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Folgende Arbeit beschäftigt sich mit dem Ising-Modell in drei Dimensionen auf einem Git-
ter mit einer langreichweitigen, potenzförmig korrelierten (∝ 𝑟−𝑎) Unordnung mithilfe von
Monte Carlo Simulationstechniken. Der Hauptteil der Arbeit ist die Bestimmung der kriti-
schen Exponenten des Ising-Modells in Abhängigkeit von der Korrelationsstärke 𝑎. Dies wird
durch die Anwendung der Finite-Size-Scaling Analyse und der Temperatur-Scaling Analyse
umgesetzt. Dabei wird insbesondere die Vorhersage von Weinrib und Halperin (𝜈 = 2/𝑎)
überprüft. Weiterführend, werden die kritischen Temperaturen in Abhängigkeit vom Korre-
lationsexponenten 𝑎 und der Defektkonzentration ermittelt und die Hyperscaling-Relation
studiert. Ergänzend werden vielfältige Aspekte, wie die Autokorrelation der Observablen, die
Anwendung der Histogram-Reweighting-Methode und Messung der Korrelationsstärken 𝑎 auf
Gittern erläutert.

In this thesis the three-dimensional Ising model on a lattice with long-range power-law cor-
related (∝ 𝑟−𝑎) site disorder is studied with the help of Monte Carlo simulation techniques.
The key part of the work is the estimation of the critical exponents of the Ising model in
dependence of the correlation strength 𝑎. This is done by applying finite-size scaling analysis
and the temperature scaling analysis. In particular, the conjecture by Weinrib and Halperin
(𝜈 = 2/𝑎) is reviewed. Additionally, the critical temperatures in dependence of the correla-
tion exponent 𝑎 and the concentration of defects are provided and the hyperscaling relation
is checked. Supplementary, various aspects such as autocorrelation times of the observables,
applicability of the histogram reweighting technique and the measured correlation exponents
𝑎 on the lattices are provided.
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Introduction

In this work we investigated one specific variant of the Ising model with the help of Monte
Carlo simulation techniques. We introduced a quenched site disorder (empty sites or defects
𝜂) on the lattice and studied the influence of such structural changes on the critical behavior
of the Ising model. Motivated by the nature, we distinguished between two different disorder
classes. The first class is the random (or uncorrelated) disorder with randomly placed defects.
The second class is called long-range correlated disorder, which imposes the condition of a
certain spacial correlation relation between the defects. In the present work a power-law decay
was chosen, i.e., the correlation function between the defects had the form ⟨𝜂𝑥𝜂𝑦⟩ ∝ 𝑟−𝑎, with
𝑟 being the distance between the sites 𝑥 and 𝑦. In both cases, an additional parameter of the
system was crucial — the concentration of defects 𝑝𝑑. The critical exponents of the model
in the thermodynamic limit are expected to be independent of 𝑝𝑑. However, for finite-size
lattices the concentration was an additional degree of freedom which had to be considered.

Both disorder classes were already studied with the help of Monte Carlo techniques and
Renormalization Group techniques in the literature, e.g., in Refs. [1–4] for the uncorrelated
case and Refs. [5–9] for the correlated case. In particular, for the uncorrelated disorder case a
new universality class was observed and confirmed multiple times. This is in accordance with
the Harris criterion [10] which predicts a change in the universality class for disordered systems
if the critical exponent of the specific heat 𝛼 is greater than zero in the pure system (the same
system without disorder). The critical exponents in the uncorrelated disorder case were also
investigated several times. In the case of the correlated disorder, yet another universality
class is expected according to the extended Harris criterion for strong-enough correlations
with 𝑎 < 𝑑. From Renormalization Group calculations, there exists the conjecture by Weinrib
and Halperin [5] that the correlation exponent of the correlation length will have the form
𝜈 = 2/𝑎 in that case.
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Motivation

The main goal of this work was the observation of the critical exponents of the Ising model
on a lattice with site disorder. We intentionally used many correlation exponents 𝑎 to obtain
a comprehensive picture of the dependence of the critical exponents on 𝑎. Such a study was
not considered before and the results for the case of 𝑎 = 2.0 found in the literature are quite
contradictory [5–9]. Therefore, our aim was to compare the known results with each other
and also extend the known results to other 𝑎 which were not covered before. Additionally,
we used numerous concentrations of defects 𝑝𝑑 in order to provide consistent 𝑝𝑑-independent
estimates of the critical exponents. The uncorrelated case was an important case to study
as well for two reasons. First, in order to verify the analysis techniques and compare the
obtained results to the known results from literature, e.g., to Refs. [1–4]. Second, to study
the dependence on 𝑎 and to compare to the uncorrelated case, we needed results for both
cases which were obtained with exactly the same techniques. Accompanying, we wanted to
provide a full and dedicated analysis of the underlying disorder configurations. The long-
range correlated disorder was generated by using a modified variant of the Fourier Filter
Method from Ref. [11], which was originally introduced in Ref. [12]. In particular, the true
measurable correlation exponents 𝑎 were of great interest. In our opinion, only by providing
the real correlation exponents 𝑎, the obtained critical exponents can be put into a context
with each other and a global picture can be achieved.

Most important results

• Estimation of the critical exponents 𝜈, 𝛾 and 𝛽, and of the confluent correction expo-
nent 𝜔 in dependence of the correlation exponent 𝑎 for five correlated cases and the
uncorrelated case with 𝑎 = ∞. These results are obtained through a finite-size scaling
analysis and verified for 𝜈 and 𝛾 with the temperature scaling analysis.
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• Qualitative verification of the Weinrib and Halperin prediction of 𝜈 ∝ 1/𝑎. Quantita-
tively, our values lie ≈ 10% above the prediction of 𝜈 = 2/𝑎.

• Observation of the crossover regime between the correlated and the (effectively) un-
correlated cases at 𝑎 ≈ 3.0 = 𝑑. From our analyses we can conclude that this region
diverges from the Weinrib and Halperin prediction the most.

• We see an indication that the hyperscaling relation may be violated in the crossover
region around 𝑎 ≈ 3.0. For stronger correlations (smaller 𝑎) the hyperscaling relation
becomes valid again, as it is in the uncorrelated case.

• Derivation of the critical temperatures in dependence of the correlation exponent 𝑎
and the concentration of defects 𝑝𝑑. Contrarily to the critical exponents, the critical
temperatures depend on the concentration of defects 𝑝𝑑 and even on the type of the
disorder and its generation process.
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• Dedicated analysis of the generated long-range correlated disorder lattices yielded a
deviation of the imposed parameters 𝑎 and the truly measured 𝑎. The underlying gen-
eration method was the Fourier Filter Method [11, 12]. The deviations were mostly
pronounced for weaker correlation exponents (larger 𝑎). The observation of such devi-
ations has emphasized the necessity of a full disorder configurations analysis prior to
the final analyses of the Ising model itself.

• Study of the autocorrelation times of observables in dependence of the parameters 𝑎,
𝑝𝑑 and 𝐿. It was shown that the autocorrelation times can be neglected during the
analyses presented in this work.

Own publications
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particular, Ref. [KJ20] contains the study of the underlying disorder configurations, the mea-
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Preface

Before we dive in into the physical topics of this thesis, would like to introduce some conven-
tions which will be used throughout the whole work. They will hold unless stated otherwise.

• We plot curves obtained by using fits to the data as solid lines and with shaded areas
which show confidence intervals of the fitted curves. Often, the shaded areas are hard
to see due to their small extent, but they are still plotted for consistency.

• Contrarily, dashed or dotted lines are used to guide the eyes between the measured data
points or mark specific values.

• In the legend, the errorbars are left out for clarity.
• We use the symbol 𝜎(𝑥) for denoting the standard deviation of 𝑥 and 𝜖(𝑥) to denote

the standard error of 𝑥, i.e., the standard deviation of its mean, 𝜖(𝑥) = 𝜎(𝑥). We often
skip the notion of the mean, so 𝑥 = 𝑥 hold whenever the context is clear.

• After each section (excluding the “Introduction” and the “Conclusions” chapters) we
present a box with a short Summary of the section to keep the reader on track.

• Important equations are highlighted with a surrounding box.
• The normal distribution is denoted by 𝒩 and its parameters are the mean 𝜇 and the

variance 𝜎2, i.e., 𝒩 (𝜇, 𝜎2).
• We switch between the vector notation with bold and normal letters depending on the

context of the current section. This is done in order to simplify the notation as much
as possible.

• We use the alphanumeric style for our references since we would like to improve the
recognition of already mentioned references during the reading process. Due to the
structure of this work we will come to the same references over and over again. The
reference labels are organized as follows: for one author the first three letters of the
name are used (e.g., [May21]), for two and three authors, their first letters are used
(e.g., [AB21] or [ABC21]), for more than three authors the first three letters of the first
author are used followed by a plus sign (e.g., [May+21]). The year is then appended
at the end (the “21” in the examples above). In case of duplicates, a lowercase unique
letter is appended to the year starting with “a” (e.g., [May21a]). All web references
start with an “@” and are listed separately. We hope that the reading experience will
benefit from these referencing decisions.





Imagination is more important than
knowledge. Knowledge is limited.
Imagination encircles the world.

Albert Einstein [EV29]





1Introduction

We would like to start by introducing the three main ingredients of the model which was
investigated in the present work and which are contained in its title: the Ising model, the
Monte Carlo simulation technique and the disorder. We will be quite brief in the introduction,
because each of these subjects will be addressed in a separate section in much greater detail.
Instead, we would like to show the red thread which led us to the final setup for this thesis.

Let us begin with the most essential ingredient — the Ising model. Last year, in 2020, the
Ising model celebrated its 100th birthday. Back in the year 1920, it was Wilhelm Lenz, who
gave his student, Ernst Ising, this spin model with next-neighbor interactions as a problem
for his thesis [Len20]. Five years later Ising solved in the one-dimensional case [Isi25]. How-
ever, the lack of a phase transition for a non-zero temperature surly bore no huge potential
for further studies. It took almost twenty years to solve the problem in two dimensions.
This was done by Lars Onsager with the help of the transfer matrix method [Ons44]. The
existence of a phase transition at a non-zero temperature was crucial for the Ising model to
evolve to one of the most common models in statistical physics. By now, the original paper
by Ising, Ref. [Isi25] counts more than 1900 citations [@Spr] and ScienceDirect gives approx-
imately 16 000 results containing the keyword “Ising model” [@Sci]. Since then, the Ising
model quickly became a well-established theoretical model for studying phase transitions and
critical phenomena. Not least, this process was powered by the ever-increasing possibilities in
computational analysis. Its simplicity in the formulation in combination with the existence of
a second-order phase transition make it so unique. However, due to the lack of an analytic so-
lution in tree dimensions, the Monte Carlo simulation techniques, e.g., Refs. [FXL18; Has10a;
Has10b], the Renormalization Group techniques, e.g., Refs. [GZ98; PS08], their variations and
combinations, e.g., Monte Carlo Renormalization Group in Refs. [Blö+96; Paw+84] and re-
cently also Bootstrap methods, e.g., Refs. [CMO19; El+12; El+14; Kos+16] currently remain
the only possibilities to investigate the model quantitatively.

The second ingredient for the studied model is the notion of disorder. In nature, we rarely
can observe an ideal material without any distortions or impurities. We can observe disorder
in practically any realistic scenario and the natural question arises — how does disorder
influence the behavior of the system? To introduce the quenched disorder (a disorder which
does not changes over time) on the lattice, which is the building block of the Ising model,
we can proceed in several ways. The most simple way is to introduce random disorder,
i.e., fill some sites on the lattice with defects. Such disorder would correspond to a doped
semiconductor, e.g., silicon doped with phosphorus or a doped ferromagnetic material, e.g.,
zinc-oxide doped with magnesium [Mit+86]. A naturally introduced additional degree of
freedom for disordered systems is the concentration of defects 𝑝𝑑.
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However, such random disorder is not the only possibility. In fact, in nature the disorder
often comes with a certain spacial structure, e.g., extended lines, clumps, clusters and so on.
To mimic such a spacial extension, we introduced a spatial correlation between the defects.
The form of the correlation can be chosen in different ways. However, for a scale-invariant
model, a power-law for ∝ 𝑟−𝑎 was an appropriate choice. The concentration of defects 𝑝𝑑

remains a parameter of the system but now additionally we also have the correlation strength
described by the correlation exponent 𝑎. Throughout the whole thesis, these two parameters
will be of great importance.

Finally, the Monte Carlo simulation technique is the last ingredient. It is an incredibly
useful tool which allows to us to study comparably large systems (systems with many degrees
of freedom) by using computational resources and concepts of the statistical physics. Having
its own right for being an interesting approach to study, it becomes particularly handy when
the model under consideration does not have an analytic solution, as it is the case for the three-
dimensional Ising model (even without disorder). The steady advancement in computational
capabilities is a boon and a bane. On the one hand, larger and larger systems can be
investigated and more complex systems can be studied in a reasonable amount of time.
But simultaneously, the results achieved decades ago quickly become imprecise or can be
overrun by newer works. Partially, this problem was present in the topic which was studied
in this thesis. The Ising model with long-range correlated disorder was already studied in
several works [BP99; Iva+08; PPF00; Pru+05; WH83]. However, with currently available
computational capabilities, we were able to extend the study substantially. In particular, an
important question was whether the critical exponent of the correlation length 𝜈 will follow
the conjecture by Weinrib and Halperin [WH83] which states that in the correlated disorder
case 𝜈 = 2/𝑎 is valid. In order to check this conjecture, we used many 𝑎 values which was
not done before. To summarize, we visualized the three main ingredients and how they glue
together and build the title of this thesis in Figure 1.1. We will address each of the building
blocks separately in the course of this thesis starting in the next section.

Ising Model

• easy description
• phase transition
• well established

Disorder

• common in nature
• random or correlated
• changes behavior?

Monte Carlo

• simulaiton approach
• useful if no analytic

solution is known

This work

Ising model in three dimensions with
long-range power-law correlated site disorder:

a Monte Carlo study

Figure 1.1: Building blocks for the topic of the present work. The question in red “changes behavior?”
relates to the main question of this thesis: how does the (correlated) disorder changes the behavior of
the system.
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The thesis is organized as follows. In the second Chapter, “Theory”, we will introduce
the theoretic background which is essential to understand later parts of the work. We will
introduce the canonical ensemble, define the Ising model and derive essential observables,
explain the concept behind the phase transition and briefly introduce the Renormalization
Group theory. The presented concepts will be closely connected with each other while being
quite general in their formulation. One exception will be the section on the disordered Ising
model predictions which will contain the theoretical (Renormalization Group) predictions
as well as the simulation results of other groups. In the third chapter, “Methods”, we will
summarize the tools needed for later analyses. The sections within this chapter will be only
loosely connected and each will cover one particular tool. We will present the finite-size
scaling technique, introduce the Monte Carlo simulation technique, resampling methods for
calculating errors, the histogram reweighting technique and the Fourier Filter Method for
the generation of the long-range correlated disorder. In the main fourth chapter, “Results”,
we will present all our analyses. We will start with the details of our simulations, show the
analysis of the disorder configurations, cover the autocorrelation times of the observables
and the estimation of various observables. Then, we will present the key part of the thesis
which is the estimation of the critical exponents through the finite-size scaling analysis. We
will also compare these results to the temperature scaling approach. In the fifth chapter,
“Conclusions”, we will summarize all the results and give an outlook for further possible
research directions.

In addition to the topics covered in the main sections of the thesis, we will present some
results which were obtained during the research but which do not fit into the main red thread
of the work in Appendices. This will include the comparison of the global fit ansatz with the
weighted mean over individual fits and the occurrence of negative spectral density values in
the generation process of the long-range correlated disorder. Finally, the appendix contains
the implementation.





2Theory

2.1 Canonical ensemble

We briefly recall the main aspects of the canonical ensemble and the corresponding aspects
which will be of importance for further understanding of the present work. This section is not
a complete introduction to this very broad topic. For further and more complete presentation
we refer to any book on statistical physics, e.g., Refs. [Gar95; Nol14; Sch02].

The canonical ensemble describes a small subsystem 𝑆 which is embedded into a much
larger system 𝑆hb, called the heat bath. The total system is isolated from the surrounding
environment. Systems 𝑆 and 𝑆hb can exchange energy but are not allowed to exchange
particles. They are supposed to be in equilibrium. The situation is schematically shown in
Figure 2.1. The system of interest is the subsystem 𝑆. It is characterized by the volume 𝑉,
the number of particles 𝑁 and the temperature 𝑇. The Hamiltonian of the total system is
given by [Sch02, p. 50]

ℋtot = ℋ1 + ℋ2 + 𝒲 ≈ ℋ1 + ℋ2 , (2.1)

where we need the interaction term 𝒲 to allow the subsystems to reach equilibrium but as it
is assumed that 𝒲 ≪ ℋ1,2 we can neglect it.

𝑆

(𝑉 ,𝑁, 𝑇 )

𝑆hb

(𝑇 )

Figure 2.1: The basic setup for the canonical ensemble. The subsystem 𝑆 is embedded into a larger
system 𝑆hb. The total system is isolated from the surrounding environment. All characterizing values
are listed in brackets. We left out the volume and the number of particles of the large system 𝑆hb

because they are of no importance for the system of interest 𝑆 in the framework of the canonical
ensemble. Adapted from Ref. [Sch02, Fig. 2.11].

2.1.1 Partition function and important observables

The crucial quantity which contains the whole information about the system is the partition
function of the canonical ensemble. It is given by [LB05, p. 7]

𝒵 = Tr 𝑒−ℋ/(𝑘𝐵𝑇 ) = ∑
𝜇

𝑒−𝐸𝜇/(𝑘𝐵𝑇 ) , (2.2)
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with the Hamiltonian ℋ which represents the energy of the system at state 𝜇,

𝐸𝜇 = ℋ(𝜇) . (2.3)

In Equation (2.2) the sum runs over all possible states 𝜇 of the system with the corresponding
energy 𝐸𝜇 and 𝑘𝐵 is the Boltzmann constant. From the partition function 𝒵 we can derive
all thermodynamic quantities and study the statistical properties of the system.

In the canonical ensemble the probability 𝓅𝜇 to find the system in a state 𝜇 follows the
Boltzmann distribution and is given by [NB99, p. 8]

𝓅𝜇 = 1
𝒵

𝑒−𝐸𝜇/(𝑘𝐵𝑇 ) . (2.4)

The next important quantity is the canonical density matrix or the density of states which
is defined by

𝜌 = ∑
𝜇

𝓅𝜇|𝜇⟩⟨𝜇| . (2.5)

With the help of Equations (2.2) and (2.4) we can rewrite Equation (2.5) to

𝜌 = 1
𝒵

∑
𝜇

𝑒−𝐸𝜇/(𝑘𝐵𝑇 ) = 1
𝒵

𝑒−ℋ/(𝑘𝐵𝑇 ) . (2.6)

This form of the density of states allows us to calculate the expectation value of any observable
𝒪 in the canonical ensemble through [Sch02, p. 51]

⟨𝒪⟩ = Tr (𝜌𝒪) = ∑
𝜇

𝓅𝜇𝒪𝜇 = 1
𝒵

∑
𝜇

𝒪𝜇𝑒−𝐸𝜇/(𝑘𝐵𝑇 ) . (2.7)

The Equations (2.6) and (2.7) play an important role in Monte Carlo simulations, in particular
when it comes to the importance sampling. We will discuss it in more detail in Section 3.1.

The thermodynamic potential which corresponds to the canonical ensemble is the free
energy ℱ. It is related to the partition function by [Sch02, p. 58]

ℱ = −𝑘𝐵𝑇 ln 𝒵 . (2.8)

Derivatives of the free energy lead us to all thermodynamic quantities. One of the most
important observables is the internal energy. We will denote the internal energy by 𝐸 and
not by 𝑈 since it turns out that in thermodynamic limit the total energy of the system
(relative to its center of mass) is equal to the internal energy of the system [Nol14, p. 77].
In other words: the internal energy of the system is the mean energy in the thermodynamic
limit 𝑁 → ∞ (see Section 2.1.2 for the definition). We will therefore refer to the internal
energy simply by energy from now on. The energy can be derived from the free energy by
taking the derivative with respect to the temperature,

𝐸 = −𝑇 2𝜕(ℱ/𝑇 )
𝜕𝑇

. (2.9)
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Using Equation (2.8) and performing some simple algebraic transformations we arrive at

𝐸 = −𝑇 2 𝜕
𝜕𝑇

(
−𝑘𝐵𝑇

𝑇
ln 𝒵) (2.10a)

= −𝑇 2 𝜕
𝜕𝑇

(𝑘𝐵 ln(∑
𝜇

𝑒−𝐸𝜇/(𝑘𝐵𝑇 ))) (2.10b)

= 1
𝒵

∑
𝜇

𝐸𝜇𝑒−𝐸𝜇/(𝑘𝐵𝑇 ) (2.10c)

𝐸 = ⟨𝐸⟩ = ⟨ℋ⟩ , (2.10d)

where in the last step we used Equation (2.3) and identified the expectation value of ℋ
calculated with the definition from Equation (2.7).

The next important quantity is the entropy. It describes the disorder of the system. In
statistical mechanics the entropy is given by the negative average of the logarithm of the
density matrix [Sch02, p. 51],

𝑆 = −𝑘𝐵⟨ln 𝜌⟩ . (2.11)

Equation (2.11) is known as Gibbs entropy [Sad12, p. 34]. Using Equation (2.7) we can
rewrite Equation (2.11) to

𝑆 = −𝑘𝐵 Tr 𝜌 ln 𝜌 (2.12a)

= −𝑘𝐵𝛿𝜇𝜈 (
1
𝒵

∑
𝜇

𝑒−𝐸𝜇/(𝑘𝐵𝑇 ) ln(∑
𝜈

𝑒−𝐸𝜈/(𝑘𝐵𝑇 ))) (2.12b)

𝑆 = −𝑘𝐵 ∑
𝜇

𝓅𝜇 ln 𝓅𝜇 . (2.12c)

On the other hand, in thermodynamics the entropy is defined by [LB05, p. 9]

𝑆 = −(𝜕ℱ
𝜕𝑇

) . (2.13)

Inserting Equation (2.8) into Equation (2.13) and using some algebra we derive the entropy
expression of the canonical ensemble [Sch02, p. 58],

𝑆 = − 𝜕
𝜕𝑇

(−𝑘𝐵𝑇 ln 𝒵) (2.14a)

= 𝑘𝐵(ln 𝒵 + 𝑇
𝒵

( 1
𝑘𝐵𝑇 2)𝑒−ℋ/(𝑘𝐵𝑇 )) (2.14b)

= 𝑘𝐵(ln 𝒵 + 1
𝑘𝐵𝑇

⟨ℋ⟩) (2.14c)

𝑆 = 1
𝑇
(𝐸 + 𝑘𝐵𝑇 ln 𝒵) . (2.14d)

Note, that Equation (2.14d) can also be derived from Equation (2.11) by inserting Equa-
tion (2.4) into it.

Further, we want to write down some important observables which do not have a specific
form in the frame of a canonical ensemble but rather are standard thermodynamic quantities.
We will assume a magnetic system as this is the type of systems we studied in this work. For
a magnetic system the natural variables of the Hamiltonian are the external magnetic field
ℎ and the temperature 𝑇,

ℋ = ℋ(𝑇 , ℎ) . (2.15)
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Let us denote the volume of the system by 𝑉. The heat capacity at constant magnetic field
ℎ is defined though the derivative of the internal energy [Sch02, p. 269]

𝐶 = −𝑇(𝜕2ℱ
𝜕𝑇 2 )

ℎ
= (𝜕𝐸

𝜕𝑇
)

ℎ
= (

𝜕⟨ℋ⟩
𝜕𝑇

)
ℎ
. (2.16)

Normalized by the volume of the system we get the specific heat

𝑐 = 𝐶
𝑉
. (2.17)

The magnetic moment of the system is defined as [Sch02, p. 268]

𝑀 = −(𝜕ℱ
𝜕ℎ

)
𝑇
. (2.18)

Normalized by the volume we get the magnetization

𝑚 = 𝑀
𝑉

. (2.19)

The derivative of the magnetic moment defines the (isothermal) magnetic susceptibility
[Sch02, p. 269]

𝜒 = −1
𝑉
(𝜕2ℱ
𝜕ℎ2 )

𝑇
= (𝜕𝑀

𝜕ℎ
)

𝑇
. (2.20)

Note, that for 𝑐, 𝜒 and other observables we will skip the index indicating the constant
parameter (𝑇 = const. or ℎ = const.) as we will not cover other variants like adiabatic
susceptibility (𝑆 = const.).

Finally, we would like to introduce the inverse temperature,

𝛽 = 1
𝑘𝐵𝑇

. (2.21)

This definition of temperature is very common in Monte Carlo simulations, and we will use
it most of the time instead of the temperature 𝑇 and call it simply temperature.

With the definition in Equation (2.21), we define the derivative with respect to 𝛽 of a
general observable 𝒪 given through Equation (2.7),

𝜕𝛽𝒪 = 𝜕
𝜕𝛽

⟨𝒪⟩ (2.22a)

= 𝜕
𝜕𝛽

1
𝒵

∑
𝜇

𝒪𝜇𝑒−𝛽𝐸𝜇 (2.22b)

= 𝜕
𝜕𝛽

∑𝜇 𝒪𝜇𝑒−𝛽𝐸𝜇

∑𝜇 𝑒−𝛽𝐸𝜇
(2.22c)

=
∑𝜇 −𝐸𝜇𝒪𝜇𝑒−𝛽𝐸𝜇 ∑𝜇 𝑒−𝛽𝐸𝜇 −∑𝜇 𝒪𝜇𝑒−𝛽𝐸𝜇 ∑𝜇 −𝐸𝜇𝑒−𝛽𝐸𝜇

(∑𝜇 𝑒−𝛽𝐸𝜇)2 (2.22d)

=
∑𝜇 −𝐸𝜇𝒪𝜇𝑒−𝛽𝐸𝜇

𝒵
−

∑𝜇 𝒪𝜇𝑒−𝛽𝐸𝜇

𝒵
∑𝜇 −𝐸𝜇𝑒−𝛽𝐸𝜇

𝒵
, (2.22e)

which finally leads to a very general representation of the derivative in terms of expectation
values,

𝜕𝛽𝒪 = ⟨𝒪⟩⟨𝐸⟩ − ⟨𝒪𝐸⟩ . (2.23)

Equation (2.23) will be of great use later, since it will allow us to calculate derivatives of
observables from measured time series and disorder realizations.
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2.1.2 Thermodynamic limit

We introduced the system 𝑆 and characterized it by its volume 𝑉, the number of particles
𝑁 and the temperature 𝑇. The volume already appeared in some of the observables which
were introduced. However, in many cases we want to extrapolate to the infinite system in
the following way [Nol14, p. 388]:

𝑉 → ∞ and 𝑁 → ∞ with 𝑁
𝑉

= const. , (2.24)

i.e., the number of particles and the volume are taken to infinity while keeping the particle
density 𝑁/𝑉 constant. The limit procedure in Equation (2.24) is called the thermodynamic
limit. Only in the thermodynamic limit all different ensembles, i.e., the canonical ensemble
(constant 𝑇) introduced here, as well as the micro-canonical ensemble (constant 𝐸) and the
grand-canonical ensemble (constant chemical potential 𝜇), yield the same results. Study the
thermodynamic limit is extremely important in the case of simulations since any simulation
is constrained by a finite volume and finite number of particles. In the case of Monte Carlo
simulations performed in this work, we studied the influence of the finite size by applying the
finite-size scaling techniques which will be discussed in Section 3.2.

Summary. We introduced the canonical ensemble as one of possibilities to describe a
system with constant number of particles and at a constant temperature 𝑇. Its partition
function allow us to derive all other thermodynamic observables and by taking the ther-
modynamic limit we can compare the results obtained by using a canonical ensemble to
results from all other ensembles.

2.2 Ising model

In this section we will give a brief introduction to the pure Ising model. For more detailed
introduction we refer to, e.g., Ref. [FV17] for a mathematical description or Ref. [LB05] for
a description from the point of view of computational physics.

The Ising model is a simplified ferromagnetic model which was introduced in 1920 by
Wilhelm Lenz [Len20] and first solved by Ernst Ising in 1925 [Isi25] in one dimension. Its
basic formulation consists of a lattice where each site of the lattice contains a spin variable.
Each of these discrete variables represent a dipole moment of an atomic spin in the system
and is restricted to only two different states, “up” and “down”, typically represented by ±1.
Further, only next-neighboring spins interact with each other and all other interactions are
neglected.

Despite its simplicity, the model and its variations are still widely used to analyze different
aspects of phase transitions in statistical physics and study the behavior of magnetic systems
in general. In two dimensions the model was analytically solved by Lars Onsager in 1944
[Ons44]. He used the transfer matrix method and was able to show the existence of a phase
transition as well as to derive the analytic solution for the critical temperature. It is exactly
the combination of the very simple description in terms of next-neighbor interacting spins
and the existence of a phase transition at a finite temperature 𝑇 > 0 which makes the Ising
model so outstanding and widely studied model.
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Various modified versions of the original Ising model on a hyper-cubic lattice have been
studied since it was first introduced. Examples are Ising model on triangular lattices [Bug96;
Zhi+09], Ising model on graphs and trees [DM10; SNH17] or long-range interacting Ising
model [Chr+20]. We also studied a modified version of the Ising model — Ising model on a
site disordered lattice. We will first give some more precise description of the standard Ising
model and afterwards introduce its modified form used in this work.

2.2.1 Pure Ising model

We define a lattice Λ which consists of sites on which the spins 𝑠 are placed, and bonds
which are the connections between the sites. In principle, a general graph can be used as
a lattice, but we will focus on quadratic or cubic lattices with equal linear extension 𝐿 in
each direction. An example of a three-dimensional Ising model lattice with next neighbor
interactions is schematically shown in Figure 2.2.

𝑥

Figure 2.2: A three-dimensional Ising model lattice. The next-neighbor interactions of the spin at
site 𝑥 are shown as black arrows. The spin states ±1 are shown as blue (up) and red (down) arrows.

The Hamiltonian of the Ising model is [LB05, p. 68]

ℋ = −𝐽 ∑
⟨𝑥𝑦⟩

𝑠𝑥𝑠𝑦 − ℎ∑
𝑥

𝑠𝑥 , (2.25)

where 𝑠𝑥 = ±1 is the spin at site 𝑥 of the lattice Λ, 𝐽 denotes the coupling between two spins,
ℎ is the external magnetic field and ⟨𝑥𝑦⟩ denotes all next-neighbor site pairs. In this work
we used the natural units and set the coupling constant as well as the Boltzmann constant
to unity, i.e., 𝐽 = 1 and 𝑘𝐵 = 1, respectively. Further, we had no external magnetic field,
i.e., ℎ = 0. This will simplify the Hamiltonian in Equation (2.25). However, the magnetic
term with ℎ is needed in order to be able to perform derivatives with respect to it, e.g., for
the susceptibility defined in Equation (2.20). In such cases, ℎ = 0 is set after the derivative
was taken. For the general treatment of the Ising model we will use the canonical ensemble
which we have introduced in Section 2.1.

This brief introduction of the Ising model may occur surprising, since it is the basic Model
for the whole work presented here. However, we will return to the Ising model in many of
the following sections and will discuss different aspects of the model. More precisely, most of
the time we will discuss the site disordered Ising model which will be presented next.
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2.2.2 Site disordered Ising model

In the pure Ising model a spin is present on each site of the lattice. When we start to remove
some of these spins from the lattice we arrive at the site disordered Ising model. In contrast
to the site disorder there exists also the bond disorder where the connections (bonds) between
two neighboring sites are removed while spins are still present on each site. We will work
with the site disorder. In the literature the word “dilution” is often used as a synonym for
disorder, as it is the case in, e.g., Refs. [BF83; Boc83; BP99; SFN09; Tim97]. Sometimes
disorder in the literature also stands for disordered couplings, 𝐽𝑥𝑦 ≠ const. Such models were
studied in, e.g., Refs. [Cha17; FM13; FT10; TF11; Wan+19]. Unless stated otherwise, in this
work “disorder” will always describe the quenched site disorder on the lattice. However, in
theory all different disorder cases, i.e., the site disorder, the bond disorder and the disordered
coupling should fall into the same universality classes (see Section 2.3.3 for the definition)
[FHY03].

In this work we will work with the quenched site disorder, i.e., the disorder is fixed while
the dynamics of the Ising model happens on this disordered lattice. One such realization of
the disorder will be called disorder configuration or realization. The concentration of
defects on the lattice will be denoted by 𝑝𝑑 while the concentration of the spins on the lattice
will be 𝑝 = 1 − 𝑝𝑑. It is important to notice that the spin concentration must be below the
percolation threshold, 𝑝 < ̂𝑝, in order to ensure the existence of an infinite cluster of spins
in the thermodynamic limit. Consequently, also the concentration of defects is limited by
this threshold 𝑝𝑑 < 1 − ̂𝑝. We will address this a little more in Section 2.4.3. A schematic
lattice for different concentrations of defects is shown in Figure 2.3. In this work we take the
grand canonical approach [Zie+17] and 𝑝𝑑 and 𝑝 are mean values taken over all disorder
configurations, the so-called disorder ensemble. The concentration of defects can therefore
vary significantly from one configuration to another.

𝑝𝑑 = 0. 𝑝𝑑 ≈ 0.2. 𝑝𝑑 ≈ 0.25. 𝑝𝑑 ≈ 0.35.

Figure 2.3: Three-dimensional disordered Ising model lattices with different concentrations of defects
𝑝𝑑. The gray points represent the defects (vacant sites). The spin states ±1 are shown as blue (up)
and red (down) arrows. The left most figure is the pure Ising model with 𝑝𝑑 = 0.

To describe the defects in our model we introduce the defect variables 𝜂𝑥 at each site
of the lattice Λ. These variables can take the value 1 when it is an occupied site or 0 when
the site is vacant (a defect). With these new variables we write down the Hamiltonian of the
disordered Ising model

ℋ = −𝐽 ∑
⟨𝑥𝑦⟩

𝜂𝑥𝜂𝑦𝑠𝑥𝑠𝑦 − ℎ∑
𝑥

𝜂𝑥𝑠𝑥 , (2.26)
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We distinguish between two different disorder types. The first type is the uncorrelated
disorder or random disorder. In this case the defects are chosen randomly according to the
probability density

𝓅 (𝜂) = 𝑝𝛿(𝜂) + 𝑝𝑑𝛿(𝜂 − 1) . (2.27)

The second type is the correlated disorder. In this case the probability density for the de-
fects is again given by Equation (2.27), however, additionally the spacial correlation between
the defects obeys a power-law decay

⟨𝜂𝑥𝜂𝑦⟩ ∝
1

𝑟(𝑥, 𝑦)𝑎 = 𝐶(𝑟(𝑥, 𝑦)) , (2.28)

where 𝑟(𝑥, 𝑦) is the distance between sites 𝑥 and 𝑦, 𝐶 denotes the correlation function and
𝑎 > 0 is the correlation exponent. In Figure 2.4 we show slices of a three-dimensional Ising
model lattice with different concentrations of defects and different correlation exponents near
the critical temperature. One can see that correlated defects tend to form clusters.

𝑎 = ∞, 𝑝𝑑 = 0. 𝑎 = ∞, 𝑝𝑑 = 0.2. 𝑎 = ∞, 𝑝𝑑 = 0.4.

𝑎 = 1.5, 𝑝𝑑 = 0.2. 𝑎 = 1.5, 𝑝𝑑 = 0.4.

Figure 2.4: Slices of a three-dimensional Ising model lattice with 𝐿 = 128 simulated near the critical
temperature for different concentrations of defects 𝑝𝑑 and correlation exponents 𝑎. Red and blue
points represent the spin states 𝑠𝑥 = ±1 and white points represent the defects 𝜂𝑥 = 0.

This correlated disorder in one approach to mimic the structured disorder found in nature.
We can imagine, that it can be useful to model, e.g., magnetic aerogels (a rigid foam) which
probably have a similar “clustered” form, as e.g., the studied material in Ref. [Kis+04].
Magnetic aerogels were already studied in e.g., Refs. [Mar09; MBM96; PV06], but until now,
the long-range correlated disorder fixed point was not found to be the dominant behavior.
However, a more detailed study, in particular the comparison between experimental and
theoretical data would be of great interest. The main problem with the experimental approach
however, would probably be the measurement of the correlation strength 𝑎. An ongoing
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research on magnetic foams in two dimensions is announced by Klimenkova and Shchur in
Ref. [KS21]. They use a very different model with line of spins which are randomly placed
on the plane.

A much more similar approach to ours was used in Refs. [BP99; Iva+08; Pru+05]1. Here,
lines of defects were placed on a lattice. It is argued that in tree dimensions, the defect lines
correspond to a correlation exponent of 𝑎 = 2.0. Although it may be exact for the infinite
system, we are skeptical about the validity of this assumption of a finite lattice. At least, we
were not able to measure a proper correlation function on such lattices. A visual comparison
between the lattices with clustered defects and lines of defect is shown in Figure 2.5.

(a) Clustered defects generated with Fourier
Filter Method.

(b) Lines of defects. White dots are lines point-
ing upwards.

Figure 2.5: Slices of a three-dimensional Ising model lattice for 𝑎 = 2.0 and 𝑝𝑑 = 0.2 obtained with
the fourier Filter Method used in this work (see Section 3.5) and lines of defects used in Refs. [BP99;
Iva+08; Pru+05]. The lattice size is 𝐿 = 128 and the temperautre was near to the critical temperature
with 𝛽𝑐 = 0.25071. Red and blue points represent the spin states 𝑠𝑥 = ±1 and white points represent
the defects 𝜂𝑥 = 0.

2.2.3 Observables of the Ising model

In this Section we want to summarize the observables of the Ising model which will be needed
to understand later parts of this work. As we will work with the disordered Ising model and
with finite lattices most of the time, we will use the Hamiltonian defined in Equation (2.26)
on a 𝑑-dimensional hypercubic lattice Λ with spatial extensions 𝐿𝑖 for 𝑖 = 1,… , 𝑑. Let us
start with the two simplest observables, namely the energy of the system,

𝐸𝜇 = −𝐽 ∑
⟨𝑥𝑦⟩

𝑥,𝑦∈Λ

𝜂𝑥𝜂𝑦𝑠𝑥𝑠𝑦 , (2.29)

and the magnetization of the system,

𝑀𝜇 = ∑
𝑥∈Λ

𝜂𝑥𝑠𝑥 . (2.30)

1 In Ref. [BP99] also the clustered defects were studied, similar to our work.
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These two observables are defined for any state 𝜇 of the system. For the disordered Ising
model a state 𝜇 is uniquely identified by all spin values 𝑠𝑥 and all defect variables 𝜂𝑥 for
𝑥 ∈ Λ. Using Equation (2.7), we easily obtain the expectation values,

𝐸 = J⟨𝐸⟩K , (2.31)
𝑀 = J⟨𝑀⟩K . (2.32)

Because we will work with the disordered Ising model, we need two types of averages in
Equations (2.31) and (2.32), the thermal average ⟨⋅⟩, and the disorder average J⋅K. Often,
the volume normalized variables,

𝑒 = 𝐸/𝑉 , (2.33)
𝑚 = 𝑀/𝑉 , (2.34)

will be used where 𝑉 is the system volume

𝑉 =
𝑑

∏
𝑖=1

𝐿𝑖 , (2.35)

with 𝑑 being the dimensionality of the system and 𝐿𝑖 the linear extent in 𝑖-th direction.
Note, that for the magnetization 𝑀 (and 𝑚), we will usually take the absolute value in order
to overcome the problem of averaging-to-zero of the magnetization throughout the whole
temperature range because of the finite lattice size,

𝑀 = J⟨|𝑀|⟩K , 𝑚 = J⟨|𝑚|⟩K . (2.36)

This is a common step in data analysis of spin model simulations [Jan08, p. 114].
Next observable which can be naturally measured on the lattice of an Ising model and

which is in fact an important observable for the later understanding of phase transitions,
critical exponents and finite-size scaling, is the spin correlation function (or more precise,
two-point spin correlation function) [NB99, p. 14],

𝐶𝑠(𝑟) = 𝐶𝑠(𝑠𝑥, 𝑠𝑦) = ⟨𝑠𝑥𝑠𝑦⟩ − ⟨𝑠𝑥⟩⟨𝑠𝑦⟩ , (2.37)

where 𝑟 is the distance between the sites 𝑥 and 𝑦 (assuming translational invariance) [Jan08,
p. 82],

𝑟 = |𝑦 − 𝑥| . (2.38)

We will address this quantity im more detail shortly, when we will discuss the phase transitions
of the Ising model, Section 2.2.2.

Further observables of interest are composed of averages of the energy and the magnetiza-
tion and thus provide one value from all the simulation data. Their definition can be found
in almost all text books on Monte Carlo simulations, e.g., Refs. [Jan12; LB05; NB99]. The
first important observable is the susceptibility 𝜒 which was introduced in Equation (2.20)
and which, in the case of disordered Ising model, reads

𝜒 = 𝛽𝑉 (
q
⟨𝑚2⟩

y
−

q
⟨|𝑚|⟩2y) . (2.39)
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Please note the position of the thermal and disorder averages. The definition follows directly
from taking the disorder average of 𝜒 over several realizations,

𝜒 = J𝜒𝑐K =
q
𝛽𝑉 (⟨𝑚2⟩ − ⟨|𝑚|⟩2)

y
, (2.40)

where 𝜒𝑐 is the susceptibility calculated for one disorder realization 𝑐. Due to the linearity of
the disorder average, Equation (2.40) can be brought to the form given in Equation (2.39). In
the high temperature phase the expectation value of the magnetization vanishes by definition,
⟨𝑚⟩ = 0, and we can define a modified susceptibility estimator,

𝜒̃ = 𝛽𝑉
q
⟨𝑚2⟩

y
. (2.41)

This definition will be useful for temperature scaling as it does not need the “inexact” usage
of the absolute values |𝑚| instead of 𝑚.

In the same way as for the susceptibility, one gets the specific heat, Equation (2.17),

𝑐 = 𝛽2𝑉 (
q
⟨𝑒2⟩

y
−

q
⟨𝑒⟩2y) . (2.42)

Next two useful observables which we would like to present are the derivative with respect to
𝛽 of the magnetization,

𝜕𝛽(|𝑚|) = 𝜕
𝜕𝛽

J⟨|𝑚|⟩K = 𝑉 (J⟨|𝑚|⟩K J⟨𝑒⟩K − J⟨|𝑚| 𝑒⟩K) , (2.43)

and the derivative with respect to 𝛽 of the logarithm of the magnetization,

𝜕𝛽(ln |𝑚|) = 𝜕
𝜕𝛽

ln(J⟨|𝑚|⟩K) = 𝑉(J⟨𝑒⟩K −
J⟨|𝑚| 𝑒⟩K
J⟨|𝑚|⟩K

) , (2.44)

In Equations (2.43) and (2.44) we used the derivative defined in Equation (2.23). Applying
Equation (2.23) on ln(J⟨|𝑚|⟩K) naturally explains why we do not use the disorder average on
the whole equation, like

𝑉
s
⟨𝑒⟩ −

⟨|𝑚| 𝑒⟩
⟨|𝑚|⟩

{
. (2.45)

In contrast to the susceptibility and the specific heat, due to the quotient in the expression,
Equation (2.44) and Equation (2.45) are not equal. Finally, we would like to define the Binder
cumulant, which is a common observable used to obtain the critical temperature of the Ising
model and comparable models,

𝑈2 = 1 −
q
⟨𝑚2⟩

y

3 J⟨|𝑚|⟩2K
. (2.46)

Since the Binder cumulant is a constructed observable and cannot be derived directly from
another physical observable, we have the choice to place the disorder average like it is done
in Equation (2.46) or outside the quotient. Both ways are used in literature. Our definition
is used in, e.g., Refs. [Bal+98a; BP99; Cha02; Cha14; Cha17; Iva+08; Pru+05] whereas the
version of the disorder average around the quotient is used in, e.g., Refs. [Has+07; Vas+15;
Wan+19].
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Finally, let us introduce one observable of the system which is closely related to the cor-
relation function defined in Equation (2.37) — the correlation length 𝜉. It describes how
fast the correlation length decays when the system is not at the critical temperature (see
Equation (2.52) for the definition of the correlation length). At this point, we would like to
explain how it can be measured on the lattice during the simulation. We will use the so-called
second-moment correlation length [AM05, p. 472]. It is suitable for a finite lattice case
and was successfully used in many works, e.g., in Refs. [Bal+98a; Cal+03; FM16; FXL18;
PV02]. Its definition is [FM16]

𝜉 = 1
2 sin(𝜋/𝐿)

√√√
⎷

̃𝐶𝑠(𝟎)
̃𝐶𝑠(𝟏)

− 1 , (2.47)

where ̃𝐶𝑠 are the discrete Fourier transforms of the spin correlation function 𝐶𝑠 [Jan08,
p. 127],

̃𝐶𝑠(𝒌) = DFT(𝐶𝑠(𝒓)) = ∑
𝒓

𝐶𝑠(𝒓)𝑒−i𝒌𝒓 , (2.48)

calculated at two different 𝑘-space vectors 𝟎 = (0, 0, 0)𝑇 and 𝟏 = (2𝜋
𝐿
, 0, 0)𝑇. For the zero

vector it turns out, that [Jan08, p. 127]

̃𝐶𝑠(𝟎) =
𝜒̃
𝛽
, (2.49)

where 𝜒̃ is the high temperature susceptibility defined in Equation (2.41). We know, that
this is essentially the average over squared magnetization. The remaining task is to calculate
the value of ̃𝐶𝑠(𝟏). One can show that [Jan08, p. 127]

̃𝐶𝑠(𝒌) =
1
𝑉
⟨∣∑

𝒓
𝑠(𝒓)𝑒i𝒌𝒓∣

2
⟩ . (2.50)

Equation (2.50) gives us an easy way of calculating 𝜉. We have to store the values ∑𝒓 𝑠(𝒓)𝑒
i𝒌𝒓

for a chosen 𝒌 = 𝟏 at each measurement step of our simulation and afterwards take the
thermal average to obtain ̃𝐶𝑠(𝟏). Finally, using Equation (2.47) gives the estimate of the
correlation length 𝜉 for one disorder realization. Taking the disorder average yields the final
estimate

𝜉 = J𝜉𝑐K . (2.51)

Please note, that Equation (2.47) by definition is valid only on the high temperature phase
since the used 𝜒̃ is defined only in this phase.

This completes our presentation of the observables for the (disordered) Ising model. We
will go into some more detail on the calculation of these observables from data obtained in
our simulations in Section 4.3.



2.3 Phase transitions and critical exponents 39

Summary. We introduced the pure and the site disordered Ising model. The definitions
of the uncorrelated and long-range correlated site disorder cases were given, and we
introduced the concentration of defects 𝑝𝑑 and the correlation exponent 𝑎. All important
observables of the Ising model used in this work were presented. The thermal and disorder
averages were introduced for the disordered Ising model, and we explained how exactly
the disorder averages were used in our work.

2.3 Phase transitions and critical exponents

In this section we briefly discuss the concepts of phases and phase transitions. In physical
sense a phase is a possible state of a matter or system at equilibrium [Nol14, p. 279]. It
is characterized by a set of (a few) observables which are uniform on a macroscopic level
[NO10, p. 1]. It is further characterized by a thermodynamic potential (we will usually take
the free energy ℱ) which is a function of these uniformly distributed observables. Typical
examples of phases are the phases of water: ice, liquid water and vapor water. By changing
the parameter of the thermodynamic potential one can go from one phase to another. This
is called a phase transition. A phase transition is usually supplied by a dramatic change
in the system through a relatively small change in its parameters.

We will not cover the Ginzburg-Landau theory [Sch02, p. 357] which is a continuous
description of phase transitions and the Mean-Field approximation [NO10, p. 17] which
is a procedure of reducing the number of degrees of freedom by using averages and allows one
to study phase transitions analytically as well. Our analyses do not rely on these concepts
and introducing them here would go beyond the scope of this work.

2.3.1 Classification of phase transitions

The phase transitions can be divided into two main categories: first-order and second-order
phase transitions. Originally this classification was introduced by Ehrenfest in 1933 [Sau17].
In the original formulation it classified the phase transitions into first-order, and various
higher orders. However, after a while criticism on the classification starting with the second-
order led to basically only two classes [Nol14, p. 283], first-order and second-order. From
modern perspective one sometimes refers to the first-order phase transitions as discontinuous
and to all higher order phase transitions as continuous phase transitions.

In the case of a first-order phase transition the thermodynamic potential has a discon-
tinuity during the transformation. This implies that at least one of the derivatives of the
thermodynamic potential has a finite jump as the transition happens. Taking the common
example of water, the melting of ice is a first-order phase transition with a finite jump in
the entropy of the system which is the first derivative of the free energy, Equation (2.13). A
typical observed phenomenon of a first-order phase transition is the coexistence of different
phases, e.g., undercooled water [Nol14, p. 282]. We will not discuss the first-order phase
transitions in detail as they are not relevant for this work.

For the second-order phase transitions, the thermodynamic potential is continuous at the
transition point but has a discontinuity in at least one of its derivatives. Schematically, the
comparison between the behavior of different quantities for a first-order and a second-order
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phase transition is shown in Figure 2.6. In the following we will concentrate on magnetic
systems and especially on the Ising model introduced in Section 2.2. However, most of the
concepts presented here are valid for second-order phase transitions in general.

𝑇

ℱ

𝑇𝑐 𝑇

𝐸

𝑇𝑐

(a) First-order phase transition.

𝑇

ℱ

𝑇𝑐 𝑇

𝐸

𝑇𝑐 𝑇

𝑐

𝑇𝑐

(b) Second-order phase transition.

Figure 2.6: The qualitative behavior of the free energy ℱ, the internal energy 𝐸 and the specific heat
𝑐 for a first-order and a second-order phase transitions. The red and blue colors represent the two
different phases. The dashed regions in the first-order plots are regions of possibly metastable states.
The green line in the energy plot for the first-order transition is the finite jump in energy [NO10, p. 4]
Adapted from Ref. [LB05, Fig. 2.3].

2.3.2 Phase transitions of the Ising model

Let us now take our concrete case and analyze the Ising model defined by the Hamiltonian
from Equation (2.25) and the magnetization per spin 𝑚. The phase diagram in the 𝑇-ℎ-space
is presented in Figure 2.7a. Let 𝑇𝑐 denote the critical temperature below which the system
is in the ferromagnetic state. When 𝑇 < 𝑇𝑐, we can apply a negative ℎ. In this case the
magnetization is in the region −1 ≤ 𝑚 < 0. By increasing the ℎ to positive values we observe
a change in the magnetization sign which now will be in the region 0 < 𝑚 ≤ +1. This
transition is a first-order transition with a finite jump in the magnetization and is shown
schematically in Figure 2.7b. However, if we start at 𝑇 > 𝑇𝑐, set the external field to zero
ℎ = 0 and decrease the temperature, we will observe a second-order phase transition from
the paramagnetic to the ferromagnetic phase [Gar95]. This transition is shown schematically
in Figure 2.7c. The appearance of the lattice of the three-dimensional Ising model in the
different phases is shown in Figure 2.8.

The transition happens at a critical temperature 𝑇𝑐 (inverse temperature 𝛽𝑐). In the
ferromagnetic phase (also called ordered phase or low temperature phase), 𝑇 < 𝑇𝑐,
the majority of the spins have the same value. In the paramagnetic phase (also called
disordered phase or high temperature phase), 𝑇 > 𝑇𝑐, one sees randomly fluctuating
spins. Thus, the magnetization takes a nonzero value in the ferromagnetic case, and is zero
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(a) 𝑇-ℎ-phase diagram of a mag-
netic system.
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(b) First-order phase transi-
tion below 𝑇𝑐 when changing
the external field ℎ.
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𝑇𝑐

(c) Second-order phase transition
for ℎ = 0 when changing the tem-
perature from 𝑇 > 𝑇𝑐 to 𝑇 < 𝑇𝑐.

Figure 2.7: The 𝑇-ℎ-phase diagram of a magnetic system and the two different phase transitions it
can have. Dashed arrows show the direction of the parameter change for the phase transition. 𝑃𝑇1

is the first-order phase transition and 𝑃𝑇2 the second-order phase transition. Blue represents the
ferromagnetic (low temperature) and green the paramagnetic (high temperature) regions. Adapted
from Ref. [NO10, Fig. 1.3].

(a) 𝛽 = 0.4 > 𝛽𝑐, (𝑇 < 𝑇𝑐). (b) 𝛽=0.221654≈𝛽𝑐, (𝑇≈𝑇𝑐). (c) 𝛽 = 0.001 < 𝛽𝑐, (𝑇 > 𝑇𝑐).

Figure 2.8: Pure three-dimensional Ising model lattice slices at different temperatures. Red and
blue points represent the spin states 𝑠𝑥 = ±1. The model is in the ferromagnetic phase in (a), at the
critical temperature in (b) and in the paramagnetic phase in (c).

in the paramagnetic case. The magnetization 𝑚 is called the order parameter of the phase
transition. Generally, an order parameter is an observable of the system which has a finite
nonzero value in one phase but is zero in the other phase [LB05, p. 13].

When we study the correlation function of the spins defined in Equation (2.37), we obtain
the following results. Away from the critical temperature the spacial correlation 𝐶𝑠(𝑟) decays
exponentially (for 𝑟 ≫ 1) and eventually becomes zero at infinite distance [Jan08, p. 82],

𝐶𝑠(𝑟) ∝ 𝑟𝜅 𝑒−𝑟/𝜉 with 𝑇 ≠ 𝑇𝑐 . (2.52)

where exponent 𝜅 is dependent on the dimension of the system and the phase which is studied
(ordered or disordered), e.g., 𝜅 = −(𝑑 − 1)/2 for the Ising model in disordered phase [LB05,
p. 16]. Equation (2.52) defines a further quantity, the correlation length 𝜉. It describes
how fast the spins become spatially uncorrelated when the system is not at 𝑇𝑐. For a second-
order phase transition a crucial feature is that the correlation length 𝜉 diverges as the system
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approaches the critical temperature [Jan08, p. 82],

𝜉 → ∞ for 𝑇 → 𝑇𝑐 . (2.53)

Practically, it means that despite the fact that only next-neighbor interactions are present in
the Ising model, the spins “feel” each other on any length scale. On the other hand, exactly
at the critical temperature, the correlation function behaves like a power-law [LB05, p. 17],

𝐶𝑠(𝑟) ∝ 𝑟−𝑑+2−𝜂 with 𝑇 = 𝑇𝑐 . (2.54)

The exponent 𝜂 measures the deviation from a purely Gaussian behavior [VFB10, p. 559].
The exponent 𝜂 is called a critical exponent. We will introduce the general concept of the
critical exponents next.

2.3.3 Critical exponents

Roughly speaking, a critical exponent describes how a certain observable 𝒪 behaves during
a phase transition. The formal definition of a critical exponent 𝑥±

𝒪 for an observable 𝒪 is
[Hen99, p. 5]

𝑥±
𝒪 = lim

𝑡→±0

ln 𝒪(𝑡)
ln |𝑡|

< ∞ , (2.55)

where, for convenient notation, we introduced the reduced temperature,

𝑡 = 1 − 𝑇
𝑇𝑐

. (2.56)

It is clear from Equation (2.55), that the critical exponent for a certain observable exists
only if the corresponding limit is finite. In Equation (2.55) we introduced the index ± to
differentiate between the limit directions 𝑡 → +0 and 𝑡 → −0, respectively. However, in
almost all cases, this direction does not matter and the critical exponents are equal, i.e.,
𝑥+

𝒪 = 𝑥−
𝒪 . For the rest or this work we will therefore not distinguish between the limit

direction.
Now, we can define the critical exponents for various observables [Jan08, p. 83],

𝑐 = 𝑐reg + 𝑐±
0 |𝑡|−𝛼 +… , (2.57)

𝑚 = 𝑚±
0 |𝑡|𝛽 +… (𝑇 < 𝑇𝑐) , (2.58)

𝜒 = 𝜒reg + 𝜒±
0 |𝑡|−𝛾 +… , (2.59)

𝜉 = 𝜉±
0 |𝑡|−𝜈 +… . (2.60)

The dots in the equations above represent the analytic and confluent corrections which be-
come more and more important as 𝑡 increases. The amplitudes 𝒪+

0 and 𝒪−
0 are valid for

the high temperature and low temperature phases, respectively. In general, they are not
equal. Contrarily, their ratios of the form 𝒪+

0 /𝒪−
0 are universal and can be studied, see e.g.,

Ref. [PV02, p. 561] for complete set of different ratios. The 𝒪reg are regular background
terms. Usually, this term is neglected for the susceptibility, 𝜒reg ≈ 0, but not for 𝑐 because
usually 𝛾 ≫ 𝛼 [Jan12, p. 143]. Last critical exponent 𝛿 is related to the magnetization along
the isotherm 𝑇 = 𝑇𝑐 and along the ℎ-direction [Hen99, p. 6],

𝑚 ∝ ∣ ℎ
𝑘𝐵𝑇

∣
1/𝛿

. (2.61)
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The set of critical exponents 𝛼, 𝛽, 𝛾, 𝛿, 𝜂 and 𝜈 completely describe a phase transition
of the system of interest. Systems with the same critical exponents belong to a common
universality class [Lav15, p. 96]. In general, systems are divided into universality classes
according to [Lav15, p. 96]

1. the dimension of the system 𝑑,
2. the symmetry group of the order parameter,
3. possibly some other criteria.

For one particular universality class the critical exponents should be equal or at worst be a
continuous function of a few parameters of the system.

A set of six independent exponents would suggest that pretty much any system would
belong to its own unique universality class. However, the critical exponents presented above
are not independent. In fact, fixing two of them already fixes all the remaining exponents
as well. The relations are named after the four researchers, (the corresponding references
are Refs. [Fis69; Gri65; Jos67a; Jos67b; Rus63]), who have originally shown them (first, as
inequalities, though) [Jan08, p. 83],

𝑑𝜈 = 2 − 𝛼 Josephson’s law , (2.62)
2𝛽 + 𝛾 = 2 − 𝛼 Rushbrooke’s law , (2.63)

𝛽(𝛿 − 1) = 𝛾 Griffiths’s law , (2.64)
𝜈(2 − 𝜂) = 𝛾 Fisher’s law . (2.65)

Equations (2.63) to (2.65) are commonly called scaling relations while the Equation (2.62)
is called hyperscaling relation because is contains the dimension of the system [Hen99,
p. 10]. We will use the scaling and hyperscaling relations in Section 4.5.6 to check our results
for consistency.

The above relations can be rigorously derived from the Renormalization Group theory
which we will briefly describe in the next section.

2.3.4 Renormalization Group theory

As already mentioned, all the presented scaling relations can be derived by using the machin-
ery of the Renormalization Group theory (RG). In fact, the RG goes alongside the simulation
approach and is the second widely used technique to study critical phenomena and phase tran-
sitions. As we will see in Section 2.4, the theoretical predictions for the disordered Ising model
will be in fact RG calculations. For this work we have not used the RG but in order to give a
complete and consistent picture of the underlying concepts, we will give a very brief overview
on RG here. In particular, we will derive the scaling relations by following Ref. [NO10, pp.
52 ff.]. For much more detailed introduction to RG we refer to, e.g., Refs. [AM05; Gar95;
Hol07].

The key idea of the RG is to transform the system by tracing out a number of degrees
of freedom while keeping the partition function invariant under the transformation. As an
example, one would construct block spins out of individual spins of the lattice and thereby
reducing the lattice by a (a priori arbitrary) factor 𝑏 > 1. We will not explain the con-
crete procedure here, see Ref. [NO10, p. 52] for more information. Let us write down the
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transformation of the Hamiltonian of the system,

ℋ ′ = 𝑅𝑏ℋ , (2.66)

where 𝑅𝑏 is a (in general non-trivial) transformation which scales the length 𝑟 and the number
of particles (spins) 𝑁 accordingly,

𝑟′ = 𝑏−1𝑟 , (2.67)
𝑁 ′ = 𝑏−𝑑𝑁 . (2.68)

We impose that the partition function remains invariant under 𝑅𝑏, i.e.,

𝒵(ℋ ′) = 𝒵(ℋ) . (2.69)

Now, before going further, let us remark that the set of all 𝑅𝑏 transformations forms a
semigroup (in contrast to its imprecise name “Renormalization Group theory”). It has two
group properties,

1. the existence of an identity element,

ℋ = 𝑅1ℋ , (2.70)

2. and the associativity,

𝑅𝑏2
𝑅𝑏1

ℋ = 𝑅𝑏2𝑏1
ℋ , (2.71)

but lacks an inverse element 𝑅−1
𝑏 . This is clear since we remove degrees of freedom by applying

𝑅𝑏 and hence cannot simply recover them back. Now, if we start exactly at the critical point
of the system, where it is scale-invariant due to the divergence of the correlation length 𝜉,
subsequently applying the transformation 𝑅𝑏 on ℋ will drive the system to a fixed point,

ℋ ∗ = lim
𝑛→∞

𝑅𝑛
𝑏 ℋ , (2.72)

with the fixed condition

ℋ ∗ = 𝑅𝑏ℋ ∗ . (2.73)

Contrary, if the system was not exactly at the critical point, it will drift away from the
fixed point towards one of the phases, depending on where the starting point was. This
driving towards or away from the fixed point is called the Renormalization Group flow,
and it is schematically depicted in Figure 2.9. Starting from this point, one can study the
Renormalization Group flow towards the fixed point by using path integral formalism and
loop expansions, see e.g., Ref. [AM05] for a detailed explanation. This will usually result in,
e.g., critical exponents in an 𝑛-order loop approximation. But we will stop at this point and
instead just derive the scaling relations through appliance of the RG.

Let us take a look at the free energy and its scaling under 𝑅𝑏 which is governed by its
definition in Equation (2.8) and the Equation (2.69),

ℱ(ℋ ′) = 𝑏𝑑ℱ(ℋ) . (2.74)
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𝐶
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𝐻

1 2 3

Figure 2.9: Schematic representation of the Renormalization Group flow. The critical point 𝐶 is
reached by successively applying the transformation 𝑅𝑏 along the critical path (green), denoted as
black numbered points. Starting at any other point other than one on the green lines, the Renormal-
ization Group flow will drive the system away from the critical point towards the high temperature
fixed point 𝐻 or the low temperature fixed point 𝐿. Adapted from Ref. [LB05, Fig. 9.2].

Applying the transformation 𝑅𝑏 𝑛 times and writing out the dependence of the free energy
on the (reduced) temperature 𝑡 and the magnetic field ℎ, we get

ℱ(𝑡, ℎ) = 𝑏−𝑛𝑑ℱ(𝑏𝑛𝑦𝑡𝑡, 𝑏𝑛𝑦ℎℎ) , (2.75)

where 𝑦𝑡 and 𝑦ℎ are some unknown exponents for the scaling behavior of 𝑡 and ℎ, respectively.
The next step is a crucial idea for the derivation. Away from critical temperature, i.e., 𝑡 ≠ 0,
we can set

𝑏𝑛𝑦𝑡𝑡 = 1 . (2.76)

This is the case for 𝑇 > 𝑇𝑐, otherwise we use |𝑡| and −1 in Equation (2.76). Physically,
Equation (2.76) means that by applying 𝑅𝑏 𝑛 times we drive the system away from the
critical temperature and by this replace the condition |𝑡| ≪ 1. By solving it for 𝑏𝑛 and
inserting into Equation (2.75), we finally get

ℱ(𝑡, ℎ) = 𝑡𝑑/𝑦𝑡ℱ(1, 𝑡−𝑦ℎ/𝑦𝑡ℎ) = 𝑡𝑑/𝑦𝑡ℱ0(𝑡−𝑦ℎ/𝑦𝑡ℎ) . (2.77)

This is the key equation for all the scaling relations, and it is called the scaling law. Note,
that on the right-hand side of Equation (2.77) we introduced the scaling function ℱ0, which,
in contrast to ℱ, has only one parameter. The free energy (or more precise, its singular part)
is therefore a generalized homogeneous function in mathematical sense [NO10, p. 63].

As we have seen in Section 2.1, all further quantities can be derived from the free energy.
Let us take the susceptibility 𝜒 and derive it from Equation (2.77) through Equation (2.20),

𝜒(𝑡, 0) ∝
𝜕2ℱ(𝑡, ℎ)

𝜕ℎ2 ∣
ℎ=0

∝ 𝑡(𝑑−2𝑦ℎ)/𝑦𝑡 , (2.78)

Comparing the exponents in Equation (2.78) with Equation (2.59), we immediately see, that

𝛾 =
2𝑦ℎ − 𝑑

𝑦𝑡
. (2.79)
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Analogously, one derives relations for other observables and get

𝛼 = 2 − 𝑑
𝑦𝑡

, (2.80)

𝛽 =
𝑑 − 𝑦ℎ

𝑦𝑡
, (2.81)

𝛿 =
𝑦ℎ

𝑑 − 𝑦𝑡
. (2.82)

For the correlation length exponent 𝜈 one derives the scaling relation first, analogously to the
derivation of Equation (2.77), which reads [NO10, p. 66]

𝐶𝑠(𝑟, 𝑡) ∝ 𝑡2(𝑑−𝑦ℎ)/𝑦𝑡 , (𝑇 ≠ 𝑇𝑐) , (2.83)
𝐶𝑠(𝑟) ∝ 𝑟−2𝑑+2𝑦ℎ , (𝑇 = 𝑇𝑐) , (2.84)

Again, comparing the exponents leads to

𝜈 = 1
𝑦𝑡

, (2.85)

𝜂 = 𝑑 − 2𝑦ℎ + 2 . (2.86)

Equations (2.79) to (2.82), (2.85) and (2.86) finally can be combined to provide the scaling
relations presented in Equations (2.62) to (2.65). During the presented derivation we have
implicitly shown, why only two critical exponents can be chosen independently and all others
are then related by the scaling relations. It is the fact, that the free energy depends on
two variables, 𝑡 and ℎ which together can have only two scaling exponents, i.e., 𝑦𝑡 and 𝑦ℎ,
respectively.

Summary. We introduced the notion of a phase transition and classified our studied
Ising model phase transition as second-order. We explained how the transition can be
described in terms of power-law decaying observables and their corresponding critical
exponents. By looking into the basics of the Renormalization Group theory, we showed
how the relations between the critical exponents can be derived.

2.4 Predictions of universality classes for the disordered Ising model

Contrarily to the previous sections which provided us with exact analytic formulas, this
section will be a summary of results obtained for the disordered Ising model with the help of
Renormalization Group (RG) calculations and the Monte Carlo (MC) simulations. This is a
consequence of the lack of an analytic solution of the Ising model in three dimensions even
for the pure case. Therefore, we would like to summarize the known results for referencing
them later in this work.

2.4.1 Uncorrelated disorder

For the uncorrelated disorder case, there exists a so-called Harris criterion which was
introduced by Harris [Har74]. It is a result obtained through resummation of perturbation
theory and couples the influence of the disorder on the system to the critical exponent of the
specific heat. The condition is that introducing disorder to the system leads to a change in
the universality class if

𝑑𝜈pure − 2 = −𝛼pure < 0 , (2.87)
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where 𝛼pure and 𝜈pure are critical exponents of the system without disorder. Although this
result is not a rigorous calculation, it has been tested and confirmed various times since it was
first introduced in 1974. If 𝛼pure < 0 the prediction tells the opposite — the disorder becomes
irrelevant and the system stays in its universality class. However, no prediction for the case
𝛼pure = 0 can be given. This is the reason why the Ising model in two dimensions (which
happens to have 𝛼pure = 0) is a difficult edge problem. Various studies of the uncorrelated
disordered Ising model in two dimensions [Bal+97; BP18; Cha14; Cha17; DD83; KP94;
KR08; MK99; MP07; Rui97; SFN09; Sha87; Sha94] suggest the view that the universality
class remains the same but additional logarithmic corrections have to be considered. Using
simulations, such logarithmic corrections are almost always a big problem since the largest
lattice sizes one can study are usually not large enough to distinguish logarithmic behavior
from other forms like power-laws. This was one of the main reasons which motivated us to
investigate the three-dimensional case.

In three dimensions, the disordered Ising model was also studied in various works with
the help of the RG techniques [HY98; PS00; PV02; Var00; Xio+10] and MC simulations
[Bal+98a; Ber+04; Cal+03; Has+07; Heu93; MKB04; WD98]. A comprehensive list of fur-
ther works before 2003 can be found in Ref. [FHY03]. A comparison between the different
approaches and the difficulties on the agreement between the experiments, the RG calcu-
lations and the simulation results is discussed in Ref. [Ber+05]. A very recent RG work is
Ref. [KKS21] which also have a very good summary of different works. We added their values
in Table 2.3 but since they have quite large errors, we will exclude them in the comparison
plots later. Some experimental results for Ising-like materials with disorder are summarized
in Table 2.1, although we will not go into a detailed comparison with this data. It may be
noticed however, that the critical exponent 𝜈 usually lies above the values from RG calcu-
lations and MC simulations. Nevertheless, due to the large errors, the experimental values
typically cover the theoretical ones fully or at least to a great extent.

Table 2.1: Experimental results of the critical exponents of three-dimensional Ising-like models. Most
of the results were obtained through neutron scattering.

Reference Material 𝑝 𝜈 𝛼 𝛽 𝛾

Birgeneau et al. [Bir+83] Fe𝑝Zn1−𝑝F2 0.6, 0.5 0.73(3) −0.09(3) 1.44(6)
Belanger et al. [Bel+95] Fe𝑝Zn1−𝑝F2 0.5 0.35
Mitchell et al. [Mit+86] Mn𝑝Zn1−𝑝F2 0.7 0.715(35) 1.364(76)
Slanič et al. [SB98; SBF98] Fe𝑝Zn1−𝑝F2 0.9 0.71(1) −0.10(2) 1.35(1)

In Table 2.3 we summarize results from RG calculations and MC simulations for the uncor-
related and also for the correlated disorder cases, which will be covered in the next section.
Due to the large number of works dealing with the uncorrelated case, we restrict ourselves to
the most recent results and results with comparably small errors. Also note, that we exclude
the critical exponent 𝛿 in Table 2.3 as it was not measured directly in any of the known
work and also not in this work. The results from the literature are not completely identical
but all of them support the Harris prediction that the Ising model with disorder changes its
universality class. Moreover, the numerical results (in particular for the critical exponent 𝜈)
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are quite close together and more or less coincide within their errorbars. Altogether, the un-
correlated disorder case is well-established and can be used as a solid background to compare
newer results to.

2.4.2 Correlated disorder

Let us turn to the correlated disorder case. The literature base for this case is much sparser
than for the uncorrelated case. An important work was done by Weinrib and Halperin [WH83]
where the authors used the RG 𝜀-𝛿-expnasion to deal with long-range correlated disorder in
models with different dimensions of the order parameter. Here, the expansion happens in
two directions, i.e., 𝜀 = 4 − 𝑑 and 𝛿 = 4 − 𝑎. The authors have worked out the extended
Harris criterion which can be summarized in the following form: the system with long-
range correlated disorder with a correlation which decays as ∝ 𝑟−𝑎 will change to a new
universality class when the correlation is strong enough, i.e., 𝑎 < 𝑑. We can combine the
extended Harris criterion with the original one into one expression: adding disorder to the
system leads to a change in the universality class if

⎧{
⎨{⎩

𝑑𝜈pure − 2 = −𝛼pure < 0 for 𝑎 ≥ 𝑑

𝑎𝜈pure − 2 < 0 for 𝑎 < 𝑑
. (2.88)

Note, that the standard Harris criterion is recovered in case of 𝑎 ≥ 𝑑. We would like to
pay attention to a statement in Ref. [WH83] which we found is often overseen: the above
expression Equation (2.88) is valid for 𝑎 ≈ 4. There is no evident criterion on how far
away the correlation exponent 𝑎 can go from that without introducing noticeable deviations.
Also, in case of a three-dimensional model, the two statements 𝑎 < 3 and 𝑎 ≈ 4 are quite
contradictory. There is one further prediction in Ref. [WH83] which we will call the Weinrib
and Halperin (WH) prediction. Its states that the critical exponent of the correlation length
𝜈 will take the form

𝜈 = 2
𝑎
, (2.89)

if the long-range correlated disorder is relevant, i.e., 𝑎 < 𝑑. The WH prediction is supposed
to be exact in the case of the Ising model as suggested by the authors. However, no rigorous
proof is given. There exists a work by Honkonen and Nalimov [HN89] where the authors claim
to provide a rigor proof of Equation (2.89) by showing that it is valid up to any expansion
order. However, it remains unclear to us, whether both expansion variables can be taken
arbitrarily far away from 4, i.e., 𝜀 and 𝛿 or only one of them. We therefore leave the WH
prediction as a conjecture and will compare our results to it in order to further support or
reject it.

For the case of a system with an order parameter larger than one, the authors in Ref. [WH83]
also provide expressions for other exponents,

𝛼 =
2 (𝑎 − 𝑑)

𝑎
, (2.90)

𝛽 = 2 − 𝜀
𝑎

, (2.91)

𝛾 = 4
𝑎
, (2.92)
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where we have left out the notion of further corrections of order 𝑂(𝜀2). Equations (2.90)
to (2.92) are sad to be derived from scaling relations. By using scaling relations from Equa-
tions (2.62) and (2.63) and Equations (2.89) and (2.92), we get a second expression for 𝛽,

𝛽 = 𝑑 − 2
𝑎

. (2.93)

Also it is not clear from the text whether these expressions are valid in the case of the Ising
model, we included those expressions (with Equation (2.93) for 𝛽) into Table 2.3 and will
compare our estimates to these predictions as well.

There exist a contradicting work by Prudnikov et al. [PPF00] where the authors also study
the correlated case with the help of RG calculations but get completely different estimates for
the exponent 𝜈 and consequently the other exponents. The reason for such extreme deviations
remains unclear to us. This work and also the accompanying MC results from Ref. [Pru+05]
are provided in Table 2.3 for completeness. Further works with MC simulations dealing with
the three-dimensional Ising model with correlated disorder are Refs. [BP99; Iva+08]. Their
estimates are summarized in Table 2.3 as well. All works with MC simulations used only one
correlation exponent 𝑎 = 2.0 and a limited number of concentrations of defects 𝑝𝑑. This fact
and also the discrepancy between the results by Prudnikov et al. [PPF00] and Weinrib and
Halperin [WH83] were a big motivation for us to attack the problem once again.

2.4.3 Concentration threshold

Last aspect in connection to the site disordered Ising model we would like to discuss is the
concentration threshold for the defects on the lattice. It is natural to insist that an infinite
connected spin cluster has to be present below 𝑇𝑐 for 𝐿 → ∞. Hence, the concentration
of spins has to be equal or above the site-percolation threshold in three dimensions. This
concentration in three dimensions is known to be [Wan+13]

̂𝑝∞ = 0.311 607 7(2) , (2.94a)
̂𝑝∞
𝑑 = 1 − ̂𝑝∞ = 0.688 392 3(2) , (2.94b)

where the threshold for the concentration of defects 𝑝𝑑 ≤ ̂𝑝𝑑 was introduced and the index ∞
indicates that this is the percolation threshold for the uncorrelated case with 𝑎 = ∞. As one
can see, in the uncorrelated case about two thirds of the lattice can be turned into disorder
without destroying the infinite spin cluster.

For the correlated cases, there was a work by Zierenberg et al. [Zie+17] where the depen-
dence of the percolation concentration on the correlation exponent 𝑎 was studied. The results
from Ref. [Zie+17] are presented in Table 2.2. The main outcome is somewhat counterintu-
itive at the first glance: for stronger correlations, the percolation threshold decreases. This
means that even more defects can be put onto the lattice without destroying the spin cluster.
Although one might expect the opposite, the qualitative explanation of this behavior exists.
If the defects tend to form clusters on the lattice, it is more likely that even a larger concen-
tration of them will still not be sufficient to split the largest spin cluster apart. Consider the
edge case of 𝑎 → 0. In this case all defects effectively are one big defect cluster. Independent
of the ratio between the occupied sites and the defects, the occupied sites they will also form
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one connected cluster. This is a natural consequence of the fact that the correlation between
the defect sites and the spin sites follows the same law, e.g., the power-law in our case. Hence,
spatially correlated defects go hand in hand with spatially correlated occupied sites.

Finally, we would like to note that the largest concentration of defects 𝑝𝑑 = 0.4 considered
in this work is way below the threshold concentration ̂𝑝𝑑 and hence we do not expect any
problems with regard to a proper Ising mode on the lattices. However, this does not exclude
the possibility for smaller (almost) fully separated regions of spins to exist. Such regions are
called rare regions. They can lead to significant changes in the behavior of the total system,
i.e., to so-called Griffiths singularities and Griffiths phases. However, in the case of the Ising
model, the influence of the rare regions decay exponentially [Voj06], and therefore we do not
expect any difficulties in our analyses. We will not cover the topic of Griffiths phases here.

Table 2.2: Dependence of the percolation threshold ̂𝑝 on the correlation exponent 𝑎 taken from
Ref. [Zie+17]. Additionally, the concentration of defects ̂𝑝𝑑 is shown for convenience.

𝑎 ̂𝑝 ̂𝑝𝑑 = 1 − ̂𝑝

∞ 0.311 610(2) 0.688 390(2)
4.0 0.238 778(4) 0.761 222(4)
3.0 0.208 438(5) 0.791 562(5)
2.5 0.188 289(7) 0.811 711(7)
2.0 0.163 02(2) 0.836 98(2)
1.5 0.130 22(5) 0.869 78(5)
1.0 0.0863(3) 0.9137(3)
0.5 0.025(3) 0.975(3)

Summary. For the three-dimensional Ising model we expect three different universality
classes: the pure case without disorder, the (effectively) uncorrelated case when 𝑎 ≥ 𝑑 and
the correlated case when 𝑎 < 𝑑. These cases are schematically depicted in Figure 2.10.
In the correlated case the Weinrib and Halperin prediction for 𝜈 = 2/𝑎 is a conjecture
which we would like to support or reject at the end of this work.

𝑝𝑑

𝑎

0 ̂𝑝𝑑(∞) 1
∞

𝑑

0

̂𝑝𝑑(𝑎)

pure
uncorrelated

correlated

Figure 2.10: Universality classes of the three-dimensional Ising model in dependence of the con-
centration of defects 𝑝𝑑 and the correlation exponent 𝑎. The threshold for 𝑝𝑑 is shown qualitatively
according to the results from Ref. [Zie+17].
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Table 2.3: Summary of the critical exponents and some background information from various works dealing with the uncorrelated and long-range correlated disordered
Ising model in three dimensions. For comparison, recent high-precision estimates for the pure Ising model are also provided. The critical exponent 𝛿 is left out because
none of the present works (including this work) estimated it directly. Legend: † — calculated from other exponents through scaling relations in the original work, ‡ —
calculated from other exponents through scaling relations by us, ∗ — averaged over various 𝑝𝑑 by us (weighted mean), • — not measured (fixed value or the one which
gives best fits), ? — stated in the paper as an expression for the case where the dimension of the order parameter is 𝑚 > 1, FSS — data analyzed with finite-size
scaling, TS — data analyzed with temperature scaling, MC — Monte Carlo simulations, RG — Renormalization Group calculations, FFM — long-range correlated
disorder generated with Fourier Filter Method, DL — long-range correlated disorder reached by using lines of disorder.
Type Reference 𝑎 𝜈 𝜂 𝛼 𝛽 𝛾 𝜔 𝑝𝑑 # 𝑝𝑑 max 𝐿 # 𝐿 𝑁 𝑁𝑐 Notes

Pure Ising model

MC Ferrenberg et al. [FXL18] ∞ 0.629 912(86) 0.036 10(45)‡ 0.110 26(26)‡ 0.326 30(22) 1.237 08(33) 0.83• 1024 17 5 ⋅ 106 ≤ 12 000 FSS

Uncorrelated disorder

MC

Ballesteros et al. [Bal+98a] ∞ 0.6837(53) 0.0374(45) −0.051(16)† 0.3546(28)† 1.342(10)† 0.37(6) 0.1–0.6 5 128 5 200 20 000 FSS
Calabrese et al. [Cal+03] ∞ 0.683(3) 0.035(2) −0.049(9)† 0.3535(17)† 1.342(6)† − 0.2 1 256 5 2000 ≈ 15 000 TS
Berche et al. [Ber+04] ∞ 0.68(2) 0.029(60)‡ −0.04(6)‡ 0.35(1) 1.34(1) − 0.3–0.6 3 96 14 2500 ≤ 5000 FSS, TS
Murtazaev et al. [MKB04] ∞ 0.678(6)∗ 0.045(19)∗,‡ −0.0216(70)∗ 0.3178(40)∗ 1.3258(40)∗ − 0.05–0.4 4 60 11 ≈ 2 ⋅ 106 ≤ 80 FSS
Hasenbusch et al. [Has+07] ∞ 0.683(2) 0.036(1) −0.049(6)† 0.354(1)† 1.341(4)† 0.33(3) 0.2, 0.35 2 192 10 ≈ 500 ≈ 105 FSS

RG
Pakhnin et al. [PS00] ∞ 0.671(5) 0.025(10) −0.0125(80)† 0.344(6)† 1.325(3)† 0.32(6) 5-loop 𝜀-expansion
Pelissetto et al. [PV00] ∞ 0.678(10) 0.030(3) −0.034(30)† 0.349(5)† 1.330(17) 0.25(10) 6-loop 𝜀-expansion
Kompaniets et al. [KKS21] ∞ 0.675(19) 0.024(79)† −0.025(58)† 0.346(34)† 1.334(38) 0.15(10) 6-loop

√
𝜀-expansion

Correlated disorder

MC
Ballesteros et al. [BP99] 2.0 1.012(16) 0.043(4) −1.036(48)‡ 0.528(34)‡ 1.980(33)‡ 1.01(13) 0.2, 0.35 2 128 5 100 ≤ 20 000 FSS, FFM, DL
Prudnikov et al. [Pru+05] 2.0 0.71(1) −0.030(36)‡ −0.078(30) 0.362(20) 1.441(15) 0.76(5)• 0.2 1 128 4 ≤ 105 ≤ 15 000 FSS, DL
Ivaneyko et al. [Iva+08] 2.0 0.958(4) 0.191(18)‡ −0.789(3)‡ 0.528(3) 1.733(11) 0.8• 0.2 1 128 12 50 000 ≤ 10 000 FSS, FFM

RG Weinrib et al. [WH83] 𝑎 < 𝑑 2/𝑎 0? 2(𝑎 − 𝑑)/𝑎? (𝑑 − 2)/𝑎?,‡ 4/𝑎? − 2-loop 𝜀-𝛿-expansion
Prudnikov et al. [PPF00] 3.0 0.6715 0.0327 −0.014‡ 0.347‡ 1.321‡ −

2.5 0.7046 0.0118 −0.114‡ 0.3565† 1.4008† −
2.0 0.715 −0.0205 −0.147‡ 0.34‡ 1.4456‡ − scaling functions in 2-loop approximation
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3.1 Monte Carlo method

The main part of this work is related to simulations of a physical system, e.g., the tree-
dimensional Ising model in our case. Consider any statistical system with a Hamiltonian
ℋ. For simplicity, we restrict ourselves to a calculation in the framework of the canonical
ensemble introduced in Section 2.1. The main goal is to perform some sort of computations
on a computer and calculate observables 𝒪 of interest for the studied system at a temperature
𝑇. As was shown in Equation (2.7), we can calculate the expectation value of any observable
𝒪 by summing over all possible states of the system,

⟨𝒪⟩ = 1
𝒵

∑
𝜇

𝒪𝜇𝑒−𝐸𝜇/(𝑘𝐵𝑇 ) . (3.1)

If one would have an infinite-power supercomputer, the only thing one would need to do would
be to generate all possible states and apply Equation (3.1). Unfortunately, this fails due to
the scaling of the number of possible states. As an example, the Ising model with only two
possible states per site in three dimensions and on a small 10×10×10 lattice has 21000 ≈ 10300

states. Just sampling through all possible states on the current largest supercomputer in the
world, the Fungaku supercomputer [@Fun21], with 442 petaflops would need ≈ 10275 years.

The next approach would be to randomly pick some states 𝑖 and stop after a certain
number 𝑁 of pickups. This approach is called random sampling. The approximation of the
expectation value of the chosen observable 𝒪 would then follow from Equation (3.1) and the
definition of the partition function in Equation (2.2),

⟨𝒪⟩ ≈
∑𝑁

𝑖 𝒪𝑖𝑒−𝐸𝑖/(𝑘𝐵𝑇 )

∑𝑁
𝑖 𝑒−𝐸𝑖/(𝑘𝐵𝑇 )

. (3.2)

In Equation (3.2), we have replaced the summation over all possible states with a summation
over a sequence of observed (simulated) states. The random sampling is essentially equivalent
to simulating at infinite temperature 𝑇 = ∞ [Jan08, p. 97]. To hit a state which is typical
at 𝑇 ≪ ∞ while being at 𝑇 = ∞ is physically possible but practically it will never happen
in real simulation runs. The random sampling will instead usually result in a tiny fraction of
all possible states and will not be representative for the system at the desired temperature 𝑇.
For the small Ising system with 10×10×10 lattice we could go for one year on Fungaku and
would reach ≈ 1025 samples. This is still a 1/10250 fraction. Therefore, the estimate through
Equation (3.2) will hardly have any meaning at all since probably we will not hit any of the
substantially contributing states for the given temperature 𝑇. This problem clearly calls for
better ways.
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In the following we will present one very common way to attack this problem, the Monte
Carlo method. The Mote Carlo method tries to replicate an experimental approach on a
computer and to go from one state of the system to the next as in a time direction [NB99,
p. 21]. But instead of using random states, we will follow a specific prescription and try to
mostly travel through states which contribute most to the sum in Equation (3.2) at the given
temperature 𝑇. The process of moving from one state to the next can be described by a
Markov chain and the prescription on how to select the next state will be the importance
sampling in our case. We will address these two aspects below.

3.1.1 Markov chain and importance sampling

The Markov chain is a very broad topic and was applied and studied in many branches. For a
very mathematical and detailed description we can recommend Refs. [Dou+18; Str14] while
the basics also presented here are covered in, e.g., Refs. [LB05; NB99; Sad12; Sch02]. In this
work we will stick to the needs of using a Markov chain to perform Monte Carlo simulations.

Consider a physical system at state 𝜇𝑖 and assume that it is an equilibrium state at a certain
temperature 𝑇. Further, let 𝓅𝜇 denote the (equilibrium) probability density function of the
states 𝜇 of the current system. This can be the Boltzmann distribution for the canonical
ensemble, as introduced in Equation (2.4), but generally also any other choice. The goal is
to transit to the next state 𝜇𝑖+1 with a certain probability 𝑤𝑖 = 𝑤(𝜇𝑖 → 𝜇𝑖+1). A condition
which is imposed on the transition probability 𝑤𝑖 is that it depends only on the previous
state 𝜇𝑖 and the possible new state 𝜇𝑖+1 but not on the whole series of previous states. This
makes the process very local in time. This process is then repeated many times producing a
Markov chain,

…
𝑤𝑖−1−−−→ 𝜇𝑖

𝑤𝑖−→ 𝜇𝑖+1
𝑤𝑖+1
−−−→ 𝜇𝑖+2

𝑤𝑖+2
−−−→ … , (3.3)

So far, we have no relation between the probability density 𝓅𝜇 and the transition probabilities
𝑤. To ensure, that the sequence of the states indeed follows 𝓅𝜇, the transition probabilities
between two states 𝜇 and 𝜈, 𝑤(𝜇 → 𝜈), have to fulfill three conditions [Jan08, p. 98]:

𝑤(𝜇 → 𝜈) ≥ 0 for all 𝜇, 𝜈 , (3.4)
∑

𝜈
𝑤(𝜇 → 𝜈) = 1 for all 𝜇 , (3.5)

∑
𝜇

𝑤(𝜇 → 𝜈)𝓅𝜇 = 𝓅𝜈 for all 𝜈 . (3.6)

Equation (3.4) is a trivial restriction to positive or zero probabilities for each transition.
Equation (3.5) ensures that the total probability of going from state 𝜇 to any other state is
normalized to one. The most interesting condition is given in Equation (3.6). It implies that
the probability distribution 𝓅𝜇 is an eigenvector of 𝑤 [Jan08, p. 98]. It can be interpreted as
a general balancing condition on 𝑤. However, in praxis, often the stricter detailed balance
is imposed,

𝑤(𝜇 → 𝜈)𝓅𝜇 = 𝑤(𝜈 → 𝜇)𝓅𝜈 for all 𝜇, 𝜈 . (3.7)

Reading it as ratios [NB99, p. 39],

𝑤(𝜇 → 𝜈)
𝑤(𝜈 → 𝜇)

=
𝓅𝜈
𝓅𝜇

for all 𝜇, 𝜈 , (3.8)
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immediately reveals the interpretation: transitioning from 𝜇 to 𝜈 in relation to the back-
transition from 𝜈 to 𝜇 should reflect the ratio of the corresponding probabilities of the states
𝜈 and 𝜇, respectively.

An additional requirement is that of ergodicity. We have to ensure that starting at any
state 𝜇 we can reach any other state 𝜈 in a finite time [Jan08, p. 98],

∑
𝜂𝑖,𝜂2,…𝜂𝑛

𝑤(𝜇 → 𝜂1)𝑤(𝜂1 → 𝜂2) ⋅ ⋯ ⋅ 𝑤(𝜂𝑛 → 𝜈) > 0 for 𝑛 < ∞ for all 𝜇, 𝜈 , (3.9)

i.e., there exists a finite realizable path from 𝜇 to 𝜈 for all possible starting states 𝜇 and
final states 𝜈. Assuming that all the above conditions are fulfilled for a certain system
and the chosen 𝓅𝜇, we can approximate the expectation values with a modified version of
Equation (3.2) [NB99, p. 32],

⟨𝒪⟩ ≈
∑𝑁

𝑖 𝒪𝑖𝓅−1
𝜇𝑖

𝑒−𝐸𝑖/(𝑘𝐵𝑇 )

∑𝑁
𝑖 𝓅−1

𝜇𝑖
𝑒−𝐸𝑖/(𝑘𝐵𝑇 )

, (3.10)

where we now have the probability densities at each state 𝜇𝑖 as inverse factors. By setting
the probability to the Boltzmann distribution, 𝓅𝜇 = 𝑒−𝐸𝜇/(𝑘𝐵𝑇 ), Equation (3.10) simplifies
to a simple average over the time series produced by going along a Markov chain of states of
length 𝑁,

⟨𝒪⟩ = ∑
𝜇

𝓅𝜇𝒪𝜇 ≈ 𝒪 = 1
𝑁

∑
𝑖

𝒪𝑖 , (3.11)

where 𝒪𝑖 are the observables measured at the state 𝜇𝑖 in the chain. This process of selecting
subsequent states which follow the distribution 𝓅𝜇 is called importance sampling. In
opposite to the previously mentioned random sampling, a considerably smaller number of
states is needed to have a sufficient representation of a system at a given temperature 𝑇. An
important condition however, which we would like to repeat once again at this point is that
the system has to be in equilibrium before we can apply Equation (3.11). This implies that
any simulation starts with a certain equlibration procedure before the actual measurements
can take place.

Equipped with a general prescription for the generation of relevant states and the corre-
sponding estimator for the expectation values of observables, Equation (3.11), we can intro-
duce different update algorithms for concrete systems. In the following, we will present two
different update algorithms applied to the Ising model, which was introduced in Section 2.2.

3.1.2 Metropolis update

We begin with the famous and widely used Metropolis algorithm. It was first introduced by
Metropolis et al. [Met+53] already about 70 years ago and became a fundament for many
other algorithms. We have not used it in our work (because, as we will see later, there
exists a much more efficient algorithm for the Ising Model), but it is an important step in
understanding the simulation process and therefore we will briefly present it here. Probably
the most important reason for the Metropolis algorithm being so popular is its generality.
It can be applied to almost any system, including discrete or continuous time, short-range
or long-range interactions, lattice or off-lattice models [Jan08, p. 99]. The trick around the
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Metropolis algorithm is hidden in the detailed balance condition in Equation (3.8). This
condition leaves a lot of freedom in choosing the transition probabilities as only their ratio
has to be fulfilled. The general idea is to split the simulation into two steps. First, propose
a change to the current system in the state 𝜇 to a new state 𝜈. Second, accept this change
with a certain probability or reject it and keep the system in the state 𝜇. The procedure of
derivation is simple but quite lengthy, and we refer to Ref. [NB99, pp. 46 ff.], where it is
presented in great detail. Instead, we present the final algorithm applied to the Ising model
[LB05, p. 71]:

Metropolis algorithm for the Ising model
1. intialize a lattice Λ with an equilibrium state
2. choose a random spin at site 𝑥 ∈ Λ and flip it

𝑠𝑥 → −𝑠𝑥 (3.12)

3. accept this change with probability 𝓅

𝓅 = min (1, 𝑒−𝐽𝛽(𝐸𝜈−𝐸𝜇)) (3.13)

if not accepted, undo the flip from step 2
4. go to step 2

In the algorithm description above we have left out the details of implementation and
only presented the most important steps. An efficient algorithm can be written in such a
way that neither the spin has to be physically flipped (changing it on the lattice Λ) before
accepting or rejecting the flip nor has one to repeatedly calculate the exponential function
in Equation (3.13). However, the presented formulation reflects the concept of a Metropolis
updated in the best way. Equation (3.13) essentially means the following: accept the change
when the energy of the new state 𝜈 is lower than that of the current state 𝜇, otherwise accept
the change with probability 𝑒−𝛽𝐽(𝐸𝜈−𝐸𝜇). This choice is what is the essential part of the
Metropolis update introduced in Ref. [Met+53]. The choice of a site 𝑥 where the spin is
flipped in step 2 in the algorithm has not to be a random decision a priori. It is possible
and in fact sometimes even better to do it systematically, like going through each site 𝑥 ∈ Λ
sequentially. At this point two important definitions have to be made which will also be
needed in the next algorithm. The proposal to flip one spin at site 𝑥 in the Metropolis
algorithm is called a swap. Performing 𝑉 swaps, where 𝑉 is the volume of the system, is
called a sweep. If one tries to flip the spins sequentially, a sweep corresponds to trying to
flip each spin of the lattice once.

As already mentioned, the Metropolis update can be used for very different systems due
to its generality. However, it does have an important weakness coming from the locality of
the update. As discussed in Section 2.3, close to the critical temperature the correlation
length of the system diverges. This implies that any local updating algorithm will suffer from
a phenomenon called critical slowing down [Jan08, p. 106]. This slowing down means
that one has to perform many updates in order to get two uncorrelated states. Or in other
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words, the correlation time of observables becomes very large. The general dependence has
the form [Jan08, p. 107]

𝜏exp ∝ 𝐿𝑧 , (3.14)

where typically 𝑧 ≈ 2 and 𝜏exp is the exponential autocorrelation time. The value 𝑧 is called
dynamical critical exponent. The critical slowing down is the main reason why cluster
updates are of such a big importance. One such cluster update algorithm will be presented
next.

3.1.3 Swendesen-Wang multiple-cluster update

Let us present the multiple-cluster update scheme which was used in this work. It was
introduced by Swendsen and Wang [SW87] in 1987 and is applicable to different spin models,
e.g., Ising model, XY-model and Heisenberg model. The general idea consists of two steps.
First, divide the whole lattice Λ into clusters. A cluster is a set of connected sites on the
lattice. Second, randomly set all sites belonging to the same cluster to a new spin value for
each cluster. The main difficulty in creating a cluster update scheme is to satisfy the detailed
balance, Equation (3.8).

The naive approach is to combine all sites which have the same spin orientation and which
are connected, i.e., are direct neighbors on the lattice. Such clusters are called geometric
clusters. The process is best described in terms of bonds between sites. A bond 𝐵𝑥𝑦 is the
connection between two next-neighboring sites 𝑥 and 𝑦. We first go through all sites 𝑥 of the
lattice Λ and check each bond 𝐵𝑥𝑦 where 𝑦 are next-neighbors of 𝑥, denoted by 𝑦 ∈ ⟨𝑥𝑦⟩, and
we check each bond only once, which we symbolically denote with 𝑥 < 𝑦 for simplicity1. So,
the prescription reads

𝐵𝑥𝑦 =
⎧{
⎨{⎩

1 if 𝑠𝑥 = 𝑠𝑦

0 otherwise
for all 𝑥 ∈ Λ, 𝑦 ∈ ⟨𝑥𝑦⟩ and 𝑥 < 𝑦 . (3.15)

Now, we identify all clusters 𝐶𝑖 on the lattice Λ as sites connected by active bonds, 𝐵𝑥𝑦 = 1.
See Figure 3.1 for a visual representation. This can be done, e.g., with an efficient cluster-
search algorithm called Hoshen-Kopelman algorithm [HK76]. We will not discuss this
algorithm here, but our implementation can be found in Appendix A.4. However, it turns
out that such clusters do not satisfy detailed balance and hence cannot be used in a cluster
update algorithm.

The trick of Swendsen and Wang was to introduce a probability according to which two
sites which are next to each and share the same orientation really belong to the same cluster.
The clusters which are build with this rule are called stochastic clusters. Let us write
down the multiple-cluster update algorithm [LB05, p. 139]:

1 More precise, we have to check each component of the coordinates of 𝑥 and 𝑦: 𝑥𝑖 < 𝑦𝑖 for all 𝑖 ∈ 1, … , 𝑑
and afterwards also apply the boundary conditions properly, e.g., in case of periodic boundary conditions,
we have to transform 𝑦𝑖 → 1 if 𝑦𝑖 = 𝐿 + 1 after the comparison was done.
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Swendensen-Wang multiple-cluster update algorithm
1. intialize a lattice Λ
2. generate bonds 𝐵𝑥𝑦 for all sites of the lattice, 𝑥 ∈ Λ, 𝑦 ∈ ⟨𝑥𝑦⟩ and 𝑥 < 𝑦

𝐵𝑥𝑦 =
⎧{
⎨{⎩

1 if 𝑠𝑥 = 𝑠𝑦 with 𝓅 = 1 − 𝑒−2𝛽𝐽

0 otherwise
(3.16)

where 𝓅 is the activation probability
3. identify all clusters 𝐶𝑖

4. chose a new random spin state 𝑆𝑖 for each cluster 𝐶𝑖

5. apply this new state to each site of each cluster

𝑠𝑥 = 𝑆𝑖 for all 𝑠𝑥 ∈ 𝐶𝑖 for all 𝑖 (3.17)

6. go to step 2

The identification of the clusters can again be done with the Hoshen-Kopelman algorithm.
From the comparison between Equation (3.16) and Equation (3.15) we immediately see that
the stochastic clusters are smaller than the geometric ones. Only for the limit of 𝛽 → ∞
both definitions coincide. This is visually shown in Figure 3.1. The form of the probability
𝓅 in Equation (3.16) is derived by rewriting the partition function of the Ising model. Lest
us start with Equation (2.2) applied to the Ising model without an external magnetic field
(ℎ = 0), Equation (2.25) [Jan08, p. 108],

𝒵 = ∑
𝜇

𝑒−𝛽𝐸𝜇 (3.18a)

= ∑
𝜇

𝑒𝛽𝐽 ∑⟨𝑥𝑦⟩ 𝑠𝑥𝑠𝑦 (3.18b)

= ∑
𝜇

∏
⟨𝑥𝑦⟩

𝑒𝛽𝐽 ((1 − 𝓅) + 𝓅𝛿(𝑠𝑥, 𝑠𝑦)) (3.18c)

= ∑
𝜇

∑
𝐵𝑥𝑦

∏
⟨𝑥𝑦⟩

𝑒𝛽𝐽 ((1 − 𝓅)𝛿(𝐵𝑥𝑦, 0) + 𝓅𝛿(𝑠𝑥, 𝑠𝑦)𝛿(𝐵𝑥𝑦, 1)) , (3.18d)

where we used the fact that the spins 𝑠𝑥 can only have values ±1 and 𝛿 is the Kronecker delta.
From Equation (3.18), we can solve for 𝓅 and arrive at the probability used in Equation (3.16).

The next observation is that in the Swendesen-Wang multiple-cluster update algorithm
all spins of the lattice are touched on each iteration step. Therefore, one iteration directly
corresponds to a Metropolis sweep defined previously. This makes it very easy to compare
the effectiveness in terms of sweeps between these two algorithms. When considering the
previously mentioned critical slowing-down of the system, it is known that the dynamical
critical exponent drops to 𝑧 = 0 for the two-dimensional Ising model [LB05, p. 138] and has
a value 𝑧 ≈ 0.5 for the tree-dimensional Ising model [Wan90]. Thus, this algorithm reaches
uncorrelated states much faster than the Metropolis algorithm. Our implementation of the
Swendsen-Wang algorithm for the Ising model can be found in Appendix A.4.

Finally, we would like to mention, that there is another widely used cluster update algo-
rithm for the Ising model: the Wolff single-cluster update algorithm [Wol89]. It uses the
same definition of bonds activation as in Equation (3.16), but instead of dividing the whole
lattice into clusters at each iteration step, only one stochastic cluster starting at a random
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(a) Spin configuration. (b) Geometric clusters.

(c) 𝛽 = 0.1. (d) 𝛽 = 0.3. (e) 𝛽 = 𝛽𝑐. (f) 𝛽 = 0.5. (g) 𝛽 = 1.0.

Figure 3.1: Comparison between geometric and stochastic clusters at different temperatures for a
two-dimensional Ising model with 𝐿 = 32. The bottom row shows the stochastic clusters as they
are identified at different temperatures 𝛽. The initial spin configuration is taken from a simulation
at 𝛽 = 𝛽𝑐. Different colors represent different clusters. However, there is no direct interpretation of
the color itself. One can see, that for larger 𝛽 values the stochastic clusters approach the geometric
clusters.

site is generated in each step. Therefore, the algorithm is a single-cluster update algorithm.
It is known that it works even more efficiently in the case of the tree-dimensional pure Ising
model. However, since our model is a disordered Ising model, we expect the multiple-cluster
update variant to be more efficient. We expect, that the size of an average stochastic cluster
is smaller due to the present disorder on the lattice. Therefore, updating one cluster at a
time will generally be a slower update than in the pure case. On the other hand, dividing
the whole lattice into individual clusters and update all of them at once does not depend on
the disorder because the whole lattice is considered at each step anyway.

Summary. We introduced the Monte Carlo method for effectively simulating physi-
cal systems with importance sampling. Applied to the Ising model, we discussed the
Metropolis algorithm and explained the Swendsen-Wang multiple-cluster update algo-
rithm which was used in this work.

3.2 Finite-size scaling

In Section 2.3.4 we derived the scaling law, Equation (2.77), for an infinite system which
allowed us to establish the scaling relations between different critical exponents. However,
as already mentioned several times, in a simulation we are restricted to finite systems. To
obtain similar results as in Section 2.3.4 but for the case of a finite lattice size, we will basically
repeat the steps for the derivation of the scaling law in the infinite case but for a hypercubic
lattice Λ with linear extension 𝐿 < ∞ and dimension 𝑑 and follow Ref. [NO10, pp. 76 ff.].
In order to be at the critical point, the system has to be at 𝑡 = ℎ = 0 for 𝐿 → ∞. But now
additionally, we have 𝐿 < ∞ and hence we impose that the condition 𝐿−1 → 0 has to be
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fulfilled as well. We take the 𝐿−1 as a third argument into the definition of the free energy
and write the relation between the original free energy and the free energy after applying a
Renormalization Group transformation 𝑅𝑏,

ℱ(𝑡, ℎ, 𝐿−1) = 𝑏−𝑑ℱ(𝑏𝑦𝑡𝑡, 𝑏𝑦ℎℎ, 𝑏𝐿−1) . (3.19)

From Equation (3.19) we see that the scaling exponent of the lattice size 𝐿 is 𝑦𝐿 = 1. This
is an analogue equation to the scaling law in Equation (2.77) for the finite lattice. We can
calculate the observables by calculating the derivate of the free energy. Let us do this for the
susceptibility 𝜒. The susceptibility is the second derivative of the free energy ℱ with respect
to the magnetic field, Equation (3.21), so we get

𝜒(𝑡, 0, 𝐿−1) = 𝑏2𝑦ℎ−𝑑 𝜕2ℱ(𝑏𝑦𝑡𝑡, 𝑏𝑦ℎℎ, 𝑏𝐿−1)
𝜕ℎ2 ∣

ℎ=0
. (3.20)

We can choose 𝑏 = 𝐿 and get

𝜒(𝑡, 0, 𝐿−1) = 𝐿2𝑦ℎ−𝑑 𝜕2ℱ(𝑏𝑦𝑡𝑡, 𝑏𝑦ℎℎ, 1)
𝜕ℎ2 ∣

ℎ=0
. (3.21)

Finally, after using 𝑦𝑡 = 1/𝜈, Equation (2.85), and 2𝑦ℎ − 𝑑 = 𝛾/𝜈, Equation (2.79), we get

𝜒(𝑡, 𝐿−1) = 𝐿𝛾/𝜈𝜒0(𝑡𝐿1/𝜈) , (3.22)

where 𝜒0 is the scaling function (analytic for finite 𝐿). The very first observation which we
can make by studying Equation (3.22) is that the susceptibility 𝜒(𝐿) remains finite for finite
𝐿. Further, the height of the peak of 𝜒(𝐿) is proportional to 𝐿𝛾/𝜈. The position of the peak
is the same as of the scaling function 𝜒0. It will be different from 𝑡 = 0 if it is not zero for
𝜒0. If the position of the peak of 𝜒0 is at 𝑡 = 𝑡𝑐 ≠ 0, then the peak position of the peak of
𝜒 will be 𝑡 = 𝑡𝑐𝐿−1/𝜈. Schematically, the behavior of the susceptibility in dependence of the
temperature and the lattice size 𝐿 is shown in Figure 3.2.

𝑇

𝒪

𝑇𝑐

𝐿

Figure 3.2: Schematic representation of the finite-size scaling behavior of the susceptibility 𝜒, which
diverges at critical temperature in the thermodynamic limit. For finite lattice sizes 𝐿 the divergence
becomes finite, its peak is shifted along the temperature axis and the height increases with increasing
𝐿.
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Equation (3.22) provides a very convenient method of obtaining the critical exponents and
critical temperature from observables measured on finite systems. Consider that 𝜒̂(𝐿) in the
maximum of the susceptibility 𝜒(𝛽, 𝐿) for a given lattice size 𝐿 and ̂𝛽 is the corresponding
temperature at which this peak occurs. By using Taylor expansion of the scaling function
around 𝑡 = 0 in Equation (3.22), we can write the scaling relation for the susceptibility as
[Jan08, p. 115]

𝜒̂(𝐿) = 𝐴𝐿𝛾/𝜈 (1 + 𝐵𝐿−𝜔 +…) , (3.23)

where 𝐴 and 𝐵 are constant factors and 𝜔 is the so-called confluent correction exponent.
The dots represent higher order correction terms with exponents −2𝜔, −3𝜔, and so on.
Similarly, we can derive relations for other observables of interest, namely,

̂𝑐(𝐿) = 𝑐reg +𝐴𝐿𝛼/𝜈 (1 + 𝐵𝐿−𝜔 +…) , (3.24)
̂𝜕𝛽(|𝑚|)(𝐿) = 𝐴𝐿(1−𝛽)/𝜈 (1 + 𝐵𝐿−𝜔 +…) , (3.25)

̂𝜕𝛽(ln |𝑚|)(𝐿) = 𝐴𝐿1/𝜈 (1 + 𝐵𝐿−𝜔 +…) . (3.26)

Note, that the factors 𝐴 and 𝐵 will be different for each observable, but we left out an
additional index to improve readability. Additionally, it can be shown that the temperatures
̂𝛽 at which the various observables 𝒪 have their peaks can be used to calculate the critical

temperature 𝛽𝑐 at 𝐿 → ∞. Their scaling relation reads [LB05, p. 80]
̂𝛽(𝐿) = 𝛽𝑐 +𝐴𝐿−1/𝜈 (1 + 𝐵𝐿−𝜔 +…) . (3.27)

Again, the factors 𝐴 and 𝐵 will be different for each 𝒪. Two important practical conclusions
can be drawn from the Equations (3.23) to (3.27):

1. the peaks of observables 𝒪(𝛽, 𝐿) have to be found to successively apply finite-size scaling
ansatz,

2. the critical exponent of the correlation length 𝜈 is crucial in order to get the other
exponents and not only the ratios, e.g., 𝛾/𝜈.

These two aspects were essential guides for planing and performing simulations for the present
work. We would like to note that one can get the finite-size scaling relations, Equations (3.23)
to (3.27), by going through another derivation. On a finite lattice, the correlation length 𝜉
can only grow up to the size of 𝐿. Hence, at critical temperature, we can formally “replace”
the diverging correlation length by L and set [Jan08, p. 84]

𝑡 ∝ 𝜉−1/𝜈 → 𝐿−1/𝜈 . (3.28)

By inserting Equation (3.28) into the free energy and performing derivations in order to obtain
the different observables, the very same scaling relations can be recovered. This approach
is a good way to understand how the finite size of the system influences the behavior of the
system and why the critical exponent of the correlation length 𝜈 enters the scaling relations.

Summary. We introduced the main analysis concept which was used in this work, i.e., the
finite-size scaling method. The finite-size scaling method derives the scaling relations for
different observables in dependence of the system size 𝐿. By finding the peaks of different
observables for various 𝐿, one can get the critical exponents of the system.
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3.3 Histogram reweighting technique

One of the key tools used in our analyses of the simulated data was the single histogram
reweighting technique. In the form which we have used and which we present here, it was
first used by Ferrenberg and Swendsen [FS88]. The idea of the method is quite simple. Recall
the fundamental formula for calculating observables from time series measured in a Monte
Carlo simulation, Equation (3.10),

𝒪 =
∑𝑁

𝑖 𝒪𝑖𝓅−1
𝜇𝑖

𝑒−𝛽𝐸𝑖

∑𝑁
𝑖 𝓅−1

𝜇𝑖
𝑒−𝛽𝐸𝑖

, (3.29)

Where 𝒪 is the estimator of the expectation value ⟨𝒪⟩. Our previous choice was to set the
probability distribution 𝓅𝜇 to be the Boltzmann distribution at 𝛽. However, we can also use
any other distribution. Let us take the Boltzmann distribution at another temperature 𝛽0,
𝓅𝜇 = 𝑒−𝛽0𝐸𝜇. Inserting this into Equation (3.29), we get the fundamental equation for the
histogram reweighting technique,

𝒪(𝛽) =
∑𝑁

𝑖 𝒪𝑖𝑒−(𝛽−𝛽0)𝐸𝑖

∑𝑁
𝑖 𝑒−(𝛽−𝛽0)𝐸𝑖

. (3.30)

Reading Equation (3.30) carefully, we immediately see that we are now able to measure a
series of an observable 𝒪 at a certain temperature 𝛽0 and then get an estimate of 𝒪 at another
temperature 𝛽. Let us define the function Rew(𝒪)(𝛽), which we will use later in our analyses,

𝒪(𝛽) = Rew(𝒪)(𝛽) =
∑𝑁

𝑖 𝒪𝑖(𝛽0)𝑒−(𝛽−𝛽0)𝐸(𝛽0)𝑖

∑𝑁
𝑖 𝑒−(𝛽−𝛽0)𝐸(𝛽0)𝑖

, (3.31)

where we have explicitly written down the dependence of the energies 𝐸(𝛽0)𝑖 and the observ-
able 𝒪(𝛽0)𝑖 on the simulated temperature 𝛽0. We can use Equation (3.31) for all observables
which are directly measurable as time series during the simulation, e.g., moments of the form
⟨𝐸𝑘𝑀 𝑙⟩. Given an infinite series 𝑁 → ∞, we are done by now. Simulation at one tempera-
ture 𝛽0 would provide us estimates for any other temperature 𝛽. However, as the series are
rather small, the question arises, how far from 𝛽0 can the temperature 𝛽 be chosen in order
to still provide meaningful results without the errors becoming too large.

To derive the estimation for the range where the histogram reweighting technique works,
let us first take the energy as our observable, 𝒪 = 𝐸. The Equation (3.31) can then be
rewritten as [NB99, p. 213]

Rew(𝐸)(𝛽) =
∑𝐸 𝐸𝒫𝛽0

(𝐸)𝑒−(𝛽−𝛽0)𝐸

∑𝐸 𝒫𝛽0
(𝐸)𝑒−(𝛽−𝛽0)𝐸

, (3.32)

where we replaced the summation over the time series with a summation over all occurring
energies 𝐸 and 𝒫𝛽0

(𝐸) is the number of occurrences of each energy 𝐸, i.e., the energy his-
togram. Here the name “histogram reweighting technique” gets its origin. We take the energy
histogram at one temperature 𝛽0 and shift it with exponential factors to another temperature
𝛽. This was the formulation originally used in Ref. [FS88]. But beside being the reason for
the name, the formulation in Equation (3.32) also reveals another useful insight. We get a
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feeling of how far we can go from original temperature by analyzing the original histogram
𝒫𝛽0

and the reweighted histogram 𝒫𝛽, which is given by

𝒫𝛽(𝐸) =
𝒫𝛽0

(𝐸)𝑒−(𝛽−𝛽0)𝐸

∑𝐸 𝒫𝛽0
(𝐸)𝑒−(𝛽−𝛽0)𝐸

, (3.33)

and which can be used to rewrite Equation (3.32) as a weighted average [NB99, p. 214],

Rew(𝐸)(𝛽) = ∑
𝐸

𝐸𝒫𝛽(𝐸) . (3.34)

We impose the condition that the peak of the reweighted histogram should lie within the
width of the original histogram 𝜎(𝒫𝛽0

) [Jan08, p. 110],

|Rew(𝐸)(𝛽) − ⟨𝐸⟩(𝛽0)| ≤ 𝜎(𝒫𝛽0
) . (3.35)

In Equation (3.35) we assumed that for a not too asymmetrical histograms 𝒫𝛽0
(𝐸) and

𝒫𝛽(𝐸) the peaks of the histograms coincide with the corresponding expectation values of the
energy, i.e., ⟨𝐸⟩(𝛽0) ≈ ̂𝐸 with 𝒫𝛽0

( ̂𝐸) = max𝐸 𝒫𝛽0
(𝐸) and Rew(𝐸)(𝛽) ≈ ̂𝐸′ with 𝒫𝛽( ̂𝐸′) =

max𝐸 𝒫𝛽(𝐸), respectively. The histogram width is the standard deviation of the energy at
𝛽0 and reads

𝜎(𝒫𝛽0
) = √⟨𝐸2⟩ − ⟨𝐸⟩2 . (3.36)

Further, the energy expectation at 𝛽, Rew(𝐸)(𝛽) on the left-hand side of Equation (3.35),
can be expressed by a Taylor expansion as

Rew(𝐸)(𝛽) = ⟨𝐸⟩(𝛽0) +
𝜕⟨𝐸⟩(𝛽)

𝜕𝛽
∣
𝛽0

(𝛽 − 𝛽0) + … . (3.37)

Finally, using the derivative with respect to 𝛽 defined in Equation (2.23), and inserting
Equations (3.36) and (3.37) into Equation (3.35), we arrive at

Δ𝛽rew = |𝛽 − 𝛽0| ≤
1

√⟨𝐸2⟩ − ⟨𝐸⟩2
, (3.38)

where we defined the reweighting range quantity Δ𝛽rew. The derivation used the histogram
of the energy 𝒫𝛽0

(𝐸) but is a general result for reweighting different observables with Equa-
tion (3.31). Additionally, the histogram was needed for the derivation but is not used in
the actual calculation of Rew(𝒪)(𝛽) and Δ𝛽rew. This estimate in Equation (3.38) is a rather
conservative estimate for the range where the histogram reweighting works [NB99, p. 216].
It is not unusual to get good results in the range ±2Δ𝛽rew or even larger. In particular, the
reweighting quantity naturally depends on the length of the series 𝑁 which is not taken into
account in Δ𝛽rew. Anyway, it is advisable to visually check the reweighting curves Rew(𝒪)(𝛽)
to make sure nothing unexpected happens.

Finally, we would like to mention an advanced method, called multiple histogram
reweighting technique [NB99, pp. 219 ff.]. As the name suggests, this approach combines
data from various simulated temperatures 𝛽𝑖 and then reweight them to another temperature
𝛽. Although, the idea is very similar, the actual technical realization is much more involved.
First, one has to reweight the data from each temperature 𝛽𝑖 to a common temperature
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𝛽0 and then reweight once again to 𝛽. Moreover, as we have seen in the derivation of the
reweighting range Δ𝛽rew, we cannot simply use any 𝛽𝑖 equally because they will have different
distance to 𝛽 and hence will provide different qualities of the reweighting procedure. One
needs a sophisticated ansatz to weight the data from different temperatures in the final esti-
mate which is done by a recursive search of free energies at different temperatures 𝛽𝑖. Also,
a large enough overlapping of the histograms at different 𝛽𝑖 has to be ensured. Contrary, the
ansatz in Equation (3.31) does work without any additional calculations and without errors
coming from approximations of the weights. Therefore, although we have simulated at many
temperatures, we only used th single histogram reweighting technique in this work.

Summary. We have shown how to apply the single histogram reweighting technique
to get estimates of observables at a temperature 𝛽 by using data from a simulation at
another temperature 𝛽0. By using this technique, we can estimate peaks of observables
very precise in our later analyses.

3.4 Resampling techniques

We introduced many observables in Section 2.2.3. Some direct observables, e.g., energy
and magnetization are measured as a time series during the simulation process. One easily
calculates their mean and also the corresponding errors from these series. At least in case
that each measurement is uncorrelated from the previous one. However, many observables
are composed of means of the energy and magnetization, e.g., the susceptibility 𝜒 and the
specific heat 𝑐. For this kind of observables, we still can calculate the means straight forward
but estimating the errors is a more difficult task. The simplest solution is of course use the
error propagation rules, e.g., for the specific heat one would get

𝑐 = 𝛽2

𝑉
(⟨𝐸2⟩ − ⟨𝐸⟩2) , (3.39)

𝜎2(𝑐) = 𝛽2

𝑉
(𝜎2(𝐸2) + 2⟨𝐸⟩𝜎2(𝐸)) , (3.40)

𝜖(𝑐) = √𝜎2(𝑐)
𝑁

. (3.41)

In Equation (3.41) we use the available variances of ⟨𝐸2⟩ and ⟨𝐸⟩. However, since these two
observables are correlated in general, this ansatz will produce errors which will be way too
large. This will be the case for practically any composed observable, and so we have to find
a better way of getting the error estimates from the available data. The simplest solution is
to repeat the simulation many times, calculate an observable of interest each time and finally
take the average over all calculated means and calculate the corresponding error. In a world
with infinite computation time this would be the final solution. Until this happens, let us
discuss more efficient ways.

An easy approach is to take the whole data series with 𝑁 measurements and split this series
into several smaller blocks. This approach is called the binning analysis [Jan08, p. 106]. It
allows us to calculate a mean of an observable for each block and finally obtain the average
value and its error. The main problem with this approach is that each block will have a
much smaller length and thus the estimates for each block will fluctuate a lot. This may not
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be a problem for simple cases, but, e.g., in the case of applying the histogram reweighting
techniques to these subsets would be difficult. We will not discuss the details here, since we
have not used this approach in our work.

3.4.1 Jackknife resampling technique

A similar but much more common approach is the jackknife resampling. Instead of consid-
ering one block at a time, on instead leaves out one block at a time while keeping the majority
of the data. This produces much larger individual data blocks at each step and thus leads to
more stable calculations. A very detailed mathematical description of the jackknife method
can be found in Ref. [ST95]. We will follow a more basic one, presented in Ref. [ET93, pp.
141 ff.].

Assume we have a vector 𝒙 with a series of measurements 𝑥𝑖. Our goal is to calculate an
estimate 𝑦 = 𝑓(𝒙) and its error 𝜖(𝑦) where 𝑓 takes a vector 𝒙 and returns a scalar value. This
can be, e.g., the averaging function,

𝑓(𝒙) = 1
𝑁

∑
𝑖

𝑥𝑖 , (3.42)

but also a more involved function, e.g., the second moment

𝑓(𝒙) = 1
𝑁

∑
𝑖

𝑥2
𝑖 . (3.43)

where the total length of 𝒙 is 𝑁. In the next step we split the vector 𝒙 into jackknife blocks
𝒙𝑗 with 𝑗 = 1,… ,𝐵 by sequentially leaving out a portion of the data. The length of the
removed block should be 𝑁𝐵 and the number of the totally considered jackknife blocks will
be denoted by 𝐵. Ideally, we have 𝑁 = 𝐵𝑁𝐵, otherwise one has to reject a few measurements
and reduce 𝑁 such that the 𝐵 blocks of length 𝑁𝐵 fit perfectly into the new total length.
The exact form of a jackknife block 𝒙𝑗 is

𝒙𝑗 = {𝑥𝑖 for all 𝑖 ∈ {1,… ,𝑁} with 𝑖 ∉ {(𝑗 − 1)𝑁𝐵 + 1,… , 𝑗𝑁𝐵}} . (3.44)

Please note the difference between the lower index in 𝑥𝑖 which is the 𝑖-th component of the
vector and 𝒙𝑗 which is the 𝑗-th jackknife block, i.e., a vector where a portion of the data was
removed. Schematically, such blocks are shown in Figure 3.3.

1 2 3 4 5 … 𝑁

𝑥

𝑥1

…
𝑥2

𝑥𝐵

Figure 3.3: Graphical representation of the jackknife blocks 𝒙𝑗. Each removed block (red) has the
same length 𝑁𝐵 and there are 𝐵 blocks.

We now calculate the function 𝑓 for each jackknife block 𝒙𝑗,

𝑦𝑗 = 𝑓(𝒙𝑗) with 𝑗 = 1,… ,𝐵 . (3.45)
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Finally, we are interested in the mean and the error of 𝑦. The mean is simply the mean over
𝑦𝑗,

𝑦𝐽 = 1
𝐵

𝐵

∑
𝑗

𝑦𝑗 , (3.46)

where for the moment we have added the index 𝐽 to distinguish between the jackknifed mean
and the value calculated from the whole vector directly, i.e., 𝑦 = 𝑓(𝒙). We define the bias
between 𝑦 and 𝑦𝐽 [ET93, p. 141]

bias(𝑦) = (𝐵 − 1) (𝑦𝐽 − 𝑦) , (3.47)

At this point we want to stress out that for a general 𝑓, the bias(𝑦) does not vanish and by
applying the jackknife resampling technique one gets an estimator of this bias. However, for
the simple case of an average, Equation (3.42), the bias is zero. Last but not least, the error
of the estimate 𝑦𝐽 can be calculated by using [ET93, p. 141]

𝜖(𝑦𝐽) =
√√√
⎷

𝐵 − 1
𝐵

(
𝐵

∑
𝑗

(𝑦𝑗 − 𝑦𝐽)2). (3.48)

In Equations (3.47) and (3.48) the factor 𝐵−1 reflect the fact that we reuse each data point
𝑥𝑖 exactly this many times. Note, that Equation (3.48) is already the error of the mean and
not the standard deviation.

3.4.2 Bootstrap resampling technique

As it turns out, the jackknife resampling technique is an approximation of another, more
general resampling approach, the bootstrap resampling technique [ET93, p. 145]. The
main idea of the bootstrap resampling is the same: take subsamples out of the available data
and calculate the desired quantity for these subsamples. However, in this case we draw 𝑁
data points with possible repetitions at each resampling iteration. This process is repeated
many times and then the means and errors are estimated from this statistic similarly as
in the previous jackknife resampling case. We will not discuss the whole procedure here,
since we have not used the bootstrap resampling technique in this work in this form. For
more information, we can recommend Ref. [ET93] which is a complete book on bootstrap
with a chapter on jackknife resampling as well. Still, we wanted to at least mention this
technique in this work for two reasons. First, it is more general than the jackknife resampling.
Second, in this work we used a similar approach at one instance in Section 4.5.5. But instead
drawing from a vector of data points, we drew from a normal distribution and repeated the
fit procedure many times for these normally distributed random values. We will refer to this
technique as bootstrap as well, so please do not be confused. Further, at the appropriate
place we will give some more detailed information on how exactly we proceeded in this case.

Summary. We explained how the jackknife resampling technique can be used to obtain
means and errors of observables which cannot be directly measured at each simulation
step but rather are means over the whole simulation which makes error estimation with-
out resampling very difficult.
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3.5 Generation of the correlated disorder with Fourier Filter Method

In this section we will present the method used for the generation of the long-range correlated
site disorder on the lattice. The method is called Fourier Filter Method and was originally
introduced by Makse et al. [Mak+95; Mak+96]. The main idea of the method is simple: we
start with uncorrelated random variables in 𝑘-space and modify them in such a way that
after transforming them to back 𝑥-space, they have a certain spatial correlation. We used a
slightly modified version of the original method as described in [Zie+17], and we will follow
this work in the description below. We also note that the implementation code published in
[Zie+17] was used for this work. The whole process can be split into following steps [KJ20]:

1. Generate uncorrelated complex random variables in 𝑘-space where the real and imagi-
nary parts are each drawn from a normal distribution.

2. Introduce the desired correlations in 𝑥-space by multiplying these variables with the
square root of the spectral density of the chosen correlation function 𝐶 (adapted to
lattice periodicity).

3. Fourier-transform the variables in 𝑘-space back to 𝑥-space. The real and imaginary
parts of these continuous variables are two independent sets of spatially correlated
Gaussian variables with correlation function 𝐶.

4. Map each set of the continuous correlated variables to {0, 1} by using a threshold which
ensures the correct average concentration of defects (zeros). The resulting discrete
variables are approximately correlated with 𝐶.

Let us discuss the individual steps in more detail. We start with the description of the
continuous random variables generation (steps 1–3).

3.5.1 Generating long-range correlated continuous random variables

Let 𝐶(𝑟) be an (almost) arbitrary correlation function. The only important condition is that
we have to avoid a singularity at 𝑟 = 0. We will work on a hyper-cubic lattice Λ of dimension
𝑑 with linear extension 𝐿 in each direction and with periodic boundary conditions. The goal
is to provide random variables 𝜏(𝒙) for all lattice coordinates 𝒙 such that

⟨𝜏(𝒙)𝜏(𝒙 + 𝒓)⟩ = 𝐶(𝑑bc(𝒙, 𝒙 + 𝒓)) = 𝐶(𝑟) , (3.49)

where 𝑟 = |𝒓| = 𝑑bc(𝒙, 𝒙+𝒓) and 𝑑bc(𝒙, 𝒙+𝒓) is the Euclidean distance between sites 𝒙 and
𝒙 + 𝒓 on a lattice with periodic boundary conditions. The distance is defined by

𝑑bc(𝒙, 𝒚) = (
𝑑

∑
𝑖=1

min (|𝑦𝑖 − 𝑥𝑖| , 𝐿 − |𝑦𝑖 − 𝑥𝑖| − 1)2)
1
2

, (3.50)

where we assume that all components of 𝒙 and 𝒚 lie in the ranges 0 ≤ 𝑥𝑖 ≤ 𝐿 − 1 and
0 ≤ 𝑦𝑖 ≤ 𝐿− 1, respectively.

We start by defining 𝐶(𝒓) for 𝒓 ∈ Λ,

𝐶(𝒓) = 𝐶(𝑑bc(𝒙0, 𝒙0 + 𝒓)) , (3.51)

where we chose an arbitrary reference site 𝒙0. We will set 𝒙0 = (0, 0,… , 0)𝑇. Through the
definition of 𝑑bc in Equation (3.50), we see that 𝐶(𝒓) will be symmetric around 𝒙0.
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In the next step we calculate the spectral density of 𝐶(𝒓) by performing a discrete Fourier
transform. We use the following definitions of the transform and its inverse adopted to a
lattice with linear extension 𝐿,

𝑧(𝒌) = DFT(𝑧(𝒙)) = ∑
𝒙

𝑧(𝒙)𝑒−2𝜋i 𝒙𝒌/𝐿 , (3.52)

𝑧(𝒙) = DFT−1(𝑧(𝒌)) = 1
𝑉
∑

𝒌
𝑧(𝒌)𝑒2𝜋i 𝒙𝒌/𝐿 , (3.53)

where 𝑉 = 𝐿𝑑 and the sum ∑𝒚 with 𝒚 = 𝒙 or 𝒚 = 𝒌 runs over all possible 𝒚 with 0 ≤ 𝑦𝑖 ≤
𝐿− 1. We calculate the spectral density 𝑆(𝒌) of 𝐶(𝒓),

𝑆(𝒌) = DFT(𝐶(𝒓)) = ∑
𝒙

𝐶(𝒙)𝑒−2𝜋i 𝒙𝒌/𝐿 . (3.54)

Equipped with 𝑆(𝒌), we produce a set of continuous complex variables

𝜑(𝒌) = √𝑆(𝒌) (𝑅1(𝒌) + i𝑅2(𝒌)) , (3.55)

where 𝑅𝑖 are normally distributed real random numbers with

𝑅𝑖 ∼ 𝒩 (0, 𝜎2
𝑅) . (3.56)

Transforming the variables 𝜑(𝒌) back to 𝑥-space by performing the inverse Fourier transform
yields

𝜑(𝒙) = DFT−1(𝜑(𝒌)) . (3.57)

This is the key equation for the generation of the long-range correlated variables 𝜏(𝒙). The
real and imaginary parts of 𝜑(𝒙) have following properties.

1. The Re𝜑(𝒙) and Im𝜑(𝒙) are normally distributed with

Re𝜑(𝒙) ∼ Im𝜑(𝒙) ∼ 𝒩 (0, 𝜎2
𝑅/𝑉) . (3.58)

2. The Re𝜑(𝒙) and Im𝜑(𝒙) are spatially correlated with 𝐶(𝒓) if 𝜎2
𝑅 = 𝑉

JRe𝜑(𝒙)Re𝜑(𝒙 + 𝒓)K = JIm𝜑(𝒙) Im𝜑(𝒙 + 𝒓)K = 𝐶(𝒓) , (3.59)

3. The Re𝜑(𝒙) and Im𝜑(𝒙) are independent

JRe𝜑(𝒙) Im𝜑(𝒚)K = JIm𝜑(𝒙)Re𝜑(𝒚)K = 0 , (3.60)

Note, that we use the disorder average brackets J⋅K here and in the following derivations to
emphasize that the average is taken over disorder realizations.

We will start by showing Equation (3.58). By inserting the definition of 𝜑(𝒌) from Equa-
tion (3.55) into Equation (3.57) we get

𝜑(𝒙) = 1
𝑉
∑

𝒌

√𝑆(𝒌) (𝑅1(𝒌) + i𝑅2(𝒌)) 𝑒2𝜋i 𝒙𝒌/𝐿 . (3.61)

We will show the calculation for the real part of 𝜑(𝒙). The imaginary part calculation can
be done in the same way. Let us first introduce some notation,

𝑐𝒙𝒌 = cos(2𝜋𝒙𝒌/𝐿) , (3.62)
𝑠𝒙𝒌 = sin(2𝜋𝒙𝒌/𝐿) , (3.63)
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and write down the real part of 𝜑(𝒙),

Re𝜑(𝒙) = 1
𝑉
∑

𝒌

√𝑆(𝒌) (𝑅1(𝒌)𝑐𝒙𝒌 −𝑅2(𝒌)𝑠𝒙𝒌) . (3.64)

Let us concentrate on the first term of Equation (3.64),

Re1 𝜑(𝒙) = 1
𝑉
∑

𝒌

√𝑆(𝒌)𝑅1(𝒌)𝑐𝒙𝒌 . (3.65)

Recall the distribution of 𝑅𝑖 from Equation (3.56), 𝑅𝑖 ∼ 𝒩 (0, 𝜎2
𝑅). By using simple properties

of the normal distribution we see that

Re1 𝜑(𝒙) ∼ 1
𝑉
∑

𝒌

√𝑆(𝒌)𝑐𝒙𝒌𝒩 (0, 𝜎2
𝑅) = 𝒩(0,

𝜎2
𝑅

𝑉 2 ∑
𝒌

𝑆(𝒌)𝑐2
𝒙𝒌) , (3.66)

and analogously for the second term of Equation (3.64),

Re2 𝜑(𝒙) ∼ −1
𝑉
∑

𝒌

√𝑆(𝒌)𝑠𝒙𝒌𝒩 (0, 𝜎2
𝑅) = 𝒩(0,

𝜎2
𝑅

𝑉 2 ∑
𝒌

𝑆(𝒌)𝑠2
𝒙𝒌) . (3.67)

We use the fact that the distribution of the sum of two independent normally distributed
random variables is again a normal distribution with the sum of the means and sum of the
variances as new parameters [LL02, p. 34] and write down the distribution of Re𝜑(𝒙),

Re𝜑(𝒙) ∼ 𝒩(0,
𝜎2

𝑅

𝑉 2 ∑
𝒌

𝑆(𝒌)𝑐2
𝒙𝒌 +

𝜎2
𝑅

𝑉 2 ∑
𝒌

𝑆(𝒌)𝑠2
𝒙𝒌)

= 𝒩(0,
𝜎2

𝑅

𝑉 2 ∑
𝒌

𝑆(𝒌) (𝑐2
𝒙𝒌 + 𝑠2

𝒙𝒌)) . (3.68)

Noting that 𝑐2
𝒙𝒌 + 𝑠2

𝒙𝒌 = 1 for all 𝒙 and 𝒌 and ∑𝒌 𝑆(𝒌) = 𝑉, we finally read the Equa-
tion (3.58).

Let us now show Equation (3.59). We first calculate the autocorrelation of 𝜑(𝒙) for one
particular disorder realization,

1
𝑉
∑

𝒙
𝜑∗(𝒙)𝜑(𝒙 + 𝒓) = 1

𝑉
∑

𝒙
(DFT−1(𝜑∗(𝒌))DFT−1(𝜑(𝒌)))

= 1
𝑉
∑

𝒙
(1

𝑉
∑

𝒌
(𝜑(𝒌)𝑒2𝜋i 𝒙𝒌/𝐿)∗)(1

𝑉
∑

𝒍
𝜑(𝒍)𝑒2𝜋i 𝒙𝒍/𝐿)

= 1
𝑉
∑

𝒙
(1

𝑉
∑

𝒌
𝜑∗(𝒌)𝑒−2𝜋i 𝒙𝒌/𝐿)(1

𝑉
∑

𝒍
𝜑(𝒍)𝑒2𝜋i 𝒙𝒍/𝐿)

= 1
𝑉 2 ∑

𝒌
𝜑∗(𝒌)∑

𝒍
𝜑(𝒍)𝑒2𝜋i 𝒙𝒍/𝐿 (1

𝑉
∑

𝒙
𝑒−2𝜋i 𝒙(𝒍−𝒌)/𝐿) . (3.69)

Noting that

1
𝑉
∑

𝒙
𝑒−2𝜋i 𝒙(𝒍−𝒌)/𝐿 = 𝛿(𝒌, 𝒍) , (3.70)

where 𝛿(𝒌, 𝒍) is the multidimensional Dirac delta, we can simplify Equation (3.69) further to

1
𝑉
∑

𝒙
𝜑∗(𝒙)𝜑(𝒙 + 𝒓) = 1

𝑉 2 ∑
𝒌

𝜑∗(𝒌)𝜑(𝒌)𝑒2𝜋i 𝒙𝒌/𝐿 . (3.71)
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We now insert Equation (3.55) into Equation (3.71),

1
𝑉
∑

𝒙
𝜑∗(𝒙)𝜑(𝒙 + 𝒓)

= 1
𝑉 2 ∑

𝒌
(√𝑆(𝒌) (𝑅1(𝒌) + i𝑅2(𝒌)))

∗
(√𝑆(𝒌) (𝑅1(𝒌) + i𝑅2(𝒌))) 𝑒2𝜋i 𝒙𝒌/𝐿 , (3.72)

and since 𝑆(𝒌) ∈ ℝ, we get

1
𝑉
∑

𝒙
𝜑∗(𝒙)𝜑(𝒙 + 𝒓) = 1

𝑉 2 ∑
𝒌

𝑆(𝒌) (𝑅2
1(𝒌) + 𝑅2

2(𝒌)) 𝑒
2𝜋i 𝒙𝒌/𝐿 . (3.73)

Further, we assume translational invariance,

∑
𝒙

𝜑∗(𝒙)𝜑(𝒙 + 𝒓) = 𝑉 𝜑∗(𝒙0)𝜑(𝒙0 + 𝒓) , (3.74)

where 𝒙0 is an arbitrary reference point. Using Equation (3.74) and taking the disorder
average we can rewrite Equation (3.73) to

J𝜑∗(𝒙)𝜑(𝒙 + 𝒓)K = 1
𝑉 2 ∑

𝒌
𝑆(𝒌) (

q
𝑅2

1(𝒌)
y
+

q
𝑅2

2(𝒌)
y
) 𝑒2𝜋i 𝒙𝒌/𝐿 . (3.75)

The variance of the random numbers 𝑅𝑖 can be calculated from 𝜎2
𝑅 =

q
𝑅2

𝑖
y
− J𝑅𝑖K

2 but since
from Equation (3.57) we know that J𝑅𝑖K

2 = 0, we have 𝜎2
𝑅 =

q
𝑅2

𝑖
y
. Finally, with the help of

the definition of 𝑆(𝒌) from Equation (3.54) the Equation (3.75) becomes

J𝜑∗(𝒙)𝜑(𝒙 + 𝒓)K =
2𝜎2

𝑅

𝑉 2 ∑
𝒌

𝑆(𝒌)𝑒2𝜋i 𝒙𝒌/𝐿 =
2𝜎2

𝑅
𝑉

𝐶(𝒓) . (3.76)

Similarly, we can show that

J𝜑(𝒙)𝜑(𝒙 + 𝒓)K = 0 . (3.77)

Now, let us analyze different combinations of real and imaginary parts to show Equa-
tions (3.59) and (3.60). Using properties of complex numbers we can write

JRe𝜑(𝒙)Re𝜑(𝒙 + 𝒓)K =
s
(
𝜑(𝒙) + 𝜑∗(𝒙)

2
)(

𝜑(𝒙 + 𝒓) + 𝜑∗(𝒙 + 𝒓)
2

)
{

= 1
4

J(𝜑(𝒙) + 𝜑∗(𝒙)) (𝜑(𝒙 + 𝒓) + 𝜑∗(𝒙 + 𝒓))K

= 1
4
( J𝜑(𝒙)𝜑(𝒙 + 𝒓)K + J𝜑(𝒙)𝜑∗(𝒙 + 𝒓)K

+ J𝜑∗(𝒙)𝜑(𝒙 + 𝒓)K + J𝜑∗(𝒙)𝜑∗(𝒙 + 𝒓)K)

= 1
4
( J𝜑(𝒙)𝜑(𝒙 + 𝒓)K + J𝜑∗(𝒙)𝜑(𝒙 + 𝒓)K∗

+ J𝜑∗(𝒙)𝜑(𝒙 + 𝒓)K + J𝜑(𝒙)𝜑(𝒙 + 𝒓)K∗ ) . (3.78)

Using Equations (3.76) and (3.77) and setting 𝜎2
𝑅 = 𝑉 we finally have

JRe𝜑(𝒙)Re𝜑(𝒙 + 𝒓)K = 𝐶(𝒓) . (3.79)
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The same result can be obtained for JIm𝜑(𝒙) Im𝜑(𝒙 + 𝒓)K. On the other hand mixing the
real and imaginary parts leads to

JRe𝜑(𝒙) Im𝜑(𝒙 + 𝒓)K =
s
(
𝜑(𝒙) + 𝜑∗(𝒙)

2
)(

𝜑(𝒙 + 𝒓) − 𝜑∗(𝒙 + 𝒓)
2i

)
{

= 1
4i
( J𝜑(𝒙)𝜑(𝒙 + 𝒓)K − J𝜑(𝒙)𝜑∗(𝒙 + 𝒓)K

+ J𝜑∗(𝒙)𝜑(𝒙 + 𝒓)K − J𝜑∗(𝒙)𝜑∗(𝒙 + 𝒓)K)

= 1
4i
( J𝜑(𝒙)𝜑(𝒙 + 𝒓)K − J𝜑∗(𝒙)𝜑(𝒙 + 𝒓)K∗

+ J𝜑∗(𝒙)𝜑(𝒙 + 𝒓)K − J𝜑(𝒙)𝜑(𝒙 + 𝒓)K∗ )

= 0 , (3.80)

and analogue for JIm𝜑(𝒙)Re𝜑(𝒙 + 𝒓)K. This completes the proof of the properties in Equa-
tions (3.58) to (3.60).

A careful reader has probably observed, that in Equation (3.55) we implicitly assumed that
the spectral density is non-negative,

𝑆(𝒌) ≥ 0 for all 𝒌 , (3.81)

in order to take the square root of 𝑆(𝒌). This is needed as we know from the symmetry
of the chosen correlation function 𝐶(𝒓) that 𝑆(𝒌) ∈ ℝ for all 𝒌. Although it is probably
expected that Equation (3.81) is true in continuum for (at least) a certain class of correlation
functions, working on a discrete lattice and using our desired correlation function we had
negative values in certain cases. We followed Ref. [Zie+17] and used a modified spectral
density ̃𝑆(𝒌) with a zero-cutoff,

̃𝑆(𝒌) =
⎧{
⎨{⎩

𝑆(𝒌) if 𝑆(𝒌) ≥ 0

0 else
. (3.82)

We checked for which cases the negative 𝑆(𝒌) occur and analyzed the effect of this cutoff on
the final disorder. We will discuss the details in Appendix A.1. Let us just remark that in
our simulations this problem occurred only at very small lattice sizes and only for the largest
used long-range correlation strength.

3.5.2 Generating long-range correlated discrete disorder

After the previous continuous random variables generation process, we are equipped with
variables 𝜏(𝒙) = Re𝜑(𝒙), or alternatively 𝜏(𝒙) = Im𝜑(𝒙), satisfying the correlation relation

J𝜏(𝒙)𝜏(𝒙 + 𝒓)K = 𝐶(𝒓) , (3.83)

and drawn from a normal distribution

𝜏(𝒙) ∼ 𝒩 (0, 1) . (3.84)
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In the following we want to map 𝜏(𝒙) → 𝜂(𝒙) ∈ {0, 1} in order to identify occupied and
empty sites on the lattice. The goal is to produce a desired concentration of defects 𝑝𝑑. We
will again follow Ref. [Zie+17] and use the grand canonical approach, i.e., the concentration
of defects 𝑝𝑑 may vary for each individual realization but equals 𝑝𝑑 after averaging over many
disorder realizations. The mapping process is quite straight forward. We define a threshold
𝜃 and set

𝜂(𝒙) =
⎧{
⎨{⎩

1 if 𝜏(𝒙) ≤ 𝜃

0 if 𝜏(𝒙) > 𝜃
. (3.85)

The threshold itself is connected to the desired concentration of defects through the integra-
tion of the probability density of 𝜏

𝑝𝑑(𝜃) = ∫
𝜃

−∞
d𝜏 𝓅(𝜏) = 1

2
(1 + erf( 𝜃√

2
)) , (3.86)

where erf is the standard error function. Note, that in Equation (3.86) we left out the variance
of 𝜏 since it equals to 1. Equation (3.86) can be solved implicitly to obtain 𝜃 for a given 𝑝𝑑.

Summary. The generation of continuous and discrete random variables with a spatial
long-range correlation by using the Fourier Filter Method was discussed. A detailed
calculation proofed that the method produces correlated sets with a given correlation
function 𝐶. We presented the threshold definition for mapping the continuous variables
to the discrete ones.
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4.1 Simulation details

Before going into the actual analyses and presenting the results of this work, let us first
present some details of the simulation process. The code used for the simulation in this work
can be found in Appendix A.4 and in Ref. [@Git21]. A few general settings were already
mentioned at different paces before. Throughout the whole work we used the Swendesen-
Wang multiple-cluster [SW87] update and the Hoshen-Kopelman cluster search algorithm
[HK76]. Before starting the measurements we always performed 500–1000 thermalization
sweeps from a randomly disordered (high temperature) state. A unique seed was used for
each parameter tuple (𝑎, 𝑝𝑑, 𝐿) for the Mersenne-Twister random number generator which
is the standard random number generator in ȷulia [@Rng21] and internally uses the library
from Refs. [@MT06; SM09]. Due to our quite short simulation runs we do not expect any
problems with the pseudo-randomness in our data.

We produced simulation data for five correlated cases with 𝑎 = 1.5, 2.0, 2.5, 3.0, 3.5 as well
as for the uncorrelated case 𝑎 = ∞. For each of these correlation exponents 𝑎 we used eight
different concentrations of defects 𝑝𝑑 = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4. We performed
our simulations on 19 lattice sizes 𝐿 = 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112,
128, 160, 192, 224, 256. Concerning the simulation temperature, we started with simulation
of lattices up to 𝐿 = 48 which we performed in a very large 𝛽-range but with relatively large
spacing of Δ𝛽 = 0.0005. These simulations provided us with the first estimation on where
the peaks of the different observables will approximately lie for each correlation exponent 𝑎
and concentration of defects 𝑝𝑑. After this first step, we narrowed the range and performed
simulations for the lattices 48 < 𝐿 ≤ 112. The spacing was kept the same. After that, in
a third step we simulated the largest lattices with 112 < 𝐿 ≤ 256. Here, a reduced lattice
spacing was used with Δ𝛽 = 0.00025. For individual combinations of 𝑎 and 𝑝𝑑 we added
some more points in between for the largest lattice sizes when the histogram reweighting
method failed to find a peak near to the one of already used temperatures. Finally, for the
temperature scaling analysis we added some more temperatures on the high temperature side
for the largest considered lattice size of 𝐿 = 256. The set of all simulated temperatures can
be found in Figure A.11 in the Appendix A.4. The minimum number of different simulation
temperatures was 7.

After the thermalization sweeps were performed, we measured the following observables at
each sweep: the total energy 𝐸, the total magnetization 𝑀, the size of the largest stochastic
spin cluster ̂𝐶 and the average size of the stochastic clusters 𝐶, and the Fourier-transposed
correlation function ̃𝐶𝑠(𝟏) defined in Equation (2.50). We performed 𝑁 = 10 000 sweeps
and used 𝑁𝑐 = 1000 disorder realizations for each parameter tuple (𝑎, 𝑝𝑑, 𝐿, 𝛽sim). The
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total amount of stored data was 6.6 TB and 1800 CPU-years on a 2.4 GHz were needed for
the simulations. In Appendix A.4 we give some more data about the simulations and the
implementation. Additionally, we present the measured data 𝐶 and ̂𝐶 in Appendix A.3 since
we have not used this data in the actual analyses for this work.

4.2 Analysis of the correlated disorder

The first analysis which we performed was the analysis of the underlying disorder configura-
tions which were used for later Ising model simulations. We studied the correct distribution
of the concentrations of defects 𝑝𝑑 and measured the correlation exponents 𝑎. In our opinion,
it is an important step in order to provide consistent results for the critical exponents in
dependence of 𝑎 later. In this section we will closely follow the description of this analysis in
Ref. [KJ20]. However, the discussion presented here, is a more detailed one.

4.2.1 Disorder concentration

As described in Section 3.5 we used the Fourier Filter Method [Mak+95; Zie+17] for the
generation of the long-range correlated disorder. After the generation process was finished, we
studied the disorder ensembles before doing the simulations. In the first step we checked that
the measured mean concentration of defects 𝑝𝑑 matches the chosen values for each parameter
tuple (𝑎, 𝑝𝑑, 𝐿). This was important, since we used the grand canonical approach where the
concentration of defects 𝑝𝑑 was a mean value over all disorder realizations. Therefore, we
checked the mean values 𝑝𝑑 and tested their distributions for normality.

In Figure 4.1 we present the histograms of the concentrations 𝑝𝑑 of defects for different
𝐿, 𝑎 = 2.0 and 𝑝𝑑 = 0.2 as examples. For small lattice sizes we see a slight skewness of the
distribution while for larger lattice sizes the distribution looks symmetric and normal. We
verified the normality with the Anderson-Darling test [AD52; Tho02, p. 104]. The results of
these tests are summarized in Figure 4.2. We clearly see that for the majority of parameter
constellations the test suggests a normally distributed 𝑝𝑑 with the confidence of 95 %. This
is true for all 𝑎 ≥ 2.0 and 𝐿 ≥ 24. Only for 𝑎 = 1.5 and 𝐿 ≤ 96 the test rejects the normality
of the distribution for small concentrations 𝑝𝑑 ≤ 0.15. On the other hand, for all parameter
tuples with 𝐿 ≥ 24 the mean values 𝑝𝑑 were in perfect agreement with the imposed values
𝑝𝑑.

4.2.2 Disorder correlation

Once we verified that the imposed concentration of defects is correct for all ensembles, we
went further and checked the measured correlation exponents 𝑎. We measured the correlation
function on the lattice Λ with

𝐶𝜂(𝑟) =

u

w
v

𝒞
𝑁𝑟

∑
𝒙,𝒚

𝑑bc(𝒙,𝒚)=𝑟

(𝜂(𝒙) − 𝑝𝑑)(𝜂(𝒚) − 𝑝𝑑)

}

�
~ , (4.1)

where 𝒙, 𝒚 ∈ Λ are sites of the lattice, 𝑑bc is the distance between 𝒙 and 𝒚 sites according
to Equation (3.50). The constant 𝒞 is the normalization constant such that 𝐶𝜂(0) = 1 while
𝑁𝑟 is the number of possible realizations of the distance 𝑟 on the lattice. Finally, 𝑝𝑑 is the
measured mean concentration of defects for the whole disorder ensemble.
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Figure 4.1: Histograms of the concentration of defects for 𝑎 = 2.0, 𝑝𝑑 = 0.2 and different 𝐿. The
values are shifted by the imposed 𝑝𝑑 to see the deviation between 𝑝𝑑 and 𝑝𝑑. md (𝑝𝑑) is the median of
the ensemble and 𝜎 is the standard deviation.
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Figure 4.2: Anderson-Darling test results for all parameter tuples (𝑎, 𝑝𝑑, 𝐿). The 𝑝AD is the probabil-
ity that the given distribution is normal. For 𝑎 ≥ 2.0 and 𝐿 ≥ 24 all distributions of the concentrations
of defects 𝑝𝑑 were identified as normal with 95 % confidence. The white and blue regions identify the
distribution as normal while black and red reject the normality assumption.

The normalization constant turns out to be

𝒞 = 1
𝑝𝑑 (1 − 𝑝𝑑)

. (4.2)

We chose two different directional vectors for the measurement,

̂𝒓1 = (1, 0, 0)𝑇 , ̂𝒓2 = (1, 1, 1)𝑇 , (4.3)
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and measured the correlation function for all possible distances in each of these two direc-
tions. Due to the periodic boundary conditions we have the following numbers of possible
realizations of the distances on the lattice,

𝑁𝑟 =
⎧{
⎨{⎩

𝑉 /2 for 𝑟 = 𝐿/2 and 𝑟 =
√
3𝐿/2

𝑉 else
. (4.4)

The reduction of the number of realizations from 𝑉 to 𝑉 /2 for distances which are equal to
half of the extension of the lattice along the considered direction is explained in more detail
for the example of a one-dimensional lattice in Figure 4.3.

𝒓1
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𝒓3

𝒓4

(a) 𝑟 = 1 < 𝐿/2.

𝒓1

𝒓2

𝒓′
1

𝒓′
2

(b) 𝑟 = 2 = 𝐿/2.

Figure 4.3: Consider a one-dimensional lattice with 𝐿 = 4 and periodic boundary conditions. The
total number of sites is 𝑉 = 4. We start with the distance 𝑟 = 1 along the x-axis. This distance
can be realized 𝑉 = 4 times as shown in (a). Each distance vector 𝒓𝑖 with 𝑖 ∈ {1, 2, 3, 4} connects a
unique pair of sites. Going further to 𝑟 = 2 = 𝐿/2 we can again define four vectors as shown in (b).
But now 𝒓1 = −𝒓′

1 and 𝒓2 = −𝒓′
2 which leaves us with only 𝑉 /2 = 2 unique pairs of sites.

To obtain the correlation exponent 𝑎 we performed a fit to the measured correlation func-
tion 𝐶𝜂(𝑟) for each parameter tuple (𝑎, 𝑝𝑑, 𝐿). We used the linearized ansatz on the logarith-
mic scale,

ln𝐶𝜂(𝑟) = −𝑎 ln 𝑟 + 𝐵 , (4.5)

which reflects the imposed power-law behavior of the correlation function 𝐶𝜂(𝑟) ∝ 𝑟−𝑎. Dur-
ing the fitting process we had to deal with two problems. On one hand, for short distances
the correlation function did not exactly follow the power-law decay as we used a modified
function,

𝐶0(𝑟) = (1 + 𝑟2)−𝑎/2 → 𝑟−𝑎 for 𝑟 → ∞, (4.6)

for the disorder generation. On the other hand, for large distances we had noisy signal due
to limited statistics. Therefore, we introduced two threshold distances, 𝑟min and 𝑟max. Only
distances in the range 𝑟min ≤ 𝑟 ≤ 𝑟max were included into the fits. For the minimum distance
𝑟min we used the smallest distance for which the relative deviation between the modified
correlation function 𝐶0 and the power-law function 𝐶(𝑟) = 𝑟−𝑎 was lower than a chosen
threshold of 𝜖𝐶 = 0.05,

𝐶(𝑟min) − 𝐶0(𝑟min)
𝐶(𝑟min)

=
𝑟−𝑎

min − (1 + 𝑟2
min)

−𝑎/2

𝑟−𝑎
min

≤ 𝜖𝐶 = 0.05 , (4.7)

After some algebra we get the minimum distance in dependence of the correlation exponent
𝑎,

𝑟min(𝑎) ≥ ((1 − 𝜖𝐶)−2/𝑎 − 1)−1/2 . (4.8)
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The minimum distances for the considered correlation exponents 𝑎 are between 𝑟min ≈ 3.8 for
𝑎 = 1.5 and 𝑟min ≈ 5.8 for 𝑎 = 3.5. They do not depend on the lattice size and the estimation
does not involve the measured correlation function 𝐶𝜂(𝑟).

Furthermore, we had to find a maximum distance 𝑟max after which the correlation function
became too noisy to be used in the fits. To estimate the maximum distance 𝑟max, we looked at
the measured values 𝐶𝜂(𝑟) and the distance where its absolute values crossed a low threshold
value of 𝐶min = 10−5 for the first time,

∣𝐶𝜂(𝑟max)∣ ≤ 𝐶min = 10−5 . (4.9)

In principle, we were now equipped with 𝑟min and 𝑟max and could proceed to the fitting
procedure. However, in some cases, especially for very small lattice sizes 𝐿 ≤ 20 and weak
correlations 𝑎 ≥ 2.5, the minimum and the maximum distances were too close together or
even the case that 𝑟min > 𝑟max appeared. In such cases we decreased 𝑟min until we reached
four degrees of freedom in the fit. The minimum and maximum distances for all parameter
tuples (𝑎, 𝑝𝑑, 𝐿) are presented in Figure 4.4. One can see, that for 𝑎 = 1.5 we can use the
whole range of measured distances while with increasing 𝑎 the maximum used distance 𝑟max

becomes shorter. This is of course a consequence of the faster correlation decay which leads
to the fact that the noise becomes dominant at shorter distances. For the weakest correlation
with 𝑎 = 3.5 we can go up to 𝑟max ≈ 20 only. On the other hand, as one would expect,
the concentration of defects 𝑝𝑑 only marginally influences the chosen distance ranges. Larger
concentrations allow for slightly larger 𝑟max, though.
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Figure 4.4: The minimum and maximum distances 𝑟min and 𝑟max used for the estimation of 𝑎 for all
parameter tuples (𝑎, 𝑝𝑑, 𝐿). The plot in the right corner shows a zoomed version of one diagram in
order to present the used axes scaling. The x-axis of the distances is shown logarithmically to account
for very different lattice sizes. The color is mapped to the number of degrees of freedom (dof) when
choosing this particular 𝑟min and 𝑟max. For very small lattice sizes sometimes we had to shift the
calculated 𝑟min from Equation (4.8) downwards in order to achieve at least four degrees of freedom for
the fit. This can be seen in the plots as “spikes” to the left on the bottom of each diagram. Finally,
the solid and dashed lines represent the distances 𝑟 = 20 and 𝑟 = 50, respectively, to improve visual
comparability.
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After we determined the minimum and maximum distances for each parameter tuple
(𝑎, 𝑝𝑑, 𝐿), we performed the fits to Equation (4.5). Examples of these fits are shown in
Figure 4.5. The fitted mean values 𝑎(𝑝𝑑, 𝐿) are presented in Figure 4.6. For strongest cor-
relations 𝑎 ≤ 2.5 we observe a very good agreement of 𝑎 with the imposed values 𝑎 already
for relatively small lattice sizes 𝐿 ⪆ 32. However, as naturally follows from the determi-
nation of 𝑟min and 𝑟max, we have fewer degrees of freedom in the fits for larger 𝑎. We see
larger deviations for 𝑎 ≥ 3.0 and the expected 𝑎 values are reached only for larger lattice
sizes 𝐿 ⪆ 128 where we have better statistics due to larger number of distance realizations
per disorder configuration. Our final estimates 𝑎 were means over all 𝑝𝑑 and 𝐿 ≥ 𝐿min,
where 𝐿min was chosen according to the quality of the fits. These values are summarized
in Table 4.1. For all correlation exponents 𝑎 we see an underestimation of 𝑎. It becomes
more pronounced for larger 𝑎 where it reaches about 5 %. We plotted the relative deviations
(𝑎 − 𝑎) /𝑎 in Figure 4.7. It can be seen that although the 𝑎 values are underestimated, they
more or less always cover the imposed 𝑎 values with their errors. Note, that the modified
correlation function, Equation (4.6) should not be the reason for the inequality 𝑎 < 𝑎. As
already mentioned above, the deviation between the used correlation function and the power-
law becomes neglectable very fast (the deviation is less than 5 % already for 𝑟 ≥ 6.0 for all
considered 𝑎).

Table 4.1: Final estimates of 𝑎 as means over all 𝑝𝑑 and 𝐿 ≥ 𝐿min(𝑎). The minimum lattice sizes
𝐿min(𝑎) were chosen according to the quality of the fits. The 𝜈 = 2/𝑎 are the corresponding critical
exponents according to the conjecture by Weinrib and Halperin.

𝑎 𝑎 2/𝑎 𝐿min

3.5 3.30(18) − 112
3.0 2.910(96) 0.687(23) 96
2.5 2.451(26) 0.8159(86) 80
2.0 1.979(18) 1.0105(89) 64
1.5 1.500(30) 1.333(26) 56

As a final test, we compared the estimates 𝑎 for 𝑎 = 3.5 and for different number of disorder
realizations to get more clarity on the fact of underestimation. In Figure 4.8 we visualize
the 𝑎 and the deviations (𝑎 − 𝑎) /𝑎 in dependence of 𝑁𝑐. The results at various 𝑝𝑑 and 𝐿 for
different two numbers of realizations are shown in Figure 4.9. We can see that the estimates
become considerably better with increasing number of realizations. The underestimation issue
remains present even for the largest number of realization 𝑁𝑐 = 5000 but gets approximately
50 % smaller. However, for the final estimates of 𝑎, we kept the number of disorder realization
t 𝑁𝑐 = 1000 which was the number for which an actual Ising model simulation was run.

Summary. We verified the measured 𝑎 to be in a good agreement with the imposed values
𝑎. The 𝑎 values slightly underestimate the 𝑎 values with a maximum relative deviation
of about 5 %. This deviation becomes smaller when the number of considered disorder
realizations is increased.
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Cη(r) −Cη(r) lnCη(r) = −a ln r +B

Figure 4.5: Examples of the fits to the ansatz in Equation (4.5) for two different lattice sizes 𝐿 and
correlation exponents 𝑎 with 𝑝𝑑 = 0.2. Due to limited statistics, negative values of 𝐶𝜂(𝑟) may occur
at larger distances. We plot these values with a minus sign. The blue shaded regions show the finally
used fitting ranges 𝑟min ≤ 𝑟 ≤ 𝑟max. Fits to weaker correlations, i.e., larger 𝑎, have smaller fitting
ranges as the correlation function 𝐶𝜂(𝑟) decays faster. The maximum range on the x axis is half the
distance along the diagonal 𝑟 =

√
3𝐿/2.
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Figure 4.6: Measured correlation exponents 𝑎 and the corresponding 𝜒2
red values of the fits for all

parameter tuples (𝑎, 𝑝𝑑, 𝐿). Larger lattice sizes have more possibilities of realizing a certain distance
which leads to larger statistics and consequently to smaller errors. On the other hand, for weaker
correlations, i.e., larger 𝑎, we have smaller fitting ranges 𝑟min ≤ 𝑟 ≤ 𝑟max as the correlation function
𝐶𝜂(𝑟) decays faster. The scaling on the y-axis of the 𝑎 plots is chosen to be 1

2
𝑎 ≤ 𝑎 ≤ 3

2
𝑎 for better

comparability.
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Figure 4.7: Relative deviations between the measured correlation exponents 𝑎 and the corresponding
imposed values 𝑎. The errors 𝜖(𝑎) were scaled to 𝜖(𝑎)/𝑎. We can observe a systematic underestimation
of the imposed values which increses with increasing 𝑎.
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Figure 4.8: Comparison of the estimated values 𝑎 and the deviations (𝑎 − 𝑎) /𝑎 for 𝑎 = 3.5 and
different number of disorder realizations 𝑁𝑐. The minimum lattice size included into the mean was
chosen to be the same as for the case with 𝑁𝑐 = 1000 disorder realizations, 𝐿min = 112.
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Figure 4.9: Comparison between the 𝑎(𝑝𝑑, 𝐿) for 𝑎 = 3.5 for different number of disorder realizations
𝑁𝑐. With larger 𝑁𝑐 the statistics becomes better and the imposed 𝑎 is reached already for smaller 𝐿.
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4.3 Calculation of observables

In this section we will give a more detailed view of the calculation of the observables which
were already introduced in Section 2.2.3. It includes the definition of the disorder averaging
process and the extraction of observables at their corresponding finite-size critical tempera-
tures (temperature of the peak for a finite 𝐿) through histogram reweighting. This section
incorporates and extends larger parts the explanations given in the appendix of Ref. [KJ20].

4.3.1 Composed observables and disorder averaging

After we performed our simulations on 𝑁𝑐 disorder realizations and made 𝑁 measurements on
each of them, we effectively have two-dimensional arrays of directly measurable observables
for each parameter tuple (𝑎, 𝑝𝑑, 𝐿) at each simulated temperature 𝛽sim. All the directly
measured observables were presented in Section 4.1. Let us first concentrate on the total
energies 𝐸𝑐

𝑖 and total magnetizations 𝑀𝑐
𝑖 because these two observables are the building

blocks for almost all observables which we studied in this work. Here, 𝑖 is the thermal (time)
index in the range 𝑖 ∈ 1,… ,𝑁 and 𝑐 is the disorder index in the rage 𝑐 ∈ 1,… ,𝑁𝑐. We can
derive observables 𝒪 of the form of a product of powers of 𝐸 and 𝑀,

𝒪𝑐
𝑖 = (𝐸𝑐

𝑖 )
𝑘(𝑀𝑐

𝑖 )
𝑙 . (4.10)

Note, that 𝒪𝑐
𝑖 is still a two-dimensional array with values for each 𝑖 and each 𝑐. Taking the

thermal average denoted by ⟨⋅⟩, we get averaged observables for each disorder realization 𝑐,

𝒪𝑐 = ⟨𝒪⟩ = 1
𝑁

𝑁

∑
𝑖=1

𝒪𝑐
𝑖 . (4.11)

Finally, taking the disorder average denoted by J⋅K, we obtain

𝒪 = J⟨𝒪⟩K = J𝒪𝑐K = 1
𝑁𝑐

𝑁𝑐

∑
𝑐=1

𝒪𝑐 . (4.12)

In Equations (4.11) and (4.12) we introduced clear notation without using the average brack-
ets ⟨⋅⟩ and J⋅K for better readability. Please remember, that until stated otherwise, even 𝒪
denotes a statistical average and not a true (theoretical) value.

Not every observable used in this work has the form presented in Equation (4.10). In
particular, there are many observables like the susceptibility and specific heat, which are
defined in terms of thermal averages in the first place. Let 𝒫 denote a composite observable
of the following general form

𝒫 𝑐 = 𝑓(𝒪𝑐
(1),𝒪𝑐

(2),… ) , (4.13)

where each individual 𝒪𝑐
(𝑘) is a thermal average calculated with Equation (4.11) for one

particular disorder realization 𝑐 and the corresponding individual entries 𝒪𝑐
(𝑘)𝑖

fulfill the form
of Equation (4.10). In this case, we have two different choices of placing the disorder average.
The first possibility is to take the disorder average for each 𝒪𝑐

(𝑘) separately, and plug everything
into the compositing function 𝑓 afterwards. In our notation this choice corresponds to

𝒫 = 𝑓(
r

𝒪𝑐
(1)

z
,
r

𝒪𝑐
(2)

z
,…) , (4.14)
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This definition was used in many works, e.g., Refs. [Bal+98a; BP99; Cha02; Cha14; Cha17;
Iva+08; Pru+05], as mentioned in Section 2.2.3. It will also be the choice in the present
work. However, there exist a second possibility which is to take the disorder average after
applying 𝑓 which corresponds to

𝒫 out =
r
𝑓 (𝒪𝑐

(1),𝒪𝑐
(2),…)

z
, (4.15)

where the superscript “out” reminds us that the disorder average was taken outside the
function 𝑓. This approach was favored in the following works: Refs. [Has+07; Vas+15;
Wan+19], as mentioned in Section 2.2.3. We performed a short analysis of the differences
between using Equation (4.14) and Equation (4.15) and can tell at this point: the difference
between this two averaging processes is neglectable compared to the final error sizes in our
study. Please note, that Equation (4.14) and Equation (4.15) can be equal if 𝑓 is composed
entirely of summations and multiplications of the individual 𝒪𝑐

(𝑘) but in general, e.g., for
ratios, they are not equal. As was already mentioned in Section 2.2.3, for the observables
of interest in this work, the decision between the two disorder averaging placements were
either unimportant due to their equality, e.g., 𝜒, or arrived naturally from the definition of
the observable, e.g., 𝜕𝛽(ln |𝑚|).

4.3.2 Estimation of the errors through resampling

The final formula for getting an estimate of a composed observable out of directly measured
quantities is Equation (4.14). However, it does not come with an error estimation a priori
because all the measured 𝐸𝑐

𝑖 , 𝑀𝑐
𝑖 (and all other directly measurable observables) sum up

to one and only final value 𝒫 . A way out of this problem is to us a resampling technique.
We have already introduced the jackknife resampling in Section 3.4.1. Here, we would like
to adopt it to our two-dimensional arrays of observables, e.g., 𝐸𝑐

𝑖 and 𝑀𝑐
𝑖 and explain our

procedure of getting the final error estimates 𝜖(𝒫 ).
We will perform the resampling in two directions, the thermal direction (index 𝑗) and in

disorder direction (index 𝑘). For each jackknife resampling step 𝑗 in the thermal direction we
leave out a block 𝐽 𝑗 ⊂ {1,… ,𝑁} of measurements for each disorder realization 𝑐 so that the
thermal average defined through Equation (4.11) becomes

⟨𝒪𝑐⟩𝑗 = 1
𝑁 − |𝐽 𝑗|

𝑁

∑
𝑖=1
𝑖∉𝐽𝑗

𝒪𝑐
𝑖 , (4.16)

where |𝐽 𝑗| is the number of left-out samples per disorder 𝑐. Analogously, for each resampling
step 𝑘 in the disorder direction we leave out a block 𝐽𝑘 ⊂ {1,… ,𝑁𝑐} of disorder realizations
so that the disorder average defined through Equation (4.12) becomes

J⟨𝒪⟩K𝑘 = 1
𝑁𝑐 − |𝐽𝑘|

𝑁𝑐

∑
𝑐=1

𝑐∉𝐽𝑘

𝒪𝑐 . (4.17)

where ∣𝐽𝑘∣ is the number of left-out realizations. We assume, that the left-out blocks 𝐽 𝑗 and
𝐽𝑘 are chosen according to the general jackknife prescription discussed in Section 3.4.1. This
implies the correct multiplicity to be able to divide the total length, 𝑁 and 𝑁𝑐, into 𝐵 parts
without rejecting elements. A visualization of the blocks for both directions can be seen in
Figure 4.10.
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(b) Disorder direction jackknife resampling blocks.

Figure 4.10: Left-out jackknife blocks for a two-dimensional observable array 𝒪𝑐
𝑖 . Each square

represents one measured value at simulation time 𝑖 for a disorder realization 𝑐. The blue region is
taken into account while the red region is left out. Using the same number of blocks along the thermal
direction 𝑖 and disorder directions 𝑐 ensures the same total sizes of the red regions. This is useful in
order to compare the sizes of the error estimates for both directions. Adapted from Ref. [Jan08, Fig.
4.7].

Equipped with the modified thermal averages ⟨𝒪𝑐⟩𝑗 and disorder averages J⟨𝒪⟩K𝑘, respec-
tively, we use the desired calculation of the final estimate, e.g., the composed observable
estimate given through Equation (4.14), and repeat it for each jackknife block, i.e.,

(𝒫 )𝑗 = 𝑓(
r
⟨𝒪𝑐

(1)⟩
𝑗
z
,
r
⟨𝒪𝑐

(2)⟩
𝑗
z
,…) , (4.18)

(𝒫 )𝑘 = 𝑓(
r
⟨𝒪𝑐

(1)⟩
z𝑘

,
r
⟨𝒪𝑐

(2)⟩
z𝑘

,…) . (4.19)

From these two sets of estimates (𝒫 )𝑗 and (𝒫 )𝑘 we calculate the means and errors according
to jackknife formulas provided in Section 3.4.1,

𝒫 𝑖 = 1
𝑁𝑗

𝑁𝑗

∑
𝑗=1

(𝒫 )𝑗 , 𝒫 𝑐 = 1
𝑁𝑘

𝑁𝑘

∑
𝑘=1

(𝒫 )𝑘 , (4.20)

𝜖(𝒫 )𝑖 =
𝑁𝑗 − 1
𝑁𝑗

𝑁𝑗

∑
𝑗=1

((𝒫 )𝑗 − 𝒫 𝑗)
2
, 𝜖(𝒫 )𝑐 =

𝑁𝑘 − 1
𝑁𝑘

𝑁𝑘

∑
𝑘=1

((𝒫 )𝑘 − 𝒫 𝑘)
2
. (4.21)

Finally, we combine the results to the estimate 𝒫 and its error 𝜖(𝒫 ) in a standard way,

𝒫 = 1
2
(𝒫 𝑖 + 𝒫 𝑐) , (4.22)

𝜖(𝒫 ) = √(𝜖(𝒫 )𝑖)2 + (𝜖(𝒫 )𝑐)2 . (4.23)

We will compare the errors coming from both resampling directions and also their dependence
on the number of jackknife blocks in Section 4.3.3 after we have introduced the critical
temperature search procedure.

4.3.3 Calculation of the observables at finite critical temperatures

Histogram reweighting and minimization

So far, we have discussed the estimation of a composed observable 𝒫 and its error 𝜖(𝒫 ).
This can be done for any parameter tuple (𝑎, 𝑝𝑑, 𝐿) and at any simulated temperature 𝛽sim.
However, in order to get an estimate of a particular observable at the corresponding finite-
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size critical temperature (which is 𝐿-dependent for each individual observable because of the
finite lattice sizes), we would like to use a single histogram reweighting technique. We already
introduced it in Section 3.3. Here, we will present the procedure which include the jackknife
resampling and analyze our reweighted observables before going to further analyses.

Let us first recall the final result from Section 3.3 which is suitable to reweight 𝒪𝑐 defined
through Equation (4.11) for each disorder realization 𝑐,

Rew(𝒪)𝑐(𝛽) =
∑𝑁

𝑖=1 𝒪𝑐
𝑖 𝑒

−(𝛽−𝛽sim)𝐸𝑐
𝑖

∑𝑁
𝑖=1 𝑒

−(𝛽−𝛽sim)𝐸𝑐
𝑖

. (4.24)

We explicitly denote the per-disorder reweighting process with the index 𝑐 in Equation (4.24).
The disorder average is taken after the reweighting, analogous to Equation (4.12),

Rew(𝒪)(𝛽) = JRew(𝒪)𝑐K . (4.25)

Setting 𝛽 = 𝛽sim in Equation (4.25) recovers 𝒪 from Equation (4.12). For a composed
observable of the form given in Equation (4.13), we proceed in analogy to Equation (4.14)
and calculate the finial estimate as

Rew(𝒫 )(𝛽) = 𝑓(Rew(𝒪(1))(𝛽),Rew(𝒪(2))(𝛽),… ) , (4.26)

where each Rew(𝒪(1))(𝛽) is calculated through Equation (4.25). Equation (4.26) provides us
with a continuous estimate 𝒫 (𝛽) within a valid reweighting range 𝛽sim −Δ𝛽rew ≤ 𝛽 ≤ 𝛽sim +
Δ𝛽rew. This functional form can be used to search for a maximum (minimum) of 𝒫 (𝛽). Let
us assume that the finite-size scaling analysis of 𝒫 (𝛽) predicts a maximum ̂𝒫 at a certain
temperature ̂𝛽. Without loss of generality we assume a maximum of 𝒫 (𝛽), otherwise we
transform 𝒫 → −𝒫 . In the thermodynamic limit 𝐿 → ∞ we expect ̂𝛽 → 𝛽𝑐. We use an
optimization routine from ȷulia package Optim.jl [@Opt21] to solve for the pair ( ̂𝛽, ̂𝒫 ) of
the minimization problem

̂𝒫 = max
𝛽

(Rew(𝒫 )(𝛽)) . (4.27)

As in the calculation of the estimate 𝒫 in Equation (4.14), Equation (4.27) will provide us
only one final values ̂𝒫 . By using the jackknife resampling technique in the same way as it
was discussed in Section 4.3.2 (repeating Equation (4.27) for each jackknife block and taking
the according averages), we get a final estimate ̂𝒫 with its error 𝜖( ̂𝒫 ).

In the following, we will return to the symbol 𝒪 which will denote a general observable
(composed or not) and drop the notation with 𝒫 . Also note, that the finite-size critical
temperature 𝛽𝒪

𝑐 for a particular observable 𝒪 and the peak temperature ̂𝛽 for the same
observable are equal, i.e., 𝛽𝒪

𝑐 = ̂𝛽. We use one or the other notation depending on the
context.

Finding the final peaks of observables

Now we are equipped with Equation (4.27), which provides us the maximum ̂𝒪 of a chosen
observable 𝒪 and the corresponding temperature ̂𝛽. This can be done for each parameter
tuple (𝑎, 𝑝𝑑, 𝐿) and each simulation temperature 𝛽sim. However, we still need to find the
global maximum. For an infinite statistics, the peak temperatures ̂𝛽 obtained by reweighting
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from any 𝛽sim would be equal, but in our case each data set from each 𝛽sim will result in
a different ̂𝛽. In this work we proceeded in the following way. We first selected the three
simulation temperatures 𝛽𝑖

sim with 𝑖 = 1, 2, 3, for which the considered observable 𝒪 calculated
at 𝛽𝑖

sim was maximal. For this three temperatures we then performed a search according to
Equation (4.27), with corresponding jackknife resampling. Out of these three final jackknifed
estimates ̂𝒪 𝑖 we then have taken the maximal ̂𝒪 𝑖 to be our final peak estimate,

̂𝒪 = max
𝑖

̂𝒪 𝑖 , (4.28)

and its corresponding temperature ̂𝛽𝑖 to be the final critical temperature ̂𝛽 = ̂𝛽𝑖. We show
the process visually for a couple of chosen parameter tuples (𝑎, 𝑝𝑑, 𝐿) in Figure 4.11.

Reweighted observables

Let us start to look into the actual observables which were studied in this work. We present
the obtained peak values ̂𝜕𝛽(ln |𝑚|), ̂𝜕𝛽(|𝑚|) and 𝜒̂ in Figures 4.12 to 4.14, respectively. To
overcome the large scale differences, we plotted the logarithm of the observables and rescaled
the errors with 𝜖( ̂𝒪) → 𝜖( ̂𝒪)/ ∣ ̂𝒪 ∣. All three considered observables show a very clear tendency
in approaching a particular critical temperature 𝛽𝑐 with increasing lattice size 𝐿. This will
also be compared in more detail in Section 4.5.5. However, for the strongest correlation with
𝑎 = 1.5, ̂𝜕𝛽(|𝑚|) and especially ̂𝜕𝛽(ln |𝑚|), the temperature still changes significantly even for
the largest lattice sizes. This probably means that such a strong correlation exponent can be
analyzed properly only on even larger lattice sizes. Further, we notice that the susceptibility
𝜒̂ shows only very weak dependence on the concentration 𝑝𝑑. Up to the different scaling,
different subplots for different 𝑎 of 𝜒̂ look almost similar. One can see small differences only
for small lattice sizes. We will analyze these observables in greater detail when we will come
to the finite-size scaling procedure and the extraction of the critical exponents in Section 4.5.

Various comparisons and checks

Reweighting ranges checks As was mentioned previously, we have to ensure that the
found critical temperatures ̂𝛽 for each considered observable 𝒪 are close enough to the sim-
ulated temperatures. A quantitative measure for the validity of the reweighting procedure,
the reweighting range Δ𝛽rew, was introduced in Section 3.3. It is defined as

Δ𝛽rew = 1
√J⟨𝐸2⟩K − J⟨𝐸⟩2K

, (4.29)

where we now have added the disorder averaging. In order to compare the reweighting ranges
for all different parameter tuples (𝑎, 𝑝𝑑, 𝐿), we calculated the relative deviation of the found
critical temperature ̂𝛽 to the simulated temperature 𝛽sim with respect to the reweighting
range Δ𝛽rew,

∣𝛽sim − ̂𝛽∣
Δ𝛽rew

. (4.30)

In Figure 4.15 we present the ratios defined in Equation (4.30) for 𝜕𝛽(ln |𝑚|), 𝜕𝛽(|𝑚|) and 𝜒.
We see a general tendency of the ratios to become larger for larger lattice sizes and larger
concentration of defects 𝑝𝑑 as well as for smaller correlation exponents 𝑎. The majority of
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(d) 𝒪 = 𝜒, 𝑎 = 2.0, 𝑝𝑑 = 0.2, 𝐿 = 256.

O(βsim) Ô(β̂) Rew(O)(β) εc
εi

((β̂)i, (Ô)i)
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Figure 4.11: Example plots of the histogram reweighting curves and observables peak searches
for various parameter tuples (𝑎, 𝑝𝑑, 𝐿). The left subplots show the reweighted curves in the range
𝛽sim − 2Δ𝛽rew ≤ 𝛽 ≤ 𝛽sim + 2Δ𝛽rew for all simulated temperatures 𝛽sim. In the middle subplots, the
chosen three temperatures and the corresponding reweighting curves as well as the found peaks ( ̂𝛽, ̂𝒪)
are zoomed in. The right subplots show the individual peaks for each jackknife resampled subset in
the thermal and disorder directions for the finally chosen temperature 𝛽sim. The 𝜖𝑖 and 𝜖𝑐 are thermal
and disorder errors from the corresponding resampling direction, respectively. The total error is then
calculated with Equation (4.23), i.e., 𝜖 = √𝜖2

𝑖 + 𝜖2
𝑐.
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(b) 𝑎 = 3.5.
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Figure 4.12: Observable peak values ̂𝜕𝛽(ln |𝑚|) at its corresponding peak temperatures ̂𝛽 for all con-
sidered sizes 𝐿. For better readability, we draw connecting and annotated lines for some 𝐿 between var-
ious concentrations of defects 𝑝𝑑. For all data points we plotted the scaled error 𝜖( ̂𝜕𝛽(ln |𝑚|))/ ̂𝜕𝛽(ln |𝑚|)
and as a horizontal error 𝜖( ̂𝛽).

cases lie around and below a value of ≈ 1.0 while nearly all the ratios are smaller than ≈ 1.5.
The largest ratios are at a value of ≈ 2.0 for the observable 𝜕𝛽(ln |𝑚|). It is noticeable, that
there are outliers and jumps in the behavior. This is not surprising as for all 𝐿 for each
particular parameter tuple (𝑎, 𝑝𝑑) we used the same simulation temperatures with the same
spacing, and there are lattice sizes for which the chosen simulation temperatures accidentally
hit the correct critical temperatures better than for others. The ratio in Equation (4.30) only
confirms the applicability of the reweighting technique and does not have a physical meaning.
Considering that the rule of where the reweighting technique is valid, ∣𝛽sim − ̂𝛽∣−Δ𝛽rew ⪅ 1,
is not rigor but only a “rule of thumb”, we can conclude that most of our peaks were found in
a valid reweighting range. Additionally, we expect our large thermal measurements number
of 𝑁 = 10 000 to allow for reweighting further away from the simulated temperature without
introducing too large systematic errors.

Comparison between the errors from thermal averages and disorder averages
We chose a total number of removed blocks in each direction to be equal 𝐵 = 20. This sets
|𝐽 𝑗| = 𝑁/𝐵 = 500 and |𝐽𝑘| = 𝑁𝑐/𝐵 = 50 for our data sets. To systematically compare
the errors for various parameter tuples (𝑎, 𝑝𝑑, 𝐿), we will compare the errors calculated with
Equation (4.21) for the thermal direction and the disorder direction as relative errors for
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Figure 4.13: Observable peak values ̂𝜕𝛽(|𝑚|) at its corresponding peak temperatures ̂𝛽 for all con-
sidered sizes 𝐿. For better readability, we draw connecting and annotated lines for some 𝐿 between
various concentrations of defects 𝑝𝑑. For all data points we plotted the scaled error 𝜖( ̂𝜕𝛽(|𝑚|))/ ̂𝜕𝛽(|𝑚|)
and as a horizontal error 𝜖( ̂𝛽).

selected observables and their peak temperatures,

𝜖rel
𝑞 ( ̂𝒪) =

𝜖( ̂𝒪)𝑞

̂𝒪
𝑞 , (4.31)

𝜖rel
𝑞 ( ̂𝛽) =

𝜖( ̂𝛽)𝑞

̂𝛽
𝑞 , (4.32)

where 𝑞 is either 𝑖 for the thermal direction resampling or 𝑐 for the disorder direction and the
means and errors are calculated through Equations (4.20) and (4.21), respectively. Since we
also have the simulation temperature as one parameter, but we are mostly interested in the
observations close to the critical temperature, we will compare the errors only at observed
critical temperatures ̂𝛽 of the corresponding observables for each parameter tuple (𝑎, 𝑝𝑑, 𝐿).

We present the errors for 𝜕𝛽(ln |𝑚|), 𝜕𝛽(|𝑚|) and 𝜒 in Figure 4.16. At the first glance, we
see that the majority of the relative errors is below 0.01. The only exception is 𝜒 at 𝑎 ≤ 2.0.
Further, the thermal average errors are smaller by a factor of ≈ 5 for almost all choices
of (𝑎, 𝑝𝑑, 𝐿). For the susceptibility 𝜒, the factor is even around 10 or larger. This is not
surprising, as we have measured long time series with 𝑁 = 10 000 compared to the moderate
number of disorder realizations 𝑁𝑐 = 1000. The reason for this choice was the possibility
to perform histogram reweighting for each disorder realization separately which needs long-
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Figure 4.14: Observable peak values 𝜒̂ at its corresponding peak temperatures ̂𝛽 for all considered
sizes 𝐿. For better readability, we draw connecting and annotated lines for some 𝐿 between various
concentrations of defects 𝑝𝑑. For all data points we plotted the scaled error 𝜖(𝜒̂)/𝜒̂ and as a horizontal
error 𝜖( ̂𝛽).

enough data series to perform reasonably well. This choice is now reflected in the errors but
allowed us to go further away from the simulated temperatures in the reweighting process.
If one would omit the reweighting technique and only analyze the observables at simulated
temperatures, probably a choice with 𝑁𝑐 ≈ 𝑁 would be better in order to equalize the errors
from thermal and disorder fluctuations. However, for 𝜕𝛽(ln |𝑚|), we see comparable error
sizes for 𝑎 ≤ 2.0 starting at around 𝐿 ≈ 128. Therefore, for this particular strong correlation
exponents and large 𝐿 our choice was already a good compromise with respect to the total
computational time.

Let us analyze the dependence of 𝜖rel on different parameters. First, there is only a small
dependence on the lattice size 𝐿 for the disorder averages but increasing 𝐿 generally increases
the thermal average errors slightly. Both dependencies are most pronounced for 𝜕𝛽(ln |𝑚|).
The weak dependence on 𝐿 for the disorder averages is an indicator for non-self-averaging
[LB05, p. 98]. A clear dependence on the correlation exponent 𝑎 can be observed for all
presented observables. Smaller 𝑎 (stronger correlation) correspond to substantially larger
errors, especially for 𝜒. The same applies to the concentration of defects 𝑝𝑑, the errors
increase slightly with increasing 𝑝𝑑, mostly pronounced in the case of 𝜒. Both dependencies
are not surprising since for larger 𝑝𝑑 and for smaller 𝑎 the variation between each disorder
realization increases and therefore in principle one would need larger statistics to compensate
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(c) 𝒪 = 𝜒.

Figure 4.15: Relative ratio of the distance between found peak temperatures ̂𝛽 and the simulated
temperature 𝛽sim and the reweighting range Δ𝛽rew as defined in Equation (4.30) for different observ-
ables 𝒪. For each pictogram, the lattice size increase from left to right from 𝐿 = 8 to 𝐿 = 256.
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Figure 4.16: Comparison of relative errors coming from resampling in thermal direction, Equa-
tion (4.16), and disorder direction, Equation (4.17), for different observables 𝒪 reweighted to their
corresponding critical temperatures ̂𝛽. For each pictogram, the lattice size increase from left to right
from 𝐿 = 8 to 𝐿 = 256.



4.3 Calculation of observables 93

for this diversity. We have not done this step in this study, but it may improve the results
for strong correlation case, e.g., 𝑎 = 1.5, which comes with large errors in our analysis as we
will see in Section 4.5.

Having discussed the errors of the observable peaks ̂𝒪, we move on to the corresponding
peak temperatures ̂𝛽. The thermal and disorder relative errors are shown in Figure 4.17,
again for the three observables 𝜕𝛽(ln |𝑚|), 𝜕𝛽(|𝑚|) and 𝜒. Comparing the various plots in
Figure 4.17, we can immediately confirm the same tendency with regard to the dependencies
on correlation exponent 𝑎 and concentration of defects 𝑝𝑑. For larger 𝑝𝑑 and smaller 𝑎 the
relative errors increase. We also see a similar factor of ≈ 5 between the thermal and the
disorder errors. However, the dependence on 𝐿 is quite different. For small lattice sizes we
observe large relative errors while with increasing 𝐿 the errors decreases significantly and
at least visually approach zero. This is a natural consequence of finite lattice sizes. The
critical temperature does not increase with 𝑉 as the corresponding observables do, but varies
only slightly with increasing 𝐿. On the other hand, the smearing of the critical temperature
peaks becomes less and less pronounced for increasing 𝐿 and by this the relative error defined
through Equation (4.32) decreases with increasing 𝐿. With maximum error sizes of up to
≈ 0.0003 for very small lattice sizes and ⪅ 0.0002 otherwise, we are in a good regime with
regard to the relative errors.

Dependence of the errors on jackknife block numbers In addition to the previous
error analysis, we varied the number of jackknife blocks 𝐵 to see the influence on the error
sizes. As was discussed in Section 3.4.1, as long as the blocks along the thermal direction 𝑖
are not too small, there should be no problems with the autocorrelation of observables and
the jackknife technique therefore should give an estimator of the error of the mean correctly.
In the direction of the disorder 𝑐, the correlation is absent by definition, so it is safe to
remove arbitrary numbers of disorder realizations and the jackknife method should work.
However, there will always be a dependence on the number of blocks in the estimators for
finite data sets. Therefore, we tested whether our choice of 𝐵 = 20 for each direction was
sufficient for an accurate estimate. Due to computational efforts and the fact, that leaving
larger blocks of data generally increased the chance of failing of the peak search procedure
(maximization process, defined in Equation (4.27)), we restricted ourselves to the jackknife
resampled observable 𝜕𝛽(ln |𝑚|) at simulated temperature 𝛽sim. We varied the number of
jackknife blocks 𝐵 and compared the relative deviations of the mean and its error to reference
values for a chosen 𝐵𝑟,

∣𝒪𝑟 − 𝒪∣

∣𝒪𝑟∣
and

|𝜖(𝒪)𝑟 − 𝜖(𝒪)|

∣𝒪𝑟∣
, (4.33)

respectively. The 𝑟 denotes estimates calculated for the reference choice of 𝐵𝑟 = 200, where
only five disorder realizations are left out at each jackknife resampling step. The distributions
for all parameter tuples (𝑎, 𝑝𝑑, 𝐿) for each 𝐵 are presented in Figure 4.18. We see that the
deviations of the means become smaller with larger 𝐵, which is not surprising since we
approach the reference value 𝐵𝑟. But the relative deviations are small even for the smallest
considered 𝐵. The choice of 𝐵 = 20 leads to an average relative deviation of the means of
≈ 3.2⋅10−5. The same tendency can be observed for the deviations of the errors. The average
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(a) 𝒪 = 𝜕𝛽(ln |𝑚|).
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Figure 4.17: Comparison of relative errors coming from resampling in thermal direction, Equa-
tion (4.16), and disorder direction, Equation (4.17), for critical temperatures ̂𝛽 for different observ-
ables 𝒪. For each pictogram, the lattice size increase from left to right from 𝐿 = 8 to 𝐿 = 256.
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deviation for 𝐵 = 20 is ≈ 9 ⋅ 10−4. Both relative deviations are very small and justify the
choice of 𝐵 = 20 as a sufficient number of blocks to reproduce the results for a much larger
𝐵𝑟 = 500 quite well. The maximum deviations for the mean and the error estimates are not
shown in Figure 4.18, but they lead to the same conclusion.
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Figure 4.18: The distributions of the relative deviations of the means 𝒪 (left) and errors 𝜖(𝒪) (right)
for all parameter tuples (𝑎, 𝑝𝑑, 𝐿) and various jackknife block numbers 𝐵. The histograms are un-
normalized to keep the heights constant. The 𝑥-axis is shown logarithmically, to overcome the large
scales compared to the width of the histograms. The lines with numbers are the means for each 𝐵
case.

Comparison between 𝜕𝛽(ln |𝑚|) and 𝜕𝛽𝑈2 As we will discuss later, we used the derivative
of the logarithm of the magnetization 𝜕𝛽(ln |𝑚|) for the final estimates of the critical exponent
𝜈. An alternative observable which yields the same critical exponent and can be used for this
purpose is the derivative of the binder cumulant 𝜕𝛽𝑈2 (or 𝜕𝛽𝑈4), which we have introduced
in Section 2.2.3. It was used, e.g., in [HPV99; Iva+08]. Our choice was guided mainly by
our analysis strategy. We wanted to be able to reweight from one simulation temperature
𝛽sim to other temperatures to be able to find the peaks of observables. But as it turned
out, the observable 𝜕𝛽(ln |𝑚|) was more stable with respect to the histogram reweighting
procedure. This was especially noticeable for weak correlations and the uncorrelated cases.
For temperatures further away from 𝛽sim, the reweighted curves for 𝜕𝛽𝑈2 become unreliable
much faster than for 𝜕𝛽(ln |𝑚|) as can be seen in Figure 4.19. The 𝜕𝛽(ln |𝑚|) curves have
maximal values for each 𝛽sim while the 𝜕𝛽𝑈2 often does not show a peak at all. This would
mean that a manual intervention in the search procedure for the 𝜕𝛽𝑈2 observables is needed
and more simulation temperatures are required, while it can be run automatically with fewer
temperatures for 𝜕𝛽(ln |𝑚|).
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Figure 4.19: Comparison of the histogram reweighted curves for the observables 𝜕𝛽(ln |𝑚|) and 𝜕𝛽𝑈2

for diffrent 𝑎 and 𝑝𝑑 = 0.2. One can see a smoother behavior of the curves for the 𝜕𝛽(ln |𝑚|) n a wider
range around 𝛽sim.

4.4 Autocorrelation of observables

4.4.1 Theoretical treatment

In this section we analyze the temporal autocorrelation of observables, i.e., the correlation
between an observable measured at different times, near the critical temperature, where the
observables become more and more temporally correlated and lead to a smaller effective
statistics. This behavior is known as the critical slowdown or critical relaxation [LB05,
pp. 95 sqq.].

The following derivations are done for a measured time series for one disorder realization.
At the end we will calculate the disorder averages. Assume we have a sequence of observables
𝒪𝑖 with the total number of 𝑁, i.e., 1 ≤ 𝑖 ≤ 𝑁. We interpret the discrete number of the
observation 𝑖 as the time at which this observation was done. We define the normalized
autocorrelation between two observables at different times 𝑖 and 𝑖 + Δ as [AM05, p. 500]

𝐴𝒪(Δ) =
⟨𝒪𝑖𝒪𝑖+Δ⟩ − ⟨𝒪𝑖⟩⟨𝒪𝑖+Δ⟩

𝜎2(𝒪)
, (4.34)

with 𝜎2(𝒪) = ⟨𝒪2⟩ − ⟨𝒪⟩2 being the variance of the (uncorrelated) observable 𝒪 and con-
sequently with 𝐴(0) = 1. The Equation (4.34) leads to two definitions of relaxation times,
namely the integrated autocorrelation time [AM05, p. 500]

𝜏𝒪
int =

1
2
+

∞

∑
Δ=1

𝐴𝒪(Δ) , (4.35)
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and the exponential autocorrelation time [AM05, p. 500]

𝜏𝒪
exp = lim

Δ→∞
sup Δ

− log |𝐴𝒪(Δ)|
. (4.36)

Note, that in the summation in Equation (4.35) the Δ = 0 term is excluded. Hence, the
minimum value for the integrated autocorrelation time is 1/2. The integrated autocorrelation
time is responsible for the increase of the errors of estimates obtained during Monte Carlo
simulations [AM05, p. 500]. After some algebra it can be shown that the (true) error of an
observable 𝒪 is [Jan08, p. 103]

𝜖2(𝒪) = ⟨(𝒪 − ⟨𝒪⟩)2⟩ ≈
2𝜏𝒪

int
𝑁

(⟨𝒪2⟩ − ⟨𝒪⟩2) . (4.37)

This can be interpreted as an effective number of performed measurements,

𝑁eff = 𝑁
2𝜏𝒪

int
≤ 𝑁 . (4.38)

On the other hand, the exponential autocorrelation time 𝜏exp describes the time which is
needed for the system to thermalize, i.e., reach an equilibrium state. In the further analysis
we will concentrate on the integrated autocorrelation time 𝜏int.

When dealing with finite number of measurements which is always the case for a simulation,
we need to be careful with Equation (4.35) since the values of 𝐴(Δ) become very noisy for
large Δ. One possible overcome of this issue is to sum only the first Δ̂ < 𝑁 values of 𝐴. This
leads to a modified version of Equation (4.35)

𝜏𝒪
int =

1
2
+

Δ̂

∑
Δ=1

𝐴𝒪(Δ) , (4.39)

The common way is to choose a self-consistent value Δ̂ such that

Δ̂ ≈ 6𝜏𝒪
int . (4.40)

However, we chose a different approach since we wanted to compare 𝜏int values for different
𝑎 and 𝑝𝑑. First, we looked at the curves 𝜏𝒪

int(Δ) for all 𝑎, 𝑝𝑑 and 𝐿 and then chose a value Δ̂
for which a plateau was reached for all curves.

4.4.2 Autocorrelation analysis results

We considered 𝒪 = 𝐸 and 𝒪 = |𝑀| as the observables of interest as they were directly
measured during the simulations. The absolute value for the magnetization was chosen to
match the definitions of composed observables, e.g., Equations (2.39) and (2.44), which use
the absolute values of the magnetization in order to overcome the averaging-to-zero for finite
lattice sizes. As already mentioned, all presented autocorrelation times 𝜏𝒪

int are disorder
averages over all 𝑁𝑐 = 1000 disorder realizations, i.e.,

𝜏𝒪
int =

q
(𝜏𝒪

int)
𝑐y , (4.41)
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where (𝜏𝒪
int)

𝑐 is the autocorrelation time measured for one particular disorder realization 𝑐.
The simulation temperatures for which we calculated the autocorrelation times are the ones
which were finally used for the estimation of the peaks of the derivative of the logarithm of
the magnetization 𝜕𝛽(ln |𝑚|) in Section 4.3.3. Therefore, they are quite close to the critical
temperature of the system. The curves 𝜏𝒪

int(Δ) calculated according to Equation (4.39) for all
parameter tuples (𝑎, 𝑝𝑑, 𝐿) are shown in Figure 4.20. We can clearly see that a plateau value
is reached for all cases at a value of Δ̂ ≈ 100. This will be our fixed value for all following
comparisons. The first observation is that the autocorrelation time of the magnetization is
slightly smaller than that of the energy. With the mean values taken over all parameter tuples
(𝑎, 𝑝𝑑, 𝐿), we get the values 𝜏𝐸

int = 4.3(22) and 𝜏𝑀
int = 2.9(19). Autocorrelation times which

are larger than the mean occur less frequently than times which are smaller than the mean.
This is also reflected in the median values which are md (𝜏𝐸

int) = 3.6 and md (𝜏𝑀
int) = 2.4 and

lie below the corresponding means. At first glance, these numbers are reasonably small, but
we will come to the interpretation at the end of this section.
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Figure 4.20: Integrated autocorrelation time curves 𝜏𝒪
int(Δ) for the energy 𝐸 and the magnetization

|𝑀| and for all parameter tuples (𝑎, 𝑝𝑑, 𝐿). One clerly sees that a plateau value is reached in all cases
at Δ̂ = 100. The histogram on the right shows the distribution of the times.
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Let us take a deeper look into the dependence of 𝜏𝒪
int on the different parameters. In

Figures 4.21 and 4.22 we present all autocorrelation times for the chosen Δ̂ = 100. The
following observations will hold for both considered observables, i.e., 𝐸 and |𝑀|, the only
difference is that for the magnetization the values are slightly smaller than for the energy, in
accordance to the total means. Therefore, we will not distinguish between the observables
in the text below. We can analyze the dependence on each parameter separately. Let us
start with the correlation exponent 𝑎. The general tendency is that for stronger correlations
(lower 𝑎) we see smaller autocorrelation times. The general dependence on the concentration
of defects 𝑝𝑑 is very strongly pronounced. With increasing concentration of defects the
autocorrelation time decreases. Concerning the lattice size 𝐿 we observe an increase in the
time for larger lattice sizes. The effect can be best seen at 𝑝𝑑 = 0.05 and 𝑎 = ∞ but persists
for all other parameter combinations except for the magnetization at 𝑎 ≤ 2.0 and 𝑝𝑑 ≤ 0.1,
where the time slightly decreases with increasing lattice size.
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Figure 4.21: Integrated autocorrelation times 𝜏𝐸
int(Δ̂) with Δ̂ = 100 for all parameter tuples (𝑎, 𝑝𝑑, 𝐿).

The white color in the colorbar is set to the mean value 𝜏𝐸
int.

Let us follow the worst-case scenario and study the autocorrelation times at 𝐿 = 256 which
are mostly the largest for all 𝑎 and 𝑝𝑑. We show the values in Figure 4.23. For comparison,
also the values for the lattice size 𝐿 = 64 are shown. The dependencies on 𝑎 and 𝑝𝑑 can be
seen even clearer in these plots. The next observation is that the edge case of 𝑎 = ∞ and
𝑝𝑑 = 0.05 and 𝐿 = 256 clearly shows spiking values. Excluding this case halves down the
maximum autocorrelation time for both considered observables. It is an important fact since
we mostly excluded the lowest concentration of 𝑝𝑑 = 0.05 anyway due to the crossover regime
with the pure Ising model.
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Figure 4.22: Integrated autocorrelation times 𝜏𝑀
int(Δ̂) with Δ̂ = 100 for all parameter tuples (𝑎, 𝑝𝑑, 𝐿).

The white color in the colorbar is set to the mean value 𝜏𝑀
int.

Finally, we also took a look on the temperature dependence of the autocorrelation times.
We present the curves in Figure 4.24. To achieve better comparability, we plotted the times
not against the simulated temperature 𝛽sim, but against the reduced temperature 𝑡 = (1 −
𝛽𝑐/𝛽sim) with critical temperatures which we will discuss in Section 4.5.5. We have chosen
two different cases, 𝑎 = ∞ and 𝑎 = 2.0 and the lattice size 𝐿 = 256. First of all, in
the uncorrelated case the maximum of the autocorrelation time is very close to 𝑡 = 0, as
expected. We see a very fast decrease in the times when going away from 𝑡 = 0 in both
directions. Contrarily, the autocorrelation time does not show a clear peak for the case of
𝑎 = 2.0 and going to the region 𝑡 > 0 tends to further increase the autocorrelation times.
The reason for this dependence remains unclear to us. Possibly, it is due to larger spread in
the critical temperatures of the individual disorder realizations which causes such averaged
autocorrelation times to appear.

We would like to discuss the consequences of the results presented above. As can be seen
in Equation (4.38), theoretically the autocorrelation time reduces the effective number of
performed measurements. However, the factor of 2𝜏𝒪

int depends on the considered observable.
Since we mostly studied observables which were composed of various 𝑀 and 𝐸 combinations,
we expect their autocorrelation times to be smaller than that of the pure observables. Ad-
ditionally, the errors coming from disorder averaging were approximately 5–10 times larger
than the thermal fluctuation errors which are effected by the autocorrelation time presented
here. See Figure 4.16 for the comparison of the errors. Finally, we mainly used the histogram
reweighted observables to find their maximum values and used the jackknife resampling tech-
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(b) 𝐿 = 256, 𝒪 = 𝐸.
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(c) 𝐿 = 64, 𝒪 = |𝑀|.
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Figure 4.23: Integrated autocorrelation time 𝜏𝒪
int for lattice sizes 𝐿 = 64 and 𝐿 = 256 for the energy

𝐸 and the magnetization |𝑀|. The errors of the times arising from the disorder averageing are much
lower than the precision shown here.

nique to estimate the fluctuations. This should further decrease the autocorrelation time.
These three facts let us assume that we can neglect the autocorrelation times in our further
analyses without dramatic issues.

Summary. We presented the steps to calculate the integrated autocorrelation time for
a series of observables measured during a simulation process. The autocorrelation times
were obtained for all parameter tuples (𝑎, 𝑝𝑑, 𝐿), and we studied their dependence on
each of the parameters. Finally, we argued that from the performed analysis we may
conclude that the autocorrelation between the observables can be neglected in our further
analyses.
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(d) 𝑎 = 2.0, 𝒪 = |𝑀|.
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Figure 4.24: The dependence of the integrated autocorrelation time 𝜏𝒪
int on the reduced temperature

𝑡 for chosen correlation exponents 𝑎 and 𝐿 = 256 for the energy 𝐸 and the magnetization |𝑀|. A clear
peak at 𝑡 = 0 can be observed for the uncorreated case with 𝑎 = ∞ but for the coreated case with
𝑎 = 2.0 the region 𝑡 > 0 still shows larger times.

4.5 Finite-size scaling analysis

4.5.1 Confluent correction exponent 𝜔

Quotient method

For the determination of the confluent correction exponent 𝜔 we used the Quotient Method
[Car+95]. It was successfully used in various works, e.g., Refs. [Bal+98a; Bal+98b; FM16]
and is described in detail in [AM05, p. 475]. Its main idea consists of canceling out the
leading order terms in the finite-size scaling relation of an observable 𝒪 by taking a ratio of
𝒪 at different lattice sizes. We begin by defining a quotient 𝑄𝒪 of an observable 𝒪 at two
different lattice sizes 𝐿 and 𝑠𝐿 where 𝑠 is an arbitrary positive (integer) factor,

𝑄𝒪(𝐿) =
𝒪(𝑠𝐿, 𝛽𝒪

𝑐 (𝑠𝐿))
𝒪(𝐿, 𝛽𝒪

𝑐 (𝐿))
. (4.42)

Each observable is taken at its finite-size critical temperature 𝛽𝒪
𝑐 (𝐿) and 𝛽𝒪

𝑐 (𝑠𝐿), respectively.
If the observable 𝒪 is expected to have a peak at the critical temperature, then 𝛽𝒪

𝑐 (𝐿) and
𝛽𝒪

𝑐 (𝑠𝐿) are the finite temperatures where these peaks will occur. Assume, that the finite-size
behavior of 𝒪 up to the first-order corrections is given by,

𝒪(𝐿) = 𝐴𝐿𝑥𝒪/𝜈 (1 + 𝐵𝐿−𝜔 +…) , (4.43)
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where 𝑥𝒪 is the critical exponent of 𝒪. Inserting Equation (4.43) into Equation (4.42) we
immediately see the finite-size behavior of 𝑄 [AM05, p. 477],

𝑄𝒪(𝐿) =
𝐴(𝑠𝐿)𝑥𝒪/𝜈 (1 + 𝐵(𝑠𝐿)−𝜔 +…)

𝐴𝐿𝑥𝒪/𝜈 (1 + 𝐵𝐿−𝜔 +…)
= 𝑠𝑥𝒪/𝜈 +𝐵′𝐿−𝜔 +… , (4.44)

where in the last step we have omitted all higher order terms in 𝐿−𝜔 and combined the
coefficients to a constant 𝐵′. Note, that the amplitudes 𝐴 and 𝐵 are equal for 𝒪(𝐿) and
𝒪(𝑠𝐿) since we are at critical temperatures for each of the lattice sizes. With the help of
Equation (4.44) we can determine the correction exponent 𝜔 independently of 𝑥𝒪, since

𝐶 = 𝑠𝑥𝒪/𝜈 , (4.45)

is constant with respect to 𝐿.

Analysis

In our work we chose the derivative of the logarithm of the magnetization 𝜕𝛽(ln |𝑚|) to
calculate the ratios. It was defined in Equation (2.44). In Section 4.3.3 we calculated the
peaks of this observable ̂𝜕𝛽(ln |𝑚|) for all parameter tuples (𝑎, 𝑝𝑑, 𝐿). We will use these
values to get the quotients 𝑄𝜕𝛽(ln|𝑚|)(𝐿). Since the critical exponents are independent of the
concentration of defects 𝑝𝑑 in the thermodynamic limit, we can use a global fit procedure
and include all 𝑝𝑑 for every considered correlation strength 𝑎 into one fit. A fit for each
𝑝𝑑 and a corresponding averaging were not reliable in this case, since the ratios with their
errors were only moderately precise. Moreover, we expect the global fit to be favorable over
a weighted mean of results from individual fits. See Appendix A.2 for a detailed description
of the global fit method and comparison to the weighted mean case. The fit ansatz is then a
slightly modified Equation (4.44),

𝑄𝜕𝛽(ln|𝑚|)(𝐿, 𝑝𝑑) = 𝐶 + 𝐴𝑝𝑑
𝐿−𝜔 , (4.46)

where we explicitly denote the dependence of the factors 𝐴𝑝𝑑
on the concentration of defects

with the index 𝑝𝑑. For our data sets we were able to use 𝑠 = 4 and get eight ratios per
concentration without reusing the same lattice size twice, i.e., as a small lattice size 𝐿 and a
large lattice size 𝑠𝐿. The fits for all correlation exponents 𝑎 are shown in Figure 4.25.

To study the stability and the quality of the fits we varied the smallest lattice size 𝐿min

included in to the fits as well as the minimum and maximum concentration of defects 𝑝min
𝑑

and 𝑝max
𝑑 , respectively. These dependencies are summarized in Figure 4.26. As one can see,

there is only a weak dependence on the maximum concentration of defects 𝑝max
𝑑 so that we

can stick with 𝑝max
𝑑 = 0.4 for all correlation exponents 𝑎. The same applies for the minimum

lattice size 𝐿min. We chose 𝐿min = 20 for all fits. Note, that since we combine the lattice
sizes 𝐿 and 𝑠𝐿 into one ratio 𝑄, the minimum lattice size cannot be chosen as large as in the
later analyses where all lattice sizes enter the fitting ansatz separately. The dependence of
the finial estimates of 𝜔 and the qualities of the fits 𝜒2

red on the minimum concentration of
defects 𝑝min

𝑑 for all correlation exponents 𝑎 is shown in Figure 4.27. For most correlated cases,
𝑎 ≠ ∞, the fits were in a good region of 𝜒2

red ≈ 1 when we excluded the smallest concentration
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Figure 4.25: Fits of the quotients 𝑄𝜕𝛽(ln|𝑚|) at different lattice sizes 𝐿 to the ansatz from Equa-
tion (4.46) for all considered correlation exponents 𝑎. The correlated cases were fitted including the
concentrations of defects 0.1 ≤ 𝑝𝑑 ≤ 0.4. For the uncorrelated case the range was 0.05 ≤ 𝑝𝑑 ≤ 0.4.
For better comparability the plots are shown scaled to 𝐿−𝜔 on the x-axis and therefore the appear
linear.

and set 𝑝min
𝑑 = 0.1. The uncorrelated case with 𝑎 = ∞ was good for all choices of 𝑝min

𝑑 , so we
set 𝑝min

𝑑 = 0.05 in this case. The final estimates of the correction exponents 𝜔 together with
the corresponding choice of 𝑝min

𝑑 and the quality of the fits 𝜒2
red are summarized in Table 4.2.

A comparison with estimates found in the literature can be found in Table 2.3.
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Figure 4.26: Summary of all correction exponents 𝜔 for each considered correlation exponent 𝑎
obtained from a global fit to the ansatz given in Equation (4.46). All tested restriction parameters
𝐿min, 𝑝min

𝑑 and 𝑝max
𝑑 are shown. The dependence on the minimum included lattice size 𝐿min and

the maximum included concentration of defects 𝑝max
𝑑 is small compared to the dependence on the

minimum concentration of defects 𝑝min
𝑑 . For better comparability we keep the same y-axis scale for

all correlated cases and cut some errorbars on one of the ends.

Table 4.2: Final confluent correction exponents 𝜔 and constants 𝐶 from the fits of the quotients
𝑄𝜕𝛽(ln|𝑚|) to the ansatz in Equation (4.46) for all considered correlation exponents 𝑎. The minimum
lattice size included into the fits was 𝐿min = 20 and the maximum included concentration of defects
was 𝑝max

𝑑 = 0.4. We calculated the critical exponents 𝜈 from the fitting constant 𝐶 which follow from
the relation in Equation (4.45) with 𝑠 = 4. They agree with our final estimates when using a smaller
𝐿min.

𝑎 𝜔 𝐶 𝜈 = ln 𝑠
ln 𝐶

𝑝min
𝑑 𝜒2

red

∞ 0.346(40) 7.590(42) 0.684(2) 0.1 0.885
3.5 0.679(44) 6.800(45) 0.723(3) 0.1 1.247
3.0 0.840(50) 5.988(35) 0.775(3) 0.1 1.835
2.5 1.154(66) 4.739(22) 0.891(3) 0.1 1.763
2.0 1.087(81) 3.450(29) 1.120(8) 0.1 0.917
1.5 0.988(75) 2.307(46) 1.66(4) 0.1 0.766

From Table 4.2 and Figure 4.27 we see a distinction between the correlated cases 𝑎 ≠ ∞ and
the uncorrelated case 𝑎 = ∞. Let us first discuss the uncorrelated case. Our estimated value
𝜔 = 0.346(40) is in very good agreement with the result 𝜔 = 0.37(6) found by Ballesteros
et al. [Bal+98a]. It is also consistent with 𝜔 = 0.33(3) (for 𝑝𝑑 = 0.2) obtained by Hasenbusch
et al. [Has+07]. However, in Ref. [Cal+03] the authors do not get the exponent 𝜔 ≈ 0.4 but
instead 𝜔 ≈ 0.8 for 𝑝𝑑 = 0.2 which they claim is a next-to-leading order correction exponent.
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Figure 4.27: Confluent correction exponents 𝜔 from the fits of the quotients to the ansatz defined in
Equation (4.46) for all considered correlation exponents 𝑎 and three different minimum concentrations
𝑝min

𝑑 . The minimum lattice size included into the fits was 𝐿min = 20 and the maximum included con-
centration of defects was 𝑝max

𝑑 = 0.4. The difference between the correlated cases and the uncorrelated
case is clearly visible for all 𝑝min

𝑑 . For 𝑝min
𝑑 = 0.05 however, the crossover to the uncorrelated cases

begins already at around 𝑎 ≈ 3.0 whereas if 𝑝min
𝑑 > 0.05 is used, no crossover region is observed in

our data.

Considering the larger lattice sizes in our study and the good quality of the global fit of the
quotients we disagree with this claim and support the 𝜔 ≈ 0.4 case independently of the
concentration of defects.

The correlated case for 𝑎 = 2.0 yields a correction exponent 𝜔 = 1.087(81). This is in very
good agreement with the values of 𝜔 = 1.01(13) obtained by Ballesteros and Parisi [BP99]
for concentrations 𝑝𝑑 = 0.2 and 𝑝𝑑 = 0.35. A theoretical prediction from a Renormalization
Group calculation is 𝜔 = 0.8 [BFH01]. This prediction does not lie within the error range of
our estimate but is not too far away either. We also can partially reproduce the qualitative
behavior of 𝜔(𝑎) from [BFH01] in that it shows a maximum value at a certain 𝑎 value and
decreases when going to stronger (smaller 𝑎) or weaker (larger 𝑎) correlation exponents.
However, our peak is not as pronounced as in Ref. [BFH01]. The comparison is presented
in Figure 4.28. The Renormalization Group results in [BFH01] do not provide any error
estimation. Therefore, we cannot compare the deviations quantitatively.
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Figure 4.28: Comparison of the correction exponents 𝜔 to the values obtained with Renormalization
Group techniques in RG: Blavats’ka, Ferber, and Holovatch [BFH01]. Our errorbars cover a substantial
portion of the curve from RG making it hard to confirm or reject this behavior even for the simulated
values of 𝑎 = 2.0, 𝑎 = 2.5 and 𝑎 = 3.0.
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Remark. As pointed in [AM05] we could have been used Equation (4.45) to estimate the
critical exponent ratio 𝑥𝒪/𝜈, or in case of 𝑥𝒪 = 1, e.g., for 𝜕𝛽(ln |𝑚|), even the critical
exponent 𝜈 itself. We present the estimated critical exponents 𝜈 in Table 4.2. However, the
errors are larger than using other methods (compare to Table 4.5), so we finally used the
quotient method only for the extraction of 𝜔.

Summary. With the help of the quotient method and the derivative of the logarithm of
the magnetization observable 𝜕𝛽(ln |𝑚|) we obtained the confluent correction exponents
𝜔 for the uncorrelated case 𝑎 = ∞ with 𝜔 = 0.346(40) and for the correlated cases with
𝑎 ≤ 3.0 values in the range with 0.83 < 𝜔 < 1.16. The case with 𝑎 = 3.5 seems to be a
crossover between the uncorrelated and the correlated cases.

4.5.2 Critical exponent 𝜈

One of the key quantities which was obtained in this work is the critical exponent of the
correlation length 𝜈. As was described in Section 3.2, this critical exponent enters the finite-
size behavior of most observables in the form of a ratio 𝑥𝒪/𝜈 where 𝑥𝒪 is the critical exponent
of the corresponding observable 𝒪. Especially for the correlated disorder Ising model it is
the most studied critical exponent for which also theoretical predictions exist. Therefore,
we took a great care in estimating the critical exponent 𝜈. In the following we will discuss
three different fitting methods which we used in order to get 𝜈 and compare them with each
other as well as with the Monte Carlo and Renormalization Group predictions in form of
Renormalization Group calculations known from literature.

As already mentioned in Section 4.3, we used the derivative with respect to 𝛽 of the
logarithm of the magnetization 𝜕𝛽(ln |𝑚|) as our primary observable in the analysis process.
Its definition in terms of thermal and disorder averages was given in Equation (2.44). The
finite-size scaling behavior was discussed in Section 3.2 and reads in the next-to-leading order

̂𝜕𝛽(ln |𝑚|)(𝐿) = 𝐴𝐿𝑟 (1 + 𝐵𝐿−𝜔) , (4.47)

where ̂𝜕𝛽(ln |𝑚|)(𝐿) are the maximum values of 𝜕𝛽(ln |𝑚|)(𝛽) at different 𝐿, and 𝜔 is the
confluent correction exponent which was obtained in Section 4.5.1. The exponent 𝑟 in the
ansatz relates to the critical exponent 𝜈 by

𝜈 = 1
𝑟
, 𝜖(𝜈) =

𝜖(𝑟)
𝑟2 . (4.48)

We used 𝑟 in Equation (4.47) because this will be the actual fit parameter in the fit ansatzes.
Starting with the ansatz from Equation (4.43), we analyzed three different fitting methods.
In the first and most simple procedure, we analyzed each parameter pair (𝑎, 𝑝𝑑) separately
and used a linear fit ansatz excluding the correction term (𝐵 = 0). Next, we introduced
the correction term but still performed individual fits for each concentration of defects 𝑝𝑑.
Finally, we combined all concentrations of defects 𝑝𝑑 for each considered correlation exponent
𝑎 into one corrected global fit. This was possible, because 𝜈 and 𝜔 are independent of 𝑝𝑑 in
the thermodynamic limit. In the following we will first go through all of these methods and
afterwards compare the results.
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Uncorrected individual fits

The most straight forward method is to analyze each parameter pair (𝑎, 𝑝𝑑) separately. The
finite-size scaling ansatz for 𝜕𝛽(ln |𝑚|) from Equation (4.47) with 𝐵 = 0 reads

̂𝜕𝛽(ln |𝑚|)(𝐿) = 𝐴′𝐿𝑟 . (4.49)

This ansatz can be transformed to the logarithmic scale and results in a linear fit,

ln ( ̂𝜕𝛽(ln |𝑚|)) (ln𝐿) = 𝑟𝐿 + 𝐴 , (4.50)

where 𝐴 = ln𝐴′. We will denote the obtained estimates for the critical exponent 𝜈 by 𝜈1
lin

where 1 indicates that the fits were performed for each concentration of defects 𝑝𝑑 separately
and “lin” denotes the linear (on log-log-scale) fit ansatz without correction terms. We per-
formed fits for each parameter parameter tuple (𝑎, 𝑝𝑑) varying the minimum included lattice
size in the range 8 ≤ 𝐿min ≤ 128. This allowed us to examine the asymptotic behavior for
increasing 𝐿min and the convergence of 𝜈1

lin for different concentrations of defects 𝑝𝑑. All
resulting values 𝜈1

lin(𝑝𝑑, 𝐿min) are summarized in Figure 4.29. We clearly see a convergence to
one final parameter for increasing 𝐿min and different 𝑝𝑑. The smallest concentrations 𝑝𝑑 ≤ 0.1
approaches the final value from below, while the largest concentrations 𝑝𝑑 ≥ 0.3 approach it
from above. The moderate concentrations in the range 0.15 ≤ 𝑝𝑑 ≤ 0.25 show the smallest
dependence on 𝐿min. However, note that the qualities of the fits 𝜒2

red reach the region of
𝜒2

red ≈ 1 only for large 𝐿min ⪆ 64. This is an indication that at smaller lattice sizes the
corrections to scaling involving the correction exponent 𝜔 are present and non-neglectable.

To provide a final estimate 𝜈𝑤
lin for each 𝑎, we took the weighted mean over all concentrations

in a chosen range 𝑝min
𝑑 ≤ 𝑝𝑑 ≤ 𝑝max

𝑑 and at a specific 𝐿min. The weighted mean was taken over
the fit parameters 𝑟 = 1/𝜈 as these were the actual fitting parameters while the estimates 𝜈
and their corresponding errors 𝜖(𝜈) were derived from them through Equation (4.48). The
definitions of the weighted mean and its error are

𝑟 = 1

∑𝑝max
𝑑

𝑝𝑑=𝑝min
𝑑

𝜖(𝑟(𝑝𝑑))−2

𝑝max
𝑑

∑
𝑝𝑑=𝑝min

𝑑

𝜖(𝑟(𝑝𝑑))−2𝑟(𝑝𝑑) , (4.51)

𝜖(𝑟) =
√√√

⎷

1

∑𝑝max
𝑑

𝑝𝑑=𝑝min
𝑑

𝜖(𝑟(𝑝𝑑))−2
. (4.52)

In principle one could vary the smallest included lattice size 𝐿min for each 𝑝𝑑 individually.
However, we have not found a reasonable system on how to choose these values 𝐿min(𝑝𝑑).
Instead, we looked into the weighted means in dependence of one common 𝐿min for all concen-
trations. In Figure 4.31 we show the dependence of 𝑟𝑤

lin and the resulting 𝜈𝑤
lin on the chosen

𝑝min
𝑑 and 𝐿min. Note, that we label the weighted mean results with the label 𝑤 in order

to distinguish these results from the results for different ansatzes which will come later. A
clear dependence on the choice of 𝐿min as well as on the 𝑝min

𝑑 can be seen for all considered
correlation exponents 𝑎. To find a reasonable choice for the final estimates of the critical ex-
ponent 𝜈, we studied the overlap of the estimates 𝑟𝑤

lin(𝑝𝑑) obtained with different 𝑝min
𝑑 choices

in dependence of the minimum lattice size 𝐿min. The main idea was the following: use as
many data points as possible while ensure that the dependence on the concentration 𝑝min

𝑑 is
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Figure 4.29: Critical exponents 𝜈1
lin(𝑝𝑑, 𝐿min) from fits to the uncorrected individual ansatz given

in Equation (4.50), with varying 𝐿min for all correlation exponents 𝑎. For the 𝑎 values where the
conjecture by Weinrib and Halperin is assumed to be valid the predicted 2/𝑎 values were plotted as
an orientation. The corresponding qualities of fits 𝜒2

red are shown in the lower plots. 𝜒2
red reaches

reasonable values for 𝐿min ⪆ 64.

mainly covered through the errors of the estimates. To quantify the overlap of the estimates
𝑟𝑤

lin we assumed that the values 𝑟𝑤
lin and their errors 𝜖(𝑟𝑤

lin) can be represented by a normal
distribution and calculated the area covered by these distributions for different minimum
concentrations of defects 𝑝min

𝑑 . More precise, the following formula defines the overlapping
index 𝒜 for a set of distributions 𝓅𝑖 [IJ89],

𝒜 = ∫
∞

−∞
d𝑥min

𝑖
[𝓅𝑖(𝑥)] . (4.53)

The index 𝒜 would be equal to 1 if only one distribution would be used. Otherwise, it
follows the lowest of all distribution densities along 𝑥 and by this the integral calculates the
area which is covered by all the distributions simultaneously. The overlapping index 𝒜 is a
measure of agreement between several distributions [IJ89]. It not as involved as an ANOVA



110 4 Results

analysis or a set of hypothesis tests but is meaningful enough for our purpose. Setting
𝓅𝑖 = 𝒩 (𝑟𝑤

lin(𝑝
min
𝑑 ), 𝜖(𝑟𝑤

lin)
2(𝑝min

𝑑 )) gives the specific formula for the desired estimates,

𝒜(𝑟) = ∫
∞

−∞
d𝑥 min

𝑝̃min
𝑑 ≤𝑝min

𝑑 ≤0.2
[𝒩 (𝑟(𝑝min

𝑑 ), 𝜖(𝑟)2(𝑝min
𝑑 )) (𝑥)] , (4.54)

where ̃𝑝min
𝑑 is the smallest 𝑝min

𝑑 included into the overlapping index calculation, and the
parameter 𝑟 in the case of uncorrected individual fits is 𝑟 = 𝑟𝑤

lin. Visually the overlapping
index for different ̃𝑝min

𝑑 is presented in Figure 4.30. The values 𝒜(𝑟𝑤
lin) for all 𝑝min

𝑑 and 𝐿min

can be found in Figure 4.31.
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Figure 4.30: The overlapping index 𝒜(𝑟𝑤
lin) calculated with Equation (4.54) at 𝑎 = 1.5 and 𝐿min = 128

for different ̃𝑝min
𝑑 . The shaded areas represent the area covered by all distributions 𝒩 (𝑟𝑤

lin, 𝜖(𝑟
𝑤
lin)

2)
calculated from all weighted means 𝑟𝑤

lin(𝑝
min
𝑑 ) for the minimum concentrations of defects in the range

̃𝑝min
𝑑 ≤ 𝑝min

𝑑 ≤ 0.2.

Due to the finite sizes of our lattices and the finite statistics of the observables we do not
expect 𝒜 ≈ 1 but just use 𝒜 to quantify our decision for the final 𝑝min

𝑑 and 𝐿min settings.
Our general rule was to take the lowest 𝐿min where the criterion 𝒜 ⪆ 0.75 was fulfilled
for smallest possible ̃𝑝min

𝑑 . Including 𝑝min
𝑑 = 0.05 or 𝑝min

𝑑 = 0.1 into the overlapping index
𝒜 resulted in low values for all 𝐿min. On the other hand, the results for 𝑝min

𝑑 = 0.15 or
𝑝min

𝑑 = 0.2 were in reasonable agreement for high enough lattice size 𝐿min ⪆ 128. Therefore,
for later comparison with other methods which will be described below, we constantly chose
𝐿min = 128 and 𝑝min

𝑑 = 0.15 for all correlation exponents 𝑎. The final results for 𝜈𝑤
lin are

summarized in Table 4.3. As we can see, the high 𝐿min value indicates that corrections to
scaling are important on the considered lattice sizes scale and the linear ansatz needs to reject
a lot of data points to fit properly. Therefore, we have not used the results from this analysis
as our final results. However, we will discuss them and, most importantly, compare them to
the estimates obtained from different methods.
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Figure 4.31: Fit parameters 𝑟𝑤
lin(𝐿min) and the corresponding critical exponents 𝜈𝑤

lin(𝐿min) obtained
as a weighted mean over all 𝑝min

𝑑 ≤ 𝑝𝑑 ≤ 0.4 from the fit parameters 𝑟1
lin to the uncorrected individual

ansatz given in Equation (4.50), with varying 𝐿min and 𝑝min
𝑑 . Third plots show the mean of the fit

qualities 𝜒2
red(𝑝𝑑, 𝐿min). The lower plots show the overlapping index 𝒜 calculated for all parameters

𝑟𝑤
lin(𝑝

min
𝑑 ) with the minimum concentration of defects in the range ̃𝑝min

𝑑 ≤ 𝑝min
𝑑 ≤ 0.2. 𝒜 for ̃𝑝min

𝑑 = 0.2
is not plotted, since it is always equal to one.
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Table 4.3: Final estimates 𝜈𝑤
lin obtained as a weighted mean over uncorrected individual fits for

concentrations of defects in the range 0.15 ≤ 𝑝𝑑 ≤ 0.4 taken at the minimum included lattice size
𝐿min = 128. For a quantitative description of the final quality of the estimates the mean and the
maximum of 𝜒2

red(𝑝𝑑) are listed as well.

𝑎 𝜈𝑤
lin 𝜒2

red max(𝜒2
red)

∞ 0.6913(15) 0.689 2.03
3.5 0.7427(25) 0.773 1.26
3.0 0.7812(35) 1.2 2.17
2.5 0.8887(61) 0.988 3.03
2.0 1.079(14) 0.343 0.797
1.5 1.449(32) 0.279 0.497

Corrected individual fits

The next possibility is to use individual fits for each concentration of defects 𝑝𝑑 but include
the correction term in the finite-size scaling ansatz as defined in Equation (4.47) which we
repeat here for clarity,

̂𝜕𝛽(ln |𝑚|)(𝐿) = 𝐴𝐿𝑟 (1 + 𝐵𝐿−𝜔) . (4.55)

Contrarily to the case without corrections discussed previously, we cannot linearize the ansatz
but have to deal with the nonlinear form given in Equation (4.55). However, fitting with both
exponents, 𝑟 and 𝜔, as free parameters turned out to be unreliably unstable. Therefore, we
took the previously obtained 𝜔 estimates from Table 4.2 as fixed parameters in the ansatz
from Equation (4.55). The free parameters were 𝑟 and the amplitudes 𝐴 and 𝐵. We repeated
the same procedure as in the uncorrected case and varied the minimum included lattice size
𝐿min in the fits. The resulting critical exponent estimates for all 𝑝𝑑 and 𝐿min are shown in
Figure 4.32.

As in the case with the uncorrected fits, we see a clear dependence on the minimum
included lattice size 𝐿min. However, for large enough 𝐿min ⪆ 32 the curves for different
𝑝min

𝑑 mostly overlap within their error bars. The qualities of the fits become reasonable for
𝐿min ⪆ 32 for all correlated cases as well. The uncorrelated case has good 𝜒2

red already
at 𝐿min ⪆ 20. We calculated the weighted means 𝜈𝑤 for each 𝑎 using Equations (4.51)
and (4.52) at different 𝐿min and 𝑝min

𝑑 . The results are presented in Figure 4.33 together
with the overlapping index 𝒜. The overlapping index 𝒜 is defined by Equation (4.54) again.
The only minimum concentration for which the overlapping index is not sufficiently large for
almost all 𝐿min is 𝑝min

𝑑 = 0.05. So we chose 𝑝min
𝑑 = 0.1 for all parameters 𝑎. The minimum

lattice size was set to 𝐿min = 32 for the uncorrelated case, 𝐿min = 48 for all correlated cases
with 𝑎 ≥ 3.0 and 𝐿min = 64 for the strongest correlations with 𝑎 ≤ 2.5. These decisions
were made on the rule of 𝒜 ⪆ 0.75 as in the uncorrected case. All results are summarized in
Table 4.4.

The discussion of the final results will be postponed to the end of this section where we will
compare different methods and also take into account results from literature and theoretical
predictions. At this point we only want to note that we have not used the corrected individual
fits method as our first choice since we found an issue which comes along with taking a
weighted mean over several fit results. This issue is discussed in Appendix A.2. The main
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Figure 4.32: Critical exponents 𝜈1(𝑝𝑑, 𝐿min) from fits to the corrected individual ansatz given in
Equation (4.55), with varying 𝐿min. For the 𝑎 values where the conjecture by Weinrib and Halperin
is assumed to be valid the predicted 2/𝑎 values were plotted as an orientation. The corresponding
qualities of fits 𝜒2

red are shown in the lower plots.

problem is that the errors of the fit parameters are correlated with the parameters themselves
which makes the weighted mean systematically prefer results which deviates from the true
parameter in one direction over those deviating in the other direction. The solution to this
problem and also a more reliable method with regard to the stability of the fitting procedure
was the global fit method which will be discussed below.

Corrected global fits

The most advanced fitting method which was used in this work is the corrected global fit
ansatz. The uncorrected (linearizable) global fit ansatz was checked by us, but it can be shown
that in the linear case the global fit and individual fits with a weighted mean afterwards give
the same results. See Appendix A.2 for a detailed discussion of the global fit method in
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Figure 4.33: Fit parameters 𝑟𝑤(𝐿min) and the corresponding critical exponents 𝜈𝑤(𝐿min) obtained
as a weighted mean over all 𝑝min

𝑑 ≤ 𝑝𝑑 ≤ 0.4 from the fit parameters 𝑟1 to the corrected individual
ansatz given in Equation (4.55), with varying 𝐿min and 𝑝min

𝑑 . Third plots show the mean of the fit
qualities 𝜒2

red(𝑝𝑑, 𝐿min). The lower plots show the overlapping index 𝒜 calculated for all parameters
𝑟𝑤(𝑝min

𝑑 ) with the minimum concentration of defects in the range ̃𝑝min
𝑑 ≤ 𝑝min

𝑑 ≤ 0.2. 𝒜 for ̃𝑝min
𝑑 = 0.2

is not plotted, since it is always equal to one.

general and its equivalence to the weighted mean in the linear case. The corrected global
ansatz for 𝜕𝛽(ln |𝑚|) is given by

̂𝜕𝛽(ln |𝑚|)(𝐿, 𝑝𝑑) = 𝐴𝑝𝑑
𝐿𝑟 (1 + 𝐵𝑝𝑑

𝐿−𝜔) , (4.56)
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Table 4.4: Final estimates 𝜈𝑤 obtained as a weighted mean over individual corrected fits for each
concentration of defects 0.1 ≤ 𝑝𝑑 ≤ 0.4 taken at the minimum included lattice sizes 𝐿min. For a
quantitative description of the final quality of the estimates the mean and the maximum of 𝜒2

red(𝑝𝑑)
are listed as well.

𝑎 𝜈𝑤 𝜒2
red max(𝜒2

red) 𝐿min

∞ 0.6843(31) 0.815 1.48 32
3.5 0.7122(49) 0.575 1.03 48
3.0 0.7532(53) 0.982 1.52 48
2.5 0.8735(96) 1.15 2.43 64
2.0 1.067(23) 0.566 0.955 64
1.5 1.435(56) 0.662 1.15 64

where we denote the 𝑝𝑑-dependence of the coefficients 𝐴𝑝𝑑
and 𝐵𝑝𝑑

with the index 𝑝𝑑. The
confluent correction exponent was a fixed parameter taken from Table 4.2 for each correlation
exponent 𝑎.

We analyzed the dependence of the corrected global fits on three parameters: the minimum
included lattice size 𝐿min and the minimum and maximum included concentrations of defects
𝑝min

𝑑 and 𝑝max
𝑑 , respectively. It turned out that the maximum concentration of defects 𝑝max

𝑑
only marginally modified the fit results compared to the other two parameters. So we set
𝑝max

𝑑 = 0.4 for all correlation exponents 𝑎. In Figure 4.36 we compare the obtained fit
parameter results 𝑟𝑔 for various 𝑝min

𝑑 and 𝐿min for each correlation exponent 𝑎. The label 𝑔
indicates that the results are coming from a global fit ansatz. Figure 4.36 also contains the
qualities of the fits 𝜒2

red and the overlapping index in dependence of ̃𝑝min
𝑑 which we used as

an indicator to find a suitable 𝐿min and 𝑝min
𝑑 as in the previous cases. Excluding the smallest

concentration 𝑝𝑑 = 0.05 produced good 𝜒2
red values from all parameters 𝑎 and almost all

𝐿min. So we set 𝑝min
𝑑 = 0.1 in all considered cases. The fit parameters 𝑟𝑔(𝑝min

𝑑 , 𝐿min) are very
close to that of the weighted means over corrected individual fits presented in Figure 4.33.
The overlapping indices 𝒜 are also in a very good agreement. For better comparability we
therefore chose the same 𝐿min parameters: 𝐿min = 32 for the uncorrelated case, 𝐿min = 48 for
all correlated cases with 𝑎 ≥ 3.0 and 𝐿min = 64 for the cases with 𝑎 ≤ 2.5. The fits for the
finally selected 𝐿min and 𝑝min

𝑑 are shown in Figure 4.34. Looking at Figure 4.34, especially into
the lower plots which are divided by 𝐿1/𝜈 to cancel out the leading order behavior, we realize
that the corrections to scaling coming from the terms 𝐵𝑝𝑑

in Equation (4.56) are minimal for
𝑝𝑑 ≈ 0.2 for all correlation exponents 𝑎. This is in agreement with the theoretical prediction
from Renormalization Group calculations for the uncorrelated case in Ref. [PV02]. Below
and above of 𝑝𝑑 ≈ 0.2, the corrections become more pronounced and tend to bend the curve
towards 𝑝𝑑 = 0.2 at smaller lattice sizes. Except for the strongest correlation (𝑎 = 1.5), the
corrections become neglectable at lattice sizes of 𝐿 ⪆ 128. At the end of this section we will
compare the corrected global fit ansatz with the other two methods discussed previously. As
it will turn out, we will use the corrected global fit ansatz as our final choice and therefore we
will perform some further analysis before finally compare the results from different methods
and known results from other works. We will also drop the index 𝑔 and just write 𝜈 for the
estimates obtained through the corrected global fit ansatz from Equation (4.56) whenever it
is not confusing.
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Figure 4.34: Examples of the corrected global fits to the ansatz in Equation (4.56) for all corre-
lation exponents 𝑎. The minimum included concentration of defects was 𝑝min

𝑑 = 0.1 and the maxi-
mum included concentration of defects was 𝑝max

𝑑 = 0.4. The upper plots show the fitted observables
̂𝜕𝛽(ln |𝑚|)(𝐿, 𝑝𝑑) against 𝐿 on a logarithmic scale. In the lower plots, the observables are divided by

𝐿1/𝜈. This form allows us to better visualize the deviations from the leading behavior 𝐿1/𝜈 through
the correction terms with the amplitudes 𝐵𝑝𝑑

.
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Table 4.5: Final estimates of the critical exponents 𝜈𝑔 obtained through the corrected global fit
ansatz given in Equation (4.56). For all case the maximum included concentration of defects was set
to 𝑝max

𝑑 = 0.4 and the minimum concentration of defects was set to 𝑝min
𝑑 = 0.1. The listed confluent

correction exponents 𝜔 were taken from Table 4.2. For all cases where the conjecture by Weinrib and
Halperin is expected to be valid we show the 2/𝑎 values for comparison. The measured values 𝑎 can
be found in Table 4.1.

𝑎 𝜈𝑔 2/𝑎 𝜒2
red 𝐿min

∞ 0.6831(30) − 0.834 32
3.5 0.7117(49) − 0.547 48
3.0 0.7484(52) 0.687(23) 1.18 48
2.5 0.8719(96) 0.8159(86) 1.12 64
2.0 1.060(23) 1.0105(89) 0.6 64
1.5 1.421(55) 1.333(26) 0.639 64

Amplitudes

Let us take a look at the amplitudes which were obtained in the corrected global fit ansatz
from Equation (4.56) with the finally chosen 𝑝min

𝑑 and different 𝐿min. The amplitudes are
presented in Figure 4.37. The first observation is that the global amplitudes 𝐴𝑝𝑑

are in a
relatively small range between 0 and 3 for effectively uncorrelated cases with 𝑎 ≤ 3.0. For
stronger correlations the upper limit increases fast and reaches ≈ 40 for 𝑎 = 1.5. Therefore,
the qualitative difference between the correlated case and uncorrelated case can be seen even
on the level of the amplitudes. On the other hand, visually the relative spacings between the
amplitudes for different 𝑝𝑑 remain the same. Finally, there is only very weak dependence of
the global amplitudes 𝐴𝑝𝑑

on the minimum chosen lattice size 𝐿min. Only for the strongest
correlation with 𝑎 = 1.5 larger changes can be observed for increasing 𝐿min. The correction
amplitudes 𝐵𝑝𝑑

are settled around zero for the uncorrelated case with being closest to zero
for 𝑝𝑑 ≈ 0.2. This is in agreement with statements in Refs. [Bal+98a; Iva+08] according to
which this concentration has the smallest corrections to scaling. However, this argument does
not apply anymore to the correlated cases with 𝑎 ≤ 2.5. For 𝑎 = 2.5 the zero moves towards
𝑝𝑑 ≈ 0.1 and for the strongest correction with 𝑎 = 1.5 it shifts towards 𝑝𝑑 = 0.4. For later
case, additionally, a strong dependence on 𝐿min is present. Unfortunately, we cannot go to
larger 𝐿min with our available data and hence cannot study the region where the amplitude
settles down. Therefore, we cannot exclude the possibility that the case with 𝑎 = 1.5 needs
larger lattice sizes to be analyzed in the region, where 𝐴 ≈ const. and 𝐵 ≈ const..

Dependence on the correction exponent 𝜔

The next step in analyzing the corrected global fits and the corresponding 𝜈𝑔 estimates, was
to look at the stability and dependence of the results with respect to the chosen correction
exponent 𝜔. We have already seen in Section 4.5.1, that the correction exponent for all
correlated cases is of the order 𝜔 ≈ 1. On the other hand, in Refs. [BP99; Iva+08], a value of
𝜔 = 0.8 was found. We used the ansatz in Equation (4.56) and compared the results of the
fits with 𝜔 = 1.0 and 𝜔 = 0.8. The estimates are compared in Figure 4.39. The result is that
the dependence on the correction exponent is very weak and the different estimates mostly
coincide within their error bars for all correlation exponents 𝑎 ≠ ∞. As an additional step,
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Figure 4.35: Fit parameters 𝑟𝑔(𝐿min) and the corresponding critical exponents 𝜈𝑔(𝐿min) obtained
as a weighted mean over all 𝑝min

𝑑 ≤ 𝑝𝑑 ≤ 0.4 from the fit to the corrected global ansatz given in
Equation (4.56), with varying 𝐿min and 𝑝min

𝑑 . Third plots show the fit qualities 𝜒2
red(𝑝𝑑, 𝐿min). The

lower plots show the overlapping index 𝒜 calculated for all parameters 𝑟𝑔(𝑝min
𝑑 ) with the minimum

concentration of defects in the range ̃𝑝min
𝑑 ≤ 𝑝min

𝑑 ≤ 0.2. 𝒜 for ̃𝑝min
𝑑 = 0.2 is not plotted, since it is

always equal to one.

we continuously varied the correction exponent 𝜔 in a wide range and checked the stability
of the resulting 𝜈(𝜔) and the qualities of the fits 𝜒2

red. These dependencies are shown in
Figure 4.38. Note, that we do not expect 𝜒2

red to be minimal at the estimated 𝜔 parameter
as it is a fixed parameter in our fits and the 𝜒2

red minimization does not account for a 𝜔
variation. The quality of the fits remain in a reasonable range for a wider range of tested 𝜔
values and the final estimates 𝜈(𝜔) lie mostly within the range 𝜈 ± 𝜖(𝜈).

All in all, we expect our final 𝜈 estimates to be reasonably correct regardless of the precise
values of the correction exponents 𝜔. This is an important observation as the quotient
method used for the 𝜔 derivation in Section 4.5.1 halves the number of points for the fits and
is therefore less accurate than the fits for 𝜈.
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Figure 4.36: Critical exponents 𝜈𝑔 from fits to the corrected global ansatz given in Equation (4.56),
with maximum concentration of defects 𝑝max

𝑑 = 0.4 and varying 𝑝min
𝑑 and 𝐿min. We used 𝑝min

𝑑 = 0.1
for all cases and chose the 𝐿min as a minimum lattice size where this overlap was sufficiently large,
i.e., 𝒜( ̃𝑝min

𝑑 ) ⪆ 0.75.

Final estimates

Let us compare the tree methods for extracting the correlation length critical exponent 𝜈
which were discussed previously. The final estimates of the critical exponent 𝜈 from each
method are summarized in Table 4.6 and Figure 4.40. We clearly see a deviation between the
uncorrected case 𝜈𝑤

lin and the corrected cases 𝜈𝑤 and 𝜈𝑔. Apart for the cases of 𝑎 = 2.0 and
𝑎 = 1.5, 𝜈𝑤

lin lie a bit above the other values. The lager deviation may be a consequence of
the smaller correction exponents 𝜔 for larger 𝑎. The discrepancy between 𝜈𝑤 and 𝜈𝑔 is small
yet noticeable. In principle every method gives similar results with nearly identical errors.
However, as already mentioned, we realized that the weighted mean approach intrinsically
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Figure 4.37: Amplitudes 𝐴𝑝𝑑
and 𝐵𝑝𝑑

for each included concentration of defects 𝑝𝑑 ≥ 𝑝min
𝑑 with

𝑝min
𝑑 = 0.1 for the corrected global fit ansatz given in Equation (4.56) in dependence of the 𝐿min.

produces biased results due to the correlation between the fit parameters and their errors. It
is discussed in Appendix A.2. This motivated us to take the corrected global fit ansatz as
the final method of choice.

Finally, let us look into our estimates in the context of already published estimates. We
summarized our results and results from other works in Table 4.7 and Figure 4.41.

Let us begin with the uncorrelated case with 𝑎 = ∞. Our estimate for the uncorrelated
case is 𝜈 = 0.6831(30). Comparing this to known results from other works summarized in
Table 4.7 (including our result), it lies slightly above most of the other estimates but fits
perfectly within the errorbars as is depicted in the zoomed view in Figure 4.41. We conclude
that our estimated 𝜈 is in very good agreement with the literature. This is an important
observation which statistically proves our 𝜈 estimation process and allows us to assume that
the same procedure will be correct in the correlated cases as well. Considering our estimated
error 𝜖(𝜈) = 0.0030 we have a small error comparing to other works listed in Table 4.7.
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Figure 4.38: The dependence of the corrected global fit results according to Equation (4.56) on
the correction exponent 𝜔. The lower plots show the qualities of the fit 𝜒2

red. For a wider range of
different 𝜔 values, the fits remain stable and reasonably good. The estimates 𝜈(𝜔) are mostly covered
through the ranges 𝜈± 𝜖(𝜈). The values 𝜈 are the final estimates from Table 4.5. The bar is added to
distinguish between the free parameter 𝜈 and the fixed values 𝜈.

Table 4.6: Comparison of the final estimates of 𝜈 from different fitting methods. The values are also
compared in Figure 4.40. The corrected fits estimates 𝜈𝑤 and 𝜈𝑔 are very close together for all 𝑎.

𝑎 𝜈𝑤
lin 𝜈𝑤 𝜈𝑔

∞ 0.6913(15) 0.6843(31) 0.6831(30)
3.5 0.7427(25) 0.7122(49) 0.7117(49)
3.0 0.7812(35) 0.7532(53) 0.7484(52)
2.5 0.8887(61) 0.8735(96) 0.8719(96)
2.0 1.079(14) 1.067(23) 1.060(23)
1.5 1.449(32) 1.435(56) 1.421(55)

However, this has to be taken with some care since, as explained previously, the choice of
final 𝑝min

𝑑 and 𝐿min is not a solid decision but rather an interplay between error size, fit quality
and 𝐿min-dependence.

Let us move to the correlated cases. In this case we have two separate things to compare:
the conjecture by Weinrib and Halperin, 𝜈 = 2/𝑎, and the results obtained by other groups.
When comparing our results for the correlated cases, we cannot reproduce the Weinrib and
Halperin prediction (compare the 2/𝑎 curve in Figure 4.41 with the corresponding estimates
𝜈). Nevertheless, we see the qualitative behavior 𝜈 ∝ 1/𝑎 and a deviation from 𝜈 = 2/𝑎 by
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Figure 4.39: Comparison of the corrected global fit results according to Equation (4.56) for the
chosen 𝜔 as given in Table 4.5 to the choices 𝜔 = 1.0 and 𝜔 = 0.8 for all correlation exponents 𝑎 ≠ ∞.
The estimates for 𝜔 = 1.0 and 𝜔 = 8.0 are shifted left and right from the corresponding 𝑎 to increase
readability. They are meant to lie exactly one over the other for every single considered 𝑎. The results
are in a prefect agreement within their error bars.
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Figure 4.40: Comparison of the final estimates of 𝜈 from different fitting methods. The values are also
reported in Table 4.6. For each 𝑎 the points are slightly shifted for better visibility. The uncorrelated
disorder case critical exponent was set to 𝜈∞ = 0.683 as an average value from other works listed in
Table 4.7 (only Monte Carlo results).

about 10 %. The estimated errors, which do not cover the 2/𝑎, suggest that these deviations
are not a consequence of the uncertainties coming from our estimation procedure. We com-
pletely disagree with the Renormalization Group results by Prudnikov et al. [PPF00] and
their Monte Carlo results for 𝑎 = 2.0 in Ref. [Pru+05]. The reason for such a completely
different behavior of the critical exponent 𝜈 which is obtained in Ref. [PPF00] remains un-
clear to us. Moving to the Monte Carlo results by Ballesteros et al. [BP99] and Ivaneyko
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Table 4.7: Critical exponent 𝜈 comparison to the literature. For a more detailed comparison of
various works see Table 2.3. Legend: ∗ — averaged over various 𝑝𝑑 by us (weighted mean), • —
not measured (fixed value or the one which gives best fits), MC — Monte Carlo simulations, RG —
Renormalization Group calculations.

Type Reference 𝑎 𝜈 𝜔

Uncorrelated disorder

MC

Ballesteros et al. [Bal+98a] ∞ 0.6837(53) 0.37(6)
Calabrese et al. [Cal+03] ∞ 0.683(3) −
Berche et al. [Ber+04] ∞ 0.68(2) −
Murtazaev et al. [MKB04] ∞ 0.678(6)∗ −
Hasenbusch et al. [Has+07] ∞ 0.683(2) 0.33(3)

RG
Pakhnin et al. [PS00] ∞ 0.671(5) 0.32(6)
Pelissetto et al. [PV00] ∞ 0.678(10) 0.25(10)
Kompaniets et al. [KKS21] ∞ 0.675(19) 0.15(10)

This work ∞ 0.6831(30) 0.346(40)

Correlated disorder

MC
Ballesteros et al. [BP99] 2.0 1.012(16) 1.01(13)
Prudnikov et al. [Pru+05] 2.0 0.71(1) 0.76(5)•

Ivaneyko et al. [Iva+08] 2.0 0.958(4) 0.8•

RG Weinrib et al. [WH83] 𝑎 < 𝑑 2/𝑎 −
Prudnikov et al. [PPF00] 3.0 0.6715 −

2.5 0.7046 −
2.0 0.715 −

This work 3.5 0.7117(49) 0.679(44)
3.0 0.7484(52) 0.840(50)
2.5 0.8719(96) 1.154(66)
2.0 1.060(23) 1.087(81)
1.5 1.421(55) 0.988(75)

et al. [Iva+08], we cannot agree on them according to the errorbars. However, both results
are close to the prediction 2/𝑎 = 1 in the case of 𝑎 = 2.0, which also supports the qualitative
behavior 𝜈 ∝ 1/𝑎.

Taking a closer look at the dependence of the critical exponent 𝜈 on the correlation exponent
𝑎, we can see that the deviation from the 2/𝑎 behavior is biggest at 𝑎 ≈ 3.0. This could be an
indication of a crossover regime where the system switches from the (effectively) uncorrelated
disorder to the correlated disorder case.

Summary. We used three different finite-size scaling ansatzes to get the critical exponent
𝜈. Finally, the corrected global ansatz was chosen, and we studied various aspects of the
fits. We analyzed the amplitudes, the dependence on the correction exponent 𝜔 and
compared the results from different ansatzes with each other as well as with other works.
Our results for the uncorrelated case is in a very good agreement with other groups. For
the corrected cases, we cannot reproduce the prediction of Weinrib and Halperin 𝜈 = 2/𝑎
quantitatively. However, we observe a qualitative behavior proportional to 1/𝑎.
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Figure 4.41: Final results of the critical exponents 𝜈 compared to the known results from the literature
and the conjecture by Weinrib and Halperin, 𝜈 = 2/𝑎. The horizontal errorbars come from the
true measured 𝑎 values from Table 4.1. The uncorrelated disorder case critical exponent was set to
𝜈∞ = 0.683 as an average value from other works listed in Table 4.7. The inset shows a zoom to the
uncorrelated case 𝑎 = ∞. The results of this work lie about 10 % above the conjecture 𝜈 = 2/𝑎.

4.5.3 Critical exponent 𝛾

The next critical exponent which we obtained in this work is the critical exponent of the
susceptibility 𝛾. We repeat the definition from Equation (2.39) of the susceptibility,

𝜒 = 𝛽𝑉 (
q
⟨𝑚2⟩

y
−

q
⟨|𝑚|⟩2y) . (4.57)

Note, that we used the definition which shows a peak at the critical temperature in contrast
to the definition of 𝜒̃ from Equation (2.41), which is valid only in the high temperature phase
and does not show a peak. A peak 𝜒̂ allowed us to proceed in the same way as in the case
with the critical exponent 𝜈. We restricted our analysis to the corrected global fit ansatz,
which follows from Equation (3.23) and reads

𝜒̂(𝐿, 𝑝𝑑) = 𝐴𝑝𝑑
𝐿𝑟 (1 + 𝐵𝑝𝑑

𝐿−𝜔) , (4.58)

where the 𝜒̂ values are the previously obtained peaks of the susceptibility. The exponent
𝑟 = 𝛾/𝜈 was the global fit parameter for all concentrations of defects 𝑝𝑑. By using our
estimate for 𝜈, we then get

𝛾 = 𝑟𝜈 , 𝜖(𝛾) = √(𝑟𝜖(𝜈))2 + (𝜈𝜖(𝑟))2 . (4.59)

As in the case of the critical exponent 𝜈, we took the estimates of the correction exponents 𝜔
from Table 4.2 and fixed them in Equation (4.58). We varied the minimum lattice 𝐿min and
the minimum concentration of defects 𝑝min

𝑑 to study the thermodynamic limit. Results of the
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ratios 𝑟 are shown in Figure 4.42 together with the quality of fits 𝜒2
red and the overlapping

index 𝒜(𝑟) which was introduced in Equation (4.53) and basically quantitatively shows the
compatibility of 𝑟 estimates for different 𝑝min

𝑑 choices.

Let us first discuss the choice of final 𝐿min and 𝑝min
𝑑 . For all considered correlated cases

𝑎 ≠ ∞, the quality of fits was bad when 𝑝𝑑 = 0.05 was included into the global fit. Further,
any choice with 𝑝min

𝑑 ≥ 0.1 barely had an influence on the 𝜒2
red values at each 𝐿min. However,

in order to have a consistent 𝑝min
𝑑 -independent result with 𝒜(𝑟) ⪆ 0.75, we had to exclude

the 𝑝𝑑 = 0.1 as well. This was also true for the uncorrelated case with 𝑎 = ∞. Finally,
we set 𝑝min

𝑑 = 0.15 for all considered cases. Concerning 𝐿min, we have then used the lowest
possible 𝐿min which was consistent with a good 𝜒2

red and the 𝒜(𝑟) ⪆ 0.75 condition. This
setup yielded us 𝐿min = 20 for the uncorrected case, 𝐿min = 64 for all correlated cases except
for 𝑎 = 1.5, where we chose 𝐿min = 80. The final estimates 𝑟 = 𝛾/𝜈 as well as the calculated
𝛾 and 𝜂 with the chosen 𝐿min and the resulting 𝜒2

red are summarized near the end of this
section in Table 4.8.

For the chosen 𝑝min
𝑑 we have studied the fits more detailed. Let us first provide the data

𝜒̂(𝐿, 𝑝𝑑) and the resulting fits in Figure 4.44 and the amplitudes 𝐴𝑝𝑑
and 𝐵𝑝𝑑

of the fits
in Figure 4.45. We will start with the uncorrelated case 𝑎 = ∞. We clearly see that the
correction amplitudes are in the range −1 ≤ 𝐵𝑝𝑑

≤ 0 which suggest a rather small correction
influence. This can also be visually verified by looking into Figure 4.44 where we see that the
curves scaled by 𝐿𝑟 (lower plots) are indeed quite parallel and horizontal. The amplitudes are
also stable with respect to the chosen 𝐿min. This stability is also given for the amplitudes 𝐴𝑝𝑑

.
Contrarily, the amplitudes for 𝐴𝑝𝑑

and 𝐵𝑝𝑑
do depend on the 𝐿min for all correlated cases.

The total amplitudes 𝐴𝑝𝑑
increase with increasing 𝐿min while the correction amplitudes 𝐵𝑝𝑑

decrease. The total amplitudes 𝐴𝑝𝑑
are a bit smaller than for the uncorrelated case but are

compatible. On the other hand, the correction amplitudes 𝐵𝑝𝑑
are positive and their value

strongly depend on the chosen 𝑎. For the strongest correlation exponent 𝑎 = 1.5 they go up
to 𝐵𝑝𝑑

≈ 50. Also, one clearly sees that the smallest amplitudes ≈ 0 are reached for lager
concentrations 𝑝𝑑 and larger 𝐿min. For the strongest correlation exponent 𝑎 = 1.5 the zero
is not reached at all. When we look at the correlated cases in Figure 4.44, we can see the
reason for the large correction amplitudes. The curves 𝜒̂(𝐿) have very strong curvature for
smaller 𝐿. On the other hand, interestingly, the values 𝜒̂ seem to approach a constant value
for larger 𝐿 or at least they come very close together for all different concentrations 𝑝𝑑. To
incorporate the strong corrections for the small 𝐿, we tried to use an ansatz with second
order corrections (∝ 𝐿−2𝜔𝛾/𝜈). However, the fit results were not satisfying, and we finally
dropped this approach and returned to the simpler ansatz given in Equation (4.58) and used
a higher 𝐿min at the end.

Next, we checked the dependence of the resulting exponents 𝛾 on the choice of the correction
exponent 𝜔. The dependence is shown for each 𝑎 for the chosen 𝐿min and 𝑝min

𝑑 in Figure 4.46.
Because the error 𝜖(𝛾) is quite large due to the contribution coming from the critical exponent
𝜈, Equation (4.59), we see that the dependence on 𝜔 in the range 𝜔±𝜖(𝜔) is completely covered
by the error 𝜖(𝛾) in all cases. To get an impression on how large the contribution of the error
of the exponent 𝜈 affects the resulting 𝛾 compared to the fit error (𝜖(𝑟)), we compared the
individual contributions in Table 4.8. It is worth to note that except for the uncorrelated
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Figure 4.42: Observed fit parameters 𝑟 = 𝛾/𝜈 to the corrected global fit ansatz given in Equa-
tion (4.58) for various 𝐿min, 𝑝min

𝑑 and all considered correlation exponents 𝑎. The quality of the fits
𝜒2

red is given in the middle plots while the overlapping index is presented in the lower plots. The
overlapping index 𝒜(𝑟) tells how well the estimates for different minimum concentration of defects
𝑝min

𝑑 in the range ̃𝑝min
𝑑 ≤ 𝑝min

𝑑 ≤ 0.2 match each other. 𝒜 for ̃𝑝min
𝑑 = 0.2 is not plotted, since it is

always equal to one.

case, the contributions to the total error 𝜖(𝛾), i.e., the terms 𝑟𝜖(𝜈) and 𝜈𝜖(𝑟) are very similar.
A possible reason for this correlation is of course the usage of the same data sets for the
estimates 𝑟 and 𝜈, respectively.

Having discussed some aspects related to the fits themselves, let us turn to the comparison
of our final estimates to the results from literature. We present our results with some addi-
tional information like the minimum lattice size 𝐿min and quality of the fits 𝜒2

red in Table 4.8.
In Figure 4.47 we present the ratios 𝑟 = 𝛾/𝜈 in dependence of correlation exponent 𝑎. Finally,
the results are put into context with other works in Figure 4.48 and Table 4.9.
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Figure 4.43: Estimates of the critical exponent 𝛾 from the fit parameters 𝑟 to the corrected global
fit ansatz given in Equation (4.58) for various 𝐿min, 𝑝min

𝑑 and all considered correlation exponents 𝑎.
See Figure 4.42 for the ratios themselves.

Table 4.8: Final estimates of the critical exponent 𝛾. The minimum concentration of defects 𝑝min
𝑑 =

0.15 was used in all cases. For convenience, the results for 𝜈 and 𝜔 from Tables 4.2 and 4.5 are also
shown, respectively. The terms 𝑟𝜖(𝜈) and 𝜈𝜖(𝑟) are the contributions to the total error 𝜖(𝛾) according
to Equation (4.59).

𝑎 𝜈 𝑟 𝛾 = 𝑟𝜈 𝜂 = 2 − 𝑟 𝜈𝜖(𝑟) 𝑟𝜖(𝜈) 𝜒2
red 𝐿min 𝜔

∞ 0.6831(30) 1.9506(36) 1.3324(64) 0.0494(36) 0.00245 0.00584 1.12 20 0.346(40)
3.5 0.7117(49) 2.039(14) 1.451(15) −0.039(14) 0.00987 0.00994 0.871 64 0.679(44)
3.0 0.7484(52) 2.093(16) 1.566(16) −0.093(16) 0.0115 0.0108 0.989 64 0.840(50)
2.5 0.8719(96) 2.045(14) 1.783(24) −0.045(14) 0.0122 0.0195 1.16 64 1.154(66)
2.0 1.060(23) 2.027(21) 2.149(51) −0.027(21) 0.022 0.0454 1.29 64 1.087(81)
1.5 1.421(55) 2.061(56) 2.93(14) −0.061(56) 0.0789 0.112 1.11 80 0.988(75)

Let us discuss the uncorrelated case with 𝑎 = ∞. Comparing to other Monte Carlo results
our estimate is a bit lower but in a reasonable agreement. On the other hand, it lies slightly
above the predictions from the Renormalization Group (RG) calculations. Since we used
more different concentrations 𝑝𝑑 than any other Monte Carlo simulation results, and the RG
results are 𝑝𝑑-independent by definition, we can argue that the deviation to other Monte
Carlo results in the direction to the RG estimates could be and improvement in this case.
However, the only solid statement we can provide here is the consistency of the results within
the error ranges.
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Figure 4.44: Examples of the corrected global fits to the ansatz in Equation (4.58) for all correlation
exponents 𝑎. The minimum included concentration of defects was 𝑝min

𝑑 = 0.15 and the maximum
included concentration of defects was 𝑝max

𝑑 = 0.4. The upper plots show the fitted observables 𝜒̂(𝐿, 𝑝𝑑)
versus 𝐿 on a logarithmic scale. In the lower plots, the observables are divided by 𝐿𝑟 where 𝑟 = 𝛾/𝜈.
This form allows us to better visualize the deviations from the leading behavior 𝐿𝑟 through the
correction terms with the amplitudes 𝐵𝑝𝑑

.
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Figure 4.45: Amplitudes 𝐴𝑝𝑑
and 𝐵𝑝𝑑

for each included concentration of defects 𝑝𝑑 ≥ 𝑝min
𝑑 with

𝑝min
𝑑 = 0.15 for the corrected global fit ansatz given in Equation (4.58) in dependence of the 𝐿min.

Consistent ordering can be seen for all cases in the correction amplitudes 𝐵𝑝𝑑
while for the global

amplitudes 𝐴𝑝𝑑
the values mostly overlap except for the uncorrelated case.

Let us move to the correlated cases. But before going to the actual values 𝛾, we first
would like to take a closer look at the ratios 𝑟. We show the ratios 𝑟 in Figure 4.47. We
observe a negative value of 𝜂 for all correlation exponents 𝑎, since the ratio 𝑟 is greater than
two and from Equation (2.65) it follows, that 𝜂 = 2 − 𝑟. A negative 𝜂 was also observed in
Refs. [PPF00; Pru+05] for the three-dimensional Ising model. However, due to the differences
in the 𝜈 estimates, their 𝛾 estimate does not coincide with our result. All other works we
compared our work to, show a positive 𝜂. On the other hand, even for the uncorrelated case,
the 𝑝𝑑-dependent values 𝛾/𝜈 can have values larger than 2 [Heu93; WD98]1. Heuer [Heu93]
explains the negative 𝜂 values as being an artifact of a crossover regime in the uncorrelated

1 We omitted these references in the comparison in Tables 2.3 and 4.9 and the plot Figure 4.48 since they
estimated only the ratios 𝛾/𝜈 and 𝛽/𝜈 and not the exponents themselves.
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Figure 4.46: The dependence of the corrected global fit results 𝛾 on the correction exponent 𝜔. The
lower plots show the qualities of the fit 𝜒2

red. For a wider range of different 𝜔 values, the fits remain
stable and reasonably good. The estimates 𝛾(𝜔) are mostly covered through the error ranges 𝛾±𝜖(𝛾).
The values 𝛾 are the final estimates from Table 4.8. The bar is added to distinguish between the free
parameter 𝛾 and the fixed values 𝛾.
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Figure 4.47: Ratios 𝑟 = 𝛾/𝜈 for the finally chosen 𝐿min and 𝑝min
𝑑 parameters for each correlation

exponent 𝑎. A prominent, approximately constant value can be observed for all correlated cases.

case. Also, we do not observe negative 𝜂 in the uncorrelated case, we still can imagine that
there is a crossover regime at around 𝑎 ≈ 3.0 in the correlated cases. Such a crossover regime
could explain the negative values at correlation exponents 3.5 ≤ 𝑎 ≤ 2.5. On the other
side, for the strongest correlations 𝑎 = 2.0 and 𝑎 = 1.5 we see, that the ratio fitted to the
ansatz in Equation (4.58) does not reach a constant value even for the largest 𝐿min choices,
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Table 4.9: Critical exponent 𝛾 comparison to the literature. For a more detailed comparison of
various works see Table 2.3. Legend: † — calculated from other exponents through scaling relations,
∗ — averaged over various 𝑝𝑑 by us (weighted mean), ? — result is stated in the paper as an expression
for the case where the dimension of the order parameter is 𝑚 > 1, MC — Monte Carlo simulations,
RG — Renormalization Group calculations.

Type Reference 𝑎 𝜈 𝜂 𝛾

Uncorrelated disorder

MC

Ballesteros et al. [Bal+98a] ∞ 0.6837(53) 0.0374(45) 1.342(10)†

Calabrese et al. [Cal+03] ∞ 0.683(3) 0.035(2) 1.342(6)†

Berche et al. [Ber+04] ∞ 0.68(2) 0.029(60)† 1.34(1)
Murtazaev et al. [MKB04] ∞ 0.678(6)∗ 0.045(19)∗,† 1.3258(40)∗

Hasenbusch et al. [Has+07] ∞ 0.683(2) 0.036(1) 1.341(4)†

RG
Pakhnin et al. [PS00] ∞ 0.671(5) 0.025(10) 1.325(3)†

Pelissetto et al. [PV00] ∞ 0.678(10) 0.030(3) 1.330(17)
Kompaniets et al. [KKS21] ∞ 0.675(19) 0.024(79)† 1.334(38)

This work ∞ 0.6831(30) 0.0494(36)† 1.3324(64)

Correlated disorder

MC
Ballesteros et al. [BP99] 2.0 1.012(16) 0.043(4) 1.980(33)†

Prudnikov et al. [Pru+05] 2.0 0.71(1) −0.030(36)† 1.441(15)
Ivaneyko et al. [Iva+08] 2.0 0.958(4) 0.191(18)† 1.733(11)

RG Weinrib et al. [WH83] 𝑎 < 𝑑 2/𝑎 0? 4/𝑎?

Prudnikov et al. [PPF00] 3.0 0.6715 0.0327 1.321†

2.0 0.715 −0.0205 1.4456†

2.5 0.7046 0.0118 1.4008†

This work 3.5 0.7117(49) −0.039(14)† 1.451(15)
3.0 0.7484(52) −0.093(16)† 1.566(16)
2.5 0.8704(62) −0.045(14)† 1.780(18)
2.0 1.082(15) −0.027(21)† 2.193(37)
1.5 1.465(43) −0.061(56)† 3.02(12)

see Figure 4.42. Therefore, chances are that for larger lattice sizes the ratios will go below
2 and the exponent 𝜂 will become positive again. Since we have not found a rigor argument
for a restriction 𝜂 ≥ 0 (and in fact it is negative in some cases, e.g., in three-dimensional
percolation [Adl+90; JS98] or the three-dimensional cubic model [BRR85]), we can accept
the negative sign in this work. It would be great, if preciser measurements and/or analytic
results could provide us with more clarity in the future. From our data we further can assume
that possibly the ratio is constant and independent of 𝑎,

𝑟 =
𝛾
𝜈
≈ 2.05(3) . (4.60)

In the correlated case, all works with Monte Carlo simulations which we can use to compare
our work to have studied the case of 𝑎 = 2.0. We cannot reproduce the values from other
groups even in the range of ±4𝜖(𝛾). Additionally, the results between other groups diverge as
well. As in the case of the critical exponent 𝜈, we completely disagree with the results from
works by Prudnikov et al., Refs. [PPF00; Pru+05], quantitatively and qualitatively. This is
not surprising, since the calculation of the exponent 𝛾 relies on the exponent 𝜈 (at least in the
case of a finite-size scaling analysis). The dependence on 𝜈 also clearly shows up in the overall
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Figure 4.48: Final results of the critical exponent 𝛾 compared to the known results from the literature.
The horizontal errorbars come from the true measured 𝑎 values from Table 4.1. The value 𝛾∞ = 1.338
is the mean value from various groups (only (MC)) for the uncorrelated case and is used as orientation.
The line 4/𝑎 is shown to qualitatively compare the proportionality to 1/𝑎. Results from Monte Carlo
simulations are marked with (MC) while results from Renormalization Group calculations are labeled
with (RG). For the works marked with ∗, we calculated the values by ourselves as a weighted mean
over different concentrations. In works marked with †, the exponent 𝛾 was calculated from 𝜂 and 𝜈.

qualitative behavior of 𝛾(𝑎). We observe a proportional behavior 𝛾 ∝ 1/𝑎 with a line which is
slightly above 4/𝑎. This is in agreement with the conjecture by Weinrib and Halperin [WH83]
for a model with dimension of the order parameter 𝑚 > 1, 𝛾 = 4/𝑎. However, there is no
prediction made for 𝑚 = 1 in Ref. [WH83]. The crossover region between the correlated and
the (effectively) uncorrelated cases can be seen at 𝑎 ≈ 3.0. As in the case with the critical
exponent 𝜈, we have a quite large error for the smallest 𝑎 = 1.5. Concerning the quality of
the fits, we have good values of 𝜒2

red ≤ 1.29 for all cases which indicates that the fits match
the data well.

Summary. We obtained the critical exponent 𝛾 in reasonable agreement with other works
for the uncorrelated cases. Our value is inbetween the predictions from the Renormaliza-
tion Group calculations and Monte Carlo simulations. For the correlated cases, we see a
constant ratio of 𝛾/𝜈 ≈ 2.05(3) and hence observe a negative 𝜂 ≈ −0.05(3). We disagree
with other works for the correlated for case with 𝑎 = 2.0. Our estimates show a ∝ 1/𝑎
and lie slightly above 4/𝑎.

4.5.4 Critical exponent 𝛽

After the critical exponents 𝜈 and the 𝛾 were estimated, im principle all other exponents
can be derived by using the scaling relations Equations (2.62) to (2.65), as was discussed in
Section 2.3.3. However, in order to get a more consistent picture of the model, we studied the
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critical exponent of the magnetization 𝛽 separately. We will closely follow the steps of the
estimation of the critical exponent 𝛾. Let us recall that the derivative of the magnetization
𝜕𝛽(|𝑚|) has the following definition, Equation (2.43),

𝜕𝛽(|𝑚|) = 𝑉 (J⟨|𝑚|⟩K J⟨𝑒⟩K − J⟨|𝑚| 𝑒⟩K) , (4.61)

and its finite-size scaling presented in Equation (3.25) leads to the corrected global fit ansatz

̂𝜕𝛽(|𝑚|)(𝐿, 𝑝𝑑) = 𝐴𝑝𝑑
𝐿𝑟 (1 + 𝐵𝑝𝑑

𝐿−𝜔) , (4.62)

where the exponent is 𝑟 = (1 − 𝛽)/𝜈 and ̂𝜕𝛽(|𝑚|) are the peaks found as described in Sec-
tion 4.3.3. The ratio 𝑟 leads to the critical exponent 𝛽,

𝛽 = 1 − 𝑟𝜈 , 𝜖(𝛽) = √(𝜈𝜖(𝑟))2 + (𝑟𝜖(𝜈))2 . (4.63)

We performed fits to the ansatz in Equation (4.62) and varied the minimum included lattice
size 𝐿min and the minimum concentration of defects 𝑝min

𝑑 . The results of the ratios 𝑟 are
summarized in Figure 4.49. The quality of the fits 𝜒2

red and the overlapping index 𝒜(𝑟),
calculated again with Equation (4.54), which shows the consistency between the estimates
obtained with different 𝑝min

𝑑 in the range ̃𝑝min
𝑑 ≤ 𝑝min

𝑑 ≤ 0.2, are also provided. Additionally,
we show the resulting critical exponents 𝛽 in dependence of 𝐿min and 𝑝min

𝑑 in Figure 4.50.
As in the case with 𝛾, we selected the final 𝐿min and 𝑝min

𝑑 according to the qualities of the
fits the condition that 𝒜(𝑟) ⪆ 0.75. Excluding the two smallest concentrations and setting
𝑝min

𝑑 = 0.15 together with 𝐿min = 32 gave us satisfying results for all correlation exponents 𝑎.
Interestingly, the dependence on the 𝐿min is mostly pronounced in the case of 𝑎 = 3.0 and not
for the uncorrelated case or the most strongly correlated case 𝑎 = 1.5. On the other hand,
for the uncorrelated case, the results for 𝑝min

𝑑 = 0.05 are clearly separated from all results
with larger 𝑝min

𝑑 while in all correlated cases we see a larger overlap between the estimates
for different 𝑝min

𝑑 . The fits for the final settings 𝑝min
𝑑 = 0.15 and 𝐿min = 32 are presented in

Figure 4.51.
We see very small corrections to scaling in Figure 4.51. This is also reflected in the correc-

tion amplitudes 𝐵𝑝𝑑
which are shown in Figure 4.52 together with the global amplitudes 𝐴𝑝𝑑

for the chosen 𝑝min
𝑑 and all 𝐿min. The global amplitudes 𝐴𝑝𝑑

get their highest values for the
uncorrelated and for strongly correlated cases while in the region 2.0 ≤ 𝑎 ≤ 3.5 the maxi-
mum values of the amplitudes are smaller. Contrarily, the (absolute) values of the correction
amplitudes 𝐵𝑝𝑑

are largest in this region. This probably also explains the strongest 𝐿min-
dependence of the 𝑟 for the correlation exponent 𝑎 = 3.0, which we mentioned previously. As
it was the case for the critical exponent 𝛾, the correction amplitudes 𝐵𝑝𝑑

mostly have similar
values for different 𝑝𝑑 at each 𝐿min.

After the discussion of the global fits, let us look at the dependence of the 𝛽 estimates
on the chosen correction exponent 𝜔. For this purpose, we repeated the fitting procedure
for various 𝜔 in a wide range around the mean values 𝜔. These dependencies are shown in
Figure 4.53. Due to the relatively large errors of the 𝛽 estimates, we see that the variation
of 𝜔 in the range 𝜔 ± 𝜖(𝜔) is covered by the error 𝜖(𝛽) to a great extent.

In the case of the critical exponent 𝛾 we had direct access to the ratio 𝛾/𝜈 because this
was the actual parameter of the fit. For the critical exponent 𝛽, we fitted the exponent
𝑟 = (1 − 𝛽)/𝜈. However, it is still an interesting question, how the ratio 𝛽/𝜈 behaves in
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Figure 4.49: Observed fit parameters 𝑟 = (1 − 𝛽)/𝜈 to the corrected global fit ansatz given in
Equation (4.62) for various 𝐿min, 𝑝min

𝑑 and all considered correlation exponents 𝑎. The quality of the
fits 𝜒2

red is given in the middle plots while the overlapping index is presented in the lower plots. The
overlapping index 𝒜(𝑟) tells how well the estimates for different minimum concentration of defects
𝑝min

𝑑 in the range ̃𝑝min
𝑑 ≤ 𝑝min

𝑑 ≤ 0.2 match each other. 𝒜 for ̃𝑝min
𝑑 = 0.2 is not plotted, since it is

always equal to one.

dependence of 𝑎. We have calculated it with

𝛽
𝜈
= 1

𝜈
− 𝑟 , 𝜖 (𝛽

𝜈
) = √(

𝜖(𝜈)
𝜈2 )

2
+ 𝜖(𝑟)2 . (4.64)

The estimates are summarized in Table 4.10 and plotted in Figure 4.54. Contrarily to the
exponent 𝛾, we do not see a constant value for the correlated cases. Instead, the ratio 𝛽/𝜈 falls
continuously (except for the 𝑎 = 3.5 case) starting at its largest value for the uncorrelated
case.
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Figure 4.50: Estimates of the critical exponent 𝛽 from the fit parameters 𝑟 to the corrected global
fit ansatz given in Equation (4.62) for various 𝐿min, 𝑝min

𝑑 and all considered correlation exponents 𝑎.
See Figure 4.49 for the ratios themselves.

Our final estimates of the critical exponent 𝛽 are summarized in Table 4.10. In Figure 4.55
and Table 4.11 we compare the results to other works. Before starting the comparison of
our results to the literature, we like to pay attention to the fact that in the most works
no separate analysis was done to obtain 𝛽. Instead, it was derived from 𝜂 (or 𝛾) and 𝜈 by
using the scaling relations. This makes the comparison much less informative than it was
for the exponents 𝜈 and 𝛾. Nevertheless, we will do the comparison and discuss our results
afterwards. We begin our discussion of the results for the uncorrelated case. In Figure 4.55
we clearly see a disagreement of our result with all other works. Our estimate 𝛽 lies around
2.5 ⋅ 𝜖(𝛽) above all other estimates. Contrarily to the critical exponent 𝛾, in the case of 𝛽 the
RG estimates are even further away from our estimate than the Monte Carlo estimates. If
we had been using the result for 𝑝min

𝑑 = 0.05, we would obtain an estimate 𝛽 which is much
closer to the estimates from other works, compare Figure 4.50. But an unbiased analysis
using the quality of fits 𝜒2

red and the overlapping index 𝒜 has shown us, that the change in
the estimates by including or excluding the smallest concentrations of defects 𝑝𝑑 = 0.05 and
𝑝𝑑 = 0.1 into the fits results in deviations which are not covered by the error of the estimates.
This indicates a crossover regime with the pure Ising model and therefore we finally have
chosen 𝑝min

𝑑 = 0.15.
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Figure 4.51: Examples of the corrected global fits to the ansatz in Equation (4.62) for all correlation
exponents 𝑎. The minimum included concentration of defects was 𝑝min

𝑑 = 0.15 and the maximum
included concentration of defects was 𝑝max

𝑑 = 0.4. The minimum lattice size was chosen to be 𝐿min =
32. The upper plots show the fitted observables ̂𝜕𝛽(|𝑚|)(𝐿, 𝑝𝑑) versus 𝐿 on a logarithmic scale. In
the lower plots, the observables are divided by 𝐿𝑟 where 𝑟 = (1 − 𝛽)/𝜈. This form allows us to
better visualize the deviations from the leading behavior 𝐿𝑟 through the correction terms with the
amplitudes 𝐵𝑝𝑑

.
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Figure 4.52: Amplitudes 𝐴𝑝𝑑
and 𝐵𝑝𝑑

for each included concentration of defects 𝑝𝑑 ≥ 𝑝min
𝑑 with

𝑝min
𝑑 = 0.15 for the corrected global fit ansatz given in Equation (4.62) in dependence of the 𝐿min.

Consistent ordering can be seen for all cases in the global amplitudes 𝐴𝑝𝑑
while for the correction

amplitudes 𝐵𝑝𝑑
the values mostly overlap except for the uncorrelated case.

For the correlated cases, we observe a compatible result with Ref. [BP99] for the case of
𝑎 = 2.0 within the errorbars. This is surprising, since the estimates for 𝜈 and 𝛾 did not agree
with this reference. The same value as in Ref. [BP99] was obtained in Ref. [Iva+08] but
with a considerably smaller error. We do not overlap with it within the errorbars but are
close to it. We cannot see any agreement with the results from Refs. [PPF00; Pru+05] as for
the previously obtained exponents 𝜈 and 𝛾. From the predictions for the critical exponents
𝜈 and 𝛾 in Ref. [WH83] we can derive the critical exponent 𝛽 by using scaling relation as
𝛽 = (𝑑−2)/𝑎, Equation (2.93). However, as already mentioned, the prediction of 𝛾 was stated
in Ref. [WH83] only for models with the dimension of the order parameter 𝑚 > 1. Anyway,
we only partially can reproduce a behavior of 𝛽(𝑎) ∝ 1/𝑎. We see a clear dependence of 𝛽 on
the correlation exponent 𝑎 but the line is not parallel to 1/𝑎. Instead, we see values above
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Figure 4.53: The dependence of the corrected global fit results 𝛽 on the correction exponent 𝜔. The
minimum lattice size included into the fits is 𝐿min = 32. The lower plots show the qualities of the
fit 𝜒2

red. For a wider range of different 𝜔 values, the fits remain stable and reasonably good. The
estimates 𝛽(𝜔) are mostly covered through the ranges 𝛽 ± 𝜖(𝛽). The values 𝛽 are the final estimates
from Table 4.10. The bar is added to distinguish between the free parameter 𝛽 and the fixed values 𝛽.
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Figure 4.54: Ratios 𝛽/𝜈 = 1/𝜈−𝑟 for the finally chosen 𝐿min and 𝑝min
𝑑 parameters for each correlation

exponent 𝑎.

the line for 𝑎 ≈ 3.0, a value which is compatible with 1/𝑎 for 𝑎 = 2.0 and a value under 1/𝑎
from 𝑎 = 1.5. The fact that it is not proportional to 1/𝑎 is already reflected in the ratios 𝛽/𝜈
which are not constant, as we mentioned before and shown in Figure 4.54. We cannot find
an easy explanation for this discrepancy since our fits are quite good when looking at 𝜒2

red
and also the corrections to scaling are smaller compared to the previous case of exponent 𝛾.
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Table 4.10: Final results of the critical exponent 𝛽. The minimum concentration of defects 𝑝min
𝑑 =

0.15 and minimum lattice size 𝐿min = 32 were used in all cases. For convenience, the results for 𝜈 and
𝜔 from Tables 4.2 and 4.5 are shown, respectively. Additionally, we provide the estimates of the ratios
𝛽/𝜈 for comparison. The terms 𝑟𝜖(𝜈) and 𝜈𝜖(𝑟) are the contributions to the total error 𝜖(𝛽) according
to Equation (4.63).

𝑎 𝜈 𝑟 𝛽
𝜈
= 1

𝜈
− 𝑟 𝛽 = 1 − 𝑟𝜈 𝜈𝜖(𝑟) 𝑟𝜖(𝜈) 𝜒2

red 𝜔

∞ 0.6831(30) 0.9151(66) 0.5488(92) 0.3749(53) 0.00447 0.00274 0.877 0.346(40)
3.5 0.7117(49) 0.8794(66) 0.526(12) 0.3741(64) 0.00469 0.00429 1.05 0.679(44)
3.0 0.7484(52) 0.8026(60) 0.534(11) 0.3993(61) 0.00442 0.00412 1.12 0.840(50)
2.5 0.8719(96) 0.6487(48) 0.498(14) 0.4344(75) 0.00418 0.00619 1.2 1.154(66)
2.0 1.060(23) 0.4526(59) 0.491(21) 0.520(12) 0.00618 0.0101 0.895 1.087(81)
1.5 1.421(55) 0.2565(73) 0.447(28) 0.635(18) 0.0103 0.0139 1.05 0.988(75)
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Figure 4.55: Final results of the critical exponent 𝛽 compared to the known results from the literature.
The horizontal errorbars come from the true measured 𝑎 values from Table 4.1. The value 𝛽∞ = 0.354
is the mean value from various groups (only (MC)) for the uncorrelated case and is used as orientation.
The line 1/𝑎 is shown to qualitatively compare the proportionality to 1/𝑎. Results from Monte Carlo
simulations are marked with (MC) while results from Renormalization Group calculations are labeled
with (RG). For the works marked with ∗, we calculated the values by ourselves as a weighted mean
over different concentrations. In works marked with †, the exponent 𝛽 was calculated from 𝜂 (or 𝛾)
and 𝜈.

Summary. We derived the critical exponents 𝛽 from the derivative of the magnetization
̂𝜕𝛽(|𝑚|) peaks. The case of the uncorrelated disorder yields an estimate which is above

the results from other groups. However, most of these results are in fact calculations of 𝛽
through scaling relations. For the correlated case, we see a dependence on 𝑎 but cannot
see a clear evidence for a proportionality ∝ 1/𝑎. We partially agree with the estimates
of 𝛽 from other works for the correlated case with 𝑎 = 2.0.
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Table 4.11: Critical exponent 𝛽 comparison to the literature. For a more detailed comparison of
various works see Table 2.3. Legend: † — calculated from other exponents through scaling relations,
∗ — averaged over various 𝑝𝑑 by us (weighted mean), ? — result is calculated by using scaling relations
from expressions which are stated in the paper as expressions for the case where the dimension of
the order parameter is 𝑚 > 1, MC — Monte Carlo simulations, RG — Renormalization Group
calculations.

Type Reference 𝑎 𝜈 𝛽

Uncorrelated disorder

MC

Ballesteros et al. [Bal+98a] ∞ 0.6837(53) 0.3546(28)†

Calabrese et al. [Cal+03] ∞ 0.683(3) 0.3535(17)†

Berche et al. [Ber+04] ∞ 0.68(2) 0.35(1)
Murtazaev et al. [MKB04] ∞ 0.678(6)∗ 0.3178(40)∗

Hasenbusch et al. [Has+07] ∞ 0.683(2) 0.354(1)†

RG
Pakhnin et al. [PS00] ∞ 0.671(5) 0.344(6)†

Pelissetto et al. [PV00] ∞ 0.678(10) 0.349(5)†

Kompaniets et al. [KKS21] ∞ 0.675(19) 0.346(34)†

This work ∞ 0.6831(30) 0.3749(53)

Correlated disorder

MC
Ballesteros et al. [BP99] 2.0 1.012(16) 0.528(34)†

Prudnikov et al. [Pru+05] 2.0 0.71(1) 0.362(20)
Ivaneyko et al. [Iva+08] 2.0 0.958(4) 0.528(3)

RG Weinrib et al. [WH83] 𝑎 < 𝑑 2/𝑎 (𝑑 − 2)/𝑎?,†

Prudnikov et al. [PPF00] 3.0 0.6715 0.347†

2.5 0.7046 0.3565†

2.0 0.715 0.34†

This work 3.5 0.7117(49) 0.3741(64)
3.0 0.7484(52) 0.3993(61)
2.5 0.8704(62) 0.4353(58)
2.0 1.082(15) 0.5103(90)
1.5 1.465(43) 0.624(16)

4.5.5 Critical temperatures

As already presented in Section 4.3.3, together with the peaks of the observables ̂𝒪, we also
obtained the corresponding temperatures ̂𝛽. These temperatures can be used to estimate the
critical temperature 𝛽𝑐 in the thermodynamic limit 𝐿 → ∞. The relation for this estimation
was presented in Equation (3.27) and reads

̂𝛽𝒪(𝐿) = 𝛽𝒪
𝑐 +𝐴𝒪𝐿1/𝜈 , (4.65)

for any observable with peaks at ̂𝛽(𝐿). Note, that in Equation (4.65) we have added the
index 𝒪 to the critical temperature 𝛽𝒪

𝑐 . Ideally, 𝛽𝑐 = 𝛽𝒪
𝑐 for all 𝒪 should be true. But

to distinguish between the fit parameters for different 𝒪, we will keep the index for the
moment. Contrary to the case of the critical exponents discussed in the previous sections, we
cannot use a global ansatz here since the critical temperature depends on the concentration of
defects 𝑝𝑑. This fact was the main reason for using an ansatz without correction terms, since
including further corrections would reduce the number of degrees of freedom too drastically.
Hence, we performed fits to the ansatz in Equation (4.65) for all correlation exponents 𝑎
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and concentration of defects 𝑝𝑑 separately for each of the following three observables: the
derivative of the logarithm of the magnetization 𝜕𝛽(ln |𝑚|), the derivative of the magnetization
𝜕𝛽(|𝑚|) and the susceptibility 𝜒. It is obvious that we used all observables for which we
derived the peaks in Section 4.3.3.

In order to account for the error of the critical exponent 𝜈 which enters the ansatz as
a parameter, we used the Bootstrap technique which was discussed in Section 3.4.2. We
randomly generated a normally distributed 𝜈𝑏 with the distribution

𝜈𝑏 ∼ 𝒩 (𝜈, 𝜖(𝜈)2) , (4.66)

and repeated the fits for 𝑁𝑏 = 1000 times. After that, the mean of 𝛽𝒪
𝑐 and 𝐴𝒪 were calculated

out of these bootstrapped results. For the critical temperature 𝛽𝒪
𝑐 this resulted in

𝛽𝒪
𝑐 = 1

𝑁𝑏
∑

𝑏
(𝛽𝒪

𝑐 )𝑏 , (4.67)

𝜖(𝛽𝒪
𝑐 ) = √𝜖(𝛽𝒪

𝑐 )𝑏
2
+ 𝜎((𝛽𝒪

𝑐 )𝑏)
2 , (4.68)

with the error contributions being

𝜖(𝛽𝒪
𝑐 )𝑏 = 1

𝑁𝑏
∑

𝑏
𝜖(𝛽𝒪

𝑐 )𝑏 , (4.69)

𝜎((𝛽𝒪
𝑐 )𝑏) = √

𝑁𝑏
𝑁𝑏 − 1

∑
𝑏

((𝛽𝒪
𝑐 )𝑏 − (𝛽𝒪

𝑐 )𝑏)
2
, (4.70)

and (𝛽𝒪
𝑐 )𝑏 and 𝜖(𝛽𝒪

𝑐 )𝑏 being the estimated fit parameter and its error obtained for one boot-
strapped value 𝜈𝑏, respectively. In easy words, the total error calculated in Equation (4.68)
is the combination of the mean of the fitted errors and the error of the bootstrapped mean.

As usual, we varied the minimum included lattice size 𝐿min to get a feeling of the finite-size
contributions. We present the fit curves for all three studied observables for two different
correlation exponents 𝑎 at 𝑝𝑑 = 0.2 in Figure 4.56. The dependence on the 𝐿min is shown in
Figure 4.57 for the same parameters. The overall observation is that contrary to the peak
values ̂𝒪, the ̂𝛽 values suffer from much larger deviations and relative errors. Possibly, the
reason for this is that the critical temperature varies with 𝑝𝑑 and each disorder configuration
consequentially had its own (finite lattice) temperature. Using more disorder configurations
would most likely increase the precision of the ̂𝛽 estimates. The dependence on 𝐿min was
usually covered by the size of the errors 𝜖(𝛽𝑐) for 𝜕𝛽(ln |𝑚|) and 𝜕𝛽(|𝑚|) but was slightly
more pronounced for 𝜒. However, at the end of the day, these dependencies were neglectable
altogether due to much larger deviations between the estimates 𝛽𝒪

𝑐 for different observables
𝒪 which we will discuss next. We used 𝐿min = 64 for all 𝑎 and 𝑝𝑑. We present the qualities
of the fits for 𝐿min = 64 in Figure 4.58. It can be seen, that for all 𝑎 ≥ 2.5 most of the
values are in a reasonable range of 𝜒2

red ⪅ 3.0. However, for the strongest correlation cases
we observe very large 𝜒2

red values. This fact again can be understood as a lack of sufficiently
many disorder realizations to tackle the critical temperature more precise. Altogether, with a
mean of 𝜒2

red = 3.61 and a median of md (𝜒2
red) = 1.75 we have at least the majority of points

for which the fits were acceptable. Also, as bad fits usually also end up in larger errors, and
we will use the weighted mean over several observables, bad fits will automatically count less
in the final estimates which we will discuss next.
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Figure 4.56: Examples of the fits to the ansatz in Equation (4.65) for various observables, 𝑝𝑑 = 0.2
and 𝐿min = 32. It can be seen, that not all estimates ̂𝛽𝒪(𝐿) lie on the final fitting line. This is also
reflected in the relatively high 𝜒2

red in some cases as reported in Figure 4.58.

After obtaining the 𝛽𝒪
𝑐 for all considered observables, we calculated the weighted mean as

the final estimate

𝛽𝑐 = 1
∑𝒪 𝜖(𝛽𝒪

𝑐 )
−2 ∑

𝒪
𝜖(𝛽𝒪

𝑐 )
−2𝛽𝒪

𝑐 , (4.71)

𝜖(𝛽𝑐) = √
1

∑𝒪 𝜖(𝛽𝒪
𝑐 )

−2 . (4.72)

Note, that in Equations (4.71) and (4.72) we do not explicitly denote the usage of the weighted
mean for the final estimates 𝛽𝑐 since we only used one approach for the estimation. To
investigate the deviations between the estimates 𝛽𝒪

𝑐 , we calculated their deviations from 𝛽𝑐,
i.e., the quantities

Δ𝛽𝒪
𝑐 = ∣𝛽𝑐 − 𝛽𝒪

𝑐 ∣ , (4.73)
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Figure 4.57: The dependence of the resulting 𝛽𝒪
𝑐 from fits to the ansatz in Equation (4.65) for

different observables and 𝑝𝑑 = 0.2. The dependence is covered to a great extent by the size of the
errors in most cases.

and plotted them in Figure 4.59a. First, we notice that the absolute deviations are generally
larger for smaller 𝑎, i.e., for stronger correlations. There is no particular observable 𝒪 which
suffers from such deviations the most. This is clear since we have performed simulations only
for a few temperatures 𝛽sim separated from each other by some fixed spacing. That means,
that for each parameter tuple (𝑎, 𝑝𝑑, 𝐿) the distance between the simulation temperature 𝛽sim

and the peak temperature ̂𝛽𝒪 can be different for different 𝒪 and hence the precision can vary
significantly (due to the histogram reweighting technique, which gets imprecise as you go
further away from the original temperature). The deviations also become larger for larger
concentrations 𝑝𝑑. The deviations become as big as Δ𝛽𝒪

𝑐 ≈ 10−3 for 𝑎 = 1.5 and 𝑝𝑑 = 0.4.

In the next step we calculated the ratios between the mean of the deviations for all three
observables and the weighted error from Equation (4.72), i.e., the quantity

Δ𝛽𝒪
𝑐

𝜖(𝛽𝑐)
. (4.74)
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Figure 4.58: The quality of the fits 𝜒2
red to the ansatz in Equation (4.65) for all correlation exponents

𝑎 and concentration of defects 𝑝𝑑. Some values are rather high but the mean 𝜒2
red and the median

md (𝜒2
red) are in a reasonable region. Overall, one sees the problem of large variations between

the critical temperature for each disorder realization. For better readability, the values for different
observables are slightly shifted horizontally from the considered 𝑝𝑑.

This quantity tells us how much larger (or smaller) the deviation between the individual
critical temperatures 𝛽𝒪

𝑐 and the final estimate 𝛽𝑐 is compared to the weighted error 𝜖(𝛽𝑐).
These ratios can be found in Figure 4.59b. Comparing the relative deviations with respect
to the weighted error 𝜖(𝛽𝑐), we notice that most of the time the deviations from the weighted
mean are much larger than 𝜖(𝛽𝑐) with a maximum factor of around 10–15. This large deviation
encouraged us to add a second error to the final estimates of 𝛽𝑐, namely the mean of these
deviations Δ𝛽𝒪

𝑐 over all observables for each 𝑎 and 𝑝𝑑,

𝜖(Δ𝛽𝒪
𝑐 ) = Δ𝛽𝒪

𝑐 . (4.75)

These errors are reported together with the weighted errors 𝜖(𝛽𝑐) in Table 4.12 where we sum-
marize our final results for the critical temperatures for all parameter tuples (𝑎, 𝑝𝑑). In Fig-

ure 4.60 we present the results visually and the total error is calculated as √𝜖(Δ𝛽𝒪
𝑐 )

2 + 𝜖(𝛽𝑐)2.
Here, we additionally extrapolate the curves linearly with the slopes between the tempera-
tures for 𝑝𝑑 = 0.1 and 𝑝𝑑0.05, to verify the convergence to the pure Ising mode case. This
is mostly done for a visual representation because the real 𝛽𝑐(𝑝𝑑) curves generally are not
straight lines.

Let us discuss the results in the context of the known values from the literature which
are presented in Table 4.13. We clearly see a very good agreement with results for all 𝑝𝑑

which have been studied by other groups in the case of site disorder. The accuracy of the
agreement is around 4–5 digits of the estimates. Considering the relatively large deviations of
our individual results for different observables 𝒪, it is a remarkable achievement. As expected,
the temperatures for the bond disorder do not coincide with our results since the critical



4.5 Finite-size scaling analysis 145

0.0 0.1 0.2 0.3 0.4
pd

10−6

10−5

10−4

10−3

∆
β
c
,O

(a) Deviations Δ𝛽𝒪
𝑐 = ∣𝛽𝑐 − 𝛽𝒪

𝑐 ∣.

0.0 0.1 0.2 0.3 0.4
pd

10−1

100

101

∆
β
c
,O
/
ε(
β
c
)

(b) Ratios Δ𝛽𝒪
𝑐 /𝜖(𝛽𝑐).

a =∞
a = 3.5

a = 3.0

a = 2.5

a = 2.0

a = 1.5

∂β(ln |m|)
∂β(|m|)
χ

Figure 4.59: Deviations Δ𝛽𝒪
𝑐 = ∣𝛽𝑐 − 𝛽𝒪
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for different observables 𝛽𝒪

𝑐 and ratios of these deviations and the weighted errors Δ𝛽𝒪
𝑐 /𝜖(𝛽𝑐).

Table 4.12: Final critical temperatures 𝛽𝑐 for all correlation exponents 𝑎 and concentration of defects
𝑝𝑑. The first error is the mean of the absolute deviations 𝜖(Δ𝛽𝒪

𝑐 ) calcualted with Equation (4.75), and
the second is the weighted mean error calculated with Equation (4.72). Graphically, the values are
shown in Figure 4.60.

𝑝𝑑 𝑎 = ∞ 𝑎 = 3.5 𝑎 = 3.0

0.05 0.2345922(20)(5) 0.2324137(40)(8) 0.231696(6)(2)
0.1 0.2492894(40)(7) 0.243131(7)(2) 0.241393(5)(3)
0.15 0.266155(3)(1) 0.254613(3)(3) 0.251679(9)(4)
0.2 0.285742(2)(2) 0.267311(3)(3) 0.262977(9)(5)
0.25 0.308810(2)(2) 0.281646(6)(4) 0.275676(20)(6)
0.3 0.336430(2)(3) 0.298156(5)(6) 0.290212(5)(8)
0.35 0.370175(3)(3) 0.317570(20)(7) 0.30722(4)(2)
0.4 0.412503(6)(5) 0.34088(2)(2) 0.32758(4)(2)

𝑝𝑑 𝑎 = 2.5 𝑎 = 2.0 𝑎 = 1.5

0.05 0.230677(6)(3) 0.229209(30)(8) 0.22714(20)(2)
0.1 0.239065(7)(5) 0.23592(2)(2) 0.23191(6)(3)
0.15 0.247871(20)(7) 0.24304(5)(2) 0.23694(10)(6)
0.2 0.25753(3)(1) 0.25071(6)(3) 0.24219(40)(7)
0.25 0.26827(5)(2) 0.25928(8)(3) 0.24861(40)(7)
0.3 0.28060(7)(2) 0.26909(20)(5) 0.25590(50)(9)
0.35 0.29482(8)(3) 0.28029(9)(6) 0.26372(60)(8)
0.4 0.31188(20)(3) 0.29400(50)(6) 0.2734(6)(2)

temperature is not only expected to be dependent on the concentration itself but also on the
type of the disorder. However, for the case of the correlated site disorder with 𝑎 = 2.0, we
cannot reproduce the temperatures from Refs. [BP99; Pru+05]. When looking at the different
temperatures from Ref. [BP99] for the case of disorder generated with the Fourier Filter
Method (as in our work) and comparing it to the temperature when using lines of defects, we
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Figure 4.60: Final critical temperatures 𝛽𝑐 for all correlation exponents 𝑎 and concentration of defects
𝑝𝑑. For comparison, the connecting lines for each 𝑎 between the values for 𝑝𝑑 = 0.1 and 𝑝𝑑 = 0.05 are
extrapolated to 𝑝𝑑 = 0 and the value of the pure Ising model reported in Ref. [FXL18] is added. See
Table 4.12 for the numerical values.

see that they do not coincide. This is a similar case as for the uncorrelated disorder, i.e., the
critical temperature is not universal and depends on the disorder type. Therefore, we expect
that our deviations from the literature are due to different (probably subtle) differences in
the disorder generation process compared to Ref. [BP99], even though they used the same
technique. Another possible reason for this discrepancy could be the deviation between the
imposed values for 𝑎 = 2.0 and the true measurable value 𝑎 in Ref. [BP99] which is not
reported. Finally, the limited largest lattice size of 𝐿 = 128 could also be a problem for the
estimation. Since we cannot check all of these possibilities for correctness, we expect our final
results for the critical temperatures in Table 4.12 to be coupled to the site disorder generated
with the Fourier Filter Method as described in Section 3.5.

Summary. We estimated critical temperatures for all considered correlation exponents 𝑎
and concentration of defects 𝑝𝑑 by using the peak temperatures 𝛽𝒪

𝑐 . Our estimates are
valid for the site disorder and in the correlated case are limited to the disorder generated
by the Fourier Filter Method.
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Table 4.13: Summary of the critical temperatures of the three-dimensional Ising model with disorder from literature. The temperatures which are missing, were not
studied in the corresponding work. The errors for this work were calculated as total errors from Table 4.12. Literature values printed in red do not coincide with our
estimates (due to other disorder type or for other reasons). Legend: SD — site disorder, BD — bond disorder, FFM — long-range correlated disorder generated with
Fourier Filter Method, DL — long-range correlated disorder reached by using lines of disorder.

Reference Disorder type 𝑎 𝑝𝑑

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Uncorrelated disorder

Ballesteros et al. [Bal+98a] SD ∞ 0.249288(4) 0.285736(5) 0.370156(8)
Calabrese et al. [Cal+03] SD ∞ 0.285744(2)
Berche et al. [Ber+04] BD ∞ 0.32670(5)
Murtazaev et al. [MKB04] SD ∞ 0.23479(3) 0.24951(5) 0.28607(5) 0.41368(10)
Hasenbusch et al. [Has+07] SD ∞ 0.2857429(4) 0.370174(3)

BD ∞ 0.326707(2)

This work SD ∞ 0.234592(2) 0.249289(4) 0.266155(3) 0.285742(3) 0.308810(3) 0.336430(3) 0.370175(4) 0.412503(8)

Correlated disorder

Ballesteros et al. [BP99] SD, FFM 2.0 0.272722(10) 0.332929(25)
SD, DL 2.0 0.257126(14)

Prudnikov et al. [Pru+05] SD, DL 2.0 0.2545(2)

This work SD, FFM 3.5 0.232414(4) 0.243131(7) 0.254613(4) 0.267311(5) 0.281646(7) 0.298156(8) 0.31757(2) 0.34088(2)
3.0 0.231696(6) 0.241393(5) 0.251679(9) 0.26298(1) 0.27568(2) 0.29021(1) 0.30722(4) 0.32758(5)
2.5 0.230677(6) 0.239065(8) 0.24787(2) 0.25753(3) 0.26827(5) 0.28060(7) 0.29482(8) 0.3119(2)
2.0 0.22921(3) 0.23592(3) 0.24304(5) 0.25071(6) 0.25928(8) 0.2691(2) 0.2803(2) 0.2940(5)
1.5 0.2271(2) 0.23191(7) 0.2369(2) 0.2422(4) 0.2486(4) 0.2559(5) 0.2637(6) 0.2734(6)
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4.5.6 Hyperscaling validation

Before going to the next analysis method, lest us discuss the relation between the obtained
estimates 𝜈, 𝛾 and 𝛽. We know, that knowing two of the critical exponents is enough since we
can use scaling relations to calculate all the other. In return, having three critical exponents,
allows us to check them against each other for consistency. In particular, we wanted to
check the hyper scaling relation Equation (2.62). Let us start with the scaling relations in
Equations (2.62) and (2.63) and combine them together to

2𝛽 + 𝛾 = 𝑑𝜈 . (4.76)

Since the actual fit parameters were the ratios 1/𝜈, 𝛾/𝜈 and (1 − 𝛽)/𝜈 in the first place, we
rearrange the terms in Equation (4.76) a bit, use 𝑑 = 3, and define a new variable 𝐾,

𝐾 = −2(1 − 𝛽
𝜈

) + 2(1
𝜈
) + (

𝛾
𝜈
) − 3 ?= 0 . (4.77)

To check the validity of the hyperscaling relation, we have to check 𝐾 = 0. Essentially, the
value of 𝐾 is the deviation from the expected dimension 𝑑 = 3. The form of Equation (4.77)
allows us to directly use the fitted ratios and therefore the error estimate is also very easily
expressed as

𝜖(𝐾) = √22𝜖 (1 − 𝛽
𝜈

)
2
+ 22𝜖 (1

𝜈
)

2
+ 𝜖(

𝛾
𝜈
)

2
. (4.78)

The 𝐾 values for all considered correlation exponents 𝑎 are shown in Figure 4.61. We can
see, that for the uncorrelated case, there is a slight deviation from zero. The deviation is not
huge but is not covered by the errorbar of 𝐾. Considering, how many further uncertainties
during the whole calculation process are not reflected in the errors, we would not speak about
a violation. Instead, we think that it is an uncertainty in our measurements which causes this
discrepancy. Especially the exponent 𝛽 which was not consistent with other work could be
the reason for this discrepancy in the hyperscaling relation. However, a deeper look into this
aspect would be of interest. An interesting tendency of 𝐾 can be seen as 𝑎 becomes smaller.
It has a maximum value at 𝑎 = 3.0 where it reaches a value of 𝐾 ≈ 0.15. Starting from
𝑎 = 2.5, all 𝐾 values decrease with decreasing 𝑎 and are compatible with 𝐾 = 0 within their
errors. This peak at 𝑎 = 3.0 is in accordance with the observations we had for the critical
exponents themselves — a crossover region with the largest deviation from the conjecture by
Weinrib and Halperin. It is interesting, that here the deviation is not from the conjecture
by Weinrib and Halperin but a general deviation from the hyperscaling relation. Therefore,
independently of the validity of the conjecture by Weinrib and Halperin, the hyperscaling
relation may be violated in the crossover region at 𝑎 ≈ 3.0. This final result completes our
finite-size scaling analysis section.

Summary. The hyperscaling relation is assumed to be valid in the uncorrelated case, but
our data show a minor disagreement with this assumption. However, we can propose
that in the crossover regime with 𝑎 ≈ 3.0 the hyperscaling relation may be violated. For
stronger correlations however, the hyperscaling relation becomes valid again.
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Figure 4.61: Checking the 𝐾 = 0 relation with 𝐾 which was defined in Equation (4.77). The peak
at 𝑎 = 3.0 indicates that the hyperscaling relation may not be valid in the crossver region at 𝑎 ≈ 3.0.

4.6 Temperature scaling analysis

In this section we will present the results from the second approach for the derivation of the
critical exponents — the temperature scaling (TS). It is based on Equations (2.57) to (2.60)
and is widely used ansatz found in literature alongside the finite-size scaling (FSS) ansatz,
e.g., in Refs. [Ber+04; Cal+03] it was used for the disordered Ising model and for other
models in, e.g., Refs. [HJ93; JH93; MPV02; Vas+15; Wan+19; Wis95]. Contrarily to the
FSS ansatz, in general only one lattice size is needed for the TS ansatz. Instead, a wide
range of simulated temperatures for this particular lattice is needed. The advantage of the
TS ansatz is that the critical exponents can be found directly and not in the form of ratios
𝑥𝒪/𝜈, as it is the case for the FSS ansatz. The two most important aspects which have to be
fulfilled in order for the TS to work are:

1. the lattice size has to be large enough to overcome finite-size corrections (at least further
away from 𝑇𝑐),

2. the temperature range should include the critical temperature 𝑇𝑐 of the infinite system.

Since the finite-size effects quickly become less pronounced when going away from the critical
point, it is a common technique to use different lattice sizes for different temperatures, starting
with the largest size at the critical temperature and then decreasing the size as one moves
away from that temperature. However, in our case the correlation exponent 𝑎 was also 𝐿-
dependent as was discussed in Section 4.2. Therefore, we found it a bad idea to mix different
lattice sizes in this analysis. Instead, we used our largest available lattice size of 𝐿 = 256
and performed some additional simulations in order to increase the number of total studied
temperatures for all correlation exponents 𝑎 and concentration of defects 𝑝𝑑. The TS analysis
was meant to be a crosscheck of the results obtained through the FSS analysis and to make
use of a larger part of the simulated data.

We studied two observables, the second-moment correlation length 𝜉, calculated as de-
scribed in Section 2.2.3, and the (high temperature) susceptibility 𝜒̃, Equation (2.41). These
observables provided us the estimates for 𝜈 and 𝛾, respectively. We will introduce the analysis
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steps for the observable 𝜉 and the exponents 𝜈 and discuss the results. For 𝜒̃ we will mostly
only provide the corresponding plots and discuss the results since the analysis steps were
identical to the analysis of 𝜉.

4.6.1 Critical exponent 𝜈

We begin by calculating the observable of interest, i.e., the correlation length 𝜉 for all cor-
relation exponents 𝑎 and concentrations of defects 𝑝𝑑 for the lattice size 𝐿 = 256 and all
available temperatures. We used the critical temperatures 𝛽𝑐 from Table 4.12 and calculated
the reduced temperatures, Equation (2.56),

𝑡 = (1 − 𝑇
𝑇𝑐

) = (1 −
𝛽𝑐
𝛽sim

) , (4.79)

By plotting our 𝜉(𝑝𝑑) as a function of 𝑡, we visually verified the critical temperature esti-
mates, as can be seen in Figure 4.62. Note, that from Equation (4.79) the negative reduced
temperature 𝑡 ≤ 0 corresponds to the high temperature phase since 𝛽sim ≤ 𝛽𝑐 in this case.
The correlation length curves for different 𝑝𝑑 all intersect at 𝑡 ≈ 0. Only for the strongest
correlation exponents 𝑎 ≤ 2.0 they visually do not intersect all in one point. Please note,
that the plotted 𝜉 is defined only in the high temperature phase, i.e., 𝑡 ≤ 0, but we extended
it to 𝑡 > 0 in order to see the intersections better.

By using only the high temperature values with 𝑡 ≤ 0, we performed individual fits to the
ansatz

ln 𝜉(𝑡) = 𝐴 − 𝜈 ln |𝑡| , (4.80)

for each concentration of defects 𝑝𝑑 and each correlation exponent 𝑎. Since the power-law
behavior only starts at a certain distance away from 𝑡 = 0, i.e., the region where the finite-
size effects become neglectable, we varied the smallest |𝑡|min included into the fits from its
minimum value near 𝑡 = 0 to a maximum value where only three degrees of freedom remained.
Examples of the fits are presented in Figure 4.63. In these plots we can see the main problem
which we had with this ansatz. We clearly see finite-size effects for each 𝑝𝑑, since the data
points follow a curved path, compare, e.g., the plot for 𝑎 = 1.5 where the effect can be seen
best. But, since the errors are quite large, a linear fit already provides reasonable 𝜒2

red values.
The estimates for all considered |𝑡|min and each 𝑎 and 𝑝𝑑 are shown in Figure 4.64.

Let us analyze the results shwon in Figure 4.64. We added the final estimates from the FSS
analysis from the uncorrected individual fit ansatz and the corrected global fit ansatz to the
plots in order to compare them. The estimates from the TS analysis show a clear dependence
on the concentration of defects 𝑝𝑑 and also on |𝑡|min. They do not reach a plateau value even
for the largest |𝑡|min and the estimates for 𝑝𝑑 ≤ 0.1 are clearly influenced by the crossover
to the pure Ising model. Also, as can be seen in Figure 4.62, the correlation length does
have the strongest curvature for the smallest concentration of defects 𝑝𝑑. For a quantitative
comparison we therefore calculated the weighted mean over all estimates for 𝑝𝑑 ≥ 0.15 where
for each 𝑝𝑑 we used the largest studied |𝑡|min, which was the one with three degrees of freedom.
This was not the best solution but at least it was closer to the possible plateau values than
when using the fit results with the lowest possible |𝑡|min where the condition 𝜒2

red ≤ 1.0
was fulfilled for the first time. These results were way too low and did not represent the
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Figure 4.62: Correlation length 𝜉 as function of the reduced temperature 𝑡 for all concentrations
of defects 𝑝𝑑 and correlation exponents 𝑎. The definition of 𝜉 is valid only for the high temperature
phase with 𝑡 ≤ 0, but we extended the curves in order to see the crossing points better.

asymptotic behavior. As mentioned previously, this was a consequence of the large errors
which made the noncorrected fits good, even though the finite-size effects were still present.
We summarized the weighted means together with the estimates from the FSS analysis in
Table 4.14. Except for the case of 𝑎 = 1.5 the estimates from the TS analysis 𝜈𝑤

ts are closer
to the uncorrected estimates 𝜈𝑤

lin than to the corrected estimates 𝜈𝑔 and are slightly larger.
The value for 𝑎 = 1.5 is possibly smaller because the estimates for larger 𝑝𝑑 show very large
errors and hence the smallest concentration result with 𝑝𝑑 = 0.15 dominates the weighted
mean. Due to this huge errors we are very skeptical about the meaningfulness of the estimate
for this 𝑎. The biggest deviations can be seen for the two correlation exponents 𝑎 = 3.0 and
𝑎 = 3.5 which is exactly the same behavior as for the two FSS estimates, i.e., 𝜈𝑤

lin and 𝜈𝑔.
This fact again indicates the presence of a crossover regime at the transition point of 𝑎 ≈ 3.0.

Although we would take the estimates 𝜈𝑤
ts with a great care, we nevertheless can reproduce

the same qualitative results in all considered cases. The prediction of Weinrib and Halperin
𝜈 = 2/𝑎 is not matched quantitatively and the results lie above this prediction, but the
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Figure 4.63: Examples of the fits of 𝜉(𝑡) to the ansatz from Equation (4.80). For each concentration
of defects 𝑝𝑑 the minimum |𝑡|min for which 𝜒2

red ≤ 1.0 was true for the first time is used in the plots.

dependence on 𝑎 is clearly in accordance with the FSS results which have a ∝ 1/𝑎 behavior.
We will discuss the general quality of the performed TS analysis and its validity at the end
of the section in the summary, after having presented the results for 𝜒̃ and the corresponding
critical exponent 𝛾. Let us just note, that we also have checked the influence of the error of
𝛽𝑐 on the results, but it turned out that it can be neglected due to much larger errors coming
from the fits themselves.

4.6.2 Critical exponent 𝛾

As already mentioned, we analyzed the susceptibility 𝜒̃ in the same way as we have done for
the correlation length 𝜉. We used the ansatz

ln 𝜒̃(𝑡) = 𝐴 − 𝛾 ln |𝑡| , (4.81)
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Figure 4.64: Final results of the fits of 𝜉(𝑡) to the ansatz from Equation (4.80) for different |𝑡|min
and all concentrations of defects 𝑝𝑑. The weighted means 𝜈𝑤

ts over all concentrations with 𝑝𝑑 ≥ 0.15
and for the largest possible |𝑡|min are shown together with the results from the FSS analysis 𝜈𝑔 and
𝜈𝑤

lin. The narrow right plots show a separate comparision between the different estimates for 𝜈 which
are plotted as horizontal lines in the main plots.
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Table 4.14: Comparison of the final estimates of the critical exponent 𝜈 from the finite-size scaling
analysis and the temperature scaling analysis (labeld with “ts”). The values 𝜈𝑤

lin and 𝜈𝑔 are taken from
Table 4.5. The weighted mean over 𝑝𝑑 ≥ 0.15 for the temperature scaling results 𝜈𝑤

ts were calculated
over the estimates with maximum used |𝑡|min (and hence three degrees of freedom).

𝑎 𝜈𝑤
ts 𝜈𝑤

lin 𝜈𝑔

∞ 0.6928(17) 0.6913(15) 0.6831(30)
3.5 0.7557(25) 0.7427(25) 0.7117(49)
3.0 0.7898(34) 0.7812(35) 0.7484(52)
2.5 0.8905(82) 0.8887(61) 0.8719(96)
2.0 1.073(23) 1.079(14) 1.060(23)
1.5 1.348(61) 1.449(32) 1.421(55)

and performed individual fits for all concentrations of defects 𝑝𝑑 and correlation exponents
𝑎. Again, we varied the minimum included |𝑡|min to see the asymptotic behavior. The
susceptibility as function of 𝑡 is presented in Figure 4.65. It has the same qualitative behavior
as the 𝜉 — for different 𝑝𝑑 the curves cross each other at 𝑡 = 0. Note, that as in the case with
𝜉, the definition of 𝜒̃ is valid only in the high temperature phase, and we extended the values
to the low temperatures in order to see the crossing point better. In Figure 4.66 we show
examples of the fits for all correlation exponents 𝑎. The estimates of the critical exponent 𝛾
in dependence of the chosen |𝑡|min are presented in Figure 4.67. The weighted means for all
𝑝𝑑 ≥ 0.15 and the largest |𝑡|min are summarized in Table 4.15.

Let us discuss the results of the critical exponent 𝛾. The first observation is the same as in
the case of 𝜉, the smallest concentrations 𝑝𝑑 ≤ 0.1 show a crossover behavior and therefore
we excluded them in the weighted mean. Again, the curves do not reach asymptotic values
even for the largest |𝑡|min. The final weighted mean estimates 𝛾𝑤

ts lie slightly above the global
fit estimates 𝛾𝑔 from the FSS analysis except for the case of 𝑎 = 1.5. They match very well
for the correlation exponents in the range 3.0 ≥ 𝑎 ≥ 2.0 but do not match in the uncorrelated
case, 𝑎 = ∞. The crossover region with 𝑎 = 3.5 shows the largest deviations between 𝛾𝑤

ts and
𝛾𝑔. But in general, the qualitative cross-check supports or estimates from the FSS analysis.
Unfortunately, we were not able to compare to the individual uncorrected fits ansatz in the
FSS case, since we have not performed it for the critical exponent 𝛾.

Table 4.15: Comparison of the final estimates of the critical exponent 𝛾 from the finite-size scaling
analysis and the temperature scaling analysis (labeld with “ts”). The values 𝛾𝑔 are taken from
Table 4.8. The weighted mean over 𝑝𝑑 ≥ 0.15 for the temperature scaling results 𝛾𝑤

ts were calculated
over the estimates with maximum used |𝑡|min (and hence three degrees of freedom).

𝑎 𝛾𝑤
ts 𝛾𝑔

∞ 1.3430(18) 1.3324(64)
3.5 1.4875(33) 1.451(15)
3.0 1.5726(50) 1.566(16)
2.5 1.787(11) 1.783(24)
2.0 2.171(27) 2.149(51)
1.5 2.791(70) 2.93(14)
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Figure 4.65: Susceptibility 𝜒̃ as function of the reduced temperature 𝑡. The definition of 𝜒̃ is valid
only for the high temperature phase with 𝑡 ≤ 0, but we extended the curves in order to see the crossing
point better.

Let us summarize the usage of the TS analysis for the estimation of the critical exponents
in the context of this work. As mentioned previously, we used the TS ansatz as a supplemen-
tary analysis and mostly used the already available data which was produced with the FSS
analysis in mind. The available data was not sufficient to perform corrected fits and even the
uncorrected fits shown a clear dependence on the used temperature range. Since corrected
fits were not possible, also a fit of the specific heat which contains a regular background term
was not reliable. Also, we were not able to estimate 𝛽 since the low temperature side of the
available data was too short for most correlation exponents 𝑎 and concentrations of defects
𝑝𝑑. In order to improve the temperature scaling analysis we would need more simulated
temperatures and also change the structure of the whole simulation process by using more
disorder realizations instead of longer measurement series for each realization. Concerning
this work, we do not include the estimates from TS analysis into our final results but rather
see them as a verification of the FSS analysis results.
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Figure 4.66: Examples of the fits of 𝜒̃(𝑡) to the ansatz form Equation (4.81). For each concentration
of defects 𝑝𝑑 the minimum |𝑡|min for which 𝜒2

red ≤ 1.0 was true for the first time is used in the plots.

Summary. We successfully used the temperature scaling analysis to validate our finite-
size scaling analysis results for the critical exponents 𝜈 and 𝛾. Considering that the
method used mostly different data in the analysis and also different observables were
used, i.e., the correlation length 𝜉 which was not studied in the finite-size scaling case
and the high temperature definition of the susceptibility, we can clearly solidify our finite-
size scaling results. Additionally, the estimated critical temperatures from the finite-size
scaling analysis were proven to be reasonably accurate to be used in the temperature
scaling analysis. We do not include the estimates from the temperature scaling in our
final results and see them as an additional verification.
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Figure 4.67: Final results of the fits of 𝜒̃(𝑡) to the ansatz from Equation (4.81) for different |𝑡|min
and all concentration of defects 𝑝𝑑. The weighted means 𝛾𝑤

ts over all concentrations with 𝑝𝑑 ≥ 0.15
and for the largest possible |𝑡|min are shown together with the result from the FSS analysis 𝛾𝑔. The
narrow right plots show a separate comparision between the different estimates for 𝛾 which are plotted
as horizontal lines in the main plots.





5Conclusions

In this work we studied the three-dimensional Ising model on a long-range power-law site
disordered lattice with the help of Monte Carlo techniques. We would like to summarize the
main results of this work and also give a short outlook for possible further research directions.

Critical exponents

The main results of the present work are the estimates of the critical exponents 𝜈, 𝛾 and 𝛽 in
dependence of the correlation exponent 𝑎. They were obtained by using the finite-size scaling
technique. Additionally, we solidified the results by comparing to the estimates through a
temperature scaling analysis. The full set of the obtained critical exponents is summarized
in Table 5.1 and Figure 5.1 together with the critical exponents calculated through the scal-
ing relations. For the uncorrelated case our estimates are compatible with estimates known
from the literature. We observe a new universality class for the disordered Ising model in
accordance with the Harris criterion [Har74] which is characterized by a new set of critical
exponents. This is an important proof of the whole analysis process, including the histogram
reweighting procedure and the global fit ansatzes. Our estimates of the critical exponents for
the correlated cases show a clear dependence on the correlation exponent 𝑎 in the form of
∝ 1/𝑎. To our knowledge, it is the first time that a study has derived the critical exponents
for a larger number of different correlation exponents 𝑎 by using simulation techniques. Quan-
titatively, we cannot reproduce the conjecture of Weinrib and Halperin [WH83] of 𝜈 = 2/𝑎
exactly. However, we can suggest that this conjecture is the leading behavior and needs
correction terms of some form. This also applies to the other critical exponents for which
a dependence on 𝑎 is given in Ref. [WH83] (but not explicitly sad to be valid for the Ising
model) — we see a ∝ 1/𝑎 behavior, but the estimates do not match the predictions exactly.
We clearly see a crossover region at 𝑎 ≈ 3.0 = 𝑑, in agreement with the extended Harris cri-
terion [WH83]. In this region we observe the largest derivations between our estimates and
the predictions from Ref. [WH83]. An interesting observation of this work is the negative
exponent 𝜂 which is more or less constant for all correlated cases. From the present analysis,
we cannot exclude a systematic uncertainty in our estimates but a deeper look into this issue
could be of importance.

Finally, we checked the estimates 𝜈, 𝛾 and 𝛽 for consistency with the hyperscaling relation.
Our results suggest that it may be that the hyperscaling relation is violated in the crossover
region around 𝑎 ≈ 3.0 while it is valid in the uncorrelated and in strongly correlated cases.
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Figure 5.1: Complete set of the critical exponents of the tree-dimensional Ising model with long-
range power-law correlated site disorder for various correlation exponents 𝑎 and for the uncorrected
case with 𝑎 = ∞. The exponents in the lower row were calculated by using the scaling relations. The
horizontal errors represent the uncertainty in measured correlation exponents 𝑎.

Table 5.1: Complete set of the critical exponents of the tree-dimensional Ising model with long-range
power-law correlated site disorder for various correlation exponents 𝑎 and for the uncorrected case with
𝑎 = ∞. The exponents marked with † were calculated by using the scaling relations. For completeness
the measured correlation exponents 𝑎 and the estimated confluent correction exponents 𝜔 are added.

𝑎 𝑎 𝜈 𝛾 𝛽 𝛼† 𝜂† 𝛿† 𝜔

∞ − 0.6831(30) 1.3324(64) 0.3749(53) −0.0493(90) 0.0494(36) 4.554(53) 0.346(40)
3.5 3.30(18) 0.7117(49) 1.451(15) 0.3741(64) −0.135(15) −0.039(14) 4.878(76) 0.679(44)
3.0 2.910(96) 0.7484(52) 1.566(16) 0.3993(61) −0.245(16) −0.093(16) 4.923(72) 0.840(50)
2.5 2.451(26) 0.8719(96) 1.783(24) 0.4344(75) −0.616(29) −0.045(14) 5.105(89) 1.154(66)
2.0 1.979(18) 1.060(23) 2.149(51) 0.520(12) −1.180(68) −0.027(21) 5.13(14) 1.087(81)
1.5 1.500(30) 1.421(55) 2.93(14) 0.635(18) −2.26(17) −0.061(56) 5.61(25) 0.988(75)

Confluent correction exponent

In addition to the critical exponents, we estimated the confluent correction exponent 𝜔.
This was achieved by using quotients of an observable at two different lattice sizes which
allowed a determination independently of other exponents. The final results are summarized
in Table 5.1. We reproduce the values known from other works for the uncorrelated case
and partially agree on the values for the correlated case of 𝑎 = 2.0. Altogether, we see
an increase in the values of 𝜔 when going from 𝑎 = ∞ until 𝑎 ≈ 2.5 and after that the
exponent 𝜔 decreases again. As with the critical exponents, the assumption that this is
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a consequence of a crossover regime around 𝑎 ≈ 3.0 is appropriate. It is interesting, that
the correction exponent 𝜔 shows the same qualitative behavior as the deviation from the
hyperscaling relation. Probably, both phenomena are connected with each other.

Disorder correlation exponent

Since the critical exponents discussed above are all 𝑎-dependent, it was an important step to
analyze the underlying long-range power-law correlated site disorder configurations. None of
the known works on the long-range correlated disordered Ising model provided a measured
correlation exponent 𝑎. In our opinion however, it is an important step to map the measured
critical exponents to the correlation exponent 𝑎 conclusively. We measured the correlation
exponents 𝑎 and compared them to the imposed values 𝑎. These values are listed in Table 5.1
The outcome can be summarized in two main points. The first aspect is that 𝑎 < 𝑎 is true for
all considered cases. The second fact is that the deviations become larger for larger 𝑎, i.e.,
weaker correlations. This behavior becomes less pronounced for larger numbers of disorder
realizations 𝑁𝑐. We suppose that both effects are a consequence of the finite-size effects on
the lattice and the periodic boundary conditions. They cause the defects on the lattice to be
effectively slightly more correlated than if they were placed on an infinite lattice. Note, that
we used a slightly modified correlation function 𝐶0(𝑟) = (1+𝑟)−𝑎/2 in the disorder generation
process since a true power-law function possesses a divergence at 𝑟 → 0. However, this should
not be the reason for the inequality 𝑎 < 𝑎, since the deviation between the used correlation
function and the power-law becomes neglectable very fast (the deviation is less than 5 %
already for 𝑟 ≥ 6.0). Independently of the true origin of the fact that 𝑎 < 𝑎, applied to our
work, this inequality implies that the estimated critical exponents have an uncertainty with
respect to 𝑎 to which they belong. In Figure 5.1 it is reflected in the horizontal errorbars.

Critical temperatures

While searching for the peaks of various observables, we also obtained the finite-size critical
temperatures and were able to estimate the critical temperatures in the thermodynamic
limit for all studied correlation exponents 𝑎 and concentrations of defects 𝑝𝑑. They are listed
in Table 5.2. Since our simulations were not focused on the determination of the critical
temperature, the obtained estimates are moderately accurate. Nevertheless, we successfully
used them in the temperature scaling ansatz and there they proofed themselves as precise
enough. Therefore, we can assume that our temperature estimates can be a good starting
point for further analyses and simulations. Note, that besides the dependence on 𝑎 and
𝑝𝑑, the critical temperatures may also depend on the used boundary conditions, the kind of
disorder (bond or site disorder) and also on the disorder generation process, i.e., the disorder
distribution and shape.

Other results

Further results obtained in this work are the estimation and analysis of the autocorrelation
times of the energy and the magnetization during the Swendsen-Wang multiple-cluster update
simulation process. They were found to be moderately low and neglectable in the context of
the analyses which were performed in the present work. We analyzed the difference between
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Table 5.2: Complete set of the critical temperatures of the tree-dimensional Ising model with long-
range power-law correlated site disorder for various correlation exponents 𝑎 as well as for the uncor-
rected case with 𝑎 = ∞ and different concentrations of defects 𝑝𝑑.

𝑝𝑑
a

∞ 3.5 3.0 2.5 2.0 1.5

0.05 0.234592(2) 0.232414(4) 0.231696(6) 0.230677(6) 0.22921(3) 0.2271(2)
0.1 0.249289(4) 0.243131(7) 0.241393(5) 0.239065(8) 0.23592(3) 0.23191(7)
0.15 0.266155(3) 0.254613(4) 0.251679(9) 0.24787(2) 0.24304(5) 0.2369(2)
0.2 0.285742(3) 0.267311(5) 0.26298(1) 0.25753(3) 0.25071(6) 0.2422(4)
0.25 0.308810(3) 0.281646(7) 0.27568(2) 0.26827(5) 0.25928(8) 0.2486(4)
0.3 0.336430(3) 0.298156(8) 0.29021(1) 0.28060(7) 0.2691(2) 0.2559(5)
0.35 0.370175(4) 0.31757(2) 0.30722(4) 0.29482(8) 0.2803(2) 0.2637(6)
0.4 0.412503(8) 0.34088(2) 0.32758(5) 0.3119(2) 0.2940(5) 0.2734(6)

the usage of global fits compared to a weighted mean over individual fits and found that the
global fit ansatz is superior for nonlinear models since the weighted mean estimates is biased.
We think that this is a consequence of the correlation between a fit parameter and its error
in the nonlinear case.

Outlook

As already mentioned, the results of the critical exponent 𝜈, the confluent correction exponent
𝜔 as well as the analysis of the measured correction exponent 𝑎 were already published in
Ref. [KJ20]. A second publication Ref. [KJ22] with the critical exponents 𝛾 and 𝛽 followed
in 2022. Concerning further possible study directions, following ideas may serve as a starting
point:

• analyze the origin of the negative exponent 𝜂,
• measure the specific heat exponent 𝛼 explicitly,
• check the validity of the hyperscaling relation more precise,
• perform appropriate simulations and use the temperature scaling ansatz more expres-

sive,
• study universal amplitude ratios in dependence of 𝑎.

There are plenty other possibilities but let us stop at this point. We would like to end our
work with these words by Max Planck [Pla36],

“ A scientist is happy, not in resting on his attainments
but in the steady acquisition of fresh knowledge.

”
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A.1 Analysis of the negative spectral density entries

As discussed in Section 3.5, we start the generation process by choosing an appropriate
correlation function for the disorder 𝐶0(𝒓). In our implementation we used

𝐶0(𝒓) = (1 + 𝑟2)−𝑎/2 → 𝑟−𝑎 for 𝑟 → ∞, (A.1)

where 𝑟 = |𝒓| is the distance on the lattice adopted to the appropriate boundary conditions.
Furthermore, we used the square root of the spectral density 𝑆(𝒌) of 𝐶0(𝒓) in the disorder
generation process. As the correlation function is symmetric with respect to 𝒓, we know that
the spectral density will contain only real values. Therefore, we need 𝑆(𝒌) ≥ 0 for all 𝒌 in
order to take the square root of 𝑆(𝒌). We followed Ref. [Zie+17] and used a modified spectral
density ̃𝑆(𝒌) defined in Equation (3.82) with a zero-cutoff where we set each negative value
of 𝑆(𝒌) to zero,

̃𝑆(𝒌) =
⎧{
⎨{⎩

𝑆(𝒌) if 𝑆(𝒌) ≥ 0

0 else
.

We introduce the abbreviations for the minimum and maximum values of the (unmodified)
spectral density 𝑆(𝒌),

𝑆
̌
(𝒌) = min

𝒌
𝑆(𝒌) , ̂𝑆(𝒌) = max

𝒌
𝑆(𝒌) . (A.2)

First, we checked for which correlation exponents 𝑎 and lattice sizes 𝐿 analyzed in the present
work, negative values of 𝑆(𝒌) occur. As can be seen in Figure A.1, they only occur for 𝑎 = 1.5
and 𝐿 < 24. Moreover, the ratio between the largest and the smallest value 𝑆(𝒌) suggest,
that the slightly negative values cannot be of great importance for the global picture. In
Section 4.5 we have seen, that because of the finite-size effects we excluded such small lattice
sizes for 𝑎 = 1.5 in our analyses anyway. This makes the problem of negative 𝑆(𝒌) completely
neglectable in our present study.

Nevertheless, we have analyzed the problem of negative 𝑆(𝒌) further in order to understand
how these values behave in general. Let us first note that on a finite lattice with an even
linear dimension 𝐿 we cannot achieve exact symmetry of 𝐶0(𝒓) because we need one center
point on the lattice with 𝒓 = 0 which leaves us with an odd number of sites in each direction.
Therefore, we analyzed the occurrence of negative 𝑆(𝒌) values for even and odd 𝐿 separately.
We show the minimum values 𝑆

̌
(𝒌) and the ratios 𝑆

̌
(𝒌)/ ̂𝑆(𝒌) for both cases and for different

correlation exponents 0.5 ≤ 𝑎 ≤ 1.5 in Figure A.2.



164 A Appendices

−0.2

0.0

0.2
S ˇ

(k
)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
lnL

0.00

0.02

S ˇ
(k

)/
Ŝ

(k
)

a

1.5

2.0

2.5

3.0

3.5

8 16 24 32 48 64 96 128 192 256
L

Figure A.1: The smallest values of the spectral density 𝑆(𝒌) for all 𝑎 and 𝐿 parameters used for
simulations in this study. Negative values of 𝑆(𝒌) occur only for 𝑎 = 1.5 and 𝐿 < 24 and therefore
the zero-cutoff is considered unproblematic in the present work.

We can differentiate between three different cases. In the first case for correlation exponents
𝑎 > 1.0, negative values of 𝑆(𝒌) occur only as finite-size effects for even lattice sizes where the
symmetry of 𝐶0(𝒓) cannot be mapped perfectly. For large enough lattice sizes the minimum
values 𝑆

̌
(𝒌) become positive. This happens faster for larger 𝑎. For odd lattice sizes and 𝑎 > 1.0

the minimum values are positive for all 𝐿. The ratios between minimum and maximum values
𝑆
̌
(𝒌)/ ̂𝑆(𝒌) seam to approach zero for both, even and odd lattice sizes. In the second case

for stronger correlations with correlation exponents 𝑎 < 1.0, we see negative values which
increase as 𝐿 → ∞ for both, even and odd lattice sizes. However, the ratios between minimum
and maximum values 𝑆

̌
(𝒌)/ ̂𝑆(𝒌) approach negative but constant values. The last case with

𝑎 = 1.0 is a special case. The minimum values stay negative but constant, probably for for
𝐿 → ∞. As a consequence, the ratio 𝑆

̌
(𝒌)/ ̂𝑆(𝒌) approach zero from below.

In short, the negative values of 𝑆(𝒌) occur as finite-size effects for small lattices with even
lattice sizes 𝐿 but otherwise are restricted to 𝑎 ≤ 1.0. We have summarized the limit behavior
for 𝑆

̌
(𝒌) and 𝑆

̌
(𝒌)/ ̂𝑆(𝒌) in Table A.1.

To analyze the quantitative influence of the negative spectral density values, we compared
initial 𝐶0(𝒓) with the values after a forward and backward Fourier transformation of 𝐶0(𝒓)
and using the zero-cutoff in-between,

𝐶0(𝒓)
DFT
−−−→ 𝑆(𝒌)

zero-cutoff
−−−−−−→ ̃𝑆(𝒌)

DFT−1

−−−−→ ̃𝐶0(𝒓) . (A.3)

We define the relative deviation between the initial values 𝐶0(𝒓) and resulting values ̃𝐶0(𝒓)

Δ𝑟𝐶0(𝒓) =
𝐶0(𝒓) − ̃𝐶0(𝒓)

𝐶0(𝒓)
. (A.4)

In Figure A.3 we plot the maximum of the absolute values of the deviations max (|Δ𝑟𝐶0(𝒓)|)
for odd and even 𝐿 and different 𝑎, and compare the convergence. We observe the same
three cases with separation at 𝑎 = 1.0. For 𝑎 ≥ 1.0 the maximal deviations approach zero
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(a) Even 𝐿.
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(b) Odd 𝐿.

Figure A.2: Minimum spectral density values 𝑆
̌
(𝒌) and ratios 𝑆

̌
(𝒌)/ ̂𝑆(𝒌) in dependence of the lattice

size 𝐿 and correlation exponent 𝑎. Only the case of even 𝐿 produces negative values for small lattice
sizes for 𝑎 > 1.0. On the other hand, for 𝑎 < 1.0, in both even and odd 𝐿 cases negative values occur
and their absolute values increase with increasing 𝐿.

as 𝐿 → ∞. The odd 𝐿 cases already start at zero for the smallest lattice sizes whereas the
even-𝐿 curves slowly approach the limit. For 𝑎 < 1.0 a small finite value is approached. Here,
the even and odd 𝐿 curves both have non-zero values throughout the 𝐿-range and converge
towards each other with increasing 𝐿. Altogether, the maximum deviation for all cases with
𝑎 ≥ 0.5 lies at ≈ 4% while the limits are at ≈ 1% for 𝑎 < 1.0. We have summarized the limit
behavior of max (|Δ𝑟𝐶0(𝒓)|) in Table A.1. Note, that even if the maximum deviation does
not vanish with 𝐿 → ∞, its influence probably still goes to zero as the lattice size increases.
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Summary. This completes our analysis of the negative spectral density values. We
checked that the negative spectral density values occur systematically for 𝑎 < 1.0 and
lead to a finite maximum deviation between the initial correlation function and the final
correlation function after the Fourier transform, applying zero-cutoff on the spectral
density and transforming back. However, for 𝑎 > 1.0, the negative spectral density
values are finite-size effects which vanish for large enough lattice sizes 𝐿.

Table A.1: Expected of 𝑆
̌
(𝒌), 𝑆

̌
(𝒌)/ ̂𝑆(𝒌) and max (|Δ𝑟𝐶0(𝒓)|) for 𝐿 → ∞ for different correlation

exponent regions. Less or greater than zero is meant to be a finite value below or above zero, respec-
tively.

𝑎 < 1.0 𝑎 = 1.0 𝑎 > 1.0

𝑆
̌
(𝒌) −∞ < 0 > 0

𝑆
̌
(𝒌)/ ̂𝑆(𝒌) < 0 0 0

max (|Δ𝑟𝐶0(𝒓)|) < 0 0 0
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(a) Even 𝐿.
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(b) Odd 𝐿.
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(c) 𝑎 = 0.5.
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(d) 𝑎 = 0.8.
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(e) 𝑎 = 1.0.

2 4 6
lnL

0.00

0.02

0.04

m
a
x

(|∆
r
C

0
(r

)|)

8 16 32 64 128 256 512
L

(f) 𝑎 = 1.2.
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Figure A.3: Maximum relative deviations max(|Δ𝑟𝐶0(𝒓)|) in dependence of the lattice size 𝐿 and
correlation exponent 𝑎. Figures (a) and (b) show the even and odd 𝐿 cases while in Figures (c)–(g)
curves for individual 𝑎 are plotted. For 𝑎 ≥ 1.0, the deviations approach zero for even and odd 𝐿
cases. For 𝑎 < 1.0, a finite non-zero value is approached.
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A.2 Global fits

We would like to present you the concept of a global fit which was used at many places
throughout this work. Consider a set of 𝑁 data points of the for (𝑥𝑛, 𝑦𝑛, 𝜖(𝑦𝑛)) for 𝑛 =
1,… ,𝑁. You expect the data to be described by a model, i.e., a function 𝑓. The function f
has some parameters which one can get by using least-squares minimization, i.e., perform a
fit to the model 𝑓. Let 𝐴 and 𝐵 be the two parameters of the model. An example is a linear
function with

𝑓(𝑥;𝐴,𝐵) = 𝐴𝑥 + 𝐵 , (A.5)

a power-law function

𝑓(𝑥;𝐴,𝐵) = 𝐵 + 𝑥𝐴 , (A.6)

or an exponential function

𝑓(𝑥;𝐴,𝐵) = 𝐵 + 𝑒−𝐴𝑥 . (A.7)

Functions with more parameters can also be used, but we restrict the explanation to functions
with only two parameters for simplicity. By using the least-squares minimizer

𝜒2 =
𝑁

∑
𝑛=1

(
𝑦𝑛 − 𝑓(𝑥𝑛)

𝜖(𝑦𝑛)
)

2
, (A.8)

and a technique to minimize it, we finally obtain the estimates ̃𝐴 and 𝐵̃ for 𝐴 and 𝐵,
respectively, and their corresponding errors 𝜖( ̃𝐴) and 𝜖(𝐵̃). We do not go into the detail here
and refer to, e.g., Refs. [LH95; VV91] for a detailed explanation for the least-square fitting
method.

Now, consider that you have similar sets of data, e.g., by repeating the experiment/simu-
lation. Suppose, there are 𝑀 such sets, (𝑥𝑛

𝑚, 𝑦𝑛
𝑚, 𝜖(𝑦𝑛

𝑚)) with 𝑚 = 1,… ,𝑀. We can repeat
the process of fitting for each set 𝑚 and get 𝑀 estimates ̃𝐴𝑚 and 𝐵̃𝑚. But now, suppose,
that we know by theory or assumption that 𝐴 must be equal for all considered
data sets. Note, that the parameter 𝐵 can still vary for each data set. We can calculate the
weighted mean as a final estimate for the parameter 𝐴,

𝐴𝑤 = 1
∑𝑀

𝑚=1
1

𝜖( ̃𝐴𝑚)2

𝑀

∑
𝑚=1

̃𝐴𝑚

𝜖( ̃𝐴𝑚)2 , (A.9)

𝜖(𝐴𝑤) = √
1

∑𝑀
𝑚=1 𝜖( ̃𝐴𝑚)−2 . (A.10)

For comparison reasons we also calculated the standard (unweighted) mean of the individual
estimates,

𝐴𝑢 =
𝑀

∑
𝑚=1

̃𝐴𝑚 , (A.11)

𝜖(𝐴𝑢) =
√√√
⎷

1
𝑀(𝑀 − 1)

𝑀

∑
𝑚=1

( ̃𝐴𝑚 −𝐴𝑢)2 . (A.12)
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Using the weighted mean is a usual approach in such situations with individual fits. How-
ever, instead of this approach, we can perform one global fit which incorporates the data
from all 𝑀 data sets simultaneously and imposes the equality of the parameter 𝐴 a priori.
Let 𝐵𝑚 denote the parameter 𝐵 for the 𝑚-th data set and 𝐵 denote the vector of all 𝐵𝑚.
We modify the definition of the model to distinguish between the sets within the function 𝑓,
i.e., we write, e.g., for the linear case

𝑓(𝑥,𝑚;𝐴,𝐵) = 𝐴𝑥 + 𝐵𝑚 , (A.13)

and similar for other cases. The only thing that have changed compared to Equation (A.5) is
that we have introduced a parameter 𝑚 which indicates to which of the data sets the provided
𝑥 belongs and chooses the corresponding 𝐵𝑚 parameter. By using a function like the one
defined in Equation (A.13), we can write down a modified version of Equation (A.8),

𝜒2 =
𝑁

∑
𝑛=1

𝑀

∑
𝑚=1

(
𝑦𝑛

𝑚 − 𝑓(𝑥𝑛
𝑚,𝑚)

𝜖(𝑦𝑛
𝑚)

)
2
, (A.14)

and perform a minimization to get the estimates for the parameters 𝐴 and 𝐵𝑚 with 𝑚 =
1,… ,𝑀 and their errors. We will call them global fit estimates and write 𝐴𝑔 and 𝐵𝑔

𝑚,
respectively.

At the first glance both approaches provides very similar estimates, but we wanted to go
a bit deeper and see how 𝐴𝑤 and 𝐴𝑔 are related and how well they hit the true parameter
𝐴. We studied three toy examples which were introduced in Equations (A.5) to (A.7). The
setup was quite simple. We generated synthetic samples according to each of the models by
choosing a fixed value 𝐴, using a functional expression for the parameters 𝐵𝑚 and random
normally distributed errors. We varied the number of data sets 𝑀 and the number of points
in each set 𝑁 and performed 1000 global and the individual fits (and calculated the weighted
mean) for each combination of 𝑁 and 𝑀. To have comparable ranges, we used equally
distributed values 𝑥 from the range [1, 20] for each 𝑁. Finally, we calculated the means over
the estimates from these 1000 random realizations. i.e., 𝐴𝑔 and 𝐴𝑤. Let us first present the
settings for each of the cases,

linear case: 𝐴 = 1.2 , 𝐵𝑚 = 10 ⋅ 𝑚 , 𝜖(𝑦𝑛
𝑚) ∼ 𝒩 (0, 12) , (A.15a)

power-law case: 𝐴 = 1.2 , 𝐵𝑚 = 10 ⋅ 𝑚 , 𝜖(𝑦𝑛
𝑚) ∼ 𝒩(0, (1

2
𝑥𝑛

𝑚)
2
) , (A.15b)

exponential case: 𝐴 = 0.1 , 𝐵𝑚 = 𝑚 , 𝜖(𝑦𝑛
𝑚) ∼ 𝒩 (0, 0.12) . (A.15c)

We have tested many different combinations as well but the results for these parameters are
presented here as examples. In Figure A.4 we show how the synthetic data sets look like to
give a visual impression of what kind of fits we are trying to perform.

Let us start by comparing the qualities of the fits 𝜒2
red. For the global fit ansatz, it is the

finally obtained minimum value from Equation (A.14) divided by the total number of the
degrees of freedom. For the weighted mean ansatz, we calculated the weighted mean over
all (𝜒2

red)𝑚 of the individual fits as the final (𝜒2
red)

𝑤 while using the errors 𝜖( ̃𝐴𝑚) as weights.
Both values and their differences are presented in dependence of 𝑁 and 𝑀 in Figure A.5.
We see that for all chosen 𝑁 and 𝑀, the qualities are in a good region of 𝜒2

red ≈ 0.4 for
the linear case and 𝜒2

red ≈ 1.0 for the non-linear cases. Moreover, they are very comparable
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Figure A.4: Examples of the considered data sets with 𝑁 = 5 and 𝑀 = 5 for all three model cases.
The solid lines represent the global fit solution.

between the global fit and the weighted mean ansatzes. Comparing the difference, we can see
that for the linear case the two cases approach equality for increasing 𝑁 and increasing 𝑀.
On the other hand, there is no pronounced dependence on 𝑁 and 𝑀 for the two non-linear
cases. In the case of the exponential model, the global fit tends to have slightly larger values
than the weighted mean ansatz. But these deviations and fluctuations are probably due to
the rather small number of samples. The main outcome is that both ansatzes produce very
similar qualities of fit depending on the data.

Let us now discuss the difference between the global fit estimates 𝐴𝑔, the weighted mean
estimates 𝐴𝑤 and the true parameter 𝐴. The differences are presented in Figure A.6. There
exists no systematic dependence of the difference between the estimates and the true pa-
rameter for the linear case. Moreover, both estimates produce very similar differences with
𝐴 for each combination 𝑁 and 𝑀. In fact, the difference between the two estimates is in
the range of floating number errors with ∣𝐴𝑤 −𝐴𝑔∣ ≈ 10−10. Note, the in the linear case,
also the unweighted mean estimate 𝐴𝑢 is in a very good agreement with the other two es-
timates. The errors for both estimates are almost equal and their difference is of order
∣𝜖(𝐴𝑔) − 𝜖(𝐴𝑤)∣ ≈ 10−13. The picture changes for the nonlinear models. Here we see a clear

deviation between the estimates from the weighted mean ansatz 𝐴𝑤 and the true parameters
𝐴. The interesting thing is that the deviation become larger for increasing 𝑀. It means
that adding more individual data sets makes the weighted mean worse. On the other hand,
for increasing 𝑁 the deviations become smaller. For the global fit estimates 𝐴𝑔 we see an
approach to 𝐴 for larger 𝑁 and 𝑀. The global fit estimates therefore become more and
more precise with increasing both, the number of points in each data set and the number
of total data sets. Comparing the errors, we see that the error 𝜖(𝐴𝑔) is always larger than
𝜖(𝐴𝑤). However, the difference is quite small. The error 𝜖(𝐴𝑔) is expected to have a slightly
larger error since there are fewer degrees of freedom in the global fit than in total for all
individual fits. If we look at the fourth row in Figure A.6, we see that for the exponential
model, the results between 𝐴𝑔 and 𝐴𝑤 do not match even within their errorbars and that the
estimate 𝐴𝑤 clearly diverges away from the true value 𝐴. The same behavior, but a bit less
pronounced is also present for the power-law model. But why does it happen?

To answer this question, we looked at the dependence between the estimates 𝐴𝑤 and their
corresponding errors 𝜖(𝐴𝑤). They are presented in Figure A.7. At this point, everything
became clear. It is the correlation between 𝐴𝑤 and 𝜖(𝐴𝑤) which causes the divergence from
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(h) Power-law case.
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Figure A.5: The means of the qualities of fits (𝜒2
red)𝑔 and (𝜒2

red)𝑤. First row: qualities of the weighted
mean fit ansatz (𝜒2

red)𝑔, second row: qualities of the global fit ansatz (𝜒2
red)𝑔, third row: differences

(𝜒2
red)𝑤 − (𝜒2

red)𝑔.

the true parameter 𝐴. In the linear case there is no correlation present and hence 𝐴𝑔 = 𝐴𝑤

is true. This equality can be derived rigorously, but it would go beyond the scope of an
appendix to write the lengthy calculation down. On the other hand, in the case for the
nonlinear models, there is a clear dependence between 𝐴𝑤 and 𝜖(𝐴𝑤). Since the errors for
the power-law model are smaller for larger 𝐴𝑤, the weighted mean will favor larger values of
𝐴 and consequently the weighted mean will lie above , 𝐴𝑤 > 𝐴. For the exponential model
the opposite is the case and hence 𝐴𝑤 < 𝐴 is true. This can fluctuate from data set to data
set, but the general tendency will always remain. The consequence of this correlation between
the mean and its error goes even beyond the global fit versus weighted mean comparison.
Even by just repeating the same experiment/simulation multiple times and performing the
fit to the data with the same nonlinear model each time (even without different parameters
𝐵𝑚), the weighted mean will miss the true value because it will systematically favor one side
(above or below 𝐴). We have checked that for the very same power-law model but with
𝐵𝑚 = 0 for all 𝑚 and the effect remains.
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(e) Power-law case.

5 10 15
N

2

5

10

15

M

−0.02

0.00

0.02

A
−
A
g

(f) Exponential case.
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(h) Power-law case.
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Figure A.6: Comparison of the global fit estimates 𝐴𝑔, the weighted mean estimates 𝐴𝑤 and the true
parameter 𝐴 for various 𝑁 and 𝑀 and for all three considered models. First row: differences 𝐴−𝐴𝑔,
second row: differences 𝐴 − 𝐴𝑤, third row: difference between the errors 𝜖(𝐴𝑔) − 𝜖(𝐴𝑤), fourth row:
estimates 𝐴𝑔, 𝐴𝑤 and 𝐴𝑢 in dependence of 𝑀 for 𝑁 = 10 (the small horizontal shifts are added for
better visibility).



A.3 Stochastic clusters analysis 173

1.15 1.20 1.25
Aw

60

61

62

63

64

65

66

67
ε(
A
w

)

×10−13 + 1.6491567400× 10−2

(a) Linear case.

1.15 1.20 1.25
Aw

0.0120

0.0125

0.0130

0.0135

0.0140

0.0145

0.0150

0.0155

0.0160

ε(
A
w

)
(b) Power-law case.

0.050 0.075 0.100 0.125
Aw

0.006

0.008

0.010

0.012

0.014

0.016

ε(
A
w

)

(c) Exponential case.

Figure A.7: Dependence between the weighted mean 𝐴𝑤 and its error 𝜖(𝐴𝑤) for each realization and
for each of the considered models.

We tested many further considerations and nonlinear models sand all of them shown the
same behavior. And, as we already have noticed, this effects becomes worse and worse with
increasing number of data sets 𝑀. So, let us summarize the outcome.

Summary. We presented a global fit ansatz as an alternative to a weighted mean over
individual fits. It can be used whenever it is known that several data sets share the
same parameter. In fact, we showed that the weighted mean is a biased estimator for a
nonlinear fit ansatz because of the correlation between a fit a parameter and its error.
In our opinion, whenever possible, it is advisable to use the global fit ansatz which does
not suffer from this bias, or more precise, the correlation between 𝐴𝑔 and 𝜖(𝐴𝑔) is still
present, but it does not change the estimate 𝐴𝑔 itself.

A.3 Stochastic clusters analysis

We have not used the mean (𝐶) and maximum ( ̂𝐶) Swendsen-Wang stochastic cluster sizes,
which we measured during our simulation as described in Section 4.1. Nevertheless, we would
like to provide the data which we measured here. We will only present the sizes which were
measured at the simulation temperatures for which the final peaks of 𝜕𝛽(ln |𝑚|) were found.
That means, the presented data points are not exactly at the critical temperature but close
to it.

Let us start with the mean cluster sizes 𝐶 which are shown in Figure A.8. One sees, that
the values tend to approach a constant value for each 𝑝𝑑 with increasing 𝐿. Further, the sizes
increase with increasing concentration of defects 𝑝𝑑 for 𝑎 = ∞ and 𝑎 = 3.5. For the crossover
region at 𝑎 = 3.0 we see that the sizes approximately come together to one value for all 𝑝𝑑.
Decreasing 𝑎 further leads to a change in the behavior and the cluster sizes decrease with
increasing 𝑝𝑑. Unfortunately, we have no good explanation for this behavior at this point,
but it is definitely worth it to look at this phenomenon in more detail.
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Contrarily to the nice behavior of 𝐶, we do not see a comprehensive picture in the data
points for ̂𝐶 which are shown in Figure A.9. By dividing the data with 𝐿2.5 we see a more
or less constant behavior for all 𝑝𝑑 and 𝑎 but the spread of the data suggests that any
fit procedure would fail here. Probably, this is due to a rather small number if disorder
realizations 𝑁𝑐 = 1000.
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Figure A.8: The dependence of the mean stochastic cluster sizes 𝐶 on 𝐿 for all parameter tuples
(𝑎, 𝑝𝑑) near the finite-size critical temperatures of 𝜕𝛽(ln |𝑚|).
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Figure A.9: The dependence of the maximum stochastic cluster sizes ̂𝐶 on 𝐿 for all parameter tuples
(𝑎, 𝑝𝑑) near the finite-size critical temperatures of 𝜕𝛽(ln |𝑚|).

A.4 Implementation details

A.4.1 Simulation details

All simulations for this work were run on the local computing cluster at the Max Planck
Institute for Mathematics in the Sciences in Leipzig and at the Max Planck Computing and
Data Facility located in Garching. The average CPU frequency from all used CPUs was
about 2.4 GHz. With this average speed the total time spend on the simulation process was
about 1800CPU-years. This is a huge number, but after taking into account all considered
parameter tuples (𝑎, 𝑝𝑑, 𝐿, 𝛽sim) and the 𝑁𝑐 = 1000 realizations for each them, the number
becomes clear. Putted into other words, we usually had a parallelization of factor 1000 and
in this case the “physical” computation time boils down to 1.8 years. In order to get an
insight in the distribution of the computing time, we provide the time fractions used for
different correlation exponents 𝑎, the concentrations of defects 𝑝𝑑 and the lattice sizes 𝐿 in
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Figure A.10. We see that the times are more or less equally distributed with respect to
the studied concentrations of defects 𝑝𝑑 with a minor increase for larger 𝑝𝑑. Nearly half of
the time was spent on the two strongest correlation exponents 𝑎 = 2.0 and 𝑎 = 1.5. Both
tendencies are not surprising, since we usually used more simulation temperatures for larger
concentrations and stronger correlations due to a wider spread in the critical temperatures for
the individual disorder realizations. Finally, the three largest lattices sizes 𝐿 =192, 224, 256
used more than three quarters of the total time. It is a direct consequence of the computation
time being roughly proportional to the volume of the lattice 𝑉 = 𝐿𝑑. Moreover, we added
more simulation temperatures for 𝐿 = 256 in order to be able to use the temperature scaling
analysis.

All simulated temperatures are summarized in Figure A.11. We omitted the preparation
temperatures for which simulations up to 𝐿 = 48 were performed. See Section 4.1 for a full
description of the simulation process. The total amount of the simulated data in compressed
state is about 6.6 TB. We stored the whole time series for each simulation run to be able to
use reweighting techniques and other tools directly on the unprocessed observables.
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Figure A.10: Total computation time fractions with respect to various parameters. Note, that the
number of simulated temperatures is not reflected in these plots.

A.4.2 Code

We would like to provide the ȷulia code which was used for the simulations in this work. It
can be found in [@Git21]. Even though the repository can be in a more recent state, the
code presented here can be found by checking out the tag phd_thesis. The original code
was organized in modules but to keep it as simple as possible, the presented code is organized
in separate files and does not use any modules. As is common in ȷulia, the implemented
functions are preceded with a documentation string. In the syntax highlighting scheme used
below they are colored orange. Listings A.1 to A.3 provide the periphery needed for the
simulation process. In Listing A.4, the Ising model is defined and finally in Listing A.5 we
show an example usage of the presented code.

Our experience with the ȷulia implementation and usage on a large computation cluster
was very satisfying. There were some minor difficulties from time to time, but the general
case was a fluently and fast working code. A big advantage of the language was the mixing
between the simulation code, the analysis code and the plotting code.
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Figure A.11: Simulated temperatures for all parameter tuples (𝑎, 𝑝𝑑, 𝐿). For each 𝑎 and 𝑝𝑑 there are
three rows of temperatures. The bottom row corresponds to lattice sizes 𝐿 ≤ 96, the middle row is for
112 ≤ 𝐿 ≤ 224 and finally the top row is for 𝐿 = 256. For 𝑎 = ∞ and 3.5 the largest concentrations
are shifted to the left to fit better into the plot (the amount is annotated). The gray lines separate
different 𝑎 values.
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Listing A.1: lattice_utils.jl Contains utilities needed and useful for working with lattices. De-
fines the forward and backward indexing by applying boundary conditions.

1 using Colors
2 using Crayons
3 using Formatting
4
5 abstract type LatticeBC end
6 abstract type LinearBC <: LatticeBC end
7
8 struct PeriodicBC <: LinearBC end
9 struct APeriodicBC <: LinearBC end

10 struct FreeBC <: LinearBC end
11
12 @inline apply_bc(::PeriodicBC, x) = x
13 @inline apply_bc(::APeriodicBC, x) = −x
14 @inline apply_bc(::FreeBC, x) = zero(x)
15
16 """
17 display_lattice(Λ::AbstractArray [, prepare]; kwargs...)
18
19 Prints a 1, 2 or 3 dimentional array where each diffenret value gets a unique background color.
20
21 # Arguments
22 − `prepare::Function=x−>"\$(x)"`: apply on each array element before printing, return something printable
23 − `title::String=""`: optional title above the array output
24 − `minwidth::Int = 2`: minimal width (number of characters) for each array element
25
26 """
27 function display_lattice(Λ::AbstractArray, prepare::Function = x −> "$(x)"; title::String = "", minwidth::Int = 2)
28 L = size(Λ)
29 width = max(maximum(length.(prepare.(Λ))), minwidth − 1) + 1
30 unique_species = sort(unique(prepare.(Λ)))
31 colors_raw = distinguishable_colors(length(unique_species);lchoices = range(60; stop = 100, length = 15))
32
33 color_dict = Dict(unique_species[i] => reinterpret(UInt32, convert(RGB24, colors_raw[i])) for i in 1:length(

↪ unique_species))
34 fmt = "%$(width)s"
35 println(typeof(Λ))
36 title ≠ "" && println(title)
37 if ndims(Λ) == 1
38 for i in 1:L[1]
39 print(Crayon(background = color_dict[prepare(Λ[i])]), sprintf1(fmt, prepare(Λ[i])))
40 print(Crayon(reset = true), "\n")
41 end
42 elseif ndims(Λ) == 2
43 for i in 1:L[1]
44 for j in 1:L[2]
45 print(Crayon(background = color_dict[prepare(Λ[i,j])]), sprintf1(fmt, prepare(Λ[i,j])))
46 end
47 print(Crayon(reset = true), "\n")
48 end
49 elseif ndims(Λ) == 3
50 for k in 1:L[1]
51 println("level $k")
52 for i in 1:L[2]
53 for j in 1:L[3]
54 print(Crayon(background = color_dict[prepare(Λ[i,j,k])]), sprintf1(fmt, prepare(Λ[i,j,k])))
55 end
56 print(Crayon(reset = true), "\n")
57 end
58 print(Crayon(reset = true), "\n")
59 end
60 else
61 println("display_lattice not defined for ndims = $(ndims(Λ))")
62 end
63 print("\n")
64 end
65
66 """
67 unit(dims, dir::Integer)
68
69 Returns an Array as a unit vector in direction `dir` in `dims` dimentions.
70 `dims` can be an `Integer` or an `AbstractArray`
71 """
72 unit(dims::Integer, dir::Integer) = [dir == i ? 1 : 0 for i ∈ 1:dims]
73 unit(Λ::AbstractArray, dir::Integer) = unit(ndims(Λ), dir)
74
75 """
76 neighbor_back(Λ::AbstractArray, i, dir, bc = x −> x)
77
78 Returns the next nearest neigbor of site `i` on a lattice `Λ` backward in direction `dir`.
79 When the element is at boundary, applies `bc` to it.
80 """
81 @generated function neighbor_back(Λ::AbstractArray{T,N}, i, dir, bc = PeriodicBC()) where {T,N}
82 quote
83 $(Expr(:meta, :inline))
84 @inbounds begin
85 if i[dir] == 1
86 return apply_bc(bc, Λ[Base.Cartesian.@ncall $N CartesianIndex d −> (d ≠ dir ? i[d] : size(Λ, d))])
87 else
88 return Λ[Base.Cartesian.@ncall $N CartesianIndex d −> (d ≠ dir ? i[d] : i[d] − 1)]
89 end
90 end
91 end
92 end
93
94 """
95 neighbor_for(Λ::AbstractArray, i, dir, bc = x −> x)
96
97 Returns the next nearest neigbor of site `i` on a lattice `Λ` forward in direction `dir`.
98 When the element is at boundary, applies `bc` to it.
99 """
100 @generated function neighbor_for(Λ::AbstractArray{T,N}, i, dir, bc = PeriodicBC()) where {T,N}
101 quote
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102 $(Expr(:meta, :inline))
103 @inbounds begin
104 if i[dir] == size(Λ, dir)
105 return apply_bc(bc, Λ[Base.Cartesian.@ncall $N CartesianIndex d −> (d ≠ dir ? i[d] : 1)])
106 else
107 return Λ[Base.Cartesian.@ncall $N CartesianIndex d −> (d ≠ dir ? i[d] : i[d] + 1)]
108 end
109 end
110 end
111 end
112
113 """
114 neighbor_ind_back(Λ::AbstractArray, i, dir)
115
116 Returns the `CartesianIndex` of the next nearest neigbor of site `i` on a lattice `Λ` backward in direction `dir`.
117 """
118 @generated function neighbor_ind_back(Λ::AbstractArray{T,N}, i, dir) where {T,N}
119 quote
120 $(Expr(:meta, :inline))
121 @inbounds begin
122 return Base.Cartesian.@ncall $N CartesianIndex d −> (d ≠ dir ? i[d] : (i[dir] == 1 ? size(Λ, d) : i[d] − 1))
123 end
124 end
125 end
126
127 """
128 neighbor_ind_for(Λ::AbstractArray, i, dir)
129
130 Returns the `CartesianIndex` of the next nearest neigbor of site `i` on a lattice `Λ` forward in direction `dir`.
131 """
132 @generated function neighbor_ind_for(Λ::AbstractArray{T,N}, i, dir) where {T,N}
133 quote
134 $(Expr(:meta, :inline))
135 @inbounds begin
136 return Base.Cartesian.@ncall $N CartesianIndex d −> (d ≠ dir ? i[d] : (i[dir] == size(Λ, d) ? 1 : i[d] + 1))
137 end
138 end
139 end
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Listing A.2: hoshen_kopelman_clustering.jl Implements the Hoshen-Kopelman clustering algo-
rithm [HK76] for arbitrary dimensions and different bond conditions functions.

1 """
2 hk_find!(x::Int, labels::Array{Int,1})
3
4 Finds the proper label for the culster number `x` in `labels`
5 """
6 @inline function hk_find!(x::Int, labels::Array{Int,1})
7 @inbounds while labels[x] ≠ x
8 p = labels[x]
9 labels[x] = labels[p]

10 x = p
11 end
12 return x
13 end
14
15 """
16 hk_union!(x, y, labels)
17
18 Unite cluster labels `x` and `y` in `labels`
19 """
20 hk_union!(x, y, labels) = @inbounds labels[hk_find!(x, labels)] = hk_find!(y, labels)
21
22 """
23 hk_cluster!(Λ::Array{T, N}, Γ::Array{Int, N}, labels::Array{Int,1}, bc::NTuple{N, Function}, bond_condition::Function ,

↪ empty_site::T = zero(T))
24
25 Clusterize the lattice `Λ` and writes the cluster labels to `Γ`, the proper labels to `labels` and the maximum label

↪ counter to `max_label`.
26
27 `bond_condition` is a function which takes `(x,y,i,d)` as arguments and returns a bool.
28 `x` and `y` are the values on the neighboring sites,`i` is the index of `x` and `d` is the direction of the bond.
29 `bc` is a tuple of boundary conditions for each direction.
30 `empty_site` describes which sites to skip (empty).
31 """
32 @generated function hk_cluster!(Λ::Array{T,N}, Γ::Array{Int,N}, labels::Array{Int,1}, bc::NTuple{N,LinearBC},

↪ bond_condition::Function, empty_site::T = zero(T)) where {T,N}
33 return quote
34 @inbounds begin
35 for i ∈ 1:length(Γ)
36 Γ[i] = 0
37 labels[i] = i
38 end
39 max_label = 0
40 for i ∈ CartesianIndices(size(Γ))
41 Λ[i] ≠ empty_site || continue
42 Base.Cartesian.@nexprs $N d −> (begin
43 nn = neighbor_ind_for(Γ, i, d)
44 if Γ[i] == 0
45 if bond_condition(Λ[i], (nn[d] == 1 ? apply_bc(bc[d], Λ[nn]) : Λ[nn]), i, d)
46 if Γ[nn] == 0
47 Γ[i] = Γ[nn] = max_label += 1
48 else
49 Γ[i] = Γ[nn]
50 end
51 else
52 Γ[i] = max_label += 1
53 end
54 else
55 if bond_condition(Λ[i], (nn[d] == 1 ? apply_bc(bc[d], Λ[nn]) : Λ[nn]), i, d)
56 if Γ[nn] == 0
57 Γ[nn] = Γ[i]
58 else
59 hk_union!(Γ[i], Γ[nn], labels)
60 end
61 end
62 end
63 end)
64 end
65 return max_label
66 end
67 end
68 end
69
70 """
71 hk_relabel!(Γ::Array{T, N}, old_labels::Array{Int}, max_label::Int)
72
73 Relabels the cluster lattice `Γ` with subsequent labels and returns the number of clusters.
74 """
75 function hk_relabel!(Γ::Array{T,N}, old_labels::Array{Int}, max_label::Int) where {T,N}
76 label = 0
77 labels = fill(0, max_label)
78
79 @inbounds for i ∈ 1:length(Γ)
80 Γ[i] ≠ 0 || continue
81 current = hk_find!(Γ[i], old_labels)
82 if labels[current] == 0
83 labels[current] = label += 1
84 end
85 Γ[i] = labels[current]
86 end
87 return label
88 end
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Listing A.3: disorder_generator.jl Implements the long-range disorder generation with the
Fourier Filter Method [Mak+95; Zie+17]. This implementation was not used in the present work,
instead the C++ implementation from Ref. [Zie+17] was used as a shared library.

1 using Statistics
2 using StatsBase
3 using LinearAlgebra
4 using FastTransforms
5 using Distributions
6 using Random
7
8 periodic_dist(x, L) = x ≤ L / 2 ? x : L − x
9
10 """
11 generate_corr_matrix(dims::Tuple, C::Function; T::Type = Float64)
12
13 Calculate the function `C` for each distance `r` and returns an array where each C(r) is stored.
14 The distnace `r` is measured from upper left corner and implies periodic boundary conditions.
15
16 # Arguments:
17 − `dims::Tuple`: dimensions of the desired lattice
18 − `C::Function`: desired correlation function `C(r)`
19 − `T::Type = Float64`: type of the retured array
20 """
21 function generate_corr_matrix(dims::Tuple, C::Function; T::Type = Float64)
22 Λ = Array{T}(undef, dims)
23 fill_periodic_distances!(Λ, C)
24 return Λ
25 end
26
27 """
28 fill_periodic_distances!(Λ::AbstractArray, C::Function)
29
30 Helper function for the `generate_corr_matrix` function.
31 The type of `Λ` is known on call and therefore can this inner function works faster.
32
33 # Arguments:
34 − `Λ::AbstractArray`: array to save the `C(r)` to
35 − `C::Function`: desired correlation function `C(r)`
36 """
37 function fill_periodic_distances!(Λ::AbstractArray, C::Function)
38 for i ∈ CartesianIndices(Λ)
39 r = norm(periodic_dist.(Tuple(i) .− 1, size(Λ)))
40 Λ[i] = C(r)
41 end
42 end
43
44 """
45 generate_continuous_disorder(dims::Tuple, S::AbstractArray)
46
47 Produces an array with dimensions `dims` with correlated disorder where the correlation follows the function `C(r)`
48
49 # Arguments:
50 − `dims::Tuple`: dimensions of the desired lattice
51 − `C::Function`: desired correlation function `C(r)`
52 − `RNG = Random.MersenneTwister(1)`: a random number generator for the continuous disorder
53 """
54 function generate_continuous_disorder(dims::Tuple, S::AbstractArray, RNG)
55 φq = sqrt.(max.(S, 0)) .∗ rand.(RNG, Normal(0, √(2 ∗ prod(dims)))) # 2V = 2prod(dims) is used because the random numbers

↪ are produced only in real space
56 φ = real.(ifft(φq))
57 return φ
58 end
59
60 """
61 generate_spectral_density(dims::Tuple, C::Function)
62
63 Produces a spectral density array with dimensions `dims` of the array with `C(r)` entries
64
65 # Arguments:
66 − `dims::Tuple`: dimensions of the desired lattice
67 − `C::Function`: desired correlation function `C(r)`
68 """
69 generate_spectral_density(dims::Tuple, C::Function) = real.(fft(generate_corr_matrix(dims, C)))
70
71 """
72 transform_to_discrete_disorder(Λ::AbstractArray, p::Number; T = Int8(1), F = Int8(0))
73
74 Produces a truncated array similar to `Λ` but only with `T` and `F` values.
75 The concentration of `T` is given through `p`.
76
77 # Arguments:
78 − `Λ::AbstractArray`: expect an array with continuous correlated numbers
79 − `p::Number`: concentration of `T` values
80 − `T = Int8(1)`: values with concentration `p` to fill into the returned array
81 − `F = Int8(0)`: values with concentration `1 − p` to fill into the returned array
82 − `RNG = Random.MersenneTwister(1)`: a random number generator for the continuous disorder
83 """
84 transform_to_discrete_disorder(Λ::AbstractArray, p::Number; T = Int8(1), F = Int8(0)) = [i ≤ quantile(Normal(0, 1), p) ? T

↪ : F for i ∈ Λ]
85
86 function generate_discrete_correlated_disorder(dims::Tuple; p::Number = 0.5, a = 1.0, C = (r, a) −> (1 + r^2)^(−a / 2), T

↪ = Int8(1), F = Int8(0), RNG = Random.MersenneTwister(1))
87 S = generate_spectral_density(dims, r −> C(r, a))
88 Λc = generate_continuous_disorder(dims, S, RNG)
89 Λd = transform_to_discrete_disorder(Λc, p; T, F)
90 return Λd
91 end
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Listing A.4: ising_model.jl Implementation of the Ising model and the Swendsen-Wang multiple-
cluster update algorithm [SW87]. Additionally, the functions for the calculation of observables, and
higher-level functions for generating long-range correlated and uncorrelated disordered lattices for the
Ising model and a full simulation run including the saving process are provided.

1 using Random
2 using JLD2
3 using FileIO
4 using LinearAlgebra
5 using StatsBase: counts, weights
6
7 include("lattice_utils.jl")
8 include("hoshen_kopelman_clustering.jl")
9 include("disorder_generator.jl")

10
11 mutable struct IsingModel{T,N,F <: NTuple{N,LinearBC},TJ <: Number,Tβ <: Number}
12 Λ::Array{T,N}
13 bc::F
14 empty_site::T
15 Nempty::Int
16 V::Int
17 J::TJ
18 β::Tβ
19 Γ::Array{Int,N}
20 labels::Array{Int,1}
21 max_label::Int
22 FT1::Array{Complex{Float64},N}
23 RNG::Random.MersenneTwister
24 end
25 IsingModel(Λ::Array{T,N}, bc::F, seed::Int = 0) where {T,N,F} = IsingModel(Λ, bc, zero(T), count(i −> i == zero(T), Λ),

↪ prod(size(Λ)), 1, 0.1, similar(Λ, Int), Array{Int}(undef, length(Λ)), 1, calc_FT_mode(Λ, unit(Λ, 1)), Random.
↪ MersenneTwister(seed))

26
27 """
28 sw_update!(M::IsingModel{T}, empty_site::T = zero(T))
29
30 Swendsen−Wang update of the model `M`
31 """
32 function sw_update!(M::IsingModel{T}, empty_site::T = zero(T); p_bond = 0.0) where {T}
33 M.max_label = hk_cluster!(M.Λ, M.Γ, M.labels, M.bc, (x, y, i, d) −> (x == y && rand(M.RNG) < p_bond), empty_site)
34 M.max_label = hk_relabel!(M.Γ, M.labels, M.max_label)
35 new_values = rand(M.RNG, Array{T}([−1,1]), M.max_label)
36
37 @inbounds for i ∈ eachindex(M.Λ)
38 M.Λ[i] == empty_site || (M.Λ[i] = new_values[M.Γ[i]])
39 end
40 return nothing
41 end
42
43 "Energy of the Ising Model `M`"
44 function energy(M::IsingModel)
45 s::Int = 0
46 @inbounds @simd for i ∈ CartesianIndices(size(M.Λ))
47 @inbounds for d ∈ 1:ndims(M.Λ)
48 s += M.Λ[i] ∗ neighbor_for(M.Λ, i, d, M.bc[d])
49 end
50 end
51 return −M.J ∗ s
52 end
53
54 "Magnetization of the Ising Model `M`"
55 function magnetization(M::IsingModel)
56 s::Int = 0
57 @inbounds @simd for i ∈ eachindex(M.Λ)
58 s += M.Λ[i]
59 end
60 return s
61 end
62
63 "Mean size of the stohastic clusters of the Ising Model `M`"
64 stohastic_cluster_mean(M::IsingModel) = (M.V − M.Nempty) / M.max_label
65 "Maximal size of the stohastic clusters of the Ising Model `M`"
66 stohastic_cluster_max(M::IsingModel) = maximum(counts(M.Γ, 1:M.max_label))
67
68 "Maximal size of the geometric clusters of the Ising Model `M`"
69 function geometric_cluster_max(M::IsingModel)
70 M.max_label = hk_cluster!(M.Λ, M.Γ, M.labels, M.bc, (x, y, i, d) −> (x == y), M.empty_site)
71 M.max_label = hk_relabel!(M.Γ, M.labels, M.max_label)
72 return stohastic_cluster_max(M::IsingModel)
73 end
74 ### call only AFTER!!! geometric_cluster_max, because the latter generates the clusters
75 "Mean size of the geometric clusters of the Ising Model `M`"
76 geometric_cluster_mean(M::IsingModel) = stohastic_cluster_mean(M::IsingModel)
77
78 "Precalcultion of the Fourier transformed exponentials with vector `k`"
79 calc_FT_mode(Λ::AbstractArray, k::Vector) = return reshape([exp(im ∗ dot([Tuple(CartesianIndices(Λ)[i])...] .− 1, k .∗ (2π

↪ ./ size(Λ)))) for i ∈ eachindex(Λ)], size(Λ)...)
80
81 "Fourier mode in (1,0,...) direction for the Ising Model `M`"
82 correlation_FT1_mode(M::IsingModel) = abs(sum(M.Λ .∗ M.FT1))^2
83
84 alias_to_observable = Dict{Symbol,Function}(
85 :E => energy,
86 :M => magnetization,
87 :Csmean => stohastic_cluster_mean,
88 :Csmax => stohastic_cluster_max,
89 :Cgmean => geometric_cluster_mean,
90 :Cgmax => geometric_cluster_max,
91 :FT1 => correlation_FT1_mode,
92 )
93 observable_to_alias = Dict{Function,Symbol}(reverse(p) for p ∈ pairs(alias_to_observable))
94
95 "Initialize the `NamedTuple` for the observables given in `aliases` with `Nmeas` number of measurements"
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96 function init_observables(model::IsingModel, aliases::Array{Symbol}, Nmeas::Int)
97 return NamedTuple{Tuple(aliases)}(Array{typeof(alias_to_observable[i](model))}(undef, Nmeas) for i ∈ aliases)
98 end
99

100 "Calculate observables given as Array of `aliases` and store in `D` at row `m`"
101 function calc_observables!(M::IsingModel, D::NamedTuple, m::Int, aliases::Array{Symbol})
102 for a ∈ aliases
103 D[a][m] = alias_to_observable[a](M)
104 end
105 end
106
107 """
108 generate_defected_ising_lattice(L, dim, seed, pd, a;T::Type=Int)
109 Generate a (correlated) defected lattice of size `L^dim` with correlation exponent `a`, defect concentration `pd`,

↪ gaussian width `sigma2`. Potentially convert elements to type `T`.
110
111 """
112 function generate_defected_ising_lattice(L, dim, seed, pd, a; T::Type = Int,)
113 RNG = Random.MersenneTwister()
114 if pd == 0.0
115 println("return pure ising lattice")
116 return reshape(convert.(T, rand(RNG, [−1,1], L^dim)), ntuple(d −> L, dim))
117 end
118
119 if a == Inf
120 println("return uncorrelated ising lattice")
121 Λ = reshape(convert.(T, rand(RNG, [−1,1], L^dim)), ntuple(d −> L, dim))
122 for i ∈ eachindex(Λ)
123 rand(RNG) < pd && (Λ[i] = zero(T))
124 end
125 return Λ
126 end
127
128 println("return correlated ising lattice")
129
130 Λ = generate_discrete_correlated_disorder(ntuple(d −> L, dim); p = 1 − pd, a, RNG)
131 for i ∈ eachindex(Λ)
132 if isapprox(Λ[i], 0.0)
133 Λ[i] = 0.0
134 else
135 rand(RNG) > 0.5 ? Λ[i] = 1.0 : Λ[i] = −1.0
136 end
137 end
138 return Λ
139 end
140
141 """
142 run_simulation(ising::IsingModel; kwargs...)
143
144 Performs a series of simulations at each temperature from `β_array`.
145 Start with a prethermalization and thermalized betwwen each temperature.
146
147 The saved result consists of:
148 − `data`: the measured observables as `Array{NamedTuple}`
149 − `ising`: the final state of the model
150 − `config`: the parameters passed to `run_simulation` function
151 − `total_time`: elapsed time
152 A NamedTuple `(;data, config, total_time, cfg_params)` is returned.
153
154 ### Arguments
155 − `β_array = 0.2:0.1:0.5`: the β range for the simulation
156 − `Ntherm::Int = 0`: number of thermalization sweeps before each β
157 − `Nmeas::Int = 1`: number of measurements at each β
158 − `Nbetween::Int = 1`: number of sweeps between two subsequent measurements (1 means measure after each sweep)
159 − `obs_aliases::Array{Symbol} = [:E, :M, :Csmax, :Csmean, :Cgmax, :Cgmean, :FT1]`: observables to measure. Possible

↪ aliases are: $(keys(alias_to_observable)). `Cgmax` ∗∗must∗∗ come before `Cgmean` and is needed for the latter.
160 − `output_dir = "./observables/"`: directory for the output
161 − `name_prefix = "ising_"`: prefix for the generated name
162 − `name_suffix = "_raw_observables"`: suffix for the generated name
163 − `save_data = true`: whether to save the data
164 − `cfg_params = (;)`: parameters of the cfg which was used (provided by the user)
165 − `verbose = 0`: defined the level of verbosity (0−2)
166 """
167 function run_simulation(
168 ising::IsingModel;
169 β_array = 0.2:0.1:0.5,
170 Ntherm::Int = 0,
171 Npretherm::Int = 0,
172 Nmeas::Int = 0,
173 Nbetween::Int = 1,
174 obs_aliases::Array{Symbol} = [:E, :M, :Csmax, :Csmean, :Cgmax, :Cgmean, :FT1],
175 output_dir::String = "./observables/",
176 name_prefix::String = "ising_",
177 name_suffix::String = "_raw_observables",
178 save_data::Bool = true,
179 cfg_params::NamedTuple = NamedTuple(),
180 verbose::Int = 0,
181 compress = true,
182 )
183 ### preparation
184 L = size(ising.Λ, 1)
185 dim = length(size(ising.Λ))
186
187 ## generate names and directories
188 save_data && mkpath(output_dir)
189 result_file = "$(output_dir)/$(name_prefix)d$(dim)_L$(L)$(name_suffix).jld2"
190
191 time1 = time_ns()
192
193 config = (β_array = β_array, Ntherm = Ntherm, Nmeas = Nmeas, Nbetween = Nbetween, Npretherm = Npretherm, obs_aliases =

↪ obs_aliases, verbose = verbose)
194
195 ### initialization
196 ising.β = β_array[1]
197 p_bond = 1 − exp(−2 ∗ β_array[1] ∗ ising.J)
198 data = Array{NamedTuple}(undef, 0)
199
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200 ### pre−thermalization
201 verbose ≥ 1 && println("start simulations")
202 verbose ≥ 2 && println(" start $Npretherm pre−thermalization sweeps")
203 for sweep ∈ 1:Npretherm; sw_update!(ising; p_bond = p_bond) end
204
205 for β ∈ β_array
206 verbose ≥ 1 && println(" start simulation at β = $β")
207 ising.β = β
208 p_bond = 1 − exp(−2 ∗ β ∗ ising.J)
209
210 data_at_β = init_observables(ising, obs_aliases, Nmeas)
211 ### thermalization
212 verbose ≥ 2 && println(" start $Ntherm thermalization sweeps")
213 for sweep ∈ 1:Ntherm
214 sw_update!(ising; p_bond = p_bond)
215 end
216
217 ### measurements
218 verbose ≥ 2 && println(" start $Nmeas measurements")
219 for meas ∈ 1:Nmeas
220 for sweep ∈ 1:Nbetween
221 sw_update!(ising; p_bond = p_bond)
222 end
223 calc_observables!(ising, data_at_β, meas, obs_aliases)
224 end
225 push!(data, merge((β = β, L = size(ising.Λ)), data_at_β))
226 end
227 verbose ≥ 1 && println("end simulations")
228
229 time2 = time_ns()
230
231 total_time = (meas_time = (time2 − time1) / 1.0e9)
232
233 if save_data
234 verbose ≥ 1 && println("saving data to $(result_file)")
235 jldopen(result_file, true, true, true, IOStream; compress = compress) do file
236 file["data"] = data
237 file["config"] = config
238 file["total_time"] = total_time
239 file["cfg_params"] = cfg_params
240 end
241 verbose ≥ 1 && println("saving data finished")
242 end
243 return (;data, config, total_time, cfg_params)
244 end

Listing A.5: test_runs.jl Example usage of the Ising model and a comparison of the measured
data to exact data for a two-dimensional pure Ising model.

1 include("ising_model.jl")
2
3 using QuadGK
4
5 ### set parameters
6 dim = 2
7 a = 2.0
8 pd = 0.0
9 L = 32

10 seed = 1
11
12 V = L^dim
13
14 ### temperautre range
15 β_array = 0.4:0.001:0.5
16
17 ### init Ising model and run simulaiton
18 IM = IsingModel(generate_defected_ising_lattice(L, dim, seed, pd, a), ntuple(d −> PeriodicBC(), dim), seed)
19
20 D = run_simulation(IM; β_array = β_array, Npretherm = 1000, Ntherm = 100, Nmeas = 1000, save_data = true, cfg_params = (;

↪ L, a, pd, seed, dim), verbose = 1)
21
22 ### calcualte observables
23 e_mean = [mean(d.E) / V for d ∈ D.data]
24 m_mean = [mean(abs.(d.M)) / V for d ∈ D.data]
25 χ_mean = [(mean(d.M.^2) − mean(abs.(d.M)).^2) ∗ d.β / V for d ∈ D.data]
26
27 ### exact results for 2d
28 K(β; J = 1) = 1 / (sinh(2 ∗ β ∗ J) ∗ sinh(2β ∗ J))
29 IntΘ(β; J = 1) = quadgk(Θ −> 1 / sqrt(1 − 4 ∗ K(β;J = J) ∗ (1 + K(β;J = J))^−2 ∗ sin(Θ)^2), 0, π / 2; rtol = 1e−8)[1]
30
31 u∞(β; J = 1) = −J ∗ coth(2β ∗ J) ∗ (1 + 2 / π ∗ (2 ∗ tanh(2β ∗ J)^2 − 1) ∗ IntΘ(β; J = J))
32 m∞(β; J = 1) = β > log(1 + √2) / 2 / J ? (1 − sinh(2β ∗ J)^(−4))^(1 / 8) : 0.0
33
34 ### plot results
35 using Plots
36
37 plot(β_array, e_mean, label = "e")
38 plot!(β_array, m_mean, label = "m")
39 plot!(β_array, u∞.(β_array), label = "e exact")
40 plot!(β_array, m∞.(β_array),label = "m exact", xlabel = "β", ylabel = "e, m")
41 plot!(twinx(), β_array, χ_mean, label = "χ", legend = :right, ylabel = "χ")
42
43 ### check correlated disorder
44 IM = IsingModel(generate_defected_ising_lattice(16, 2, 1, 0.2, Inf), ntuple(d −> PeriodicBC(), dim), seed)
45 display_lattice(IM.Λ)
46
47 IM = IsingModel(generate_defected_ising_lattice(16, 2, 1, 0.2, 2.0), ntuple(d −> PeriodicBC(), dim), seed)
48 display_lattice(IM.Λ)
49
50 IM = IsingModel(generate_defected_ising_lattice(16, 2, 1, 0.2, 1.0), ntuple(d −> PeriodicBC(), dim), seed)
51 display_lattice(IM.Λ)
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