC landscape.

4.5 Computing the Number of Local Optima

Since the ruggedness of a landscape give intuition of the difficulty of a problem, it
is convenient to try to compute the number of local optima.

In order to find the number of local optima, the probability πmax that a randomly
chosen configuration x is a maximum needs to be computed. Then, the number of
maxima #max is obtained by multiplying this probability by the total number of
configurations:

#max = 2nπmax
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Figure 6: Examples of interactions between loci for the NK model with n = 8 and k = 4.

4.5.1 House of Cards Model
The easiest example is the House of Cards model. Since f(x) is random for every
configuration, πmax is just the probability that x is the maximum among n + 1
random values, which is

πmax = 1
n + 1

However, there is a general formalism for computing πmax in the HoC and other
models. This subsection follows the procedure of Hwang et al. (2018). Let us
define the operator ∆l : Hn

2 → Hn
2 for all l ∈ {1, 2, . . . , n} as

(∆lx)m = (1− 2δlm)xm

which changes the l-th entry of the configuration x. Let h0 and hl be the fitness
values for x and ∆lx respectively, i.e., h0 = f(x) and hl = f(∆lx). Then, x is
a local maximum if h0 > hl or ul ≡ h0 − hl > 0 for all 1 ≤ l ≤ n. With vector
notation, u ≡ (u1, u2, . . . , un), the joint probability density of the ul is given by

P (u) =
∫ n∏

l=0
dhlpf (hl)

n∏
l=1

δ(ul − (h0 − hl)),

with characteristic function

Φ(q) =
∫

dy pf (y)
(

n∏
l=1

ϕf (−ql)
)

exp
(

iy

n∑
l=1

ql

)
where ϕf (−ql) is the individual characteristic function of pf (h). By performing the
inverse Fourier transform of Φ(q) and then integrating over only positive values of
ul (condition for x to be maximum and represented by θ(u > 0)), we obtain:

πmax =
n∏

l=1

∫ ∞

0
dul P (u) =

∫
DuDq

(2π)n e−iq·uθ (u > 0) Φ(q)

With these expresions one can recover the number of local optima for the HoC model
and more importantly, one can get the number of maximum for some neighborhood
models of the NK-model.
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4.5.2 NK Model
In the NK model, the total fitness F (x) of a configuration x is a sum of individual
HoC fitness values defined on each particular block or neighborhood. Again,
following the procedure of Hwang et al. (2018), the approach will be based on the
characteristic function of the NK blocks, which has the form:

Φ(q) =
N∏

r=1
Φr(q) (4.7)

where Φr(q) denotes the characteristic function of u of a NK block Br. With the
help of an incidence matrix notation bl,r that indicates the presence (absence) of a
locus l in a neighborhood set r, i.e. bl,r = 1(0) if l ∈ Br(l /∈ Br); the characteristic
function ϕr can be rewritten as:

Φr(q) =
∫

dyr pf (yr)
n∏

l=1

[
ϕf (−ql)eiyrql

]bl,r

Then, after obtaining the characteristic function of Equation 4.7, the probability
πmax can be obtained by using the inverse Fourier transform the same way as in
the HoC model, and for the Adjacent Neighborhood reads as:

πAN
max =

∫
DyP (y)DuDq

(2π)n e−iq·uθ(u > 0)
n∏

l=1
ϕf (−ql)keiql

∑k−1
r=0

y(l+r)mod(n)

With this formulation, one could search for a relation between the covariance
matrix defined in Equation 4.3 and the number of local optima for simple cases and
neighborhoods, for instance, K = 2 and the block neighborhood. If this relation
exists, the following step would be to find it for a general K. The covariance matrix
contains the structure and properties of the landscape, strongly suggesting that
this relation should exist. Additionally, see Evans and Steinsaltz (2002) for an
asymptotic analysis of the global optima and a representation of the probability
that a random point is a local maximum for general K.

4.5.3 Sherrington-Kirkpatrick Model
The Sherrington-Kirkpatrick model is also known as the 2-spin model for spin
glasses. For this problem, σ = {−1, 1}n will represent a spin configuration, the
cost function will be the energy Hamiltonian

H(σ) :=
∑

1≤i<j≤n

σiσjWij

where Wij are independent standard normal random variables. For the neighborhood
E, we will put an edge between two configurations σ and σ′ if and only if they
differ in only one spin.



30 Chapter 4. Fitness Landscapes

Let σ(i) denote the operation of flipping the i-th spin of σ, i.e.,

σ
(i)
j :=

{
−σi, j = i

σj , j ̸= i

Additionally, let Z be a vector in which the i-th entry Zi has the change in energy
obtained by flipping the i-th spin:

Zi(σ) := H(σ(i))−H(σ)
2 = −

∑
j ̸=i

σiσjWi,j

Z is a multivariate normal vector, with 0 mean and has the property that σ is a
local minimum if and only if Zi(σ) ≥ 0 ∀i = 1, . . . , n.

We are interested in calculating the ruggedness of the landscape for this problem,
and to do so, we need to compute first the probability that a configuration σ is
a local minimum following the procedure of Addario-Berry et al. (2019). This is
equivalent to asking the probability that Zi ≥ 0 for all i = 1, . . . , n, and since Z is
a multivariate normal vector, we need to compute the covariance matrix C before.
The covariance matrix of Z is:

C = E[ZZT ]− E[Z]E[ZT ] = E[ZZT ]
⇒ Cij = E[ZiZj ]

For the diagonal entries,

Cii = E[Z2
i ] = E


 n∑

j ̸=i

σiσjWij

2
 ,

and since the Wij are independent normal variables, the only terms that are not 0
are W 2

ij , since E[WijWkl] = E[Wij ]E[Wkl] = 0; therefore the diagonal entries are
Cii = n− 1. For the off diagonal entries i ̸= j,

Cij = E[ZiZj ] = E [(σiσ1Wi1 + · · ·+ σiσnWin)(σjσ1Wj1 + · · ·+ σjσnWjn)] ,

and all the terms E[WikWjl] = 0 unless k = l, therefore the only term left is
E
[
(σiσjWij)2

]
= 1. Then, the covariance matrix is

Ci,j =
{

n− 1, i = j

1, i ̸= j

or in compact form:
C = (n− 2)In + 1⃗n1⃗T

n

where In is the n× n identity matrix and 1⃗n is a vector with 1 in each entry.
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The eigenvalues of C are easy to compute. Let v ∈ Rn an eigenvector of C.
Then, v must satisfy:

(C − λIn)v = 0 ⇒
(
(n− 2− λ)In + 1⃗n1⃗T

n

)
v = 0

which can be rewritten as

(n− 2− λ)Inv = −
(

n∑
i=1

vi

)
1⃗n

which gives as solution the eigenvalues of λ = 2n−2 with multiplicity 1 and λ = n−2
with multiplicity n− 1. The determinant of C is det(C) = (2n− 2)(n− 2)n−1 and
with the Sherman Morrison formula, the inverse of C is

C−1 = 1
n− 2

(
In −

1
2n− 2 1⃗n1⃗T

n

)
With the inverse of the covariance matrix, we can finally compute the probability
that a configuration σ is a local optimum:

P{σ is locally optimal} = P{∩n
i=1{Zi ≥ 0}}

= 1
(2π)n/2 det(C)1/2

∫
[0,∞)n

exp
(
−xT C−1x

2

)
dx

= 2−n

√
n− 2
2n− 2E

[
exp

(
∥N∥2

1
4(n− 1)

)]
with N a vector of n independent standard normal random variables (see Addario-
Berry et al. (2019) for a more detailed derivation). It can be shown that in the
limit,

lim
n→∞

1
n
P{σ is locally optimal} = α∗ − log 2

where α ≈ 0.199.

Short Range Interaction

All of the above was assuming Infinite Range (IR) interactions. For Short
Range (SR) interactions the probability distribution of the matrix W (SR) changes:

P (Wi,j)(SR) = P (Wi,j)(IR) Θi,j

where

Θi,j =
{

1, particle i interacts with particle j

0, otherwise
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is the SR interaction pattern. Assuming the SR interaction is that a spin particle
interacts with exactly k neighbors, the diagonal entries of the covariance matrix
are:

Cii = E[Z2
i ] = E


 n∑

j ̸=i

σiσjWij

2
 =

∑
k ̸=i

δik = k

where δik is the Kronecker delta. The off diagonal entries have the form:

Cij = E[ZiZj ] = E [(σiσ1Wi1 + · · ·+ σiσnWin)(σjσ1Wj1 + · · ·+ σjσnWjn)]

and again the only terms WikWjl that are not 0 are the ones with k = l but in the
short range model, E

[
(σiσjWij)2

]
= δij . Therefore, for the SR interaction, the

covariance matrix becomes:

CSR
i,j =

{
k, j = i

Θi,j , j ∈ [n]\{i}

CSR = kIn + Θ

instead of

CIR
i,j =

{
n− 1, j = i

1, j ∈ [n]\{i}

CIR = (n− 2)In − 1⃗n1⃗T
n .

The structure of CIR makes calculating the eigenvalues trivial, since:

(C − λIn) v = 0 =⇒
(
(n− 2− λ)In + 1⃗n1⃗T

n

)
v = 0

=⇒ (n− 2− λ)v = −1⃗n1⃗T
n v =

(
n∑

i=1
vi

)
1⃗n

which defines an easy solvable set of n equations with n unknowns that gives the
eigenvalue λ = 2n− 2 with multiplicity 1. And for λ = n− 2, we have 1 equation
with n unknowns, giving us the second eigenvalue with multiplicity n− 1.

Trying this for the short range interactions, the eigenvalue problem translates
to:

(k − λ)v = −Θv

Assume that, for instance, particle i interacts with its following k particles. With
this particular interaction, the system becomes:

(k − λ)


v1
v2
...

vn

 = −


0 1 1 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

...
1 1 1 . . . 0 0




v1
v2
...

vn
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and adding up all the equations:

(k − λ)
n∑

i=1
vi = −k

n∑
i=1

vi

implies that λ = 2k with multiplicity 1. This was the same procedure than the IR
model for this eigenvalue, however one cannot do the same for the other eigenvalues.
If λ = k, making the left size of the equation 0 in the same way as for the IR model,
then the system of equations becomes

0 = −x2 − · · · − xk+1

0 = −x3 − · · · − xk+2
...

0 = −x1 − · · · − xk

which does not help for finding the eigenvalues as clearly as the Infinite Range case,
because in the IR all the equations turn into 0 =

∑n
i=1 vi.

With the eigenvalues of the covariance matrix, the same procedure as the IR
model can be done in order to find a value of the probability that a configuration σ
is a local optima.

4.5.4 p-Spin Model
The p-spin model was introduced by Amitrano, Peliti, and Saber (1989) as an
alternative for the NK model with more application to physics. Calculating the
number of local optima of the model in Equation 4.5 is equivalent of solving the
TAP equations of Thouless, Anderson, and Palmer, 1977, which have been solved
for p = 2 (Bray and Moore, 1980) and general p (Rieger, 1992). In V. M. d. Oliveira,
Fontanari, and Stadler (1999) they calculate directly the expected value of number
of local optima for sohrt range interactions. In V. M. d. Oliveira and Fontanari
(1997), they find the number of local optima of the p-spin model with an external
magnetic field, i.e., Equation 4.5 plus an additional term:

Hp(x) := −
∑

1≤i1<···<ip≤n

Ji1i2...ip
xi1 . . . xip

− h

n∑
i

xi (4.8)

corresponding to the external magnetic field h.
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Clustering is a technique with the task to organize a collection of objects (usually
points in a vector space) into groups using either a simmilarity or a difference
measure between them. The idea is that objects inside groups or clusters are
similar between them but different from objects in other groups. An example of
clustering can be seen in Figure 7, in which points with the same color represent a
group.
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Figure 7: An example of clustering. The set of points in the figure are grouped in 3
clusters, the points in red, in green and in blue.

Different clustering methods can be obtained by using different similarity or
distance measures, by changing the criteria to group objects or even by using
transformations of the data points. However, we can define two main types of
clustering:

• Hard clustering. Hard clustering is the natural idea of grouping objects into
sets, and it assigns each data point to a single cluster. It can also be thought
as assigning a point to a cluster with probability of 1.

• Soft or Fuzzy clustering. Contrary to hard clustering, in this type of clustering
each point has a membership degree value between 0 and 1 for each cluster.
The values 0 and 1 correspond to the hard version of clustering, where a
value of 1 means that a point belongs entirely to that cluster and a value of
0 that it does not. In the case of soft clustering, higher membership degree
means a higher belonging to that cluster and vice versa.

Three hard clustering methods (k-means, k-medoids and Minimum Spanning
Tree Clustering) and one soft clustering method (Fuzzy C-means) are discussed in
this chapter.
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Algorithm 1: k-means Algorithm

Require: Set of objects X, number of clusters k.
Ensure: Set of centroids cj

1: Select k initial centers cj ∈ Rn ∀j ∈ 1, 2, . . . , k
2: Create k groups Cj ∀j ∈ 1, 2, . . . , k
3: while The set of centers cj changes each iteration do
4: Find the distance matrix between the points and the centers: dij =

distance(xi, cj)
5: Assign each object xi ∈ X to the group Cj with the closest center cj .

Cj ← Cj ∪ xi : argminjd(xi, cj)

6: Recalculate the new positions of the centers of the groups:

cj ←
1
|Cj |

∑
x∈Cj

x

7: end while

5.1 k-Means

The algorithm for k-means was proposed by MacQueen (1967), and it can be
seen as an optimization problem where the goal is to find k clusters such that the
quadratic error

∞∑
i=1

(minj |xi − cj |2) (5.1)

is minimized, where cj is the centroid of cluster j. For k-means, a centroid of a
cluster is the arithmetic mean of all the points that belong to it.

Let X = {x1, x2, . . . , xm} be the points to group, assume these points xi ∈ RN

for i = 1, 2, . . . , m and let k ≥ 2 be the number of clusters. Then Algorithm 1
selects as starting centroids k points in RN denoted by c1, c2, . . . , ck. An efficient
method to initialize these centers will be discussed in Subsection 5.1.1. After the
initial selection of centroids, each point xi is assigned to the cluster that has the
nearest centroid to it. After all the points are assigned, each cluster centroid is
recalculated as the mean of all points in that cluster, hence the name k-means.
Lastly, once all the centroids have been updated, the points X are reassigned,
followed by recalculating the centroids and so on until a certain stopping condition
is met. The process of k-means is shown in Algorithm 1, where the algorithm
stops when it reaches a local optima, i.e., when the centers do not change between
iterations.
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The temporal complexity of the k-means algorithm is O(mkNT ), where T
denotes the number of iterations. In general, since both the dimension N and the
number of clusters k are smaller than the number of points m, it can be considered
that each iteration of the k-means algorithm has lineal complexity on m. Among
the limitations of k-means are that it can converge into a local optimum, it can
only group linearly separable data points and since it uses an arithmetic mean as
centroids, it cannot work with attributes such as labels, colors or shapes.

5.1.1 k-Means Initialization Algorithms
In this work, we consider two algorithms to initialize k-means. The first one, simply
chooses uniformly and at random k points among the set of points X to be the
initial centers.

The second one is a deterministic initialization that makes k-means a a 2-
approximation algorithm on clustering where the goal is to minimize the diameter
of each cluster (Dasgupta, Papadimitriou, and Vazirani, 2006) and it is shown in
Algorithm 2. First the distance matrix is calculated and the two points that have
the maximum distance are chosen as initial centers. Then, the next point chosen is
the one that has the largest distance to the previously selected centers and this is
repeated until k centers are found.

Two measures of distances between a point p to a set V were used in order
to avoid poor choices of cluster centers for cases where there are ties. The first
distance, used in step 5 of Algorithm 2 is the average distance of p to all the points
in V , i.e.,

distance(p, V ) = 1
size(V )

∑
v∈V

|p− v|

and in step 6, Algorithm 2 selects the point p that has the largest distance to the
set V . In case of a tie, the second distance function is considered to break it. This
second distance between a point p to a set V is:

distance(p, V ) = minv∈V |p, v|

which is the smallest distance between the point p to all the points in V . This tie
breaker is considered because it is a better option than breaking it at random. For
the instance shown on Figure 8, if a random tie breaker is used, poor initial choices
of cluster centers can be chosen by the algorithm which lead to suboptimal clusters.

5.2 k-Medoids

The k-medoids algorithm was proposed by Kaufmann and Rousseeuw (1987) and
it utilizes as the centroid of a cluster the most representative object in the group
instead of using the arithmetic mean, therefore it does not require that the data
points belong to RN , since the centroids will always be one of the points of X.

Formally, aMedoid medoid of a cluster Cj is the object x ∈ Cj that has minimum
average distance (or maximum average similarity) to the other objects. It can be
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Algorithm 2: Algorithm to Initialize k-means

Require: Number of clusters k, data matrix X of n times d containing n points
xi (row vectors) of dimension d.

Ensure: Centroids Matrix CM of k times d.

1: Initialize SizeOfCM ← 0
2: Find the distance matrix dij ← |xi − xj |
3: Add to CM the two points that have the largest dij ∀i = 1, . . . , n j =

1, . . . , n and set SizeOfCM ← 2
4: while SizeOfCM < k do
5: Find distance vector of all points xi to the set of selected clusters CM :

VecOfDistances(i)← 1
SizeOfCM

∑
v∈CM

|v − xi| ∀i = 1, . . . , n

6: Find xl such that max_val = max(VecOfDistances) = VecOfDistances(l)
7: if VecOfDistances has unique maximum then
8: Add xl to CM
9: SizeOfCM ← SizeOfCM +1

10: else
11: VecOfDistances(i)← minv∈CM |xi − v|
12: Find xl such that max_val = max(VecOfDistances) = VecOfDistances(l)
13: Add xl to CM
14: SizeOfCM ← SizeOfCM +1
15: end if
16: end while

seen as the most representative or central object of the group (Struyf, Hubert, and
Rousseeuw, 1996). A medoid is illustrated in Figure 9.

Since a medoid is always a point of X, other distance functions can be chosen
and the objects can belong to spaces with non-numerical attributes, such as labels
or letters. The procedure of k-medoids is shown in Algorithm 3.

5.3 Minimum Spanning Tree (MST) Clustering

Minimum Spanning Tree (MST) clustering utilizes a distance graph generated from
the distance (or similarity) between the data points of X.

Definition 1. A Distance Graphdistance graph of a set of objects X is created as follows:

• Each object becomes a node.

• Create an edge between node xi and node xj with weight:

wij = distance(xi, xj) ∀i ̸= j.
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Figure 8: Troublesome instance for Algorithm 2. The first two centers chosen will be
the far below red circle and the far above black circle. Now for the third choice of a
center, without the tiebreaker there is a tie between all the remaining points, but with the
tiebreaker distance, the third center chosen is one of the middle blue points.

Note that in Definition 1 a distance is needed, which will be assumed to be the
Euclidean norm unless it is otherwise specified. If a similarity measure is used instead
of a distance, then it is called a similarity graph. After this graph is generated, a
MST is computed, and using the fact that removing k − 1 edges of a tree creates
k disconnected components, we remove the k − 1 edges with higher weight to
generate k clusters. For the case of a similarity graph, the algorithm removes the
k − 1 edges with smallest weight. MST clustering is shown in Algorithm 4.

5.4 Fuzzy C-means

Fuzzy C-means was proposed by Bezdek (1981) in order to take into account
outliers or noisy data, and contrary of hard clustering in which each data point is
assigned strictly to one cluster, in fuzzy C-means points are assigned to several
clusters with a certain membership degree using fuzzy logic and fuzzy sets. This
allow the clusters to overlap themselves instead of considering “defined borders”
such as in k-means, providing more information about the data. Additionally, fuzzy
C-means have a weighting exponent that controls the level of cluster fuzziness.
The objective of Fuzzy C-means as an optimization problem is to minimize the
generalized least-squared errors function:

Jf (U, v) =
m∑

k=1

c∑
i=1

(uik)f∥xk − vi∥2
A (5.2)

where X = x1, . . . , xm ⊂ Rn is the data, c is the number of clusters, f ≥ 1 is
a weighting exponent or fuzzifier, vi = (vi1, . . . , vin) is the center of cluster i,
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Mean  
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Figure 9: Mean and Medoid examples. In blue circles are the objects to cluster (X).
A red star (*) represents the mean of the blue points and a cyan star (*) represent the
medoid of the points. Note that in this example the mean is not a point of X, but the
medoid always is.

V = [v1 . . . vc] is a matrix with the vector of centers vi as its columns, ∥ · ∥A is
the induced A-norm on Rn, A is a positive definite (n × n) weight matrix and
U = {uik ∈ [0, 1], k = 1, . . . , m; i = 1, . . . , c} is the fuzzy c-partition of X; uki is
the membership degree of point xi to the kth cluster, and U must satisfy:

c∑
k=1

uki = 1 ∀i = 1, . . . , m

The fuzzifier f controls the level of cluster fuzziness; large values of f results
in smaller membership degree values uki, i.e., fuzzier clusters, and in the limit
where f = 1 the membership degrees converge to either 0 or 1, resulting in a hard
clustering.

Local optimality of Jf in 5.2 can be reached only if

vi =
∑m

k=1 uf
ikxk∑m

k=1 uf
ik

1 ≤ i ≤ c (5.3)

uik =

 c∑
j=1

(
dik

djk

)2/(f−1)
−1

1 ≤ k ≤ m, 1 ≤ i ≤ c (5.4)

where dik = ∥xk − vi∥A (Bezdek, 1981). Conditions of equations 5.3 and 5.4 are
necessary, but not sufficient. However these equations give us an iterative method
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Algorithm 3: k-medoids Algorithm

Require: Set of objects X, number of clusters k.
Ensure: Set of medoids cj

1: Select k initial centers cj ∈ Rn ∀j ∈ 1, 2, . . . , k
2: Create k groups Cj ∀j ∈ 1, 2, . . . , k
3: while The set of medoids cj changes each iteration do
4: Find the distance matrix between the points and the medoids: dij =

distance(xi, cj)
5: Assign each object xi ∈ X to the group Cj with the closest medoid cj .

Cj ← Cj ∪ xi : argminjd(xi, cj)

6: Recalculate the new positions of the medoids of the groups:

cj ← x : argmaxx∈Cj

1
|Cj |

∑
xi∈Cj

d(x, xi)

7: end while

Algorithm 4: Minimum Spanning Tree Clustering Algorithm

Require: Set of objects X, number of clusters k.
Ensure: Partition of X

1: Compute the distance graph (DG) as shown in Definition 1.
2: Find a MST of the distance graph DG.
3: Remove the k − 1 edges with the highest weight of the MST.
4: Find the k connected components. Each set of connected components becomes

the partition of X.

for optimizing Jm, that is, the fuzzy C-means algorithm: first, the values of U are
initialized at random, then the values of v are computed using 5.3, and the values
of U are corrected using 5.4 with the new values of V . This process is repeated
until some stopping criteria is reached. The fuzzy C-means algorithm is shown in
Algorithm 5.

Fuzzy C-means converges rapidly with a temporal complexity of O(mNc2T )
(Ghosh and Dubey, 2013), where m is the number of data points with dimension
N , c is the number of clusters and T the number of operations. However the
algorithm strongly depends on the initial values and can return a local optimum
clustering instead of the global optimum (Le and Altman, 2011).
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Algorithm 5: Fuzzy C-Means Algorithm

Require: Number of clusters c, data matrix X of n×m, where N is the dimension
of one object and m is the number of objects.

Ensure: Centroid matrix V of n× c.

1: Initialize the center matrix V at random, set the value of f and initialize Uold

with ones and a tolerance factor tol.
2: while error > tol do
3: Compute the distance matrix D of c×m, where d2

ik = ∥xk−vi∥2; 1 ≤ i ≤ c
and 1 ≤ k ≤ m, xk is the kth column of X and vi is the ith column of V .

4: Update U , where each component is given by:

uik =

 c∑
j=1

(
dik

djk

) 2
f−1

−1

; 1 ≤ k ≤ m; 1 ≤ i ≤ c

5: Update the centroids

vi =
∑m

k=1(uik)f xk∑m
k=1(uik)f

; 1 ≤ i ≤ c

6: error ← ∥U − Uold∥

5.5 Spectral Clustering (SC)

There are some cases where the data points are not linearly separable, think for
example of 2-dimensional points along two concentric circles with different radius.
For cases like these it is more useful to group them based on another criteria or
strategy than k-means for instance. Let X = {x1, . . . , xn} be the set of n points
to cluster and let A be the similarity matrix of those points, i.e., Aij is the similarity
between point xi and xj . In Spectral Clustering (SC), the data points can be
seen as nodes of a similarity graph where the edge weights between nodes i and j
(representing xi and xj respectively) are the similarity values Aij (Luxburg, 2007).
Then, SC groups the data points using the eigenvectors of the Laplacian matrix of
this similarity graph. A general version of SC can be seen in Algorithm 6.

There are different versions of SC depending on which Laplacian or similarity
matrix is used. The algorithm used in this thesis is the SC of Ng, Jordan, and
Weiss (2002) with a gaussian and a dotproduct similarity, shown in Algorithm 8.
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Algorithm 6: General Spectral Clustering (SC) algorithm.

1: Input: Set of points X, number of clusters k
2: Output: Xc, a k partition of X

3: Similarity Matrix. Compute the similarity matrix if it is not given as data.
Examples of similarities are Gaussian or dot product (Subsection 6.3.3).

4: Construct a similarity graph and let W be its adjacency weighted matrix.
5: Compute the first k eigenvectors u1, . . . , uk corresponding to the largest k

eigenvalues of L, the laplacian matrix of the similarity graph. Let U ∈ Rn×k

be a matrix containing the vectors ui as columns.
6: Let zi ∈ Rk denote the i-th row vector of U . Using the row vectors zi, compute

a partition Xc of the data set X;
7: return Xc
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Figure 10: The Petersen graph together with its maximum cut. Nodes in red belong to
partition A; and nodes in blue to partition B. The value of the maximum cut for this
graph is 12.

The Max-Cut problem is one of the 21 NP-complete problems of Karp (1972).
Apart from its theoretical importance, it has many applications in VLSI design
(Barahona et al., 1988), network design (Deza and Laurent, 1994a,b), and in
statistical physics. Additionally, finding the ground state of the Ising model of
a spin glass, the integral error of linearity of an Digital-Analog convertor, and
identifying vowels and consonants in cryptograms can be formulated as instances
of the Max-Cut problem (Poljak and Tuza, 1993).

6.1 Definition

Let G = (V, E) be an undirected weighted graph with node set V = {1, 2, . . . , n}
and edge set E where edges (i, j) ∈ E have weight wij . A cut of graph G is a
bipartition A, B of the node set V , and its associatedCut-Value cut-value is the sum of
weights of edges with end nodes on different partitions, i.e., the sum of weights
of edges (i, j) such that i ∈ A and j ∈ B or vice versa, j ∈ A and i ∈ B. The

Max-Cut Max-Cut of a graph is the cut or bipartition with maximum cut-value. An example
of the maximum cut for the Petersen graph is depicted in Figure 10.

Using the fact that node i has only two options (i ∈ A or i ∈ B), we can
represent each node with a binary integer variable xi ∈ {+1,−1} such that xi = 1
means i ∈ A and xi = −1 means i ∈ B. We can formulate the Max-Cut problem
as the following integer quadratic optimization problem:
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Maximize 1
2
∑
i<j

wij(1− xixj)

subject to: xi ∈ {+1,−1} ∀i = 1, . . . , n

(6.1)

The Max-Cut problem is an NP-Hard combinatorial optimization problem (Karp,
1972), therefore we can not hope to solve problem (6.1) in polynomial time unless
P = NP . However, Goemans and Williamson (1995) gave an approximation algo-
rithm that returns a solution that is guaranteed to be in the interval [0.87OPT, OPT],
where OPT is the maximum cut-value.

6.2 Relaxation

In general it is not directly possible to solve problem (6.1), instead, we need to
transform it into a larger problem that we can solve which contains all of valid
instances from the original problem. The main issue is working with integer variables,
therefore the natural relaxation of 6.1 is to replace xi ∈ {+1,−1} with unitary
vectors vi ∈ Rn. The Vector Programming (VP) relaxation obtained is:

Maximize 1
2
∑
i<j

wij(1− vi · vj)

subject to: |vi| = 1 ∀i = 1, . . . , n

(6.2)

Note that problem (6.2) reduces to (6.1) if we define the vectors vi = (xi, 0, . . . , 0)
for all i ∈ V . This implies that OPTrel ≥ OPT, where OPTrel is the solution of
problem (6.2) and OPT is the maximum cut-value.

VP and Semidefinite Programming (SDP) are equivalent (Williamson and
Shmoys, 2011), but numerically it is better to work with a SDP problem. Let
X ∈ Rn×n be a symmetric matrix. We can convert problem (6.2) to the following
SDP problem:

Maximize 1
2
∑
i<j

wij(1−Xij)

subject to: Xii = 1 ∀i = 1, . . . , n

X ⪰ 0

(6.3)

As mentioned before, both problems are equivalent. In order to go from an instance
of (6.2) to (6.3), let X be the Gram MatrixGram Matrix of the vi vectors, i.e., each entry Xij

contains the dot product Xij = vi · vj . Vice versa, to transform an instance of
(6.3) to (6.2), we obtain the Cholesky factorization of X = V T V with V ∈ Rn×n,
and let vi be the i-th column of matrix V . The Cholesky factorization of a SDP
matrix always exists (Golub and Van Loan, 1996), and can be found in polynomial
time (Watkins, 1991).
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Algorithm 7: Randomized Rounding of Goemans and Williamson (1995)

1: Solve (6.2), obtaining an optimal set of vectors vi

2: Pick a random vector r = (r1, . . . , rn) by drawing each component from
N(0, 1), the normal distribution with mean 0 and variance 1

3: Set A = {i|vi · r ≥ 0}

6.3 Rounding Methods

In general, solutions of relaxed problems are not feasible in the original problem.
For the particular case of Max-Cut, once a solution of problem (6.2) is found
(typically by solving (6.3) and doing a Cholesky factorization), we need to convert
the set of vectors vi into the binary integer variables xi. Here we present two
methods, the randomized rounding of Goemans and Williamson (1995) and using
clustering as in Rodriguez-Fernandez et al. (2020).

6.3.1 Randomized Rounding
Using a simple randomized rounding of the vectors vi leads to the best approximation
algorithm known for the Max-Cut problem. Additionally, if the unique games
conjecture is true, no better approximation guarantee can be found (Khot et al.,
2007). The rounding procedure of Goemans and Williamson (1995) is presented in
Algorithm 7.

This rounding method is a 0.878 approximation algorithm and a sketch of the
proof will be discussed in the next subsection. This proof is the main motivation
for using clustering instead of randomized rounding. More in depth details of the
proof can be seen in Goemans and Williamson (1995) and Williamson and Shmoys
(2011).

Proof of 0.878 Approximation

Let W be the value of the cut obtained by algorithm 7. Then, the expected value
E[W ]

E[W ] = 1
4

n∑
i,j

wijE [1− sgn (vi · r) sgn (vj · r)]

= 1
4

n∑
i,j

wijPr ({1− sgn (vi · r) sgn (vj · r) = 2})

= 1
2

n∑
i,j

wijPr ({sgn(vi · r) ̸= sgn(vj · r)})

= 1
2

n∑
i,j

wij
arccos(vi · vj)

π
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O
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θ

θ

Figure 11: Cut of the hypersphere Sn−1 by the hyperplane defined by vi and vj . θ is the
angle between vi and vj , the line AB is the perpendicular line segment to vi and line CD
is the perpendicular line segment to vj .

Where sgn(x) is 1 if x ≥ 0 and -1 if x < 0, the second line follows from the
definition of the expected value for discrete variables, and the last line will be
explained in detail in lemma 1.

Lemma 1.
Pr({sgn(vi · r) ̸= sgn(vj · r)}) = arccos(vi · vj)

π

Proof. Let r ∈ Rn be a random vector in the unitary hypersphere Sn−1. Let
r = r′ + r′′ where r′ is the projection of r in plane defined by vi and vj and r′′ is
the perpendicular component of r to the same plane. It is important to note that
r′ is uniformly distributed on the unit circle where vi and vj are.

Now, vi · r = vi · r′ and also vj · r = vj · r′. Let θ be the angle between vectors
vi and vj . The plane defined by vi and vj is illustrated in figure 11. The only cases
where r′ can be such that sgn(vi · r) ̸= sgn(vj · r) are in the segments AOC and
DOB.

Since r′ is uniformly distributed in the unit circle, the probability that it lands
in either AOC or DOB is 2θ

2π , since each segment represents an area of θ
2π from

the whole unit circle. Finally, since the vectors are unitary, θ = arccos(vi · vj).

We need one more result before we can prove the approximation guarantee, which
can be found in lemma 2.

Lemma 2. Let α = min0≤θ≤π
2
π

θ
1−cos(θ) > 0.878. Then 1

π arccos(y) ≥ α · 12 (1−y)
for y ∈ [−1, 1].
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Proof. Using the change of variables y = cos θ, with θ ∈ [0, π] we have that the
left side of the inequality is 1

π θ and the right side becomes α · 1
2 (1− cos θ). For the

case that θ = 0, both sides are 0 so the equality is satisfied. For the case where
θ ̸= 0, using the definition of α, we have that, for θ ∈ (0, π]:

α ≤ 2
π

θ

1− cos θ
=⇒ 1

π
θ ≥ α · 1

2(1− cos θ)

which is the result stated in the lemma.

Summarizing the results from above, we have that the expected value of the cut
found by algorithm 7 is:

E[W ] = 1
2

n∑
i,j

wij
arccos(vi · vj)

π
≥ α · 14

n∑
i,j

wij(1− vi · vj) = α ·ZV P ≥ α ·OPT

where ZV P is the optimum value of the optimization problem (6.2) and OPT is
the the value for the max cut, solution of the optimization problem (6.1). Note
that the first inequality is only valid for positive weights. The last inequality
follows from the fact that since problem (6.2) is a relaxation of the original problem
(6.1), the solution ZV P ≥ OPT, and therefore showing that algorithm 7 is a 0.878
approximation algorithm.

Proof for Negative Weights

As stated in the last paragraph of the last section, an alternative proof for negative
weights has to be done. The trick is to add up all the negative weights in absolute
value to the expected cut value and to the optimum, allowing us to compare the
solutions. Before going to the proof with negative weights, we need to prove an
auxiliary lemma similar to lemma 2.

Lemma 3. Let α = min0≤θ≤π
2
π

θ
1−cos(θ) > 0.878. Then

[
1− 1

π arccos(y)
]
≥

α · 1
2 (1 + y) for y ∈ [−1, 1].

Proof. Using the change of variables θ = arccos(−y), and the property that
π − arccos(y) = arccos(−y) and the definition of α, we have that for θ ̸= 0 (the
case when θ = 0 can be proved the same way as in lemma 2):

α · 1
2(1− cos θ) ≤ θ

π
=⇒ α · 1

2(1 + y) ≤ arccos(−y)
π

=⇒ α · 1
2(1 + y) ≤ π − arccos(y)

π
= 1− 1

π
arccos(y)

which is the result stated in the lemma.

Finally, let us define the sum of all the negative weights W− =
∑

i<j w−
ij , where

x− = min(0, x). Then the approximation factor α is defined in the following sense:

Theorem 1. E[W ]−W− = α(OPT−W−)
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Proof. First let us work with the quantities E[W ]−W− and VP−W−.

E[W ]−W− =
∑
i<j

wij>0

wij
arccos(vi · vj)

π
+
∑
i<j

wij<0

wij
arccos(vi · vj)

π
+
∑
i<j

wij<0

|wij |

=
∑
i<j

wij>0

wij
arccos(vi · vj)

π
−
∑
i<j

wij<0

|wij |
arccos(vi · vj)

π
+
∑
i<j

wij<0

|wij |

=
∑
i<j

wij>0

wij
arccos(vi · vj)

π
+
∑
i<j

wij<0

|wij |
(

1− arccos(vi · vj)
π

)

VP−W− = 1
2
∑
i<j

wij>0

wij(1− vi · vj)− 1
2
∑
i<j

wij<0

|wij |(1− vi · vj) +
∑
i<j

wij<0

|wij |

= 1
2
∑
i<j

wij>0

wij(1− vi · vj) + 1
2
∑
i<j

wij<0

|wij |(1 + vi · vj)

We need both lemma 2 and a similar result stated in lemma 3. Now, taking
into account all this:

E[W ]−W− =
∑
i<j

wij>0

wij
arccos(vi · vj)

π
+
∑
i<j

wij<0

|wij |
(

1− arccos(vi · vj)
π

)

≥ α · 1
2
∑
i<j

wij>0

wij(1− vi · vj) + α · 1
2
∑
i<j

wij<0

|wij |(1 + vi · vj)

= α(VP−W−) ≥ α(OPT−W−)

6.3.2 Clustering Improves Randomized Rounding
The randomized rounding 7 forms two partitions from a set of points, therefore it
can be seen as a simple clustering algorithm that allows to prove the approximation
guarantee of 0.878. This suggests that using another clustering method may improve
the results obtained, at the possible cost of losing the approximation guarantee.

In addition to the randomized rounding 7, we consider the following clustering
methods:

• k-means (MacQueen, 1967) adapted to the unitary sphere as in (Dhillon
and Modha, 2001) for fixed k = 2.
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• k-medoids (Kaufmann and Rousseeuw, 1987) for fixed k = 2.

• Fuzzy c-means (Bezdek, 1981) adapted to the unitary sphere as in Dhillon
and Modha (2001) for fixed c = 2.

• Minimum Spanning Tree (MST) clustering, i.e., splitting the MST at the
longest edge (Grygorash, Zhou, and Jorgensen, 2006).

In order to obtain the spherical variants of k-means and Fuzzy c-means, it is
necessary to define the cluster centroids as points on the sphere. This can be
achieved by rescaling the centroid to be unit length (Dhillon and Modha, 2001).
On the sphere, cosine similarity is a more natural choice than Euclidean dissimilarity.
It is not difficult to see that the two variants are actually equivalent:

Lemma 4. Spherical k-means clustering with cosine similarity is equivalent to
k-means clustering with Euclidean distances and normalizing of the centroid vectors
in each step.

Proof. For unitary vectors, the square of their Euclidean distance can be expressed
as

∥x− y∥2 = x · x + y · y − 2x · y = 2(1− cos θ)

in terms of the angle θ between x and y. The centroid c of a given cluster C
minimizes

∑
i∈C ∥xi − c∥2 and thus maximizes the sum

∑
i∈C cos θi. Analogous,

each xi is assigned to cluster Cj with minimal value of ∥xi− cj∥2 and thus maximal
cos θi. Thus the squared Euclidean distance and the cosine distance optimize the
same objective function.

The same argument can be made for Fuzzy c-means clustering, since its cost
function is also a linear combination of squared Euclidean distances and thus,
equivalent, a linear combination of the corresponding cosines. For MST clustering
no adjustment is necessary since relation between Euclidean distances and cosines
is monotonic and thus the transformation does not affect the MST. By the same
token, k-medoids clustering is unaffected by the restriction to the sphere since
medoids by definition are always the unitary vectors vi.

An important ingredient for the clustering procedures is the initialization. For
k-means, k-medoids, and fuzzy c-means we consider both a deterministic and a
non-deterministic version. In the deterministic version, the pair v∗

i and v∗
j with

maximal distance from each other is chosen. In the non-deterministic variant, the
two initial cluster centroids are selected from the solution vectors vi at random. For
k-means we observed that choosing the initial cluster centroids as vectors vi does
not work well since the optimization quickly get stuck in a local minimum. We
therefore devised two alternative random initialization methods: (1) We generate
a random unitary vector r and use c1 = r and c2 = −r as initial centroids. (2)
We use two independently generated random unitary vectors r1 and r2 as initial
centroids. The main advantage of method (1) is that this initialization is equivalent
to starting k-means from solutions obtained by Goemans-Williamson rounding. To
see this, assume (without loss of generality) that the random vector chosen as
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initial centroid points towards the north pole and therefore the negative of it will
point towards the south pole. Then, any point in the lower hemisphere of the
hypersphere will be clustered with the south pole vector since this is the closest
centroid. The same will happen for points on the upper hemisphere and therefore
this is equivalent to splitting the hypershpere into two hemispheres which is the
Goemans-Williamson rounding.

In summary, we consider a total of nine clustering procedures:

i) Fuzzy c-means (Fuzzy)

ii) Randomized k-means initialized among vectors vi (K-MeansRand)

iii) Deterministic k-means (K-MeansDet)

iv) Randomized k-medoids (K-MedRand)

v) Deterministic k-medoids (K-MedDet)

vi) Minimum Spanning Tree (MST)

vii) Randomized Rounding of Goemans-Williamson (RR)

viii) Randomized k-means initialized with 2 random vectors (K-Means2N)

ix) Randomized k-means initialized with a random vector and its negative (K-
MeansNM)

In order to quantify the quality of the clusters we use the Distortiondistortion (Bishop, 2006;
Hastie, Tibshirani, and Friedman, 2009), a measure of cluster coherence defined as

C =
k∑

j=1

∑
xi∈Cj

||xi − µCj
|| (6.4)

Here µCj := 1
|Cj |

∑
xi∈Cj

xi is the centroid of the cluster Cj ∈ C. We note that
k-means clustering minimizes the distortion.

Benchmark Data

In order to assess the utility of clustering as rounding method we used the benchmark
set of graphs generated using G. Rinaldi’s machine-independent graph generator.
Both the generator and the graphs can be downloaded from Ye’s web page http:
//web.stanford.edu/~yyye/yyye/Gset/. These graphs vary from 800 to 20000
nodes and have edge weights of ±1. The topology of the graph can be toroidal,
almost planar or random. The first 21 G-set graphs are a standard benchmark for
the Max-Cut problem. The G-Set BenchmarkG-set benchmark consists of graphs G1 to G67,
G70, G72, G77, and G81. The optimal cuts are not know for most of these graphs.
We therefore use the best known cut-values compiled in Ma and Hao (2017) for
comparison.

http://web.stanford.edu/~yyye/yyye/Gset/
http://web.stanford.edu/~yyye/yyye/Gset/
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The relaxed problem (6.2) was solved using the CVX package in Matlab for
graphs G1 to G21. For graphs G22 to G54, G57 to G59, G62 to G67, and G72
we used Mathematica’s function SemidefiniteOptimization. For graphs G55,
G56, G60, G61, G70, G77 and G81 neither SemidefiniteOptimization nor CVX
were able to find a solution to the SDP problem. We therefore had to exclude
these instances from further consideration. From the SDP solution of each instance
we computed 50 iterations for the randomized clustering algorithms, including
Goeamans and Williamson randomized clustering and reported the best solution for
the seven best algorithms.

Cluster Quality Correlations with Solution Quality

In a preliminary evaluation on the first 21 G-set graphs (see Section 6.3.2) we
observed that clustering instead of random rounding yields systematically larger
cuts. In order to better understand the reason for the beneficial effect of clustering
we investigated the relationship between a quality measure for the clustering and the
resulting weight of the maximal cut. Since k-means clustering minimizes distortion
it serves as a natural measure of cluster quality, irrespective of the clustering method
that is actually used. We chose K-MeansNM for this initial analysis because it uses
RR solutions to initialize clusters and thus allows for a direct evaluation of the
effect of clustering heuristics.

The RR solutions fall into a very narrow range of distortion values that is clearly
separated from the near optimal range achievable by the clustering methods. The
cut weights of the RR solutions do not appear to be correlated with the distortion
of the corresponding clusters. However, after only a few clustering steps, k-means
enters a regime in which distortion and cut weight are strongly correlated, see
Figure 12.

Fig. 12 provides a clear motivation to consider clustering as means of improving
the Goemans-Williamson solution. We observe that there are two groups of graphs.
In the first groups, exemplified by G43, Fig. 12a, we consistently observe lower RR
values at the starting point of k-MeansNM (right) that at the endpoint (top left)
and the cut values mostly increase monotonically with decreasing distortion. In
the second group of graphs, exemplified by G31, Fig. 12b, this is still the case on
average, however, the optimal cut weights are observed at sub-optimal distortions.
This observation motivates us to record the cut weights for intermediary steps of
the cluster procedures, not only at their endpoints. In the case of K-MeansNM this
guarantees that we retain the performance guarantee of the Goemans-Williamson
bound.

Local Search

In general, neither the Goemans-Williamson nor any of the clustering results are
locally optimal. We therefore use adaptive walks as a simple way to further improve
solutions. A natural definition of locality for cuts considers two cuts A ̸= A′

adjacent if A = A′ ∪{u} for some u ∈ V \A′ or A′ = A∪{u} for some u ∈ V \A
(Poljak and Rendl, 1995). In terms of the spin vectors x, this amounts to “flipping”
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(a) Scatter plot of 50 runs of K-MeansNM for
graph G43.
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(b) Scatter plot of 50 runs of K-MeansNM for
graph G31.

Figure 12: Exploration of the path of 50 iterations of K-MeansNM on the distortion
weight of the corresponding cut. The diagram shows all values generated while running
the k-means. Points at the bottom right of the plot are the starting points and thus the
results of Goemans-Williamson rounding, meanwhile points at the top left are the end
points. At each step of K-MeansNM, the points move to the left until the algorithm finds
a local minima of distortion. The red line is a linear fit of all the points after the second
step of k-means. These show a clear correlation between cluster distortion and cut weight.

(changing the sign of) exactly one spin xi. An adaptive walk iteratively accepts a
spin flip if the cut value f(A) improves. By construction, therefore, an adaptive
walk terminates in a locally optimal solution, i.e., in a cut A∗ for which there is no
adjacent cut with a strictly larger edge weight. We performed local improvement
for each of the 50 repetitions of Goemans-Williamson randomized rounding, and
the two best-performing clustering algorithms: K-MeansNM and K-Means2N.

An Instance-Specific Approximation Guarantee

Consider a fixed instance of Max-Cut, let {vi} be the solution of the relaxed
problem (6.2) and let {A, V \A} be a discrete solution. Denote by ∂A := {(i, j) ∈
E(G)|i ∈ A, j ∈ V \A} the set of cut edges. The value S of the relaxed solution
can be written as

S = 1
2

∑
(i,j)∈∂A

wij (1− vi · vj) + 1
2

∑
(i,j)/∈∂A

wij (1− vi · vj)

=
∑

(i,j)∈∂A

wij︸ ︷︷ ︸
f(A)

− 1
2

∑
(i,j)∈∂A

wij (1 + vi · vj)

︸ ︷︷ ︸
gcut

+ 1
2

∑
(i,j)/∈∂A

wij (1− vi · vj)

︸ ︷︷ ︸
gin

.

Thus we have f(A) = S + gcut− gin. Writing f∗ for the weight of the optimal cut,
we know that the solution of the relaxed problem is an upper bound, i.e., S ≥ f∗.
We therefore have

f(A) ≥ f∗ − (gin − gcut) (6.5)
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Note that gin − gcut ≥ 0 since by definition f∗ ≥ f(A). First consider the case
of positive edge-weights. Then f(A) > 0 and we can estimate the approximation
ratio for the solution A as

α(A) := f(A)
f∗ ≥ 1− gin − gcut

f∗ ≥ 1− gin − gcut

f(A) (6.6)

If negative edge weights, we follow Goemans and Williamson (1995), define W− :=∑
(i,j) min(wij , 0) ≤ 0, and make use of the fact that f∗−W− ≥ 0. From Eq.(6.5)

we obtain immediately f(A)−W− ≥ f∗−W−−(gin−gcut) and thus a generalized
version of the approximation ration can be computed as

α(A) := f(A)−W−

f∗ −W−
≥ 1− gin − gcut

f∗ −W−
≥ 1− gin − gcut

f(A)−W−
(6.7)

The bounds in Eqns. (6.6) and (6.7) can be seen as instant-specific versions of the
general approximation ratio derived in Goemans and Williamson (1995). Empirically,
we found in benchmarking experiments (see below) that theInstant-Specific

Performance Bounds
instance specific

bound α(A) substantially exceeds the uniform Goemans-Williamson bound of
α ≈ 0.878. For the Goemans-Williamson algorithms, of course, we necessarily have
E[α(A)] ≥ α.

Results

In order to compare the cut values of RR with each of the clustering algorithm we
use the following relative measure of performance

f̂cluster = fcluster − fRR

fRR
= fcluster

fRR
− 1 (6.8)

Fig. 13 shows that clustering on most instances yield significant improvement for
most clustering approaches. K-MeansNM by construction always find a solution
that is at least as good as RR, however both K-MeansNM and K-Means2N never
give a lower solution than RR. K-meansRand improves for all graphs except G12,
Fuzzy for all except G12 and G72, K-MedRand for all except G32, G39 and G72
and finally for K-MeansDet in 9 graphs a better solution was not found.

The gains in solution quality differ substantially between the test instances,
and a few graphs, in particular G12 and G72, do not profit from the clustering
approaches other than the randomized versions of K-means. Interestingly, these
two graphs are toroidal.

The same trend is also observed for the instance-specific performance bounds,
see Fig. 14. The performance bounds for the individual solutions are well above 0.9,
i.e., exceed the Goemans and Williamson also in those few cases where clustering
is worse than RR. For bipartite graphs with non-negative edge weights the entire
edge set forms a maximal cut (Delorme and Poljak, 1993). This is the case for
the two unweighted graphs G48 and G49 and explains why for these two cases no
difference between RR and clustering solutions is observed in Fig. 13.
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(a) Plot of f̂cluster for Fuzzy c Means cluster-
ing.
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(b) Plot of f̂cluster for K-MeansDet clustering.
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(c) Plot of f̂cluster for K-MeansRand cluster-
ing.
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(d) Plot of f̂cluster for K-MedRand clustering.
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(e) Plot of f̂cluster for K-Means2N clustering.
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(f) Plot of f̂cluster for K-MeansNM clustering.

Figure 13: Comparison between the cut value found by clustering algorithms and RR,
using f̂cluster as the comparison. The horizontal axis represents the graph number, i.e.,
graph Gi is shown at position i. The red line indicates the average over the benchmark
set. Positive values indicate that the clustering solutions are superior to the RR solutions.
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Figure 14: Comparison of instance-specific performance bounds α(A) between clustering
algorithms and RR. The cyan line is the average of α(A) for the clustering methods and
the magenta line is the average of RR for comparison.
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On average all clustering algorithms yield improvements over RR. Interestingly,
the average solution quality depends noticeably on the clustering algorithm. The
clustering algorithm with largest average improvement was K-MeansNM, as expected.
On the benchmark set, an average increase on the cut weight by f̂K-MeansNM =
1.541% compared with RR is obtained. Other variants of 2-means performed
similarly well. We found f̂K-Means2N = 1.533% and f̂K-MeansRand = 1.471%. For
Fuzzy clustering we only observed an improvement of f̂Fuzzy = 1.247%. With
f̂K-MedRand = 0.841% and f̂K-MeansDet = 0.789%, performance of medoids and
deterministic methods was less encouraging. For individual instances the improve-
ment was substantial. For example we obtain an improvement of 5.81% for the
graph G10 and 5.12% for G28 with K-MeansNM.

Despite subtle differences between the clustering methods, the clusters are quite
similar in their characteristics. One measure of interest is the mean clustering angle

θA = arccos
(∣∣∣∣∣ 1
|A|

∑
vi∈A

vi

∣∣∣∣∣
)

It measures the average angle between two unit vectors in the same cluster. We
found that the cardinalities |A| and |X \A| are nearly even and θA lies between 60
and 75 degrees for the graphs in the benchmark set. We observed not convincing
trends connecting these parameters and the weight of maximum cut.

Local Search Improvement

A straightforward way to improve a given solution of Max-Cut is to add a Local
Search (LS) step. We use adaptive walks for this purpose and restrict ourselves
to RR and the two best-performing clustering approaches, i.e., K-MeansNM and
K-Means2N. The results presented in Figure 16 are the best solutions found in all
of the 50 iterations for each algorithm. The same relative measure of performance,
f̂cluster, is used as in Section 6.3.2. The corresponding instance-specific performance
bound α can be found in Figure 15.

Figure 17 shows the ratio frounding/fbest, where frounding is the best solution
after local search found either by clustering or RR for that instance and fbest is
the best solution known in the literature, taken from Ma and Hao (2017). The
corresponding values are also available in tabular form as Additional Material. Graphs
G11 to G13, G32 to G34, G57, G62, G65 to G67, and G72 have toroidal topology;
both the clustering algorithm and Randomized Rounding show a comparably low
approximation ratio for these instances. For graphs with other topologies, we
obtain approximation ratios exceeding 0.96, sometimes closely approaching 1. The
combination of the Goemans–Williamson relaxation with clustering thus at least
comes close to the best solutions known in the literature.

6.3.3 Spectral Clustering
The success of k-means related clustering approaches suggests to extend this
idea to other clustering methods, for instance, Spectral Clustering (SC). We
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Figure 15: Comparison of instance-specific performance bounds α(A) between clustering
algorithms and RR after local search (LS). The horizontal axis represents the graph
number, i.e., graph Gi is shown at position i. The cyan line is the average of α(A) for
the clustering methods after LS and the magenta line is the average of RR after LS for
comparison. Purple and Green lines are the average of the clustering methods and RR
before LS respectively.
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(a) Plot of f̂cluster for K-Means2N clustering
after local search.
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(b) Plot of f̂cluster for K-MeansNM clustering
after local search.

Figure 16: Comparison between the cut value found by clustering algorithms and RR
after local search (LS), using f̂cluster as the comparison. The horizontal axis represents
the graph number, i.e., graph Gi is shown at position i. The red line indicates the average
over the benchmark set. Positive values indicate that the locally improved clustering
solutions are superior to the locally improved RR solutions.
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Figure 17: Comparison of the best cut value obtained with clustering (in magenta) and
RR (in cyan) and subsequence local improvement with the best cut value (fbest) available
in the literature.

implemented the graph version of the NJW-SC algorithm (Ng, Jordan, and Weiss,
2002) described in detail in Gonzalez-Torres (2020) and in Algorithm 8. Note
that in step 3: Similarity Matrix of Algorithm 8, the similarity measure used is
Gaussian, however it can be replaced for any suitable similarity measure.

In this case, we are using points that are in the unitary sphere, therefore the
dot product between points can be used a similarity measure. If we have n data
points xi ∈ X, consider the following similarity matrix:

Aij = 1 + xi · xj (6.9)

This similarity measure is always positive, and the closest a pair of points are,
the higher the similarity will be. However it might be useful to fix a threshold β
of values we want to consider, so we used the following Dot Product Similaritydot product similarity
measure:

Aij =
{

1 + xi · xj if 1 + xi · xj ≥ β

0 otherwise
(6.10)

The idea is that with the parameter β, points that are “sufficiently” far away
between each other are essentially considered as minimum similarity which is then
set to be 0. Note that by setting β = 0 we can recover the normal dot product
similarity.
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Algorithm 8: NJW-SC (Graph Version)

1: Input: Set of points X, number of clusters k
2: Output: Xc, a k partition of X

3: Similarity Matrix. Set the similarity matrix A as:

Aij ← exp
(
−∥xi − xj∥2

2σ2

)
;

4: Compute the matrix of weights D:

D ← diag(A1n);

5: Compute k eigenvectors corresponding to the largest k eigenvalues:

Z ← topEig(D− 1
2 AD− 1

2 , k);

6: Using the points Z, compute a partition Xc of the data set X;
7: return Xc

Note that both the Gaussian and the dot product similarities have parameters
that can be modified. For the Gaussian similarity we have σ, which will increase the
similarity between distant points, the larger σ is. For example, for the case where
we have two anti parallel unitary vectors, a value of σ = 1 will give us a similarity
of ≈ 0.135, meanwhile σ = 2 will give a similarity of ≈ 0.607. For the dot product
similarity however, the parameter β is just a threshold of values to consider.

Also note that step 6 of Algorithm 8 requires to do clustering of the new set of
data points Z. Therefore we can use the same six clustering algorithms used in
Rodriguez-Fernandez et al. (2020) in order to do a direct comparison between both
methods. For SC we will use the standard version of the algorithms instead of the
spherical clustering version, since in general, data points Z obtained in step 5 of
Algorithm 8 are not unitary.

Additionally, for K-MeansNM and K-Means2N the initialization method had
to be changed. Instead of generating each entry of the starting centroids using
a normal distribution with 0 mean and standard deviation of 1, we generate the
entries of the centroids using a standard deviation of 0.01. The reason for this, is
illustrated in Figure 18, where we can see, specially for σ = 1, that the data points
Z are close to 0 in one of the coordinates in the negative side. If we were to use
centroids generated with standard deviation of 1, we would obtain two centroids
that are, in general, with larger norm and far away from the set of data points
Z. For some cases, this will result in a cluster with cut value 0, since all the data
points Z were assigned to only one centroid.
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(a) Plot of Z (Algorithm 8) for graph G1 and
σ = 0.25 using Gaussian similarity.
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(b) Plot of Z (Algorithm 8) for graph G1 and
σ = 0.5 using Gaussian similarity.
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(c) Plot of Z (Algorithm 8) for graph G1 and
σ = 1 using Gaussian similarity.
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(d) Plot of Z (Algorithm 8) for graph G1 and
σ = 10 using Gaussian similarity.

Figure 18: Comparison of the Z space of Algorithm 8 for graph G1 using different values
of the parameter σ of the Gaussian similarity.

Experiments were made using Algorithm 8 with both the Gaussian and dot
product similarity measures for step 3. For both similarity measures, a wide range
of values for the parameters were used, however the results obtained were similar
to the procedure of Rodriguez-Fernandez et al. (2020). A comparison between the
results of SC and Rodriguez-Fernandez et al. (2020) (before LS) is presented in a
separate table for each clustering algorithm and can be seen in Table 2 to Table 8
of the Appendix A.

Looking at the tables in Appendix A, for all clustering methods, SC finds a
higher cut value than Rodriguez-Fernandez et al. (2020) in 20 graphs. Those graphs
are G5, G6, G9, G10, G14, G15, G17, G18, G22 - G24, G28 - G31, G40, G43, G51
and G63 - G64. Additionally, from both Figure 18 and Figure 19, we can notice
that this similarity measure does not separate the data points into two clusters
(except for graph G50 and the bipartite graphs G48, G49). Moreover, there are
parameter values such as σ = 0.25 which result in points on the Z space with
undesired geometry. There are two possible explanations for this; either there are
better similarity measures and parameters, or the set of points are not separable to
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(a) Plot of Z (Algorithm 8) for graph G1 and
β = 0.25 using Dot Product similarity.
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(b) Plot of Z (Algorithm 8) for graph G1 and
β = 0.5 using Dot Product similarity.
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(c) Plot of Z (Algorithm 8) for graph G1 and
β = 0 using Dot Product similarity.

Figure 19: Comparison of the Z space of Algorithm 8 for graph G1 using different values
of the parameter β of the Dot Product similarity.

begin with.

6.4 Laplacian and Gram Matrix Spectrum Analysis

Using SC naturally motivates the analysis of the spectrum of the Gram matrix
of the vectors vi solution of (6.2) and also the spectrum itself of the benchmark
graphs, since it contains important importation of properties and the structure of
the problem.

The Gram matrix G of a set of n vectors vi, is defined as Gij = vi · vj .
The spectrum of a graph (Cvetkovic et al., 1988) is obtained by calculating the
eigenvalues and eigenvectors of theSymmetric Normalized

Laplacian
Symmetric Normalized Laplacian (Chung,

1997) matrix L of a graph G, defined as

L = I −D
− 1

2
W WD

− 1
2

W (6.11)
where DW is the weighted degree matrix (D = diag(D1, . . . , Dn) and Di =∑n

j=1 wij) and W the weighted adjacency matrix (Wij = wij for all (i, j) ∈ E and
0 otherwise).
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(a) Graph Spectrum for random graph G10.
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(b) Graph Spectrum for toroidal graph G32.
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(c) Graph Spectrum for planar graph G41.

Figure 20: Plots of the spectrum for different types of graphs.

We obtained the spectrum of all the benchmark graphs used in Section 6.3.2,
and the results are shown in Figure 20 as a plot of the eigenvalues in decreasing
order. There are only three plots since the behavior is well represented with these
examples. For all planar graphs we see curves similar to Figure 20c, with rapid
decrease of the largest eigenvalues, for random graphs we observe a slower decrease
of the largest eigenvalues as depicted in Figure 20a, and finally we observe almost
a straight line for the toroidal graphs (Figure 20b).

For the Gram matrix spectrum, the results are shown as a plot of the eigenvalues
in decreasing order in Figure 21, where six representative examples were chosen.
On average, almost all graphs present curves similar to Figure 21e, in the sense
that around 15 eigenvalues are nonzero. There are some instances where the
number of nonzero eigenvalues is larger than the average (Figure 21f) or smaller
than the average (Figure 21a). There are three particular interesting graphs:
G48 (Figure 21b), G49 (Figure 21c), and G50 (Figure 21d). As mentioned in
Section 6.3.2, G48 and G49 are bipartite graphs, and the number of nonzero
eigenvalues is exactly 2 for this case. For G50, which is not bipartite but all
algorithms find the optimal solution, only the first 3 eigenvalues are nonzero. This
suggests a relation between the number of nonzero eigenvalues and the “difficulty”
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of the instance.
TheB-set Benchmark B-set benchmark, consisting of 7 graphs and shown in Figure 28 of the

Appendix B, was designed in order to explore the relation between difficulty and
the number of nonzero eigenvalues. The design of the graphs in this benchmark
was made so every new graph increases in structural complexity. The first 4 graphs
are planar trees with only small changes in the edge weights, graph number 5
introduces a cycle and the last 2 graphs are two cliques joined by one edge. These
simple graphs with a small number of nodes will provide good intuition about the
Max-Cut relaxation and the procedure of both Goemans and Williamson (1995)
and Rodriguez-Fernandez et al. (2020).

A Principal Component Analysis (PCA) (Hotelling, 1933; Pearson, 1901) of
the vectors vi obtained from Equation 6.2 for the B-set, shown in Figure 22, will
provide additional information about the relation between problem difficulty and
graph structure. Additionally, the gram matrix and graph spectrum for these graphs
are shown in Figure 29 and Figure 30 of the Appendix C.

For the first 4 graphs, which are trees, we see from Figure 22 that all the infor-
mation needed to solve the problem is contained in only one Principal Component
(PC). Moreover, from Figure 29 we see that the number of nonzero eigenvalues is
2, which agrees with the theory that this number is related to the difficulty of an
instance.

When we introduce a cycle to the trees, i.e., graph B5, the necessary information
to solve the problem is still contained in the first PC (Figure 22e), however the
variance is now contained in the first two PCs instead of only one. Additionally,
the number of nonzero eigenvalues increases to three.

Finally, graph B6 consists of two cliques joined with a large positive weight
edge, meanwhile for graph B7 the edge that joins the cliques has a large negative
weight. The jump in structural complexity for these graphs comes together with a
larger number of nonzero eigenvalues; 8 to be precise. Looking at the PC space in
Figure 22f and Figure 22g, we see that there exists more than one optimal clustering
(with respect to distortion). Also the variance is now contained in more than 3 PCs,
and different distortion optimal clusters translate into different cut values, making
the problem difficult to solve.

Note that we are using the vectors vi that are the solution of an optimization
problem. With the B-set benchmark we can see that this Semidefinite Programming
(SDP) optimization problem is in fact trying to separate the nodes in two sets,
using the less amount of dimensions possible. For structurally simple problems,
such as trees or bipartite graphs, Equation 6.2 finds a solution that is close to the
integer programming version, in the sense that two clearly separable sets are found
using only few dimensions. There also appears to be a connection between the
number of nonzero eigenvalues of the gram matrix and the difficulty of an instance.

6.5 RandomizedMinMax

In summary, the procedure described in Rodriguez-Fernandez et al. (2020) consists
of doing clustering to the solution vectors vi of equation (6.2) to obtain a first
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(a) Spectrum of the Gram matrix for graph
G11.
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(b) Spectrum of the Gram matrix for graph
G48.
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(c) Spectrum of the Gram matrix for graph
G49.
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(d) Spectrum of the Gram matrix for graph
G50.
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(e) Spectrum of the Gram matrix for graph
G54.
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(f) Spectrum of the Gram matrix for graph
G59.

Figure 21: Spectrum plots of the first 30 Gram matrix eigenvalues in decreasing order for
some representative examples.
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(a) Vectors vi from Equation 6.2 after PCA for
graph B1.
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(b) Vectors vi from Equation 6.2 after PCA for
graph B2.
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(c) Vectors vi from Equation 6.2 after PCA for
graph B3.
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(d) Vectors vi from Equation 6.2 after PCA for
graph B4.

Figure 22: Plot of the vectors vi from Equation 6.2 in the Principal Component space
using the two components with most variance for the B-Set of graphs. The Max-Cut
partition is represented with two colors, red and blue, corresponding to the two partitions
of the node set.

partition of the node set, and then, starting from this solution, a local search is
performed maintaining only solutions that improve the cut value. Since k-means
clustering minimizes distortion (see Subsection 6.3.2 for a definition), and Local
Search (LS) stops when it finds a local maximum for the cut value, this can be
seen, in very loose terms, as a randomized minimization maximization problem,
which we will denote asRMM RandomizedMinMax (RMM).

In Rodriguez-Fernandez et al. (2020) both k-means and LS are iterated only
once, but other than computation time, there is no reason not to do both algorithms
several times. This procedure is what we call RMM, and consists of repeating the
process of Rodriguez-Fernandez et al. (2020), i.e., clustering using the solution
vectors of (6.2) followed by a LS, and then from the solution obtained from LS,
start again with clustering and continue, until no change is found or a maximum
number of iterations is reached.
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(e) Vectors vi from Equation 6.2 after PCA for
graph B5.
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(f) Vectors vi from Equation 6.2 after PCA for
graph B6.
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(g) Vectors vi from Equation 6.2 after PCA for
graph B7.

Figure 22: (Continued) Plot of the vectors vi from Equation 6.2 in the Principal
Component space using the two components with most variance for the B-Set of graphs.
The Max-Cut partition is represented with two colors, red and blue, corresponding to
the two partitions of the node set.

A summary of RMM can be seen in Algorithm 9. It has 3 stopping conditions,
as seen in steps 6, 10 and 16. Respectively, the conditions are the following: In
step 6, if a maximum number of iterations is reached, in step 10, if there is no
change of both inertia and cut value comparing the partition obtained by clustering
on the current iteration and the previous one, and in step 16, if the partition itself
does not change between LS and clustering.

Ideally, in a plot of the trajectory of one particular solution in a cut value vs
distortion plot, such as in Figure 12 but for RMM, one would expect to obtain
points along some kind of saw function, going up during LS and going left during
k-means clustering, but overall with an average tendency to the upper left of the
plot, i.e., to low distortion with high cut values.

However, as seen in Figure 23, we obtain in most cases a contradictory behavior
between LS and k-means. We see that LS optimizes almost in a straight vertical



72 Chapter 6. Max-Cut

(a) 31st trajectory of RMM for graph G2.

(b) 49th trajectory of RMM for graph G4.

Figure 23: Plot of trajectories obtained using Algorithm 9 for different graphs depicting
some of the types of trajectories found. Points with the same color are obtained during a
run of LS (or Clustering). Typically, the more vertical trajectories represent LS. The runs
of clustering are difficult to observe since the number of steps to find a local minimum of
inertia was in the order of ∼ 101, and sometimes even less than 10. The starting point of
the whole algorithm is the blue cross on the far bottom right.
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(c) 45th trajectory of RMM for graph G60.

(d) 46th trajectory of RMM for graph G61.

Figure 23: (Continued) Plot of trajectories obtained using Algorithm 9 for different
graphs depicting some of the types of trajectories found. Points with the same color
are obtained during a run of LS (or Clustering). Typically, the more vertical trajectories
represent LS. The runs of clustering are difficult to observe since the number of steps to
find a local minimum of inertia was in the order of ∼ 101, and sometimes even less than
10. The starting point of the whole algorithm is the blue cross on the far bottom right.
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Algorithm 9: Randomized Minimization Maximization (RMM)

1: Solve (6.2), obtaining an optimal set of vectors vi

2: Set k ← 2
3: Set number_iter← 0
4: Set max_iter← 151

5: Initial Clustering. Do k-means clustering on the set of { vi |i = 1, . . . , n } to
obtain two partitions A and B = Ac, with cut value Acv and inertia Ainert

6: while number _iter ≤ max _iter do

7: LS step. Do a LS starting from A to obtain ALS

8: Clustering step. Starting from ALS , do k-means clustering to obtain AClust,
with cut value Acv

Clust and inertia Ainert
Clust

9: number_iter+ = 2

10: if
(
Ainert == Ainert

Clust

)
&& (Acv == Acv

Clust) then
11: BREAK
12: else
13: Set A← AClust

14: Set Ainert ← Ainert
Clust

15: Set Acv ← Acv
Clust

16: if AClust == ALS then
17: BREAK

18: Return: AClust

line, i.e., with distortion almost constant. This may be to the fact that the local
search we are using is only exchanging one pair of vectors at a time, therefore not
affecting the overall quality of the cluster. After LS, k-means finds, already in the
first step of the algorithm, a solution with lower distortion, however with cut value
almost the same or lower than the starting point of LS. This contradictory behavior,
however, let RMM explore a great part of the cut-inertia space.

We performed 50 iterations of RMM (Algorithm 9) for the same benchmark as
in Section 6.3.2. On more than 78% of the instances, better or equal results than
K-MeansNM from Rodriguez-Fernandez et al. (2020) were found, and a plot of the
comparison between RMM, K-MeansNM and Randomized Rounding of Goemans
and Williamson (1995) can be found on Figure 24. These results encourage other
methods to explore the distortion-cut value space, for instance, random walks,
genetic algorithms or a redesign of RMM that allows a wider search on the space.
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(a) Plot of f̂RMM with K-MeansNM as comparison.
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Figure 24: Comparison between the cut value found by RMM with K-MeansNM and
Randomized Rounding, using the relative measure of performance f̂RMM (see Equa-
tion 6.8). For comparing RMM and K-MeansNM in Figure 24a, fRR has to be replaced
by fK−MeansNM in Equation 6.8. The horizontal axis represents the graph number, i.e.,
graph Gi is shown at position i. The red line indicates the average over the benchmark set.
Positive values indicate that the RMM solutions are superior to the clustering solutions.
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The Max-k-Cut problem is a generalization of the Max-Cut problem and is
closely related to graph coloring. It arises naturally when trying to find the ground
states of the Potts model, a generalization of the Ising model for a spin glass (Welsh,
1993). This problem has applications in circuit layout design (Barahona et al.,
1988), in wireless communication problems (Fairbrother, Letchford, and Briggs,
2018; Niu et al., 2017) and in statistical physics (Liers et al., 2004).

7.1 Problem Definition

Let G = (V, E), be an undirected graph with n = |V | nodes and m = |E| edges.
Each edge (i, j) ∈ E going from node i to node j will have a weight of wij . The
goal of Max-k-Cut is to partition the node set V into k disjoint sets such that the
sum of weights for edges going between nodes in different partitions is maximized.
An example of the maximum k cut of the Petersen graph for k = 3 is depicted in
Figure 25. Formally, we define ak-Cut k-cut as a k partition A = A1, A2, . . . , Ak of V
with cut value

w(A) =
∑

1≤q<r≤k

∑
i∈Aq,j∈Ar

wij

Then, the Max k-Cut problem reads as follows:

Maximize w(A)
subject to: |A| = k

(7.1)

This problem, however, is NP-Complete, so the best we can do is to find approximate
solutions unless P = NP . For the Max-Cut problem (k = 2), there are only two
partitions and therefore each node either belongs to one partition or the other, which
can be represented by assigning to each node i a binary integer xi ∈ {+1,−1}
variable (as in Chapter 6). However, for the Max-k-Cut problem simply assigning
to each node i a k integer variable yi ∈ {1, . . . , k} does not make the problem easy
to work with. Instead, let us analyze the reasoning behind the Max-Cut problem.
We wanted to have two points y1 and y2 to represent where each node belongs but
in a way that y2

i = 1 and the angle between y1 and y2 is maximized, or in other
words, that the points are as different or distant as possible. This is achieved by
setting y1 = 1 and y2 = −1.

Therefore, for the Max-k-Cut problem we want to find k points y1, . . . , yk

to represent each partition, that satisfy two things: |yi|2 = 1 for all i and yi · yj

is minimum (or that the angle is maximized) for all i ̸= j. The geometric set of
points that satisfy the above conditions are the k vertices V1, . . . , Vk ∈ Rk−1 of the

Unitary k − 1 Simplex unitary k − 1 simplex Σk−1 centered at the origin. First we will define explicitly
the coordinates of the vectors Vi and then prove that they satisfy all the properties.
Let

(Vi)j =

−
√

k−1
k if j = i

1√
k(k−1)

if j ̸= i
(7.2)
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Figure 25: The Petersen graph together with its maximum 3-cut. Nodes in red belong
to partition A; nodes in blue to partition B; and nodes in green to partition C. This
graph can be colored using 3 colors, which means that the maximum 3-cut is 15, the total
number of edges.

where (Vi)j is the jth entry of vector Vi.

Lemma 5. The k vectors V1, . . . , Vk ∈ Rk−1 from Equation 7.2 satisfy:

i) |Vi|2 = 1 for all i = 1, . . . , k

ii) Vi · Vj = −1
k−1 for all i ̸= j

iii) −1
k−1 is the maximum angle of separation possible for k unitary vectors with
equal dot product between all distinct pairs.

Proof. i)

|Vi|2 = (k − 1) 1
k(k − 1) + k − 1

k
= 1

k
+ 1− 1

k
= 1

ii)

Vi ·Vj = (k−2) · 1
k(k − 1) +2

√
k − 1

k
· −1√

k(k − 1)
= (k−2) · 1

k(k − 1)−
2
k

= −k

k(k − 1) = −1
k − 1
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iii) Assume all dot products Vi · Vj = β. Then

0 ≤ |V1 + V2 + · · ·+ Vk|2 = k|Vi|2 + k(k − 1)V1 · V2 = k + k(k − 1)β

Therefore β ≥ −1/(k − 1)

Letting 1⃗ = (1, 1, . . . , 1), note that

Vi · 1⃗ = k − 1√
k(k − 1)

−
√

k − 1
k

= 0

Which means that the set of k points belong in a k − 1 dimensional hyperplane
perpendicular to the vector of all ones 1⃗. Even though the standard k-simplex
is usually defined in a k dimensional space with base vectors êi as vertices, the
k-simplex is actually a k − 1 dimensional object. This can easily be seen for the
familiar case of k = 3, a triangle with vertices ê1 = (1, 0, 0), ê2 = (0, 1, 0) and
ê3 = (0, 0, 1) which is a 2 dimensional object in a 3 dimensional space, or the
tetrahedron where k = 4, which is a 3 dimensional object but can be written in a 4
dimensional space.

We can now generalize the Max-Cut problem by letting the nodes of graph G
be represented as one of the vertices Vi of the equilateral k− 1 simplex Σk−1 from
Equation 7.2. This, according to Lemma 5, will give us k unitary vectors that are
as separated as possible from each other, i.e., that have maximum possible angle
(or minimum dot product) between each other. Note that for the k = 2 case, we
have the Σ1 simplex, a line segment which end points are y1 = 1 and y2 = −1,
which is the Max-Cut integer representation.

Let Σk−1 be the equilateral simplex with vertices V1, . . . , Vk as defined in
Equation 7.2, and G = (V, E) an undirected weighted graph with n nodes and m
edges with weights denoted by wij for each edge (i, j). Then theMax-k-Cut Max-k-Cut
problem can be represented as the following optimization problem:

Maximize k − 1
k

∑
i<j

wij(1− yi · yj)

subject to: yi ∈ {V1, . . . , Vk} ∀i = 1, . . . , n

(7.3)

7.2 SDP Relaxation

There are several Semidefinite Programming (SDP) problems that are valid relax-
ations to the Max-k-Cut problem, and most of them will be discussed in section
7.5. In this section we will discuss the relaxation to the optimization problem (7.3).

The fact that the vectors yi have to be endpoints of Σk−1 in (7.3) imply that
|yi| = 1 for all i = 1, . . . , k, and yi · yj = −1/(k − 1) for all i ̸= j. It is not
enough to simply relax yi ∈ Rk to an unitary vector vi ∈ Rn as in the Max-Cut
problem, since it can happen that vi ·vj = −1 instead of −1/(k−1), so we need to
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add the additional restriction vi · vj ≥ −1/(k − 1), obtaining the following Vector
Programming (VP) problem:

Maximize k − 1
k

∑
i<j

wij(1− vi · vj)

subject to: |vi| = 1 ∀i = 1, . . . , n

vi · vj ≥
−1

k − 1 ∀i ̸= j

(7.4)

This is an instance of VP, however if we want to solve it with a convex optimization
tool it is convenient to have it in a SDP form. Let X ∈ Rn×n be a symmetric
matrix and let Xij = vi · vj . If we also ask X to be Positive Semidefinite (PSD),
then problem (7.4) is equivalent to the following SDP problem:

Maximize k − 1
k

∑
i<j

wij(1−Xij)

subject to: Xii = 1 ∀i = 1, . . . , n

Xij ≥
−1

k − 1 ∀i ̸= j

X ⪰ 0

(7.5)

where X ⪰ 0 means that X is PSD. This last constraint is what gives the bridge
between VP and SDP. If matrix X is PSD, then there exists V ∈ Rn×n such that
X = V T V (Horn, 2012). Therefore, we can convert an instance of (7.5) to (7.4)
in polynomial time by doing a Cholesky factorization X = V T V and setting the
i-th column of V as the vector vi.

In order to solve problem (7.5) numerically, the objective function of an SDP
problem must have the form Tr(CT X) with C ∈ Rn×n symmetric. We can achieve
this using the Laplacian MatrixLaplacian matrix L of the graph G. It is defined as

L = DW −W

Where DW is the weighted degree matrix (D = diag(D1, . . . , Dn) and Di =∑n
j=1 wij) and W the weighted adjacency matrix (Wij = wij for all (i, j) ∈ E and

0 otherwise).
Starting from the objective function of (7.5), we see that
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k − 1
k

n∑
i<j

wij(1−Xij) = k − 1
2k

 n∑
i=1

n∑
j=1

wijXii −
n∑

i=1

n∑
j=1

wijXij


= k − 1

2k

 n∑
i

Xii

n∑
j

wij − Tr(W T X)


= k − 1

2k

(
Tr(DW

T X)− Tr(W T X)
)

= k − 1
2k

Tr(DW
T X −W T X) = k − 1

2k
Tr(LT X)

where the first equality follows using the fact that one of the restrictions set Xii = 1.
Therefore, the SDP relaxation problem of Max-k-Cut can be rewritten as:

Maximize k − 1
2k

Tr(LT X)

subject to: Xii = 1 ∀i = 1, . . . , n

Xij ≥
−1

k − 1 ∀i ̸= j

X ⪰ 0

(7.6)

where L is the Laplacian matrix of G. As mentioned before, this is just one of the
many SDP relaxations that represents the Max-k-Cut problem. SDP problem 7.5
can be seen as the natural generalization of the Max-Cut relaxation of Goemans
and Williamson (1995) and it is the procedure of Frieze and Jerrum (1997). This will
also provide a straightforward rounding with an approximation guarantee depending
on k, which will be discussed in Section 7.3.

7.3 Rounding Methods

Contrary to the Max-Cut problem, there have been several approaches both to
relax and round the solution for the Max-k-Cut problem. This subsection will
contain some of the rounding methods in the literature and an original approach
using clustering similar to the procedure of Rodriguez-Fernandez et al. (2020).
Four different rounding methods will be discussed: one using complex SDP for
k = 3 (Subsection 7.3.1), one using a SDP relaxation related to the Lovász ϑ-
function (Subsection 7.3.2) and two based directly from solutions of Equation 7.5
(Subsection 7.3.3 and Subsection 7.3.4).

7.3.1 Goemans Williamson
The rounding method of Goemans and Williamson (2004) is based on a different
relaxation to Equation 7.4. They used complex SDP to formulate a relaxation of
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the Max 2-Lin-Mon-3 problem, which is a more general problem than Max
k-Cut.

The Max 2-Lin-Mon-3 problem consists of n integer variables xi ∈ {0, 1, 2}
and m equations xi − xj ≡ c mod 3 or inequations xi − xj ̸≡ c mod 3, where
c ∈ {0, 1, 2}. Each equation or inequation has a weight wj assigned and the goal
is to maximize the total weight of satisfied equations and inequations.

To model Max-k-Cut, create a variable xi for each node i ∈ V , and for each
edge (i, j) with weight wij , introduce the inequation xi − xj ̸≡ 0 mod 3 with
weight wij . The value of the integer variable xi determine the partition where node
i belongs, therefore xi − xj ̸≡ 0 means that edge (i, j) is in the cut since the end
points are in different partitions.

The complex integer formulation for Max 2-Lin-Mon-3 is the following. Let
R3 ⊂ C be the set that contains the three cubic roots of 1, and let ω = ei2π/3.
The three cubic roots of 1 are R3 = {ω0, ω1, ω2}, and have the property that
ωi · ωj = ωi−j ∈ R3, where · is the dot product in C. Introduce a variable
yi ∈ R3 for each xi, such that yi = ωxi . Then, the contribution of the equation
xi − xj ≡ c mod 3 is

wij

(
1
3 + 1

3ω−cxi · xj + 1
3ωcxj · xi

)
and the contribution of the inequation xi − xj ̸≡ c mod 3 is

wij

(
2
3 −

1
3ω−cxi · xj −

1
3ωcxj · xi

)
.

Note that with setting c = 0 we have the Max-k-Cut problem.
For the relaxation, the variable yi can be inside of the triangle defined by

R3, instead of only being the endpoints. Therefore the constraints for the yi are
yi · yi = 1, and αyi · yj + ᾱyj · yi ≥ −1 for all i, j and every α ∈ R3. Letting
Y be the Gram matrix Yi,j = yi · yj , we can formulate Max 2-Lin-Mon-3 as a
complex SDP problem:

Maximize C · Y
subject to: Yii = 1 ∀i = 1, . . . , n

αYij + ᾱYji ≥ −1 ∀i ̸= j, α ∈ R3

Y ⪰ 0

(7.7)

where C ∈ Hn is a Hermitian matrix that combines all the contributions of equations
and inequations. Once we have the solution matrix Y , we can obtain the vectors
yi by doing a Cholesky decomposition Y = LL∗ and setting yi as the i-th column
of L. Then, generate a random vector r ∈ C and set

xi =


0 if arg(r · yi) ∈ [0, 2π/3)
1 if arg(r · yi) ∈ [2π/3, 4π/3)
2 if arg(r · yi) ∈ [4π/3, 2π)
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where arg(z) is the argument of complex number z. This rounding gives an
performance guarantee of α = 0.836, however it is only for the case where k = 3.

7.3.2 De Klerk, Pasechnik and Warners
The procedure of Klerk, Pasechnik, and Warners (2004) uses the SDP formulation
of the Lovász ϑ function instead of the direct SDP approach of the Max-k-Cut.
Additionally, the main focus of the analysis is on graph coloring, which is a special
case of the unweighted Max-k-Cut. Graph coloring assigns colors to each node
such that the number of defective edges (edges with same color endpoints) is
minimized. This is the equivalent of maximizing the number of edges with end
nodes in different sets, which is the goal of the unweighted Max-k-Cut.

In Klerk, Pasechnik, and Warners (2004), first they formulate graph coloring as
a boolean quadratic feasibility problem of size kn × kn, then they relax it to an
instance of SDP of size (kn + 1)× (kn + 1), show that this problem is equivalent
to the Lovász ϑ representation of Karger, Motwani, and Sudan (1998) and finally
use the Lovász ϑ solution to do the rounding.

For the boolean quadratic feasibility problem, let the binary {−1, 1} variables
xj

i be:

xj
i =

{
1 if node i has color j

−1 otherwise

with i = 1, . . . , n and j = 1, . . . , k. Then, the feasibility problem for graph
k-coloring is:

Find {xj
i | i = 1, . . . , n ∧ j = 1, . . . , k}

such that:
(
xp

i + xp
j + 1

)2 = 1 if (i, j) ∈ E

k∑
j=1

xj
i = −k + 2 ∀i = 1, . . . , n

(7.8)

where the first constraint forces adjacent vertices to have different colors and the
second constraint makes each node to have only one color. The SDP relaxation of
Equation 7.8 involves a matrix X ∈ Rkn+1×kn+1 which includes all the possible
products of variables xj

i , and can be seen in detail in Klerk, Pasechnik, and Warners
(2004). They show that this problem is equivalent to the following formulation of
the Lovász ϑ:

ϑ(Ḡ) = min
U,k

k

subject to: Ui,j = −1
k − 1 if (i, j) ∈ E

Uii = 1 ∀i = 1, . . . , n

U ⪰ 0, k ≥ 2.

(7.9)
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Algorithm 10: Randomized Rounding of Klerk, Pasechnik, and Warners (2004)

1: Solve (7.9), obtaining an optimal Positive Semidefinite (PSD) matrix U .
2: Let

Y = U ⊗ k

k − 1

(
Ik −

1
k

ekeT
k

)
where ⊗ is the Kronecker product, Ik is the identity matrix of size k × k and
ek is the all ones vector of size k.

3: Do the Cholesky factorization of Y = V T V and the columns of V as the
vectors v1

1 , v2
1 , . . . , vk

1 , . . . , vk
n.

4: Pick a random unitary vector r ∈ Rkn from the uniform distribution.
5: Set xj

i = 1 if r · vj
i = maxl=1,...,k(r · vl

i), or set xj
i = −1 otherwise.

where Ḡ is the complementary graph of G. For more details of the meaning of the
Lovász ϑ and its relation to the coloring problem see Section 7.5. The SDP problem
7.9 is used for rounding the solution and the procedure is shown in Algorithm 10.

Note that the problem of 7.8 is a feasibility problem, therefore for smaller k
integers the rounding may not be possible, in particular, for k values smaller than
the optimal ϑ(Ḡ).

This rounding method works for unweighted graphs, possibly not for small k,
and the rounding method lift the dimensions from n× n to kn× kn. However the
analysis of the performance guarantee allows to get larger values than the other
methods which work with maximization problems instead of feasibility, such as the
rounding of Frieze and Jerrum (1997). Additionally Klerk, Pasechnik, and Warners
(2004) proved the equivalence of their method to the rounding of Frieze and Jerrum
(1997) and obtained the performance bounds of 0.836 for k = 3 and 0.8575 for
k = 4, and a way to calculate the value of the performance bound for other k
values.

7.3.3 Frieze and Jerrum

This is the natural generalization to the procedure of Max-Cut and it is described
in Frieze and Jerrum (1997). Once the vectors v1, . . . , vk solution of Equation 7.4
are obtained, generate k random unitary vectors which will represent the k partitions.
To round the vectors to an instance of Max-k-Cut, assign node j to partition Ai

if the vector ri is the closest among all the r vectors to vj , i.e., if vj · ri ≥ vj · ri′

for all i ̸= i′. This algorithm is summarized in Algorithm 11.
Let A∗ denote the optimum partition and AJF the partition obtained with

Algorithm 11. Then, Frieze and Jerrum (1997) proved that E(w(AJF )) ≥ αkw(A∗),
where the performance guarantees αk satisfy:

i) αk > 1− k−1

ii) αk − (1− k−1) ∼ 2k−2 log k
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Algorithm 11: Randomized Rounding of Frieze and Jerrum (1997)

1: Solve (7.4), obtaining an optimal set of vectors v1, . . . , vn

2: Pick k random vectors ri = (ri,1, . . . , ri,n) by drawing each component ri,j

independently from N(0, 1), the normal distribution with mean 0 and variance
1.

3: Set Ai = {j|vj · ri ≥ vj · ri′ ∀i′ ̸= i}. Break ties arbitrarily.

Algorithm 12: Rounding using k-Clustering

1: Solve (7.4), obtaining an optimal set of vectors v1, . . . , vn

2: Do clustering to the set of vectors v1, . . . , vn to obtain k clusters C1, . . . , Ck

3: Set Ai = {i|vi ∈ Ci}.

iii) α2 ≥ 0.878567, α3 ≥ 0.800217, α4 ≥ 0.850304, α5 ≥ 0.874243, α10 ≥
0.926642, α100 ≥ 0.990625

where ∼ indicates that the ratio of the two expressions tends to 1 in the limit where
k →∞.

7.3.4 Clustering
Let v1, . . . , vn be the solution vectors of Equation 7.4. If the weight wij is large,
the SDP problem will try to put vectors vi and vj as far as possible, i.e., making
(1 − vi · vj) as large as possible in order to add that large weight value to the
objective function. This motivates the use of clustering for the rounding of the
vectors vi instead of a randomized approach, so that we can take better advantage
of the geometrical properties of these solution vectors. The rounding algorithm,
described in Algorithm 12, consists on clustering the set of vectors vi, . . . , vn into
k clusters C1, C2, . . . , Ck, and set the partitions Ai = {i|vi ∈ Ci}.

As we will see in Section 7.4, using clustering gives better solutions than the
randomized rounding, however a performance guarantee is yet to be found.

7.4 Numerical Experiments

In order to test the performance of Algorithm 12 and Algorithm 11, four types of
Test Graphs test graphs as in Goemans and Williamson (1995) were used:

i) Random Graph Type A. Each possible edge is included with probability 1/2.
All edges have weight 1 (Erdős–Rényi of type G(n, p) with p = 1/2).

ii) Random Graph Type B. Each possible edge is included with probability 1/2.
Edge weights are integers taken randomly from the interval [-50,50] uniformly.

iii) Random Graph Type C. Each possible edge is included with probability 10/n
where n is the number of nodes. This way each node has constant expected
degree. All edges have weight 1.



Chapter 7. Max-k-Cut 87

iv) Random Graph Type D. Edge (i, j) is included with probability 0.1 if i ≤ n/2
and j > n/2 or with probability 0.05 otherwise. This favors large 2-cuts
between the first n/2 nodes and the remaining n/2 ones. All edges have
weight 1.

For all the test graphs, 50 instances of 50 nodes, 20 instances of 100 nodes and 5
instances of 200 nodes were used, having a total of 300 graphs to use as Random Graphs

Benchmark
benchmark.

For notation, Xm,i will be used to refer a graph of type X ∈ {A, B, C, D}, with
m nodes and instance number i. For example, the 30th graph of type C, with 100
nodes is denoted as C100,30. A table summarizing the Random Graphs Benchmark
and its properties is shown in Table 1.

Table 1: Random Graphs Benchmark. For these graphs, the number of nodes is fixed,
the number of edges are in expected value and ρ is the graph density.

Instance Nodes n Edges (E) E[m] Density ρ (E) E[ρ] Weight Type of Graph

A50 50 n(n−1)
4 612.5 1

2 50% 1 Erdős–Rényi
A100 100 2475 50% type G(n, p)
A200 200 9950 50% with p = 0.5

B50 50 n(n−1)
4 612.5 1

2 50% [-50,50] Erdős–Rényi
B100 100 2475 50% type G(n, p)
B200 200 9950 50% with p = 0.5

C50 50 10n
2 250 10

n−1 20.41% 1 (Expected)
C100 100 500 10.10% Constant
C200 200 1000 5.03% Degree of 10

D50 50 n(3n−2)
80 92.5 3n−2

40(n−1) 7.55% 1 Favors 2-Cut:
D100 100 372.5 7.53% A = [1, n/2]
D200 200 1495 7.51% B = [n/2 + 1, n]

In order to obtain the vectors v1, . . . , vn from Equation 7.4, first we used the
function SemidefiniteOptimization of Mathematica to solve Equation 7.6 obtaining
the matrix X ⪰ 0, then use a Cholesky decomposition to factorize X = V T V , and
finally, set vi to be the i-th column of V .

We used k-means (MacQueen, 1967) adapted to the unitary sphere as the
clustering method for Algorithm 12. The centroids that initialize k-means are k
random unitary vectors: each centroid entry is independently drawn from a normal
distribution with mean 0 and variance 1, and then properly scaled to make them
unitary.

Finally, we use both Algorithm 11 and Algorithm 12 to round the set of vectors
v1, . . . , vn and the results are discussed in Subsection 7.4.1.

7.4.1 Results

In this section, we will refer to Algorithm 11 as RandRound and to Algorithm 12
as K-Means. Let OPT be the optimal value of Equation 7.4 and f∗ the cut found
by any of the rounding algorithms. Then, following the definition of Goemans and
Williamson, 1995,the Average Integer GapAverage Integer Gap AIG is the quotient
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AIG = f∗

OPT
(7.10)

and for graphs with negative weights, we need to use the alternative quotient
defined in Section 6.3.1

AIG = f∗ −W−

OPT −W−

where W− =
∑

i<j w−
ij is the sum of all the negative weights with the function

x− = min(0, x). Additionally, we define theCut Gap Cut Gap CG as the quotient of the
cut value found by any of the rounding algorithms f∗ and the largest possible cut,
i.e., the sum of all weights:

CG = f∗∑
i<j wij

and for graphs with negative weights, we need to use the alternative quotient

CG = f∗ −W−

W+ −W−

where W+ =
∑

i<j w+
ij is the sum of all the positive weights with the function

x+ = max(0, x). We use the sum of all weights since it is the highest possible
value a cut can have.

A comparison of the average integer gap and the cut gap obtained for the
Random Graphs benchmark is shown in Figure 26. Looking at graphs with positive
weights, i.e., type A, C and D, we see in Figure 26b that the cut value increase
with larger k as expected. For the Erdős–Rényi graphs A with high density, the
cut gaps are lower than for graphs C and D with lower density. Moreover, graphs
of type A have no additional structure compared with graphs C (with constant
expected degree) and graphs D (favors a specific two cut), which may make those
instances easier to solve. For the type B graphs, the negative weights have an
impact and the cut gaps are the lowest among all of the graph types. Even having
k = n will not make the problem easier since isolating each node as a partition
will not give the optimal cut as in the case for graphs with only positive weights.
However looking at the integer gap, we see that the solutions are still very close to
the relaxed optimum OPT , therefore the cut gap is not a good measure for graphs
with negative edges.

In Figure 26a the average integer gap obtained for each algorithm and some
values of k is depicted. The information obtained from the average integer gap as
k increases, can be interpreted as the difficulty of the rounding. Let us analyze
each type of graph separately:

For type A graphs, the average integer gap is reaching almost 0.97 with clustering
as the rounding method and independently of the value of k. This suggests that,
even though the cut value obtained increases, the effectiveness of the rounding
remains the same and around 0.97. As for the randomized rounding, the higher the
k, the more difficult is to find better cuts, since the average integer gap is lower.
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(a) Average Integer Gap values.
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Figure 26: Values of the average integer gap (26a) and the cut gap (26b) obtained by
both Algorithm 11 (RandRound in cyan) and Algorithm 12 (k-Means in magenta) for the
random graphs A, B, C and D, and k = 3, k = 4 and k = 5.
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Not to be confused, the cut values found are higher with higher k as seen in the
cut gap plots; a lower average integer gap means that the relaxed solution can not
be rounded as effectively with larger k.

For type B graphs, the graphs with negative weights, we find that increasing
k decreases the integer gap, however the value of the cut remains approximately
constant (as seen in the cut gap). This suggests that the relaxation for larger k is
harder.

For type C graphs, with expected constant degree of 10, we observe that a larger
k gives larger average integer gap values, and for k = 5 already a value of almost
0.98 is reached (for clustering) and the same one independently of the number of
nodes. If we were to continue until k = 10, the average integer gap should be 1
for almost all instances (using clustering as rounding), since the expected degree is
10 and the density is low, therefore avoiding lots of cliques of size 10 (the worst
possible case). The behavior for randomized rounding is the same as in clustering,
but around 0.04 lower. Lastly, for k = 3, increasing the number of nodes decreases
the integer gap, but the value of the cut is maintained regardless of the size, which
is to be expected for a graph with expected constant degree.

For type D graphs, and in particular for graphs with 50 nodes, clustering finds
solutions with almost the same value as the relaxed solution OPT , and for k = 5
the average integer gap is closed. However, as the number of nodes increases, the
average integer gap decreases, both for randomized rounding and clustering, and
for k = 5 the average integer gap is not closed anymore.

Finally, we observe that both for the cut values (as seen in the cut gap) and the
integer gap, and for all cases, clustering yields better results than the randomized
rounding algorithm.

7.4.2 Correcting Numerical Issues

Matrix X obtained by solving Equation 7.6 with Mathematica can have numerical
precision problems and have small (≈ 10−9) negative eigenvalues, although the
function SemidefiniteOptimization is supposed to return a Positive Semidefinite
(PSD) matrix. Therefore a Cholesky decomposition in those cases is not possible.
However, since we know that X is supposed to be PSD, we can slightly modify it
to make it PSD. We follow the procedure of Higham (1988) to compute X̄, the
nearest PSD matrix to X, and do the Cholesky decomposition of X̄ instead of X.

In order to see how using X̄ may affect the results, we solved using both X
and X̄ for all the instances where the original matrix X was PSD, which are: 8
graphs of type A50, 1 A100, 5 C50, 2 C100, 1 C200, 37 D50 and 6 D100 for k = 3;
23 A50, 8 A100, 46 C50, 18 C100, 4 C200, 50 D50, 18 D100 and 5 D200 for k = 4;
and 34 A50, 14 A100, 2 A200, 50 C50, 20 C100, 5 C200, 50 D50, 20 D100 and 5 of
type D200 for k = 5.

This comparison is shown in Figure 27, and from the figure we see that using
the corrected matrix X̄ the overall behavior is maintained except for the case of
C50 with k = 3, where the average integer gap increased. Therefore using X̄ is
justified.
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(a) Values of the average integer gap for the original matrix X.
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(b) Values of the average integer gap for the corrected matrix X̄.

Figure 27: Values of the average integer gap obtained by RandRound and K-Means for
the random graphs A,C and D where the original matrix X was PSD, for k = 3, k = 4
and k = 5, and for both X and X̄.
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7.5 Relation with k-Coloring and the Lovász ϑ Function

In this section we will discuss the relation between the Max-k-Cut problem, the
k-coloring problem and the Lovász ϑ function.

The Lovász ϑ can be computed efficiently and is “sandwiched” by two NP-hard
graph numbers, the chromatic χ(G) and the clique number ω(G). Lovasz (1979)
proved the so called “sandwich” theorem:

ω(G) ≤ ϑ(Ḡ) ≤ χ(G)

where Ḡ is the complementary graph of G. We can already see that it is closely
related to the graph coloring problem.

In Karger, Motwani, and Sudan (1998), they define vector k-coloring, a relaxation
of the coloring problem. The idea is to represent each node as a vector, and make
the vectors of adjacent nodes to be as different as possible, i.e., as far away from
each other as possible. For a graph G = (V, E), aVector k-Coloring vector k-coloring is a set of n
unitary vectors vi such that satisfy:

vi · vj ≤
−1

k − 1 ∀(i, j) ∈ E, (7.11)

and the set of vectors is a strict vector k-coloring if it satisfies the equality. The
vector chromatic number and the strict vector chromatic number are the smaller
values of k such that a vector k-coloring and a strict vector k-coloring exists. The
strict vector chromatic number can be formulated as a Semidefinite Programming
(SDP) problem, and the dual of this problem is one of the formulations for the
Lovász ϑ (Karger, Motwani, and Sudan, 1998).

All three problems have similar relaxed formulations related to the k vertices
of the k − 1 simplex Σk−1. A difference in the nature of the problems is that for
k-coloring we are interested in finding the smallest k such that a k-coloring of the
graph exists, meanwhile for Max-k-Cut, k can be smaller than the chromatic
number (if we are interested in fixed k). However, one can ask for the smallest k
such that an unweighted graph has a perfect k-cut, and that will be equivalent to
finding the smallest k for which a coloring exists.
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As seen from the results of Chapter 6, clustering improves the results of a randomized
rounding for the Max-Cut problem, however the proof of a performance guarantee
has yet to be found. Moreover, if the unique games conjecture (Khot, 2002) is
true, the performance guarantee for the Max-Cut problem cannot be better than
α ≈ 0.878 and in general cannot be better than 16/17 unless P=NP. For application
purposes using clustering is recommended since it obtains larger cut values. This is
a clear example that using the structure of the problem helps design algorithms that
find better solutions possibly at the cost of a lower (or none at all) approximation
guarantee, such as Garcia-Diaz et al. (2017) for the k-center problem.

Using Spectral Clustering (SC) as the clustering method for the Max-Cut
problem, the results obtained although competitive, were on average lower than
using k-means. This is due to the fact that the similarity measures utilized were
not able to adequately separate the vectors as seen in Figure 18 and Figure 19.
There might be another similarity measure that separates better the vectors and
therefore give better results than k-means, however it has yet to be found.

The spectrum analysis of the Gram Matrix of the solution vectors vi, obtained
from the relaxed problem for Max-Cut (Equation 6.2), give an insight into the
difficulty of the problem and it seems to be directly related to the number of
non-zero eigenvectors. From the Principal Component Analysis (PCA) shown in
Section 6.4 we can observe that even though the relaxation enlarges the original
1-dimensional integer problem into an n-dimensional space (n being the number
of nodes in the graph), the Vector Programming (VP) problem utilizes as few
dimensions as possible. For instance, the vectors vi are 1-dimensional and integer
for the simple planar graphs (B1-B4) of the B-set benchmark, i.e., all entries are 0
except for the first, for which the values are ±1. Adding a cycle to the trees (graph
B5) forces the VP problem to use 2 dimensions, but still manages to perfectly
separate the vectors. Adding cliques (graphs B6 and B7) raises the number of
dimensions utilized even more, and the points are not perfectly separable anymore.

If the topology of a graph is not known in advance, a spectral analysis of
its Laplacian matrix can be computed. Using this information, the graph can be
classified as similar to a toroidal, planar or random graph by comparing the spectrum
to the ones in Figure 20. Then, for this instance, select the clustering method that
performs the best for that particular graph topology.

Naturally, RandomizedMinMax (RMM) obtained higher cut values since it is an
iterative process consisting of a clustering rounding step followed by a Local Search
(LS) until a local optima of this algorithm is found, i.e., until the solution after
clustering and LS is the same as in the previous iteration. As seen in the trajectories
on the cut vs inertia space (Figure 23), there is a large portion of the space which
was not explored and most of the trajectories are in a reduced area. This suggests
to design other guided heuristics that explore a larger region of the space.

Using clustering instead of randomized rounding improves the results for the
Max-k-Cut problem as well, as seen in the results from Chapter 7. The bench-
mark utilized was originally designed for the Max-Cut problem (Goemans and
Williamson, 1995), therefore additional types of graphs can be designed to test and
compare the algorithms. For example, in the Random Graph Benchmark (Table 1),
graphs of type D were designed to favor a bipartition for the Max-Cut prob-
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lem, therefore designing additional graphs that favor a k partition for some values
of k can give additional information about the problem. Additionally, the data
strongly suggests that the approximation guarantee of the randomized rounding is
maintained, however a proof has yet to be found.

The results shown in Figure 26 suggest how to expand and continue the analysis
of the Max-k-Cut problem. For instance, for graphs of type A (Erdős-Rényi
graphs), the average integer gap (Equation 7.10) of clustering have similar values
independent of the value of k, meanwhile for the randomized rounding, the larger the
k the more difficult it seems to obtain a good solution parting from the relaxation.
This means that, although the cut values obtained in the relaxed problem increases
with larger k, the rounding increases in the same manner when using clustering, but
slower for the randomized rounding. A natural continuation for this analysis will be
testing with larger k values. For types C and D, both clustering and randomized
rounding obtained better rounded solutions as k increases, in contrast to type B
graphs where the opposite behavior is observed. Graphs of type B allow edges to
have negative weights, which can be the main reason for being the only types of
graph for which larger k values obtain worst average integer gap values for the
clustering rounding.

The software used to solve the Semidefinite Programming (SDP) relaxation of
Max-k-Cut stops working for instances of n ≥ 200 nodes. Since the relaxation
is an SDP problem, an efficient interior point method specifically programmed for
the Max-k-Cut that solves larger instances can be designed. With this, more
benchmarks, such as the G-set used for the Max-Cut problem can be solved.

As discussed in Section 7.3, there are several rounding methods for the Max-
k-Cut problem, however using a direct relaxation of the integer formulation of
the problem (as used for the results of clustering as rounding) allows us to find
a solution for any integer k ≥ 2, meanwhile using the formulation of the Lovász
ϑ-function allows only for k ≥ ϑ(Ḡ), i.e., greater or equal than the solution of
Equation 7.9.

For the Sherrington-Kirkpatrick, the p-spin and the NK models of fitness
landscapes, an attempt was made to find a relation between the covariance matrix
and the number of local optima. However for these models and neighborhoods used,
a relation has yet to be found. The procedure in order to find this relation in future
work can be summarized as follows: First, find simple models or neighborhoods for
which both the covariance matrix and the number of local optima is known, then
find a relation in these simple cases and lastly search if there is a general relation
for more complex problems which the number of local optima and the covariance
matrix still can be found.
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Table 2: Cut values obtained with Spectral Clustering using K-MeansDet. The last
column is the result obtained in Rodriguez-Fernandez et al. (2020). For each graph, i.e.,
for each row, a white-green color scale was used. A white color indicate higher cut values
while a green color indicate lower cut values. Small cut values were replaced with a N/A
to make the white-green color differences larger.

Graph β = 0 β = 0.5 β = 0.25 σ = 0.5 σ = 0.25 σ = 1 σ = 10 kMeansDet

G1 11414 11427 11414 11408 N/A 11417 11414 11470
G2 11310 11315 11310 11286 11245 11284 11310 11365
G3 11393 11402 11397 11398 N/A 11398 11398 11408
G4 11353 11350 11353 11356 53 11356 11353 11426
G5 11432 11424 11432 11455 45 11432 11432 11379
G6 1936 1941 1936 1931 1912 1934 1934 1923
G7 1714 1719 1713 1709 N/A 1732 1714 1748
G8 1758 1751 1759 1746 N/A 1759 1767 1776
G9 1819 1806 1816 1787 N/A 1815 1819 1797
G10 1765 1756 1765 1765 N/A 1759 1753 1748
G11 512 510 510 510 430 514 512 518
G12 516 514 516 512 512 516 516 524
G13 530 534 530 530 528 532 532 548
G14 2951 2952 2951 2918 N/A 2941 2939 2953
G15 2965 2965 2965 2955 2938 2965 2965 2958
G16 2946 2951 2947 2951 N/A 2951 2946 2950
G17 2959 2961 2959 2953 N/A 2958 2960 2947
G18 897 895 897 896 N/A 897 897 883
G19 792 794 792 772 N/A 791 793 812
G20 844 839 844 851 838 842 844 863
G21 812 814 816 817 810 810 812 826
G22 12935 12926 12935 12942 N/A 12935 12935 12893
G23 12987 12991 12987 12985 N/A 12991 12987 12924
G24 12983 12976 12983 12978 12927 12983 12983 12904
G25 12870 12870 12868 12876 N/A 12866 12868 12922
G26 12867 12877 12867 12889 N/A 12866 12867 12886
G27 2892 2890 2892 2866 N/A 2890 2892 2891
G28 2852 2836 2852 2850 N/A 2847 2848 2834
G29 2973 2972 2973 2975 N/A 2971 2973 2946
G30 3007 3001 3007 3002 N/A 3003 3007 2979
G31 2884 2880 2881 2842 N/A 2875 2880 2867
G32 1266 1262 1266 1242 1204 1258 1266 1294
G33 1222 1222 1222 1226 N/A 1220 1222 1266
G34 1244 1248 1244 1254 1254 1246 1244 1268
G35 7412 7407 7412 7401 N/A 7408 7412 7424
G36 7383 7375 7383 7333 N/A 7382 7383 7399
G37 7425 7424 7424 7439 N/A 7430 7428 7437
G38 7358 7362 7359 7342 7330 7355 7360 7411
G39 2136 2134 2134 2117 N/A 2136 2140 2176
G40 2153 2138 2155 2150 N/A 2156 2154 2134
G41 2116 2114 2116 2102 N/A 2111 2114 2149
G42 2171 2162 2171 2162 2118 2176 2171 2188
G43 6510 6505 6513 6515 N/A 6513 6510 6442
G44 6455 6458 6455 6414 N/A 6461 6455 6461
G45 6449 6426 6449 6448 N/A 6447 6449 6448
G46 6423 6420 6422 6415 N/A 6419 6423 6425
G47 6456 6452 6460 6442 N/A 6457 6456 6480
G48 6000 6000 6000 6000 6000 6000 6000 6000
G49 6000 6000 6000 6000 6000 6000 6000 6000
G50 5880 5880 5880 5880 5880 5880 5880 5880
G51 3726 3737 3726 3714 N/A 3725 3726 3711
G52 3711 3713 3711 3705 N/A 3710 3711 3721
G53 3695 3694 3695 3694 N/A 3688 3692 3715
G54 3691 3689 3691 3600 N/A 3668 3691 3712
G57 3152 3152 3150 3152 N/A 3146 3148 3158
G58 18557 18565 18557 18516 N/A 18557 18560 18528
G59 5312 5310 5312 5300 N/A 5313 5309 5350
G62 4378 4384 4380 4378 N/A 4364 4372 4394
G63 25988 25994 25988 25988 N/A 25983 25984 25933
G64 7748 7742 7751 7747 N/A 7742 7748 7698
G65 4970 4962 4972 4966 N/A 4970 4972 5026
G66 5672 5668 5670 5646 N/A 5666 5672 5776
G67 6232 6238 6230 6236 N/A 6226 6228 6282
G72 6248 6252 6246 6236 N/A 6238 6250 6342
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Table 3: Cut values obtained with Spectral Clustering using K-MeansNM. The last column
is the result obtained in Rodriguez-Fernandez et al. (2020). For each graph, i.e., for each
row, a white-green color scale was used. A white color indicate higher cut values while a
green color indicate lower cut values. Small cut values were replaced with a N/A to make
the white-green color differences larger.

Graph β = 0 β = 0.5 β = 0.25 σ = 0.5 σ = 0.25 σ = 1 σ = 10 kMeansNM

G1 11414 11427 11414 11419 N/A 11417 11414 11470
G2 11310 11331 11310 11286 N/A 11297 11310 11365
G3 11398 11402 11398 11398 N/A 11398 11398 11408
G4 11353 11350 11353 11356 N/A 11356 11353 11426
G5 11432 11424 11432 11455 N/A 11432 11432 11379
G6 1936 1942 1936 1931 1912 1934 1934 1923
G7 1722 1728 1722 1709 N/A 1732 1722 1748
G8 1758 1751 1759 1746 N/A 1759 1767 1776
G9 1819 1806 1816 1787 N/A 1815 1819 1797
G10 1765 1758 1765 1765 1680 1759 1759 1748
G11 512 510 510 510 N/A 514 512 518
G12 516 514 516 512 512 516 516 524
G13 532 534 532 530 534 532 532 548
G14 2956 2958 2954 2918 2901 2943 2952 2953
G15 2965 2965 2965 2955 2940 2967 2965 2958
G16 2946 2951 2947 2951 N/A 2951 2946 2950
G17 2960 2961 2960 2953 N/A 2958 2960 2947
G18 897 895 897 896 850 897 897 883
G19 792 794 792 776 799 793 793 812
G20 844 840 844 854 838 842 844 863
G21 812 814 816 817 817 810 812 826
G22 12935 12931 12935 12942 N/A 12935 12935 12893
G23 12987 12991 12987 12985 N/A 12991 12987 12924
G24 12983 12976 12983 12978 12927 12983 12983 12904
G25 12870 12878 12868 12881 N/A 12866 12868 12922
G26 12873 12877 12873 12889 N/A 12866 12873 12886
G27 2892 2890 2892 2868 N/A 2891 2892 2891
G28 2852 2840 2852 2850 2636 2847 2848 2834
G29 2978 2972 2979 2979 2903 2980 2981 2946
G30 3007 3001 3007 3002 N/A 3003 3007 2979
G31 2884 2880 2881 2842 N/A 2875 2880 2867
G32 1266 1262 1266 1244 1204 1258 1266 1294
G33 1222 1222 1222 1226 716 1220 1222 1266
G34 1246 1248 1248 1254 1254 1246 1244 1268
G35 7412 7409 7412 7401 N/A 7411 7412 7424
G36 7383 7375 7383 7333 7316 7382 7383 7399
G37 7441 7443 7440 7439 N/A 7439 7442 7437
G38 7359 7364 7359 7342 7330 7356 7360 7411
G39 2136 2134 2134 2117 2046 2136 2140 2176
G40 2153 2138 2155 2150 N/A 2156 2154 2134
G41 2118 2114 2118 2102 N/A 2113 2114 2149
G42 2171 2165 2171 2169 2118 2176 2171 2188
G43 6510 6505 6513 6515 N/A 6513 6510 6442
G44 6456 6465 6456 6414 N/A 6461 6456 6461
G45 6449 6426 6449 6448 N/A 6447 6449 6448
G46 6423 6422 6422 6415 N/A 6420 6423 6425
G47 6456 6452 6460 6442 N/A 6457 6456 6480
G48 6000 6000 6000 6000 6000 6000 6000 6000
G49 6000 6000 6000 6000 6000 6000 6000 6000
G50 5760 5760 5880 5880 5880 5880 5880 5880
G51 3736 3738 3736 3719 N/A 3725 3740 3711
G52 3711 3713 3711 3707 N/A 3710 3711 3721
G53 3695 3694 3695 3694 3288 3688 3692 3715
G54 3691 3689 3691 3600 3574 3668 3691 3712
G57 3152 3152 3150 3152 3084 3146 3148 3158
G58 18557 18565 18557 18516 N/A 18557 18560 18528
G59 5312 5310 5314 5300 5302 5313 5309 5350
G62 4378 4390 4380 4378 N/A 4364 4376 4394
G63 25988 25994 25988 25988 N/A 25985 25984 25933
G64 7748 7743 7751 7747 N/A 7743 7748 7698
G65 4972 4962 4972 4966 N/A 4970 4972 5026
G66 5672 5668 5672 5662 N/A 5666 5672 5776
G67 6232 6238 6230 6236 N/A 6226 6228 6282
G72 6248 6252 6246 6238 N/A 6238 6250 6342
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Table 4: Cut values obtained with Spectral Clustering using K-Means2N. The last column
is the result obtained in Rodriguez-Fernandez et al. (2020). For each graph, i.e., for each
row, a white-green color scale was used. A white color indicate higher cut values while a
green color indicate lower cut values. Small cut values were replaced with a N/A to make
the white-green color differences larger.

Graph β = 0 β = 0.5 β = 0.25 σ = 0.5 σ = 0.25 σ = 1 σ = 10 kMeans2N

G1 11414 11427 11414 11419 N/A 11417 11414 11470
G2 11310 11331 11310 11286 11245 11297 11310 11365
G3 11398 11402 11398 11398 N/A 11398 11398 11408
G4 11353 11350 11353 11356 N/A 11356 11353 11426
G5 11432 11424 11432 11455 N/A 11432 11432 11379
G6 1936 1942 1936 1931 1912 1934 1934 1923
G7 1722 1728 1722 1709 N/A 1732 1722 1748
G8 1758 1751 1759 1746 N/A 1759 1767 1776
G9 1819 1806 1816 1787 N/A 1815 1819 1797
G10 1765 1758 1765 1765 1680 1759 1759 1748
G11 512 510 510 510 430 514 512 518
G12 516 514 516 512 512 516 516 524
G13 532 534 532 530 534 532 532 548
G14 2956 2958 2954 2918 2901 2943 2952 2953
G15 2965 2965 2965 2955 2940 2967 2965 2958
G16 2946 2951 2947 2951 N/A 2951 2946 2950
G17 2960 2961 2960 2953 N/A 2958 2960 2947
G18 897 895 897 896 850 897 897 883
G19 792 794 792 776 799 793 793 812
G20 844 840 844 854 838 842 844 863
G21 812 814 816 817 817 810 812 826
G22 12935 12931 12935 12942 N/A 12935 12935 12893
G23 12987 12991 12987 12985 N/A 12991 12987 12924
G24 12983 12976 12983 12978 12927 12983 12983 12904
G25 12870 12878 12868 12881 N/A 12866 12868 12922
G26 12873 12877 12873 12889 N/A 12866 12873 12886
G27 2892 2890 2892 2868 N/A 2891 2892 2891
G28 2852 2840 2852 2850 2636 2847 2848 2834
G29 2978 2972 2979 2979 2903 2980 2981 2946
G30 3007 3001 3007 3002 N/A 3003 3007 2979
G31 2884 2880 2881 2842 N/A 2875 2880 2867
G32 1266 1262 1266 1244 1204 1258 1266 1294
G33 1222 1222 1222 1226 716 1220 1222 1266
G34 1246 1248 1248 1254 1254 1246 1244 1268
G35 7412 7409 7412 7401 N/A 7411 7412 7424
G36 7383 7375 7383 7333 7316 7382 7383 7399
G37 7441 7443 7440 7439 N/A 7439 7442 7437
G38 7359 7364 7359 7342 7330 7356 7360 7411
G39 2136 2134 2134 2117 2046 2136 2140 2176
G40 2153 2138 2155 2150 N/A 2156 2154 2134
G41 2118 2114 2118 2102 N/A 2113 2114 2149
G42 2171 2165 2171 2169 2118 2176 2171 2188
G43 6510 6505 6513 6515 N/A 6513 6510 6442
G44 6456 6465 6456 6414 N/A 6461 6456 6461
G45 6449 6426 6449 6448 N/A 6447 6449 6448
G46 6423 6422 6422 6415 N/A 6420 6423 6425
G47 6456 6452 6460 6442 N/A 6457 6456 6480
G48 6000 6000 6000 6000 6000 6000 6000 6000
G49 6000 6000 6000 6000 6000 6000 6000 6000
G50 5760 5760 5880 5880 5760 5880 5880 5880
G51 3736 3738 3736 3719 N/A 3725 3740 3711
G52 3711 3713 3711 3707 N/A 3710 3711 3721
G53 3695 3694 3695 3694 3288 3688 3692 3715
G54 3691 3689 3691 3600 3574 3668 3691 3712
G57 3152 3152 3150 3152 3084 3146 3148 3158
G58 18557 18565 18558 18516 N/A 18557 18560 18528
G59 5312 5310 5314 5300 5302 5313 5309 5350
G62 4378 4390 4380 4378 3644 4364 4376 4394
G63 25988 25994 25988 25988 N/A 25985 25984 25933
G64 7748 7743 7751 7747 N/A 7743 7748 7698
G65 4972 4962 4972 4966 N/A 4970 4972 5026
G66 5672 5668 5672 5662 N/A 5666 5672 5776
G67 6232 6238 6230 6236 N/A 6226 6228 6282
G72 6248 6252 6246 6238 N/A 6238 6250 6342
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Table 5: Cut values obtained with Spectral Clustering using K-MeansRand. The last
column is the result obtained in Rodriguez-Fernandez et al. (2020). For each graph, i.e.,
for each row, a white-green color scale was used. A white color indicate higher cut values
while a green color indicate lower cut values. Small cut values were replaced with a N/A
to make the white-green color differences larger.

Graph β = 0 β = 0.5 β = 0.25 σ = 0.5 σ = 0.25 σ = 1 σ = 10 kMeansRand

G1 11414 11427 11414 11419 N/A 11417 11414 11470
G2 11310 11331 11310 11286 11245 11297 11310 11365
G3 11398 11402 11398 11398 N/A 11398 11398 11408
G4 11353 11350 11353 11356 N/A 11356 11353 11426
G5 11432 11424 11432 11455 N/A 11432 11432 11379
G6 1936 1942 1936 1931 1912 1934 1934 1923
G7 1722 1728 1722 1709 N/A 1732 1722 1748
G8 1758 1751 1759 1746 N/A 1759 1767 1776
G9 1819 1806 1816 1787 N/A 1815 1819 1797
G10 1765 1758 1765 1765 1680 1759 1759 1748
G11 512 510 510 510 430 516 512 518
G12 516 514 516 512 512 516 516 524
G13 532 534 532 530 534 532 532 548
G14 2956 2958 2954 2918 2901 2943 2952 2953
G15 2965 2965 2965 2955 2940 2967 2965 2958
G16 2946 2951 2947 2951 N/A 2951 2946 2950
G17 2960 2961 2960 2953 N/A 2958 2960 2947
G18 897 895 897 896 850 897 897 883
G19 792 794 792 776 799 793 793 812
G20 844 840 844 854 838 842 844 863
G21 812 814 816 817 817 810 812 826
G22 12935 12931 12935 12942 N/A 12935 12935 12893
G23 12987 12991 12987 12985 N/A 12991 12987 12924
G24 12983 12976 12983 12978 12927 12983 12983 12904
G25 12870 12878 12868 12881 N/A 12866 12868 12922
G26 12873 12877 12873 12889 N/A 12866 12873 12886
G27 2892 2890 2892 2868 N/A 2891 2892 2891
G28 2852 2840 2852 2850 2636 2847 2848 2834
G29 2978 2972 2979 2979 2903 2980 2981 2946
G30 3007 3001 3007 3002 N/A 3003 3007 2979
G31 2884 2880 2881 2842 N/A 2875 2880 2867
G32 1266 1262 1266 1244 1204 1258 1266 1294
G33 1222 1222 1222 1226 N/A 1220 1222 1266
G34 1246 1248 1248 1254 1254 1246 1244 1268
G35 7412 7409 7412 7401 N/A 7411 7412 7424
G36 7383 7375 7383 7333 7316 7382 7383 7399
G37 7441 7443 7440 7439 N/A 7439 7442 7437
G38 7359 7364 7359 7342 7330 7356 7360 7411
G39 2136 2134 2134 2117 2046 2136 2140 2176
G40 2153 2138 2155 2150 N/A 2156 2154 2134
G41 2118 2114 2118 2102 N/A 2113 2114 2149
G42 2171 2165 2171 2169 2118 2176 2171 2188
G43 6510 6505 6513 6515 N/A 6513 6510 6442
G44 6456 6465 6456 6414 N/A 6461 6456 6461
G45 6449 6426 6449 6448 N/A 6447 6449 6448
G46 6423 6422 6422 6415 N/A 6420 6423 6425
G47 6456 6452 6460 6442 N/A 6457 6456 6480
G48 6000 6000 6000 6000 6000 6000 6000 6000
G49 6000 6000 6000 6000 6000 6000 6000 6000
G50 5880 5760 5880 5880 5880 5880 5880 5880
G51 3736 3738 3736 3719 N/A 3725 3740 3711
G52 3711 3713 3711 3707 N/A 3710 3711 3721
G53 3695 3694 3695 3694 3288 3688 3692 3715
G54 3691 3689 3691 3600 3574 3668 3691 3712
G57 3152 3152 3150 3152 3084 3146 3148 3158
G58 18558 18565 18557 18516 N/A 18557 18560 18528
G59 5312 5310 5314 5300 5302 5313 5309 5350
G62 4378 4390 4380 4378 3634 4364 4376 4394
G63 25988 25994 25988 25988 N/A 25985 25984 25933
G64 7748 7743 7751 7747 N/A 7743 7748 7698
G65 4972 4962 4972 4966 N/A 4970 4972 5026
G66 5672 5668 5672 5662 N/A 5666 5672 5776
G67 6232 6238 6230 6236 N/A 6226 6228 6282
G72 6248 6252 6246 6238 N/A 6238 6250 6342
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Table 6: Cut values obtained with Spectral Clustering using K-MedDet. The last column
is the result obtained in Rodriguez-Fernandez et al. (2020). For each graph, i.e., for each
row, a white-green color scale was used. A white color indicate higher cut values while a
green color indicate lower cut values. Small cut values were replaced with a N/A to make
the white-green color differences larger.

Graph β = 0 β = 0.5 β = 0.25 σ = 0.5 σ = 0.25 σ = 1 σ = 10 kMedDet

G1 11417 11417 11417 11417 11417 11417 11417 11470
G2 11284 11284 11284 11284 11284 11284 11284 11365
G3 11393 11393 11393 11393 11393 11393 11393 11408
G4 11353 11353 11353 11353 11353 11353 11353 11426
G5 11440 11440 11440 11440 11440 11440 11440 11379
G6 1934 1934 1934 1934 1934 1934 1934 1923
G7 1709 1709 1709 1709 1709 1709 1709 1748
G8 1759 1759 1759 1759 1759 1759 1759 1776
G9 1815 1815 1815 1815 1815 1815 1815 1797
G10 1759 1759 1759 1759 1759 1759 1759 1748
G11 512 512 512 512 512 512 512 518
G12 516 516 516 516 516 516 516 524
G13 532 532 532 532 532 532 532 548
G14 2955 2955 2955 2955 2955 2955 2955 2953
G15 2966 2966 2966 2966 2966 2966 2966 2958
G16 2941 2941 2941 2941 2941 2941 2941 2950
G17 2961 2961 2961 2961 2961 2961 2961 2947
G18 897 897 897 897 897 897 897 883
G19 793 793 793 793 793 793 793 812
G20 845 845 845 845 845 845 845 863
G21 812 812 812 812 812 812 812 826
G22 12951 12951 12951 12951 12951 12951 12951 12893
G23 12987 12987 12987 12987 12987 12987 12987 12924
G24 12984 12984 12984 12984 12984 12984 12984 12904
G25 12868 12868 12868 12868 12868 12868 12868 12922
G26 12870 12870 12870 12870 12870 12870 12870 12886
G27 2891 2891 2891 2891 2891 2891 2891 2891
G28 2845 2845 2845 2845 2845 2845 2845 2834
G29 2982 2982 2982 2982 2982 2982 2982 2946
G30 3008 3008 3008 3008 3008 3008 3008 2979
G31 2883 2883 2883 2883 2883 2883 2883 2867
G32 1260 1260 1260 1260 1260 1260 1260 1294
G33 1208 1208 1208 1208 1208 1208 1208 1266
G34 1242 1242 1242 1242 1242 1242 1242 1268
G35 7400 7400 7400 7400 7400 7400 7400 7424
G36 7382 7382 7382 7382 7382 7382 7382 7399
G37 7432 7432 7432 7432 7432 7432 7432 7437
G38 7355 7355 7355 7355 7355 7355 7355 7411
G39 2133 2133 2133 2133 2133 2133 2133 2176
G40 2152 2152 2152 2152 2152 2152 2152 2134
G41 2111 2111 2111 2111 2111 2111 2111 2149
G42 2178 2178 2178 2178 2178 2178 2178 2188
G43 6513 6513 6513 6513 6513 6513 6513 6442
G44 6444 6444 6444 6444 6444 6444 6444 6461
G45 6316 6316 6316 6316 6316 6316 6316 6448
G46 6394 6394 6394 6394 6394 6394 6394 6425
G47 6439 6439 6439 6439 6439 6439 6439 6480
G48 6000 6000 6000 6000 6000 6000 6000 6000
G49 6000 6000 6000 6000 6000 6000 6000 6000
G50 5880 5880 5880 5880 5880 5880 5880 5880
G51 3725 3725 3725 3725 3725 3725 3725 3711
G52 3710 3710 3710 3710 3710 3710 3710 3721
G53 3696 3696 3696 3696 3696 3696 3696 3715
G54 3689 3689 3689 3689 3689 3689 3689 3712
G57 3148 3148 3148 3148 3148 3148 3148 3158
G58 18449 18449 18449 18449 18449 18449 18449 18528
G59 5312 5312 5312 5312 5312 5312 5312 5350
G62 4350 4350 4350 4350 4350 4350 4350 4394
G63 25977 25977 25977 25977 25977 25977 25977 25933
G64 7747 7747 7747 7747 7747 7747 7747 7698
G65 4964 4964 4964 4964 4964 4964 4964 5026
G66 5664 5664 5664 5664 5664 5664 5664 5776
G67 6226 6226 6226 6226 6226 6226 6226 6282
G72 6242 6242 6242 6242 6242 6242 6242 6342
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Table 7: Cut values obtained with Spectral Clustering using K-MedRand. The last column
is the result obtained in Rodriguez-Fernandez et al. (2020). For each graph, i.e., for each
row, a white-green color scale was used. A white color indicate higher cut values while a
green color indicate lower cut values. Small cut values were replaced with a N/A to make
the white-green color differences larger.

Graph β = 0 β = 0.5 β = 0.25 σ = 0.5 σ = 0.25 σ = 1 σ = 10 kMedRand

G1 11417 11417 11417 11417 11417 11417 11417 11470
G2 11284 11284 11284 11284 11284 11284 11284 11365
G3 11393 11393 11393 11393 11393 11393 11393 11408
G4 11353 11353 11353 11353 11353 11353 11353 11426
G5 11440 11440 11440 11440 11440 11440 11440 11379
G6 1934 1934 1934 1934 1934 1934 1934 1923
G7 1715 1715 1715 1715 1715 1715 1715 1748
G8 1759 1759 1759 1759 1759 1759 1759 1776
G9 1815 1815 1815 1815 1815 1815 1815 1797
G10 1766 1766 1766 1766 1766 1766 1766 1748
G11 512 512 512 512 512 512 512 518
G12 516 516 516 516 516 516 516 524
G13 532 532 532 532 532 532 532 548
G14 2955 2955 2955 2955 2955 2955 2955 2953
G15 2966 2966 2966 2966 2966 2966 2966 2958
G16 2941 2941 2941 2941 2941 2941 2941 2950
G17 2961 2961 2961 2961 2961 2961 2961 2947
G18 897 897 897 897 897 897 897 883
G19 793 793 793 793 793 793 793 812
G20 845 845 845 845 845 845 845 863
G21 814 814 814 814 814 814 814 826
G22 12955 12955 12955 12955 12955 12955 12955 12893
G23 12988 12988 12988 12988 12988 12988 12988 12924
G24 12984 12984 12984 12984 12984 12984 12984 12904
G25 12868 12868 12868 12868 12868 12868 12868 12922
G26 12870 12870 12870 12870 12870 12870 12870 12886
G27 2891 2891 2891 2891 2891 2891 2891 2891
G28 2845 2845 2845 2845 2845 2845 2845 2834
G29 2982 2982 2982 2982 2982 2982 2982 2946
G30 3008 3008 3008 3008 3008 3008 3008 2979
G31 2885 2885 2885 2885 2885 2885 2885 2867
G32 1260 1260 1260 1260 1260 1260 1260 1294
G33 1212 1212 1212 1212 1212 1212 1212 1266
G34 1246 1246 1246 1246 1246 1246 1246 1268
G35 7412 7412 7412 7412 7412 7412 7412 7424
G36 7382 7382 7382 7382 7382 7382 7382 7399
G37 7436 7436 7439 7436 7436 7439 7439 7437
G38 7355 7355 7355 7355 7355 7355 7355 7411
G39 2133 2133 2133 2133 2133 2133 2133 2176
G40 2156 2152 2156 2156 2152 2152 2152 2134
G41 2113 2113 2113 2113 2113 2113 2113 2149
G42 2178 2178 2178 2178 2178 2178 2178 2188
G43 6513 6513 6513 6513 6513 6513 6513 6442
G44 6444 6444 6444 6444 6444 6444 6444 6461
G45 6316 6316 6316 6316 6316 6316 6316 6448
G46 6411 6411 6411 6411 6411 6411 6411 6425
G47 6439 6439 6439 6439 6439 6439 6439 6480
G48 6000 6000 6000 6000 6000 6000 6000 6000
G49 6000 6000 6000 6000 6000 6000 6000 6000
G50 5880 5880 5880 5880 5880 5880 5880 5880
G51 3725 3725 3725 3725 3725 3725 3725 3711
G52 3710 3710 3710 3710 3710 3710 3710 3721
G53 3696 3696 3696 3696 3696 3696 3696 3715
G54 3689 3689 3689 3689 3689 3689 3689 3712
G57 3148 3148 3148 3148 3148 3148 3148 3158
G58 18449 18449 18449 18449 18449 18449 18449 18528
G59 5312 5312 5312 5312 5312 5312 5312 5350
G62 4350 4350 4350 4350 4350 4350 4350 4394
G63 25981 25981 25981 25981 25981 25981 25981 25933
G64 7747 7747 7747 7747 7747 7747 7747 7698
G65 4964 4964 4964 4964 4964 4964 4964 5026
G66 5668 5668 5668 5668 5668 5668 5668 5776
G67 6226 6226 6226 6226 6226 6226 6226 6282
G72 6242 6242 6242 6242 6242 6242 6242 6342
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Table 8: Cut values obtained with Spectral Clustering using Fuzzy c-means. The last
column is the result obtained in Rodriguez-Fernandez et al. (2020). For each graph, i.e.,
for each row, a white-green color scale was used. A white color indicate higher cut values
while a green color indicate lower cut values. Small cut values were replaced with a N/A
to make the white-green color differences larger.

Graph β = 0 β = 0.5 β = 0.25 σ = 0.5 σ = 0.25 σ = 1 σ = 10 Fuzzy

G1 11417 11418 11417 11425 N/A 11422 11417 11470
G2 11328 11328 11328 11321 11266 11329 11328 11365
G3 11392 11402 11398 11397 N/A 11392 11392 11408
G4 11349 11344 11349 11356 N/A 11349 11349 11426
G5 11432 11432 11428 11454 10261 11440 11432 11379
G6 1948 1947 1948 1931 1912 1934 1936 1923
G7 1729 1734 1722 1712 N/A 1715 1722 1748
G8 1758 1744 1761 1745 N/A 1760 1763 1776
G9 1800 1810 1804 1784 N/A 1796 1803 1797
G10 1765 1756 1765 1765 1694 1759 1759 1748
G11 510 510 508 510 492 514 510 518
G12 516 514 516 514 510 516 514 524
G13 530 534 530 530 526 532 532 548
G14 2956 2960 2955 2923 2902 2943 2953 2953
G15 2965 2966 2965 2955 2941 2965 2965 2958
G16 2952 2951 2947 2953 2458 2951 2946 2950
G17 2960 2962 2960 2961 N/A 2958 2960 2947
G18 896 893 901 896 862 894 896 883
G19 792 793 792 776 798 793 793 812
G20 837 837 837 851 831 841 844 863
G21 812 814 813 818 812 809 812 826
G22 12958 12962 12956 12944 N/A 12958 12958 12893
G23 12987 12997 12987 12985 N/A 12991 12987 12924
G24 12983 12982 12985 12981 12931 12985 12985 12904
G25 12866 12868 12867 12876 N/A 12876 12868 12922
G26 12866 12868 12866 12880 N/A 12874 12866 12886
G27 2892 2896 2893 2868 2385 2890 2892 2891
G28 2852 2836 2852 2852 2806 2847 2848 2834
G29 2973 2975 2973 2975 2903 2971 2973 2946
G30 3008 3002 3004 3008 N/A 3004 3006 2979
G31 2877 2874 2877 2837 N/A 2881 2880 2867
G32 1262 1262 1262 1242 1204 1260 1260 1294
G33 1222 1226 1228 1226 882 1222 1222 1266
G34 1246 1248 1248 1254 1248 1246 1244 1268
G35 7416 7407 7412 7401 2230 7411 7410 7424
G36 7386 7398 7385 7340 7334 7382 7383 7399
G37 7438 7439 7439 7438 N/A 7436 7439 7437
G38 7366 7387 7364 7354 7330 7355 7359 7411
G39 2137 2138 2135 2130 2042 2133 2140 2176
G40 2151 2133 2147 2154 N/A 2160 2151 2134
G41 2115 2109 2115 2103 1498 2116 2109 2149
G42 2173 2161 2173 2169 2135 2178 2173 2188
G43 6520 6521 6520 6515 N/A 6516 6520 6442
G44 6461 6465 6461 6457 N/A 6461 6461 6461
G45 6441 6430 6439 6441 N/A 6447 6441 6448
G46 6419 6422 6419 6415 6069 6420 6419 6425
G47 6449 6456 6446 6441 N/A 6450 6452 6480
G48 6000 6000 6000 6000 6000 6000 6000 6000
G49 6000 6000 6000 6000 6000 6000 6000 6000
G50 5880 5880 5880 5880 5880 5880 5880 5880
G51 3740 3738 3740 3724 N/A 3738 3740 3711
G52 3711 3715 3711 3705 N/A 3710 3711 3721
G53 3695 3694 3695 3694 N/A 3696 3692 3715
G54 3691 3713 3691 3672 N/A 3676 3691 3712
G57 3146 3154 3148 3152 N/A 3148 3148 3158
G58 18550 18548 18550 18530 N/A 18541 18547 18528
G59 5314 5310 5311 5305 5301 5313 5314 5350
G62 4376 4388 4380 4376 N/A 4370 4378 4394
G63 25991 25990 25985 25983 N/A 25982 25992 25933
G64 7745 7751 7745 7752 N/A 7745 7747 7698
G65 4970 4960 4972 4964 N/A 4966 4968 5026
G66 5674 5668 5668 5660 5604 5670 5674 5776
G67 6228 6236 6230 6238 N/A 6226 6224 6282
G72 6248 6254 6246 6238 N/A 6242 6248 6342
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(a) Graph B1 with Max-Cut of 18.
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(b) Graph B2 with Max-Cut of 17.
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(c) Graph B3 with Max-Cut of 8.

Figure 28: B-set of graphs and their Max-Cut solution. Nodes with the same color belong
to the same partition.
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(d) Graph B4 with Max-Cut of 7.
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(e) Graph B5 with Max-Cut of 6.

31

2

5

4

6

7

8

9

101

1

1

1 10 1

1

1

1

1

1

1

1

1

1 1

1

1

11

1

(f) Graph B6 with Max-Cut of 22.

Figure 28: (Continued) B-set of graphs and their Max-Cut solution. Nodes with the
same color belong to the same partition.
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(g) Graph B7 with Max-Cut of 12.

Figure 28: (Continued) B-set of graphs and their Max-Cut solution. Nodes with the
same color belong to the same partition.
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(a) Spectrum of the Gram Matrix for graphs B1, B2, B3 and B4.
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(b) Spectrum of the Gram Matrix for graph B5.
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(c) Spectrum of the Gram Matrix for graphs B6 and B7.

Figure 29: Spectrum of the Gram Matrix for the B-Set of graphs. Some graphs present
the same spectrum.
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(a) Spectrum of the Laplacian matrix of graphs B1, B2, B3 and B4.
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(b) Spectrum of the Laplacian matrix of graph B5.
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(c) Spectrum of the Laplacian matrix of graphs B6 and B7.

Figure 30: Spectrum of the Laplacian Matrix for the B-Set graphs. Some graphs present
the same spectrum.
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List of Abbreviations

CSDP Complex Semidefinite Programming.

HoC House of Cards.

IP Integer Programming.

IR Infinite Range.

LP Linear Programming.

LS Local Search.

MAX SAT Maximum Satisfiability.

MST Minimum Spanning Tree.

PC Principal Component.

PCA Principal Component Analysis.

PSD Positive Semidefinite.

RMM RandomizedMinMax.

SC Spectral Clustering.

SDP Semidefinite Programming.

SR Short Range.

TSP Traveling Salesman Problem.

VP Vector Programming.
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Definition Index

k-Cut 78

Adjacent neighborhood 27
Approximation Algorithm 10
Average Integer Gap 87

B-set Benchmark 67
Barrier of a Landscape 25
Block neighborhood 27

configurations 4
Covariance Matrix 25
Cut Gap 88
Cut-Value 48

Distance Graph 39
Distortion 55
Dot Product Similarity 63

Fitness Barrier 25
Fitness Function 24
Fitness Landscape 24
Fuzzifier 40

G-Set Benchmark 55
Global Minimum 24
Gram Matrix 49

House of Cards 26

Instant-Specific Performance Bounds 58

Laplacian Matrix 81
Linear Function of a Matrix 20
Local Minimum 24
Locus 24
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Max-Cut 48
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NK Model 26
NP 10
NP-Complete 10
NP-Hard 10
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Orthonormal Matrix 20

P 10
P-spin Model 26
Performance Guarantee 10
Positive Semidefinite Matrix 20
Problem Relaxation 11

Random Field 25
Random Graphs Benchmark 86
Random neighborhood 27
RMM 69
Rough Mount Fuji Model 26
Rounding 12
Ruggedness 25

Saddle Points 25
Semidefinite Program 21
Sherrington Kirkpatrick Model 26
Symmetric Normalized Laplacian 66

Test Graphs 86
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