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ABSTRACT

Since the discovery of the structure of deoxyribonucleic acid (DNA) in the early
1953s, and its double-chained complement of information hinting at its means
of replication, biologists have recognized the strong connection between
molecular structure and function. In the past two decades, there has been a
surge of research on an ever-growing class of ribonucleic acid (RNA)molecules
that are non-coding but whose various folded structures allow a diverse
array of vital functions. From the well-known splicing and modification of
ribosomal RNA, non-coding RNAs (ncRNAs) are now known to be intimately
involved in possibly every stage of DNA translation and protein transcription,
as well as RNA signalling and gene regulation processes.

Despite the rapid development and declining cost of modern molecular
methods, they typically can only describe ncRNA’s structural conformations
in vitro, which differ from their in vivo counterparts. Moreover, it is estimated
that only a tiny fraction of known ncRNA has been documented experimentally,
often at a high cost. There is thus a growing realization that computational
methodsmust play a central role in the analysis of ncRNAs. Not only do compu-
tational approaches hold the promise of rapidly characterizing many ncRNAs
yet to be described, but there is also the hope that by understanding the rules
that determine their structure, we will gain better insight into their function
and design. Many studies revealed that the ncRNA functions are performed
by high-level structures that often depend on their low-level structures, such
as the secondary structure. This thesis studies the computational folding
mechanism and inverse folding of ncRNAs at the secondary level.

In this thesis, we describe the development of two bioinformatic tools that
have the potential to improve our understanding of RNA secondary structure.
These tools are as follows: (1) RAFFT for efficient prediction of pseudoknot-free
RNA folding pathways using the fast Fourier transform (FFT); (2) aRNAque, an
evolutionary algorithm inspired by Lévy flights for RNA inverse folding with
or without pseudoknot (A secondary structure that often poses difficulties
for bio-computational detection).

The first tool, RAFFT, implements a novel heuristic to predict RNA secondary
structure formation pathways that has two components: (i) a folding al-
gorithm and (ii) a kinetic ansatz. When considering the best prediction
in the ensemble of 50 secondary structures predicted by RAFFT, its perfor-
mance matches the recent deep-learning-based structure prediction methods.
RAFFT also acts as a folding kinetic ansatz, which we tested on two RNAs: the
coronavirus frameshifting stimulation element (CFSE) and a classic bi-stable
sequence. In both test cases, fewer structures were required to reproduce the
full kinetics, whereas known methods (such as Treekin) required a sample
of 20, 000 structures and more.
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The second tool, aRNAque, implements an evolutionary algorithm (EA) in-
spired by the Lévy flight, allowing both local global search, and which sup-
ports pseudoknotted target structures. The number of point mutations at
every step of aRNAque EA is drawn from a Zipf distribution. Therefore, our
proposed method increases the diversity of designed RNA sequences and
reduces the average number of evaluations of the evolutionary algorithm.
The overall performance showed improved empirical results compared to
existing tools through intensive benchmarks on both pseudoknotted and
pseudoknot-free datasets.

In conclusion, we highlight some promising extensions of the versatile
RAFFT’s method to RNA-RNA interaction studies. We also provide an outlook
on both tools’ implications in studying evolutionary dynamics.
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Figure 1.5 Pseudoknot patterns found in the PseudoBase++. For
each pseudoknot patterns, the different rows represent
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Figure 1.6 Different secondary structure representations of a
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Figure 1.9 Evolutionary algorithm flow diagram. The algorithm
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INTRODUCT ION

1.1 survey

DNAs and RNAs are macromolecules in cells that allow storing information
with the help of nucleotides. Nucleotides consist of a five-carbon sugar, a
phosphate group, and a nucleobase. Four nucleotides are in the DNA, distin-
guished by their nucleobases: A for Adenine, T for Thymine, G for Guanine,
and C for Cytosine. Similar to DNA, we also find four different nucleotides
in RNA, also distinguished by their nucleobases with only one exception; the
Uracil (U), which replaces Thymine in DNA. Even though the basis blocks
constituting the DNA were known for many years, in 1953, James Watson
and Francis Crick [209] succeeded in putting them together and suggested
a reasonable DNA structure. Their work revealed for the first time that the
structure of DNA molecules has helical chains, each coiled around the same
axis where the chain consists of phosphate dieter groups. The two chains are
held together by the purines and pyrimidine bases; they are joined together
in pairs, a single base from the other chain bonded to a single base from one
chain. For the binding to occur, one of the pairs must be Adenine and Thymine
or Guanine and Cytosine. A DNA molecule structure is depicted on the right
side of the page. In contrast to DNA, RNAs are mostly single-stranded, and the
complementary pairings formed in the structure are A-U, G-U and G-C.

Helical rep-
resentation
of DNA
structures
[209].

Watson and Crick’s elucidation of DNA structure has motivated many other
scientists to investigate further the structural implications of molecules in
functions such as replication and gave rise to modernmolecular biology. Later
in the same year, Crick formulated the central dogma of molecular biology
that describes the flow of information from DNA to messenger RNA (mRNA)
through transcription and from mRNAs to proteins through translation [27].
Since this information flow was proposed, more works have been done to
investigate each step.

But not all RNAs are translated into proteins; in other terms, not all RNAs
are mRNAs. There are mainly two RNA groups: coding RNAs (cRNAs) that are
translated into proteins, and non-coding RNAs that are not translated into
proteins. During the transcription and translation steps in the information
flow, some vital functions are performed by ncRNAs such as ribosomal RNA
(rRNA) and tRNA. The tertiary structure of a tRNA is shown in Figure 1.1.

The study of such RNAs revealed that rRNAs, rather than ribosomal proteins,
catalyze the synthesis of proteins (i.e. the polymerization of amino acids),
distinguish between correct and incorrect codon-anticodon pairs and prevent
the premature hydrolysis of peptidyl-tRNAs [16, 134]. Apart from being
central to the protein machinery, ncRNAs regulate various biological functions

1
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Figure 1.1: The tertiary structure of tRNA. The CCA-tail is in yellow, the acceptor
stem in purple, the variable loop in orange, D-arm in red, the anticodon
arm in blue with anticodon in black, and T-arm in green (Taken from
Wikipedia)

in transcriptional interference, telomere maintenance, epigenetic changes,
imprinting, post-transcriptional, translational control, structural organization,
cell differentiation and development [51, 160]. We are interested in this work
in the structures of ncRNAs.

The function of ncRNAs is largely determined by their high-dimensional
structure [20]. For instance, we can analyze the catalytic function of ribozymes
in terms of basic structural motifs, e.g. hammerhead or hairpin structures
[40]. Other RNAs, like riboswitches, involve changes between alternative
structures [203]. Understanding the relation sequence and structure is a
central challenge in molecular biology. In the last 20 years, many different
methods for determining the RNA structures of molecules have emerged: from
experimental lab methods to computational approaches. For experimental lab
methods, X-ray crystallography and the nuclear magnetic resonance (NMR)
are the most accurate approaches to offer structural information at a single
base-pair resolution. Both experimental methods are often characterized by
high experimental cost and low throughput. In addition to those limitations,
RNA molecules are volatile and difficult to crystallize.

Despite the development of more sophisticated techniques to infer the
state of nucleotides in RNA molecules using enzymatic [96, 201] or chemical
probes [194, 213] coupled with next-generation sequencing [13, 193], most of
them can only capture RNA structures in vitro which mostly differ from the in
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vivo structure conformations. Experimentally, only a tiny fraction of known
ncRNAs has been determined [143]. Because measuring the structure of RNAs
experimentally is very difficult and expensive, computational approaches
play a central role in the analysis of natural RNAs [50, 168], and are an essential
alternative to experimental approaches.

Given the ncRNA sequence of bases (primary structure), RNAs fold into
secondary structures, such as stem loops and pseudoknots, before folding into
higher level (tertiary and quaternary) structures [17, 195]. This separation of
time scales justifies focusing on the secondary structure prediction; evidence
suggests that the RNA’s secondary structures largely determine the resulting
high-level structures [195].

This thesis focuses on computational methods addressing RNA molecules’
folding and inverse folding at the secondary level. This introductory chapter
presents a brief overview of the non-coding RNA concepts. The overview
concepts contain biological and biochemical structure definitions of the non-
coding RNAs. It also gives an overview of different techniques used to identify
new ncRNAs and some applications. It concludes by providing the bioinfor-
matic definitions of RNA secondary structure that constitute the basis and
understanding of computational methods and the results presented in this
thesis.

1.2 characteristics and biological functions of ncrna

In the previous section,we introduced the classical view of information flow in
microbiology. Two important ncRNAs involved in the protein machinery have
been highlighted (tRNA and rRNA). In this section, we provide some of the
main characteristics of ncRNAs, and we emphasize how those characteristics
often play an essential role in realizing their functions.

Whatmotivates the computational studies of ncRNAs is often the importance
of the biological function they play. Consequently, the ncRNAs can be classified
based on their biological functions. Although many recent transcriptomic and
bioinformatic studies suggested thousands of ncRNAs with their functional
importances, the total number of ncRNAs encoded in the human genome still
remains unknown [160]. More recently, newly identified ncRNAs have not
been validated by their function; it could be possible that most of them are
non-functional. Some evolutionary experiments in vitro have shown that RNA
molecules can catalyze various chemical reactions relevant to biological pro-
cesses such as RNA replication, nucleotide synthesis, thymidylate synthesis,
lipid synthesis, and sugar metabolism [45, 154]. Another characteristic of
ncRNAs is the number of nucleootides than composed them (their legnth). We
often distinguish two main ncRNA classes of critical biological functions: the
short non-coding RNAs (sncRNAs) (less than 200 nt) and the long non-coding
RNAs (lncRNAs) (more than 200 nt in length) [119]. Certainly, the definition of
lncRNAs based on length is arbitrary. One attempt to distinguish lncRNAs from
sncRNAs, based more on the biological argumentation, is proposed by Amaral
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et al. [1] defining lncRNAs as those ncRNAs that function either as primary or
spliced transcripts, independent of the known classes of sncRNAs. Therefore,
some lncRNAs do not exceed the arbitrary threshold in length (such as BC1
and snaR, which are less than or close to 200 nt but included in lncRNAdb [1]).
The length limit is often because of the practical considerations, including
separating RNAs in standard experimental protocols. The length of ncRNAs is
also taken into account in computational studies, and it will be used through-
out our work to distinguish RNA sequences and structures in the different
datasets considered.

The function of lncRNAs includes a role in higher-order chromosomal dy-
namics, telomere biology, and subcellular structural organization [12, 28].
Some lncRNAs play key regulatory and functional roles in the gene expres-
sion program of the cell. One of the vital functions is to act as ribozymes.
Examples of naturally occurring ribozymes include group I and group II
introns—RNase P and the hammerhead. The group, I and group II introns
are usually 200 − 600nt long, catalyzing RNA splicing [65]. Many sncRNAs
also contribute to the realization of similar biological functions. For example,
small interfering RNAs contribute to gene regulation, transposon control and
vital defence. microRNAs (miRNAs) participate in the post-transcriptional
gene regulation, miRNAs, PIWI-interacting RNAs (piRNAs)) and promoter-
associated RNAs (PARs) contribute to the gene regulation. More recently,
many discoveries revealed several ncRNAs implicated in cancer growth and
MCL-1 expression regulation [160, 206]. Those examples include ncRNAs from
different classes, miRNAs, small nucleolar RNAs (snoRNAs) and T-UCR, all
associated with a specific disease [49, 160].

There are also other classes of ncRNAs such as aptamers and riboswitches
that have also been observed in nature. Aptamers are ncRNAs that can bind
to other specified targets, whose nature is highly diverse. They range from
small molecules to larger molecules. In some contexts, aptamers are termed
riboswitches; for example, when their function is to sense the presence of an
associated metabolite to cause a specific cis-reaction and/or cis-regulation of
subordinated functional pathways [214].

In sum, lnc/snc-RNAs contribute to the realization of various biological
functions, and they are mostly distinguishable based on their length and
functions. But, their functions allow us to distinguish them better. In the next
section, we provide some of the recent advancements in the techniques used
to identify functional ncRNAs.

1.3 recent advancements in determining ncrna functions

Most of the previously mentioned functions of ncRNAs are identified using
gene targeting techniques, a well-known set of techniques used to investigate
protein functions [164]. In addition, experimental approaches are used to
define ncRNA functions.With the recent advancements in genome engineering,
a method such as clustered regularly interspaced short palindromic repeats
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(CRISPR) has been employed to tag lncRNAs, allowing to capture specific RNA-
protein complexes assembled in vivo [219]. This section aims at providing an
overview of different techniques used to determine ncRNA functions.

CRISPR [9] was described by Barrangou and his collaborators in 2007 as
a distinctive genome feature of most bacteria and archaea and thought to
be involved in resistance to bacteriophages. It is an adaptive defence system
against viruses and plasmid intrusions. When a successful defence takes
place, the system updates information about the intruder’s genetic material.
This update will then allow the system’s host to identify its enemy, making it
robust and durable in the future. The information about the intruder’s genetic
material is stored in short repeating stretches of RNA, which can, in the case of
a new intrusion, be incorporated into a carrier protein(CAS). The capacities
of the CRISPR/CAS9 of selectively destroying foreign DNA/RNA and editing
the genome was identified by Li et al. [108], and it was turned into methods
allowing to alter and edit single genes within genomes selectively. The same
technology is also successfully applied to animal cell lines [86, 92, 205] and
industrial plants [109, 187].

systematic evolution of ligands by exponential enrichment (SELEX) [197]
introduced by Tuerk in the early 1990s offers the possibility of enriching
stretches of RNA that can bind a certain target. The method relies on mecha-
nisms usually ascribed to the process of evolution, that is, variation, selection,
and replication. A pool of RNAs that are entirely randomized at specific posi-
tions is subjected to selection for binding, in this case to GP43 on nitrocellulose
filters. The selected RNAs are amplified as double-stranded DNA competent for
subsequent in vitro transcription. This newly transcribed RNA is enriched for
better binding sequences and is then subjected to selection to begin the next
cycle. Multiple rounds of enrichment result in the exponential increase of the
best binding ligands until they dominate the population of sequences. SELEX
has given rise to numerous synthetic aptamers with different targets in its
application. They have been subject to a further extension towards inclusion
into regulative RNA entities.

More recently, increased types of ncRNAs have been detected and identi-
fied with the development of next-generation sequencing [207]. The next-
generation sequencing can be roughly divided into the process sections of
sample preprocessing, library preparation, sequencing, and bioinformatics.

The functions of many ncRNAs are dependent on their high-level struc-
tures, which often depend on lower-levels sequence and secondary structures.
Knowing the structure of an ncRNA plays a vital role in probing its function.
For example, Peter Flor and his collaborators used structure information to
interpret experiments related to the mechanism of RNA function [56]. Or,
Yoon et al. suggested new experiments based on RNA secondary structure
in yeast to probe RNA functions [97]. Therefore, understanding even the
secondary structure alone can assist both of these examples. In the follow-
ing section, we provide a biochemical definition of the elementary building
blocks of ncRNAs, which are the nucleotides A, U, G and C. In addition, we
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Figure 1.2: Structure of an RNA nucleotide

will provide an overview of the different nucleotide interactions involved
during the formation of their secondary structures.

1.4 biochemistry of rna molecules

So far, we have provided a biological motivation for studying ncRNA as an inde-
pendent entity. The discovery of new ncRNAs functions has emerged through
intensive experimental studies and with recent advanced techniques in next-
generation sequencing. Several examples demonstrated the importance of the
ncRNA structures in the probing process of new functions. RNA folds based
on chemical and physical principles, leading to the adoption of one or several
functional structures that induce a sequence-to-structure mapping. In nature,
the folding process of RNAs is thought to be hierarchical [17, 195]. Nucleotides
form a chain given their sequence of bases (primary structure); RNAs fold
into secondary structures, such as stem-loops and helices, before folding into
higher-level (tertiary and quaternary) structures. Our work is restricted here
to the secondary level of an RNA structure, i.e., the set of canonical pairs.
This section provides a biochemical definition of different nucleotides and
base-pair interactions involved in the secondary structure folding of RNA
molecules.

Chemically, each nucleotide in RNA molecules consists of a phosphate
residue, a pentose sugar and a nucleobase. The typical chemical structure of
a nucleotide is depicted on the right side of the page. Figure 1.3 illustrates
the chemical structure of each of the four different nucleobases found in RNA
(A, C, G and U). A nucleotide is a nucleoside which has a (mono, di, trip)
phosphate residue bound to its 5’-carbon atom. By convention, the carbon
atoms of the pentose sugar in nucleotides are numbered with primes. Fig-
ure 1.3 shows the chemical structure of an RNA nucleotide, where the pentose
sugar is coloured in black and numbered 5’ and 3’.

At the primary level, RNA molecules are simply represented as a list of
nucleobase characters. The 5’-3’ phosphodiester bonds attach the different
nucleotides composing the RNA molecule between ribose to form the primary
structure of RNA. The chain direction is conventionally numbered from 5’ to
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Figure 1.3: RNA nucleotides. Adenine and guanine belongs into the chemical class of
purine molecules and the uracil and thymine in the class of pyrimidines

3’ (i.e. from 5’-phosphate first sugar backbone to the 3’-hydroxyl last sugar in
the sequence).

In contrast to the RNA primary structure, the secondary structure consists
of a list of nucleobase-pairs, and the hydrogen bonds between the bases form
base-pairs. Different interactions are possible between the bases depending
on the structure level considered. At the secondary level, we have the Watson-
Crick (or canonical) pairs [155, 167] (A-U and G-C), the Wobble (or non-
canonical) (G-U) pairs that occur with reduced frequency. Figure 1.4 shows
the chemical base-pairs for the Watson-Crick and Wobble interactions.

In addition to the Watson-Crick (WC) and wobble interactions, we also find
crossing or pseudoknotted interactions in natural RNA that play vital roles in
realizing biological functions, e.g. ribosomal frame-shifting [63], regulation
of translation and splicing, or the binding of small molecules [64, 99, 183].
Although the pseudoknots are not considered in the computational folding
tool we propose in Chapter 3, they are essential to evaluate the performance
of the computational tool we will introduce in Chapter 5 for RNA design. This
section also presents different pseudoknot patterns found in natural RNA and
emphasizes the one considered in our work.

Pseudoknots occur when two WC, wobble or non-canonical interactions
cross each otherwhendrawn as arcs on top of the sequence [211], see Figure 1.5
for some examples. In the general case, a looped region, typically a hairpin
loop, pairswith another unpaired part outside its enclosing helix. Even though
pseudoknots are often considered the beginning of the interaction between
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Figure 1.4: RNA base-pair interactions. (a) and (b) are commonly know as Watson-
Crick base-pairs. (c) is the wobble base-pair. Hydrogen bonds are indi-
cated as grey dashed lines. Substitution of bold hydrogen residues with
ribose 5-phosphate yields the corresponding nucleotides found in RNA
molecules.

the secondary and tertiary levels of RNA structures, they account in this work
as part of the secondary structure. The restriction to only crossing WC and
wobble base-pairs contrasts the other tertiary interactions, which may include
a broader class of interactions.Many pseudoknot patterns have been identified

L-type
pseudoknot.

M-type
pseudoknot

in natural RNAs. Most occurring pseudoknot patterns tend to be relatively
simple in the sense that their crossings are not interlaced andmay be viewed as
superpositions of two nested secondary structures (bi-secondary structures)
[76]. The simplest pattern is often termed as Hairpin-type or H-type (see
Figure 1.5a). More complex forms of H-type pseudoknot are bulge hairpin (B-
type) or complex hairpin (cH-type). H-type and K-type pseudoknots are the
most frequent pseudoknots, but more complex but less frequent pseudoknots
are possible such as M-type and L-type pseudoknots (See the figure on the
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(a) Hairpin (H-type) (b) Bulge hairpin (B-type)

(c) Kissing hairpin (K-type) (d) Complex hairpin (cH-type)

Figure 1.5: Pseudoknot patterns found in the PseudoBase++. For each pseudoknot
patterns, the different rows represent respectively the circular and the dot-
bracket shape representations. The B-type and cH-type are more complex
forms ofH-type. The full complexity order isH-type<B-type<cH-type<K-
type.

right side of the page) [107]. The four types of pseudoknot patterns considered
in Chapter 5 are depicted in Figure 1.5.

Considering pseudoknots in designing functional RNAs is vital given their
role in realizing biological functions. Nevertheless, computationally folding
an RNA molecule with arbitrary pseudoknot patterns is non-deterministic
polynomial-time (NP)-complete in simple nearest neighbor energy model
[118]. Solving this problem is a prerequisite for RNA design and is still a
real challenge, not only because of the computational constraint but also the
experimental energy measurements of the pseudoknot interactions. In most
cases, existing computational tools are restricted to a specific pseudoknot
pattern and are based on approximated energy parameters [67].

In the context of this work, we consider two main secondary structure
definitions: a pseudoknot-free one in which only canonical interactions with
no crossing pairs are allowed and a second one where canonical interactions
with possible crossing pairs are permitted. The following section will provide
formal definitions and the framework in which we can computationally study
the folding of the secondary structure of ncRNAs.

1.5 bioinformatic definitions

We provided in the previous sections the biological motivations and biochem-
ical concepts that support the computation methods studied in the thesis. In
order to computationally study and analyse RNA molecules, a more formal
representation of RNAs and bioinformatic definitions are required.We provide
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in this section formal definitions and concepts that will support the result
presented in this thesis.

1.5.1 Structural definitions

This thesis focuses on computational folding and inverse folding methods of
the secondary structure of RNA molecules. The secondary structure, in most
cases, is computed for a given RNA sequence. Along the thesis, 𝜙 will represent
an RNA sequence of a fixed length 𝐿 and 𝒮 its corresponding structure. This
subsection provides formal definitions of 𝜙, 𝒮 and the structural properties
of 𝒮. We will assume the same definitions in the different tools reviewed in
Chapter 2, Chapter 4, which also supports the results presented in Chapter 3
and Chapter 5.

Definition 1 (RNA sequence). More formally, 𝜙 consists of an ordered se-
quence of nucleotides that can be represented as:

𝜙 = (𝜙1, ..., 𝜙𝐿) , (1.1)

where 𝜙𝑖 ∈ {A,C,G,U} for 𝑖 ∈ {1 … 𝐿}. 𝜙 is often known as the primary
structure of RNA.

Definition 2 (RNA pseudoknot-free secondary structure). Given an RNA se-
quence 𝜙 ∈ {A,C,G,U}𝐿, let 𝒫 = {(𝑖, 𝑗) ∶ 𝑖 < 𝑗} be the list of possible pairing
positions over the sequence 𝜙. A pseudoknot-free secondary structure 𝒮 ⊂ 𝒫
of such sequence 𝜙 is a list of base-pairs with the following constraints [79,
81]:

1. A nucleotide (sequence position) can only belong to a single pair, i.e.
∀(𝑖, 𝑗), (𝑘, 𝑙) ∈ 𝒮 with 𝑖 < 𝑘∶ 𝑖 = 𝑘 ⇒ 𝑗 = 𝑙.

2. Paired bases must be separated by at least three unpaired nucleotides.
i.e. ∀(𝑖, 𝑗) ∈ 𝒮 ⇒ 𝑗 − 𝑖 > 3.

3. There are no pseudoknots, i.e. ∄ (𝑖, 𝑗) , (𝑘, 𝑙) ∈ 𝒮 with 𝑖 < 𝑘 < 𝑗 < 𝑙,

4. The base-pairs consist exclusively ofWatson–Crick (C–GandA–U)pairs
andWobble (G–U)pairs. i.e.∀ (𝑖, 𝑗) ∈ 𝒮 ⇒ 𝜙𝑖𝜙𝑗 ∈ {GC,CG,AU,UA,GU,UG},

Therefore, RNA secondary structures can be thought as planar graphs that
can be more or less easily drawn on a plane.

Definition 3 (Secondary structure representation). A graphical way of rep-
resenting an RNA secondary structure. There are several representations of
𝒮.

• Dot-bracket (or string) representation: In this representation, the sec-
ondary structure 𝒮 is compactly stored in a string 𝜎 consisting of dots
and matching brackets. i.e. 𝜎 is a string of length 𝐿 over the alphabet
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Δ𝜎 = {(, ), [, ], {, }, <, >, .} where, at each unpaired positions we have a
dot ’.’ at the corresponding string position, and ∀(𝑖, 𝑗) ∈ 𝒮, we have an
opening bracket at position 𝜎𝑖 and a closing bracket at position 𝜎𝑗. We
denote 𝜎 the string representation of the structure 𝒮. Figure 1.6D shows
an example of a string representation.

• Planar representation: it is the common way of representing an RNA sec-
ondary structure inwhich 𝒮 is presented as a graphwith each vertex rep-
resenting a nucleotide and an edge connecting consecutive nucleotides
and base-pairs (See Figure 1.6B).

• Circular (or circle ) representation: similar to planar representation, 𝒮
is a graph but drawn in the plane in such a way that all vertices are
arranged on a circle, and the edges representing base-pairs lie inside the
circle. In a pseudoknot-free secondary structure circular representation,
the edges do not intersect (See Figure 1.6A).

• Linear representation: In this representation, 𝒮 is a graph in which the
nucleotides are arranged consecutively in a line and the edges represent-
ing base-pairs form semi-circle that do not intersect for pseudoknot-free
structure (See Figure 1.6C).

• Mountain representation: it is mainly used for representing large struc-
tures.𝒮 is presented in a two-dimensional graph, inwhich the 𝑥-coordinate
is the position 𝑖 of the nucleotide in the sequence 𝜙 and the 𝑦-coordinate
the number 𝑚(𝑖) of base-pairs that enclose nucleotide 𝑖.

• Tree representation: 𝒮 is drawn as a tree in which internal nodes are
the base-pairing positions, and the leaves are the unpaired positions.
The dot-bracket representation is also often considered as a tree rep-
resented by a string of parenthesis (base-pairs) and dots for the leaf
nodes (unpaired nucleotides).

• Shapiro representation: it allows representing the different elements
composing 𝒮 by single matching brackets, and the components are
labelled with H(Hairpin), B(Bulge), I (interior loop), M (multi-loop)
and S (stacking loop) [170].

Figure 1.6 shows some examples of RNA secondary structure representation.
For graphical illustrating examples in the thesis, we will mostly use the planar
representation, and for computational methods, we will use the dot-bracket
representation for simplicity.

Definition 4 (Secondary structure loop). There exists a unique decomposition
of 𝒮 into a set of 𝑛 loops 𝕃𝜙,𝒮, where loops are the faces of its planar drawing.
Each loop ℒ ∈ 𝕃𝜙,𝒮 is characterised by its length 𝑙 (the number of unpaired
nucleotides in the loop) and its degree 𝑑 (the number of base-pairs delimiting
the loop, including the closing loop pair).
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Figure 1.6: Different secondary structure representations of a random generated
RNA sequence. The MFE structure is predicted using RNAfold from the
ViennaRNA Package [112]. The representation were then drawn using
VARNA [32]

By definition, ∀ℒ ∈ 𝕃𝜙,𝒮 ⇒ ℒ = ℒ𝑝 ∪ ℒ𝑢 where ℒ𝑝 and ℒ𝑢 denote
respectively the set of loop base-pairs and the unpaired positions. ℒ𝑝 contains
only one closing loop and the rest are enclosed base-pairs. We say (𝑖, 𝑗) ∈ ℒ𝑝
is a closing pair if and only if ∀ℒ𝑝 ∋ (𝑖′, 𝑗′) ≠ (𝑖, 𝑗) ∶ 𝑖 < 𝑖′ < 𝑗′ < 𝑗.

5'

3'
G

U

U

A

Enclosed base-pair

closing base-pair

An example
of closing

and
enclosed

base-pairs
of an

interior
loop.

1. Interior loop: a loopwith degree 𝑑 = 2 i.e |ℒ𝑝| = 2 and ℒ𝑢 ⊂ {1, 2, … 𝐿}∪
∅.

2. Stacking pair: an interior loop of length 𝑙 = 0 i.e. |ℒ𝑝| = 2 and ℒ𝑢 = ∅.

3. Hairpin Loop: Any loop of degree 𝑑 = 1 and length 𝑙 ≥ 3. i.e |ℒ𝑝| = 1
and ℒ𝑢 ≠ ∅.

4. Bulge loop: a special case of interior loop in which there are unpaired
bases only on one side. i.e ℒ𝑝 = {(𝑖1, 𝑗1), (𝑖2, 𝑗2)} with 𝑖1 ≠ 𝑖2, 𝑗1 ≠ 𝑗2 one
of the following assumption holds:

• If ∃𝑖′ ∈ ℒ𝑢 ∶ 𝑖1 < 𝑖′ < 𝑗2 ⇒ ∄𝑘′ ∈ ℒ𝑢 ∶ 𝑖2 < 𝑘′ < 𝑗2
• If ∃𝑘′ ∈ ℒ𝑢 ∶ 𝑖2 < 𝑘′ < 𝑗2 ⇒ ∄𝑖′ ∈ ℒ𝑢 ∶ 𝑖1 < 𝑖′ < 𝑗1

5. Multi-loop: Any loop with degree 𝑑 > 2 i.e. |ℒ𝑖𝑝| ≥ 3 and ℒ𝑢 ≠ ∅.

6. Exterior loop: a loop in which all the positions are not interior of any
pair i.e. ℒ𝑝 = ∅ and ℒ𝑢 ≠ ∅.
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Figure 1.7: RNA secondary structure loop decomposition. Each loop is highlighted
in blue.

Definition 5 (Free energy of an RNA secondary structure). Given the loop
set 𝕃𝜙,𝒮, the free energy Δ𝐺 of 𝒮 defines its thermodynamic stability. Δ𝐺 is
the free energy difference with respect to the completely unfolded state [196].
Δ𝐺(𝒮, 𝜙) is computed using the additivity principle [35], by summing up the
energies of its constituent loops. The free energy Δ𝐺 is then defined as

Δ𝐺(𝒮, 𝜙) = ∑
ℒ∈𝕃𝒮,𝜙

Δ𝐺(ℒ, 𝜙). (1.2)

Many models allow for computing the free energies of those constituent
loops, but the dominant is the nearest-neighbor loop energymodel [199]. This
model associates tabulated free energy values to loop types and nucleotide
compositions. Because of the exponential number of experiments required
for calibrations, the energy contributions of larger loops are extrapolated. The
Turner2004 [124] is one of the most widely used parameter sets.

The free energy of each given loop ℒ is expressed as

Δ𝐺(ℒ) = Δ𝐻 − 𝑇Δ𝑆 ≤ 0 (1.3)

where Δ𝐻 is the (pressure- and volume-dependent) enthalpy change, 𝑇 the
absolute temperature and Δ𝑆 the entropy change. The dominant stabilizing
effect is attributed to consecutive base-pairs (The stacking loops), whereas
long unpaired regions enclosed between base-pairs have destabilizing effects
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[58, 81]. As a simplified example, the destabilizing free energy contribution
Δ𝐺(ℒ𝑚) of a multiloop ℒ𝑚 as seen in Figure 1.7C is modelled as

Δ𝐺(ℒ𝑚) = Δ𝐺init + 𝑏Δ𝐺branch + 𝑢Δ𝐺unpaired (1.4)

where 𝑏 is the number of all surrounding base-pairs and 𝑢 the number of
base-pairs [37].

In addition to the definitions mentioned above, we have various properties
of an RNA sequence such as structural diversity, positional entropy, structures
with maximal expected accuracy, or the density of states. An extensive sum-
mary of all possible properties and the history of algorithms is reviewed by
Lorenz [115].

The structure decomposition and the tabulated energy parameter sets al-
low an efficient dynamic programming algorithm to determine a sequence’s
secondary structure in the entire structure space. Several programs imple-
menting algorithms will enable the computation of these properties efficiently.
The thesis gives a literature review of such tools in Chapter 2.

1.5.2 Thermodynamic definitions

A common way to computationally address the RNA folding problem is to
consider a dynamic system of structures (the states of the system). Given
enough time, a sequence 𝜙 will form every possible structure Σ𝜙. For each
structure 𝒮 ∈ Σ𝜙, there is a probability of observing it at a given time. This
subsection defines RNA folding thermodynamic properties such as structural
ensemble, partition function, Boltzmann probability of a structure 𝒮, and the
others that derive from them, the base-pair probability and the most probable
secondary structure.

The folding tools such as RNAfold, LinearFold used in this thesis use the
same thermodynamic definitions. However, some computational folding
methods do not rely on a thermodynamic model. For example, Chapter 2
presents a literature review of such tools.

Definition 6 (Structure Ensemble). For a given RNA sequence 𝜙, the set of all
pseudoknot-free secondary structures with their corresponding energies is
called the structure ensemble Σ𝜙 of 𝜙 or Boltzmann ensemble. We write

Σ𝜙 = {𝒮|𝒮 is a secondary structure of 𝜙}.

According to the nearest neighbor energy model, all possible secondary
structures of a given RNA sequence do not have the same energy. Since each
structure has a unique decomposition, each structure has its own energy but
different structures can have the same energy.

Definition 7 (Partition function of RNA). Given the free energy change Δ𝐺(𝒮)
of a structure 𝒮, the partition function 𝑍(Σ𝜙) is defined on the Boltzmann
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ensemble (or structure ensemble) of all possible structures of a given sequence
𝜙 and we write

𝑍(Σ𝜙) = ∑
𝒮∈Σ𝜙

exp(−𝛽Δ𝐺(𝒮, 𝜙)) (1.5)

where, 𝛽 = (𝑅𝑇)−1 with 𝑅 the ideal gas constant, and 𝑇 the temperature.

Definition 8 (Secondary structure probability). How probable is an RNA
secondary structure 𝒮 ∈ Σ𝜙 for the sequence 𝜙? Given the free energy change
Δ𝐺(𝒮) of a structure 𝒮, the boltzmann distribution describes the structure’s
probability at constant temperature 𝑇 among all other possible structure of
the same sequence 𝜙. The probability 𝑝(𝒮| 𝜙) depends on the free energy
Δ𝐺(𝒮), the lower the more probable. We write

𝑝(𝒮| 𝜙) =
exp(−𝛽Δ𝐺(𝒮, 𝜙))

𝑍 (1.6)

where, 𝑍 is the partition function and 𝛽 = (𝑅𝑇)−1 the thermal constant.

Definition 9 (MFE secondary structure). To predict biologically relevant struc-
tures, most computational methods search for structures that minimize the
free energy. For a given sequence 𝜙, let Σ𝜙 be the secondary structure ensem-
ble of 𝜙. The minimum free energy structure 𝒮𝑀𝐹𝐸 is the structure with the
lowest probability 𝑝(𝒮|𝜙) i.e. the most stable conformation in the thermody-
namic equilibrium. We write

𝒮𝑀𝐹𝐸(𝜙) = arg min
𝒮∈Σ𝜙

Δ𝐺(𝒮, 𝜙). (1.7)

Definition 10 (Base-pair probability). Let 𝜙 = (𝜙𝑖)1≤𝑖≤𝐿 be an RNA sequence.
The base-pair probability matrix P(𝜙) quantifies the equilibrium structural
features of the ensemble Σ𝜙, with entries 𝑃𝑖,𝑗(𝜙) ∈ [0, 1] defines as

𝑃𝑖,𝑗(𝜙) = ∑
𝒮∈Σ𝜙

𝑝(𝒮|𝜙)𝑆𝑖,𝑗(𝒮). (1.8)

𝑃𝑖,𝑗(𝜙) corresponds to the probability that base-pair 𝑖.𝑗 forms at the equilib-
rium. S(𝒮) is the structure matrix with entries 𝑆𝑖,𝑗 ∈ {0, 1}. If the structure 𝒮
contains pair (𝑖, 𝑗), then 𝑆𝑖,𝑗(𝒮) = 1 otherwise 𝑆𝑖,𝑗(𝒮) = 0.

The base-pair probabilities enable then a new view at the structure ensem-
ble. Figure 1.8 shows an example ofMFE structure and the base-pair probability
dot plot 1 of a tRNA. A square at row 𝑖 and column 𝑗 indicates a base-pair. The
area of a square in the upper right half of the matrix is proportional to the

1 computed using RNAfold -p
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Figure 1.8: Base-pair probabilitymatrix of a tRNA sequence computed using RNAfold
2.4.13. The MFE structure is depicted on the left and the sequence on
top. The frequency of the MFE structure in the structural ensemble Σ𝜙
is 0.116. The dot plot on the right shows the pair probabilities within
the equilibrium ensemble as (72 × 72)-matrix and is an excellent way to
visualize structural alternatives.

base-pair probability (𝑖, 𝑗) within the equilibrium ensemble. The lower left
half shows all pairs belonging to the MFE structure. While the MFE consists of
hairpins, bulge and stacking, several different loops are visualized in the pair
probabilities, which leads to several local minima with different shapes.

The definitions mentioned above provide us with a necessary framework
enabling us to compute the MFE secondary structure within the equilibrium
ensemble Σ𝜙. Several implementations of these definitions have been sug-
gested [112, 149, 220], and they are available as an application programming
interface (API). In the context of this work, we are not only interested in the
MFE structure but, instead, we use some features of the existing computer
libraries (e.g. the computation of the structure free energy) to predict an
ensemble structure. The following section introduces some metrics used in
this dissertation to compare RNA secondary structures and, eventually, the
structure predictions produced by different tools.
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1.5.3 Structural distance definitions

The validation of the results obtained in this thesis is purely empirical. We
achieved this goal by comparing the predicted and expected structures for the
folding tools. We use the PPV and the sensitivity’s statistical properties for the
benchmark results presented in Chapter 3. For the inverse folding tools, we
compare the MFE structure of the designed sequence to the target structure.
For that end, a rigorous definition of a measure of similarities between two
structures is needed. This subsection defines the different similarity mea-
surements used throughout this work. In addition, it defines the objective
functions used in our inverse folding presented in Chapter 5.

Definition 11 (The PPV). It measures the fraction of correct base-pairs in the
predicted structure and it is defined as

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (1.9)

where TP and FP stand respectively for the number of correctly predicted
base-pairs (true positives), and the number of wrongly predicted base-pairs
(false positives).

Definition 12 (Sensitivity). It measures the fraction of base-pairs in the ac-
cepted structure that are predicted. We write

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (1.10)

where 𝐹𝑁 stands for the number of base-pairs not detected (false negatives).

Definition 13 (Base-pair distance). Let 𝜎1 and 𝜎2 be two secondary structures
in their string representation. The base-pair distance between 𝜎1 and 𝜎2 is
defined as

𝑑𝑏𝑝(𝜎1, 𝜎2) = ∑
𝑖,𝑗

𝐴𝑖,𝑗[𝜎1] + 𝐴𝑖,𝑗[𝜎2] − 2 × 𝐴𝑖,𝑗[𝜎1]𝐴𝑖,𝑗[𝜎2], (1.11)

where,

𝐴𝑖,𝑗[𝜎] =
⎧{
⎨{⎩

1 if (𝑖, 𝑗) is a base-pair in 𝜎

0 otherwise.

Definition 14 (Hamming distance). Let 𝜎1 and 𝜎2 be two secondary struc-
tures in their string representation. We define the hamming distance between
𝜎1 and 𝜎2, 𝑑ℎ(𝜎1, 𝜎2), to be the number of positions where 𝜎1 and 𝜎2 differ.
We write

𝑑ℎ(𝜎1, 𝜎2) =
𝐿

∑
𝑖=1

𝑆(𝜎 𝑖
1, 𝜎 𝑖

2) (1.12)
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where,

𝑆(𝜎 𝑖
1, 𝜎 𝑗

2) =
⎧{
⎨{⎩

1 if 𝜎 𝑖
1 ≠ 𝜎 𝑗

2

0 otherwise.

Definition 15 (ensemble defect (ED)[221]). Given an RNA sequence 𝜙 of
length 𝐿, the ensemble defect 𝒟𝐸 is the expected base-pair distance between
a target structure 𝒮∗ and a random structure generated with respect to the
Boltzmann probability distribution. It is defined as

𝒟𝐸(𝜙, 𝒮∗) = ∑
𝒮∈Σ𝜙

𝑝(𝒮|𝜙)𝑑𝑏𝑝(𝒮, 𝒮∗)

= 𝐿 − ∑
1≤𝑖≤𝐿

1≤𝑗≤𝐿+1

𝑃𝑖,𝑗(𝜙)𝑆𝑖,𝑗(𝒮∗) (1.13)

where 𝑃𝑖,𝑗 is the base-pair probability matrix entrances, 𝑑𝑏𝑝((𝒮, 𝒮∗)) is the
base-pair distance between two structures, and S(𝒮) is the structure matrix
with entries 𝑆𝑖,𝑗 ∈ {0, 1}. If the structure 𝒮 contains pair (𝑖, 𝑗), then 𝑆𝑖,𝑗(𝒮) =
1 otherwise 𝑆𝑖,𝑗(𝒮) = 0.

Definition 16 (normalized energy distance (NED)). it is the difference be-
tween the energy of a given sequence 𝜙 evaluated to fold into a target structure
𝒮∗ and the minimum free energy of the sequence in its structural ensem-
ble Σ𝜙. The value is normalized over all the sequences in a given population
𝑃. We write

𝒩𝐸(𝜙, 𝒮∗) = [1 − Δ𝐸̂(𝒮∗, 𝜙)]𝑞 ∀𝑞 > 1 (1.14)

where,

Δ𝐸̂(𝒮∗, 𝜙) =
Δ𝐸(𝒮∗, 𝜙)

∑𝑠∈𝑃 Δ𝐸(𝒮∗, 𝑠)
(1.15)

and,

Δ𝐸(𝒮∗, 𝜙) = Δ𝐺(𝒮∗, 𝜙) − arg min
𝒮∈Σ𝜙

Δ𝐺(𝒮, 𝜙). (1.16)

Among the definitions mentioned above, 11 and 12 are used in Chapter 3
for the benchmark comparison. Whereas, definitions 13, 14, 15, 16 are used in
Chapter 5 for both objective function and benchmark purposes. The following
section provides a formal definition of the fitness landscape and some of its
properties. It will mostly use 14 for both structure and sequence comparison.

1.5.4 RNA folding map properties

This work considers RNA molecule folding and inverse folding optimisation
problems. In both cases, It is fundamental to define the fitness landscape
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notion. This subsection provides the formal definitions of the fitness landscape
and examples related to the folding and inverse problem. Some properties
such as neutrality, mutation mode or move operator are also provided. The
size of the RNA structural ensemble has been analytically computed through
tools developed by Stein and Waterman [186], and it yields an upper bound
of 𝑆𝐿 ≈ 1.48 × 𝐿− 3

2 1.85𝐿 structure vis-a-vis 4𝐿 sequences. Compared to the
total number of sequences, the number of structures is much smaller, which
means there is a high possibility that many sequences fold into the same MFE
secondary structure. In case that happens, we call the set of those sequences
a neutral set. The fraction of such sequences defines the neutrality of a fitness
landscape.

Definition 17 (Fitness landscape). Afitness landscape 𝔏 results from the com-
bination of three elements: a set of configurations 𝒱, a cost or fitness function
𝑓, and a move operator 𝜓 that induces a topology on the set of configurations.
We write:

𝔏 = (𝒢𝑓, 𝑓 , 𝜓) (1.17)

where 𝒢𝑓 is the the landscape underlying the hypergraph whose vertices are
the elements from 𝒱 labelled with values given by 𝑓, and whose edges are
specified by the move operator 𝜓.

The fitness function 𝑓 assigns to each configuration 𝑣 ∈ 𝒱 a real value taken
from an interval 𝕀 ⊂ ℝ as follows:

𝑓 ∶ 𝒱 → 𝕀.

An example of fitness function in the case of inverse folding is defined
in Chapter 5 (Section 5.1.2), which uses the hamming distance 𝑑ℎ and 𝒱 =
{A,C,G,U}𝐿. But in this case, the fitness defined in the structural space Σ𝜙. i.e.
we have an intermediate folding function Δ𝐺(𝒮, 𝜙), mapping any sequence
𝜙 ∈ 𝒱 to an MFE secondary structure.

The move (or mutation) operator 𝜓 defines the relationship between the
configuration from 𝒱 in the following way:

𝜓∶ 𝒱 → 𝒱.

Definition 18 (Mutation mode). Let 𝜙, 𝜙′ ∈ 𝒱 = {A,C,G,U}𝐿, be two RNA
sequences. 𝜙′ is said to be an 𝑛-point mutation of 𝜙 if it differs from 𝜙 at
𝑛 nucleotides; i.e. 𝑑ℎ(𝜙, 𝜙′) = 𝑛 where 𝑑ℎ(., .) is the hamming distance on
{A,C,G,U}𝐿.

A mutation mode is a random variable 𝑈 taking values in {1, … , 𝐿}. 𝑃(𝑈 =
𝑛) is defined as the probability that, exactly 𝑛 nucleotides, selected uniformly
at random undergo point mutation during a mutation event. 𝑈 can generally
be any probability distribution.
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Definition 19 (Neutral set of RNA sequences). For a given fitness landscape
𝔏 = (𝒢𝑓, 𝑓 , 𝜓), with 𝒱 = {A,C,G,U}𝐿, two RNA sequence 𝜙1 and 𝜙2 are set to
be neutral ⟺ 𝑓 (𝜙1) = 𝑓 (𝜙2). We call a set Γ ⊂ 𝒱 of all such RNA sequences
a neutral set. In the case of inverse folding, 𝜙1 and 𝜙2 are neutral if they share
the same MFE secondary structure. In contrast, 𝜙1 and 𝜙2 have the same free
energy in the folding problem context.

Definition 20 (Neutral Network). Let 𝒢(𝒱, 𝐸) be a connected graph in which
vertices are all in the neutral sequence set Γ (i.e. 𝒱 ⊂ Γ). 𝒢 is said to be a
neutral network ⟺ ∀𝑒(𝑣𝑖, 𝑣𝑗) ∈ 𝐸, 𝑣𝑖, 𝑣𝑗 differ by a single nucleotide (i.e.
𝑑ℎ(𝑣𝑖, 𝑣𝑗) = 1).

We provided in this subsection a general definition of a fitness landscape
with examples related to computational RNA folding and inverse folding. Now
that we have all the ingredients to computationally study the folding and
the inverse folding of RNA molecule, we are left with the definition of some
computational techniques used in our proposed tools. Our contributions
rely on two well-known techniques of algorithms: the FFT for the folding
mechanism and the EA for the inverse folding. An overview of both techniques
is provided in the following section.

1.5.5 The fast Fourier transform (FFT) and evolutionary algorithm (EA) applied
to RNA bioinformatics

The computational results present in this work rely on two well-known tech-
niques: the FFT and EA. Both approaches have already been studied and have
found many applications, including the computational folding and inverse
folding of ncRNA. This section gives a short overview of the two concepts.

A FFT is an algorithm that computes the distcrete Fourier transform (DFT) of
a sequence or its inverse (Inverse discrete Fourier transform (IDFT)). Fourier
analysis converts a signal from its original domain (often time or space) to a
representation in the frequency domain and vice versa. The DFT is obtained by
decomposing a sequence of values into components of different frequencies.

More formally, let {𝑥𝑘} ∶= 𝑥0, … , 𝑥𝐿−1 be a sequence of 𝐿 complex numbers,
the DFT transforms the sequence {𝑥𝑘} into another sequence of 𝐿 complex
numbers {𝑋𝑘} ∶= 𝑋0, … , 𝑋𝐿−1 defined as

𝑋𝑘 =
𝐿−1
∑
𝑛=0

𝑥𝑛𝑒−𝑖2𝜋𝑘𝑛/𝑁. (1.18)

The direct evaluation of Equation 1.18will require 𝑂(𝐿2) operations because
there are 𝐿 outputs of 𝑋𝑘, and each of them requires a sum of 𝐿 terms. A FFT
is, therefore, any approach allowing to compute the same results in 𝑂(𝐿 log𝐿)
operations [93].
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Let 𝑥 and 𝑦 be two sequences of length 𝐿 and let 𝑋 and 𝑌 be their respective
DFTs. The correlation 𝑐𝑘 between sequences 𝑥 and 𝑦 with the positional lag of
𝑘 sites is defined as

𝑐𝑘 = ∑
1<𝑛<𝐿,1<𝑛+𝑘<𝐿

𝑥𝑛𝑦𝑛+𝑘. (1.19)

It is known that the correlation 𝑐𝑘 can be expressed in terms of the DFT. We
write

𝑐𝑘 ⇔ 𝑋∗
𝑛 ⋅ 𝑌𝑛 (1.20)

where the asterisk denotes complex conjugation. That means we simply need
to compute the DFT 𝑋𝑛 and 𝑌𝑛. Therefore, we can compute correlations 𝑐𝑘 us-
ing the FFT as follows: FFT the two sequences, multiply one resulting transform
by the complex conjugate of the other, and inverse transform the product.

Similar to Equation 1.18, the direct evaluation of 𝑐𝑘 requires 𝑂(𝐿2) oper-
ations and taking advantage of the FFT reduces it to 𝑂(𝐿 log𝐿) operations.
Several FFT algorithms have been implemented to speed up the computation
of the DFT but so far, the most commonly used is the Cooley–Tukey algorithm
[26].

The same idea has been applied in the context of RNA bioinformatics, where
the two sequences of complex numbers can be thought of as two data sets of
real numbers encoding the RNA sequences information. And the correlation 𝑐𝑘
measures the homologous region in the two RNA sequences [95]. In contrast to
Katoh and his collaborators [95], we use the FFT to rapidly identify the largest
stems of an RNA sequence. Thanks to the FFT which allows us to efficiently
predict the fast-folding pathways of RNA molecules (See Chapter 3) within a
reasonable CPU time.

The EA is another well-known heuristic approach, especially when dealing
with problems in which less information about the fitness landscape is pro-
vided or when there is no exact algorithm in polynomial for such problems.
The EA approach is inspired by evolutionary systems. In the 1950s and the
1960s, several computer scientists already independently studied evolution-
ary systems with the idea that evolution could be used as an optimization
tool for engineering problems [132]. The picture in all these systems was to
evolve a population of candidate solutions to a given situation, using operators
inspired by natural genetic variation and natural selection.

Since the genetic algorithm (or more generally EA) was proposed by John
Holland [82] in the early 1970s, it has emerged as a popular search heuristic.
It has found application in many disciplines that deal with complex landscape
optimization problems, e.g. RNA folding [133, 212] and inverse RNA folding
[47, 48, 190].

EAs form a class of heuristic search methods based on a particular algorith-
mic frameworkwhosemain components are the variation operators (mutation
and recombination or crossover) and the selection operators (parent selection
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Figure 1.9: Evolutionary algorithm flow diagram. The algorithm initializes a popula-
tion of candidate solutions and then loops over the three genetic operations
until the termination criteria are satisfied.

and survivor selection). The general evolutionary algorithm framework is
depicted in Figure 1.9. In most of the EA implementations, the solutions are
encoded in the form of genomes (array of elements). The simplest form of
EA typically involves two types of operators: selection and mutation (single
point).

• Selection: the operator consists of selecting solutions in the population
for reproduction. The fitter the solution, the more times as likely it is
selected to reproduce. This operator often requires a fitness function
evaluation.

• Mutation: the operator allows generating new solutions in the popula-
tion. It randomly flips or permutes some element positions in a genome
solution. For example, if we encode the solutions in a binary string,
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the solution 00000100 might be mutated in its second position to yield
01000100. Mutation can occur at each bit position in a string with some
probability, usually very small (e.g. 0.001 for a sequence of length 50).

In a more complex configuration, we can have a crossover operator that
plays almost the same role as mutation, which generates new solutions in
the population. In contrast to the mutation operator, the crossover randomly
chooses a locus and exchanges the subsequence solutions before and after
that locus between two solutions to create two offspring solutions.

In the context of this work, we use the simplest form of EA, in which we did
not consider a crossover operator. We implement the simplest EA framework
with a mutation operator adapted to the Inverse folding problem, which
results in an alternative computational tool named aRNAque (see Chapter 5)).

This section provided an overview of the two main tools used in this thesis,
which are EA and FFT. The EA is implemented in the computational inverse
folding tool we propose in Chapter 5, and the FFT in the RNA folding tool that
will be introduced in Chapter 3.

1.6 conclusion and outline of the thesis

This introductory chapter presents nucleic acids in general and, in particular, a
description of ncRNA and its chemical, biological, and algorithmic definitions.
Those concepts with biological motivations constitute the basis of the thesis.

We organize the next part of the thesis into fives. The two first s are grouped
into a first result part which only concerns RNA folding. The second part dis-
cusses inverse folding, and similarly to the first part, it contains two chapters.
The last discusses the presented results and concludes by providing some
limitations and possible future research directions.

In Part i, Chapter 2 provides a brief literature review on the existing com-
putational methods for RNA folding. The review focuses on thermodynamic
and machine learning methods such as RNAfold, LinearFold and Mxfold. We
review some of the limitations of existing tools in Chapter 2, such as the com-
putational time, and in some cases, the predicted thermodynamic structure
does not match the native one. Chapter 3 presents our proposed folding tool
called RAFFT, which aims at overcoming those limitations. RAFFT implements
a novel heuristic to predict RNA secondary structure formation pathways
that has two components: (i) a folding algorithm and (ii) a kinetic ansatz.
This heuristic is inspired by the kinetic partitioning mechanism, by which
molecules follow alternative folding pathways to their native structure, some
much faster than others. RAFFT starts by generating an ensemble of concurrent
folding pathways ending in multiple metastable structures, which contrasts
with traditional thermodynamic approaches that find single structures with
minimal free energies. When analyzing 50 predicted folds per sequence, we
found near-native predictions for RNAs of length ≤ 200 nucleotides, matching
the performance of current deep-learning-based structure predictionmethods
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[161, 222]. RAFFT also acts as a folding kinetic ansatz, which we tested on two
RNAs: the CFSE and a classic bi-stable sequence. For the CFSE, an ensemble of
68 distinct structures computed by RAFFT allowed us to produce complete
folding kinetic trajectories. In contrast, known methods require evaluating
millions of sub-optimal structures to achieve this result. For the second ap-
plication, only 46 distinct structures were required to reproduce the kinetics,
whereas known methods required a sample of 20, 000 structures.

Similar to the first part of the result, Part ii contains two chapters. Chapter 4
will briefly introduce the RNA design problem. It distinguishes the positive
from the negative RNA design problem and reviews the current state of the art
computational tools, especially those implementing evolutionary techniques.
The existing tools present challenges when benchmarked on recent datasets
such as Eterna100. Another limitation is that most existing tools do not con-
sider the pseudoknot patterns in their designing process. In Chapter 5, we
propose an improved evolutionary algorithm inspired by the Lévy flights.
Like a Lévy flight, our tool, aRNAque, implements a Lévy mutation scheme
that allows simultaneous search at all scales over the mutational landscape.
New mutations often produce nearby sequences (one-point mutations) but
occasionally generate mutant sequences far away in genotype space (macro-
mutations). In aRNAque, the number of point mutations distribution at every
step is taken to follow a Zipf distribution. The Lévymutation scheme increases
the diversity of designed RNA sequences and reduces the average number of
evaluations of the evolutionary algorithm compared to the local search. The
overall performance showed improved empirical results compared to existing
tools through intensive benchmarks on both pseudoknot (the PseudoBase++
dataset) and pseudoknot-free ( the Eterna100 dataset) datasets.

Finally, Chapter 7 presents a general conclusion, a discussion on the results
obtained and some promising perspectives. It emphasizes the understanding
of the Lévy mutation in the context of RNA design and the application of our
results to evolutionary dynamics.



Part I

RNA FOLD ING

This first part of our thesis provides a literature review on existing
computational tools addressing the prediction of RNA secondary
structure, and it presents our proposed tool RAFFT. Chapter 3
contains figures and ideas that have previously appeared in our
publication:

• [139] Vaitea Opuu, Nono SC Merleau,Vincent Messow and
Matteo Smerlak(2021). RAFFT: Efficient prediction of RNA fold-
ing pathways using the fast Fourier transform. In: bioRxiv (Sub-
mitted and accepted) (PLoS Comp. Biol.)





2
INTRODUCT ION TO RNA FOLD ING

We provided some motivations for studying ncRNAs and introduced their
bioinformatic concepts in the introduction. We also highlighted the relation-
ship between the structure of ncRNAs and their functions. The functions of
ncRNAs and their lengths usually distinguish them, and several ncRNA classes
were presented. Identifying the ncRNA functions is challenging, though there
is a widespread expectation that their functions are largely determined by
their structures. The process of determining the RNA structure is often termed
RNA folding. Experimental methods that determine the secondary structure
of such molecules are usually expensive. Many computational methods have
been developed in the last decades as alternatives. This chapter overviews
computational methods for predicting RNA secondary structures. Two tech-
niques will be reviewed: statistical approaches such as machine learning and
score-based methods.

2.1 stability and prediction of rna secondary structures

The mapping from RNA sequences to their corresponding secondary struc-
ture defines the folding of RNA molecules. RNA folding is, therefore, a process
by which a linear RNA sequence acquires a secondary structure through
intra-molecular interactions. The nature of those interactions defines the ther-
modynamic stability of the secondary structure. Throughout this dissertation,
we will denote the thermodynamic stability of a structure 𝜎 by Δ𝐺𝜎, which
is the free energy difference with respect to the completely unfolded state.
This section provides an intuition on how the free energy of an RNA secondary
structure is computed based on the definitions and concepts introduced in
Chapter 1. Furthermore, it introduces the problem of RNA secondary struc-
ture prediction and an overview of existing techniques.

In predicting biologically relevant structures, most computational meth-
ods search for structures that minimize the free energy function Δ𝐺 (i.e. the
MFE structure). Therefore, the prerequisite to efficiently computing the MFE
secondary structure is the computation of the free energy for any given sec-
ondary structure 𝒮. The calculation of the RNA structure free energies starts
by decomposing each structure into components called loops (See Defini-
tion 4). The loop decomposition allows building the basis of the standard
energymodel for RNA secondary structures called the nearest neighbour (NN)
model [199]. The total free energy of a secondary structure is assumed to be
a sum over its constituent loops according to the additivity principle [35]
(see Definition 5). Therefore, this structure decomposition allows an efficient
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dynamic programming (DP) algorithm to determine theMFE pseudoknot-free
structure of a sequence 𝜙 in the structure space Σ𝜙.

DP is a computer programming method developed by Richard Bellman in
the early 1950s [11], and it has found applications in various fields, including
the RNA secondary structure prediction. It consists of simplifying a compli-
cated problem by breaking it down into simpler sub-problems in a recursive
manner. When sub-problems can be nested recursively inside larger problems
so that DP methods are applicable, then there is a relation between the value
of the larger problem instance and the values of the sub-problems.

For example, let us consider the definition of secondary structure 𝒮 intro-
duced in the previous chapter (Definition 2) and its string representation
𝜎. When considering a substructure 𝜎[𝑖 ∶ 𝑗] within the sequence interval
𝜙[𝑖 ∶ 𝑗], there are only two alternatives to how position 𝑖 may contribute
to 𝜎[𝑖 ∶ 𝑗]. Either 𝑖 does not pair with any other position, or it pairs with
another nucleotide 𝑘 with 𝑖 < 𝑘 ≤ 𝑗. In the first situation, 𝜎[𝑖 ∶ 𝑗] consists
of the base-pairs in the subsequence 𝜎[𝑖 + 1 ∶ 𝑗] only. The formation of a
base-pair (𝑖, 𝑘), however, subdivides the structure into two parts, one en-
closed by (𝑖, 𝑘), namely 𝜎[𝑖 + 1 ∶ 𝑘 − 1], and the other one, 𝜎[𝑘 + 1 ∶ 𝑗]. Thus,
𝒮 = 𝑝𝑟𝑜𝑐{𝜎[𝑖+1 ∶ 𝑘−1]∪𝜎[𝑘+1 ∶ 𝑗]}∪{(𝑖, 𝑘)}, where the 𝑝𝑟𝑜𝑐 is the recursive
procedure. Since condition (3) of definition 2 ensures that the position (𝑖, 𝑗)
can not contain base-pairs that cross (𝑖, 𝑘) (or at least in the pseudoknot-free
situation), the two shorter substructures 𝜎[𝑖 + 1 ∶ 𝑘 − 1] and 𝜎[𝑘 + 1 ∶ 𝑗] can
be treated independently for a large variety of purposes.

This observation has led to a recursive decomposition scheme for RNA sec-
ondary structures, which is the basis of the large variety of DP approaches that
solve RNA secondary structure prediction problems. The first DP algorithm
was then proposed by Nussinov and Jacobson [137] to find the structure
with the maximum base-pairs. A few years after, Zucker and Stieger [230]
extended Nussinov’s algorithm to a more realistic scoring model based on
free energy, the NN model. Almost all score-based methods rely on the same
DP algorithm, but the decomposition scheme and the scoring model could
differ from one to another. When predicting structures with non-canonical
base-pairs, some other scoring schemes are used, such as nucleotide cyclic
motifs score system [29, 141, 175] or equilibrium partition function [178].

In addition to score-basedmethods, we have comparative sequence analysis
methods, which are the most computationally accurate for determining RNA
secondary structures [72, 120]. Using the set of homologous structures, the
comparative method allows finding base-pairs that covary to maintain WC
and wobble bases of a given sequence 𝜙 [73]. The first comparative method
predicting a common secondary structure conserved in the given homologous
sequence set was developed by Han and Kim in the early nineteenth century,
and it was based on comparative phylogenetic analysis.

When neglecting the special base-pairs (or pseudoknots) and the weak
interactions, the running time of both approaches (sore-based and compar-
ative analysis) is usually 𝑂(𝐿3) (Where 𝐿 is the RNA sequence length) and
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thus prohibitingly slow for longer sequences. Many other comparative anal-
ysis methods and variations of score-based methods were also proposed
to improve computational time. More recently, a heuristic method such as
LinearFold allows achieving good RNA folding performance in a linear time
(𝑂(𝐿)).

When pseudoknots are considered, the loop decomposition of a secondary
structure and the energy rules break down. Although we can assign reason-
able free energies to the helices in a pseudoknot and even to possible coaxial
stacking between them, it is impossible to estimate the effects of the new
kinds of loops created. Base triples pose an even greater challenge because the
exact nature of the triple cannot be predicted in advance, and even if it could,
we have no data for assigning free energies. Nevertheless, there are existing
techniques that approximate the energies of pseudoknot loops and allow the
dynamic programming technique to tackle the RNA folding with pseudoknots.
However, the time complexity still remains the main problem. Using a DP
technique for the pseudoknot structure prediction, the time complexity goes
up to 𝑂(𝐿6) for the exact prediction. But for heuristic methods such as IPKnot
[163] and Hotknots [148], the running time can be reduced down to 𝑂(𝐿4).

Despite the advanced development of computational tools for RNA folding,
it’s challenging to understand the folding mechanism fully. In contrast to
score-based and comparative analysis methods, machine learning methods
are data-driven methods that require no knowledge of the folding mecha-
nism. Nevertheless, the requirement of ML-based methods is a large amount
of training data on which they can learn. In the last few decades, ML methods
have been used for many aspects of RNA secondary structure prediction meth-
ods to improve the prediction performance and overcome the limitations of
existing methods. However, they did not replace the mainstream score-based
methods with respect to accuracy and generalization. In addition to some
overfitting concerns, ML-based methods cannot give dynamic information on
the RNA folding process since little data are available on structural dynamics.
In addition, the training data used in ML-based methods are mostly obtained
through phylogenetic analyses. Consequently, their prediction may be biased
due to the in vivo third elements. The following subsections provide a de-
tailed description of some of the recent ML-based and score-based tools for
secondary structure prediction.

In sum, computational methods usually consider the MFE secondary struc-
ture as themost biologically relevant one. Predicting theMFE structure consists
of solving a free energy optimization problem in the case the scoring function
is the free energy. Existing methods for RNA secondary structures prediction
can be clustered into three main categories: the scored-based, comparative
sequence analysis and ML methods. The score-based methods are the most
widely used but are usually less accurate than the comparative methods. In
contrast, ML methods are more recent and still under intensive improvements.
The following section will overview some existing tools and highlight their
limitations.
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2.1.1 MFE prediction tools for pseudoknot-free RNA sequences using a score-base
method

The score-based methods often assume that the native or biological RNA struc-
ture is the one that minimizes/maximizes the overall total score, depending
on the hypotheses made on the RNA folding mechanism. In the pseudoknot-
free MFE prediction, where the special and weak interactions are neglected,
the folding problem is less complex, and the scoring model is simply the free
energy. Hence, the issue of RNA secondary structure prediction becomes an
optimization problem that aims at finding the best-scoring structure 𝒮𝑀𝐹𝐸 by
minimizing a scoring function Δ𝐺. We write

𝒮𝑀𝐹𝐸 = argmin𝒮∈Σ𝜙
Δ𝐺(𝒮, 𝜙) (2.1)

where Σ𝜙 is the set of all possible pseudo-knot free secondary structures
for the sequence 𝜙 of length 𝐿 and, Δ𝐺(𝒮, 𝜙) the free energy of the structure
𝒮 evaluated for the sequence 𝜙.

Since each possible structure can be uniquely and recursively decomposed
into smaller components (or loops) with independent free energy contribu-
tions, the DP is best suited for most of the following tools presented here.

• UnAfold [229, 230]: It is the successor of the original mfold program
which was the first realistic implementation of the DP for secondary
structure predictions with a score based on the loop energy parame-
ters and a worse case time complexity of 𝑂(𝐿3). The initial version was
an improvement of the simplest DP for secondary structure prediction
known as the maximum circular matching problem [137]. The authors
demonstrated that the loop-based energy model is also amenable to the
same algorithmic ideas. With McCaskill’s algorithm [128], for comput-
ing the partition function of the equilibrium ensemble of RNA molecules,
more efficient implementations of the initial programwith accurate ther-
modynamic modelling have been provided. The latest implementation
is known as UnAfold.

• RNAStructure [126, 149]: The software first appeared in 1998 as a reim-
plementation of the program mfold with improved thermodynamic
parameters. In its initial version, four major changes were made in
mfold: (1) an improvement on the methods for forcing base-pairs; (2) a
filter that removed isolated WC or wobble base-pairs has been added;
(3) the energy parameter for interior, internal and hairpin loops were
incorporated; (4) a new model for coaxial stacking of helices. It predicts
the lowest free energy structure and a set of low energy structures. The
new implementation also provided a user-friendly graphical interface
for Windows operating system. Subsequently, the first implementation
was extended to include biomolecular folding; an algorithm that finds
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low free energy structures common to two sequences; the partition
function algorithm and all free energy structures, and the constraints
with enzymatic data and chemical mapping data. The recent version
includes the partition function computation for secondary structures
common to two sequences and can perform stochastic sampling of com-
mon structures [75]. Additionally, it contains MaxExpect, which finds
maximum expected accuracy structures [116], and amethod for removal
of pseudoknots, leaving behind the lowest free energy pseudoknot-free
structure.

• RNAfold [80, 112]: It is one of the most used and efficient folding tools. It
computes the MFE secondary structure using an efficient DP scheme and
backtraces an optimum structure. It also allows computing the partition
function using McCaskill’s algorithm, the matrix of base-pairing proba-
bilities, and the centroid structure. It is part of the ViennaRNA Package.
Since its first version, it aims at suggesting an efficient implementation
of Zucker’s algorithm with more flexibility on the folding constraints.
Many other versions have been released, including a graphics processing
unit (GPU) implementation. The latest stable release of the ViennaRNA
Package is Version 2.5.0.

• LinearFold [85]: For many decades, the DP techniques have been the
most accurate and fast at predicting pseudoknot-free structure for short
input RNA sequences. But for long sequences, the prediction remains
challenging because of the computational time and the lack of accurate
thermodynamic energy parameters. In contrast to traditional DP meth-
ods which are often bottom-up, LinearFold is a left-to-right DP. The
left-to-right DP consists of scanning the input RNA sequence 𝜙 from left
to right, maintaining a stack along the way and performing one of the
three actions (push, skip or pop). The stack consists of a list of unpaired
opening bracket positions and at each position 𝑗 = 1 … 𝐿, the three ac-
tions consist respectively of 1) push: opening a bracket at position 𝑗, 2)
skip: unpaired nucleotide at position 𝑗 and 3) pop: closing the bracket
at position 𝑗. Initially, LinearFold’s computational time was similar to
the classical DP (𝑂(𝐿3)) because of the pop action that involves three
free indices (i.e. unpaired positions). But using a beam search heuristic,
the time complexity was then reduced to 𝑂(𝐿𝑏 log 𝑏), where 𝑏 is the
beam size. The beam search is a popular heuristic technique used in
computational linguistics [84]. This technique allows keeping only the
top 𝑏 highest-scoring (or low energy) states for each prefix of the input
sequences. Therefore, the algorithm has a linear time for a specific value
of 𝑏 < 𝐿, even though it does not guarantee an exact solution.

Although the score-based approaches for RNA structure prediction often
offer good accuracy and generalization, the non-availability of the thermo-
dynamic energy parameters for specific loops of extended sizes presents the
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main challenge for predicting long sequences (i.e. 𝐿 ≥ 1, 000 nucleotides).
Early ML-based methods aim to improve the energy parameters by learning
the underlying folding patterns from a more considerable amount of training
data. In the next section of this chapter, we will present some of the recent
improvements in structure prediction using ML-based methods.

2.1.2 ML-based methods

In the previous section, we reviewed the score-based RNA secondary struc-
ture prediction methods in general and four tools in particular, i.e. UnAfold,
RNAstructure, RNAfold, and LinearFold. These methods are thermodynamic
methods that usually rely on experimentally energy parameters. For exam-
ple, most experimental energy parameters are available only for short RNA
sequences (e.g. with a length of fewer than 200 nucleotides). This limitation
significantly degrades the prediction performance of thermodynamic meth-
ods for long RNA sequences. In an attempt to improve these methods, ML
methods have been proposed. This section presents an overview of existing
ML methods, especially those used in Chapter 3 for benchmark comparison
with our proposed method.

ML-based methods for RNA secondary structure prediction can generally
be classified into three categories according to ML’s subprocess, i.e., score
scheme based on ML, preprocessing and postprocessing based on ML, and
prediction process on ML. All the ML-based methods in these three categories
trained their models in a supervised way [227].

When using a scoring scheme based on ML, the parameter estimation in
the scoring scheme is first optimized using an ML model. The estimated
parameters are then used to evaluate the scores of possible conformations.
Difference scoring schemes can be refined by using that approach: the free
energy parameters, weights, and probabilities. The free energy parameter-
refining is themost popular because several thermodynamic parameters of the
NN model have to be based on a large number of optimal melting experiments
and the experiments are time and labour-consuming. In fact, not all free energy
changes in structural elements can be experimentally measured because of
technical difficulties. Instead of refining the free energy parameters, some ML-
based approaches scream through existing data of RNA structures to extract
weights that consist of different features of RNA structure elements. These
weights can be used as a scoring function for DP techniques. The advantage
of such a scoring function is that it decouples structure prediction and energy
estimation. However, learned weights have no explanations because of the
ML black box.

Another alternative for predicting RNA structures is the stochastic context-
free grammar (SCFG) [42, 103, 104, 152, 158, 215]. SCFGs allow building gram-
mar rules and induce a join probability distribution over possible RNA struc-
ture for a given sequence 𝜙. In addition, the SCFG models specify probability
parameters for each production rule in the grammar, which allow assigning a
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probability to each sequence generated by the grammar. These probability pa-
rameters are learned from datasets of RNA sequences associated with known
secondary structures without carrying any external laboratory experiments
[42].

Besides the ML-based methods that focus on refining the folding parame-
ters, there are preprocessing and post-processing based on ML [77, 83, 228]
and direct predicting process based on ML [111, 185, 188]. Preprocessing and
postprocessing models allow for choosing the appropriate prediction method
or set of prediction parameter sets and provide a means of determining the
most likely structures among the possible outcomes that are useful for de-
cision. The preprocessing and postprocessing ML tools are often based on a
support vector machine (SVM).

Finally, it is possible to use ML techniques to predict RNA secondary struc-
ture directly or combine it with other algorithms in an end-to-end fashion.
Below are some of themost used and recentML-based tools for RNA secondary
structure prediction.

• ContraFold[39]: Using the so-called probabilisticmodel, the conditional
log-linear model (CLLM), ContraFold appeared for the first time in early
2006. It was the first probabilistic prediction tool outperforming the ex-
isting tools, including thermodynamic tools such as RNAfold and mfold.
The CLLM is a flexible class of probabilistic models that generalizes upon
SCFGs, using discriminative training and feature-rich scoring. The tool
implements a CLLM incorporating most of the features found in typical
thermodynamic models allowing the tool to achieve the highest single
sequence prediction accuracy to date when comparedwith the currently
available probabilistic models.

• ContextFold [222]: In contrast to ContraFold, ContextFold utilizes a
weighted approach based on ML. In particular, it uses a discriminative
structured-prediction learning framework combined with an online
learning algorithm. ContextFold uses a large training dataset of RNA
sequences annotated with their corresponding structures to obtain an
ML model made of 70, 000 free parameters, which has several orders
of magnitudes compared to traditional models (i.e. thermodynamic
free energy parameters). At its first apparition, ContextFold’s model
succeeded at the error reduction of about 50%. Still, some overfitting con-
cerns have been reported when using the tool, especially for predicting
structures with large unpaired regions.

• Mxfold2 [161]: It is one of the most recent ML-based tools for predicting
the secondary structure of RNA molecules. Its particularity is the ML
technique used, a ML it also belongs to the weighted approach based
on ML since the resulting model of a deep neural network (DNN) is a
set of weight parameters. MxFold2’s DNN uses the max-margin frame-
work with thermodynamic regularization. It made the folding scores
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predicted by Mxfold2 and the free energy calculated by the thermody-
namic parameters as close as possible. This method has shown robust
prediction on both sequences and families of natural RNAs, suggesting
that the weighted ML approaches can compensate for the gaps in the
thermodynamic parameter approaches.

Although ML methods provide substantial improvements compared to
traditional methods such as thermodynamic and comparative sequence anal-
ysis [162, 176], they often lack physical principles (training data are mostly
obtained through phylogenetic analyses) and present some over-fitting con-
cerns [153]. In addition to the over-fitting problems partially due to few data
availability, ML methods do not provide dynamic information on RNA folding
for the same reason. In Chapter 3, we will introduce our approach that aims
at predicting an ensemble structure, which allows us to derive some dynamic
information and contrasts the methods previously presented.

2.1.3 Prediction tools for pseudoknotted RNA sequences

In the introduction, we have provided the importance of pseudoknot inter-
action in realizing biological functions, and different pseudoknot patterns
have been reviewed. This section introduces a couple of tools for predicting
RNA pseudoknotted structures that will be used in the benchmark results
presented in Chapter 5.

Folding RNA sequences with pseudoknotted interactions is computation-
ally more expensive than a pseudoknot-free target. Specifically, the time
complexity of the pseudoknot-free secondary structure prediction is 𝑂(𝐿3)
when using dynamic programming approaches such as RNAfold, or less with
heuristic folding methods (e.g. 𝑂(𝐿) for LinearFold and 𝑂(𝐿2 log𝐿)). By con-
trast, when considering a special class of pseudoknots, the time complexity
of folding goes up to 𝑂(𝐿6) for an exact thermodynamic prediction using a
dynamic programming approach such as [151]. When Using heuristic meth-
ods, the time complexity slows down to 𝑂(𝐿4) (e.g. tools such as IPknot and
HotKnots) or 𝑂(𝐿3) for tool such as HFold.

• pKiss [91]: The program pKiss appears the first time in 2014 as an
updated version of the program pknotsRG[145] which is a module of
the RNA abstract shapes analysis RNAshapes [91]. Initially, the program
pknotsRG was built for the prediction of some special class of pseudo-
knots (unknotted structures and H-type pseudoknots). Later on, it was
extended to predict RNA structures that exhibit kissing hairpin motifs
in an arbitrarily nested fashion, requiring 𝑂(𝐿4) time. In addition to
predicting the kissing hairpin motifs, pKiss also provides new features
such as shape analysis, computation of probabilities, different folding
strategies and different dangling base models.

• IPknot [163]: it was first introduced in a paper by Kengo and his col-
laborators in 2011 as a novel computational tool for predicting RNA
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secondary structure with pseudoknots using integer programming tech-
nique. IPknot uses the maximum expected accuracy (MEA) as a scoring
function, and the maximizing expected accuracy problem is solved us-
ing integer programming with threshold cut. IPknot decomposes a
pseudoknotted structure into a set of pseudoknot-free substructures
and approximates a base-pairing probability distribution that consid-
ers pseudoknots, leading to the capability of modelling a comprehen-
sive class of pseudoknots and running quite fast. In addition to single
sequence analysis, IPknot can also predict the consensus secondary
structure with pseudoknots when a multiple sequence alignment is
given.

• HotKnots [148]. In contrast to the previously mentioned tools, HotKnots
implements a heuristic algorithm based on the simple idea of itera-
tively forming stable stems. The algorithm explores many alternative
secondary structures using a free energy minimization for pseudoknot-
free secondary structures. Several other additions of a single substruc-
ture are considered for each structure formed at each step, resulting
in a tree of candidate structures. The criterion for determining which
substructures to add to partially formed structures at successive levels
of the tree was also new. Similar to previous algorithms, energetically
favourable substructures called hotspots are found by a call to Zuker’s
algorithm, with the constraint that no base already paired may be in
the structure.

Despite the higher computational complexity of pseudoknots, it is still
important to account for them as they occur in natural RNA and are relevant for
RNA function. We have reviewed three mainly used RNA secondary prediction
tools (pKiss, IPknot, HotKnots) that support the two pseudoknot patterns
(i.e. the H-type and K-type) considered in Chapter 5. In addition to the
computational complexity, existing methods lack experimentally measured
energy parameters for pseudoknot interactions. Therefore, they mostly rely
or do not on approximated energy parameters, which may influence the
predictions. Only IPknot and HotKnots will be used among these tools when
designing pseudoknotted RNA structures. HotKnots predicts the free energy
of pseudoknotted structure based on recently updated energy parameters,
whereas IPknot does not.

So far, we have presented tools that predict a single stable and static RNA
secondary structure for a given RNA sequence, including pseudoknots or not.
More often than not, the ncRNA functions are associated with the RNAs’ ability
to undergo specific conformational changes, as is the case for riboswitches.
The function of an RNA molecule thus is usually poorly described by its
ground state structure and instead has to be studied as a dynamic ensemble
of structures [36, 138]. The following section will review some computational
methods that address the folding dynamics of RNA molecules.
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2.2 rna kinetics

The previous section introduced how pseudoknot-free secondary structures
with their thermodynamic properties can be predicted. It also introduced
some statistical methods that do not only rely on the thermodynamic principle
but training data obtained fromphylogenetic analysis, mainly theMLmethods.
However, the methods used for predictions do not tell us anything about how
the structures change over time and how they are related to each other. This
section discusses the folding dynamics of RNA molecules.

The folding of RNA molecules is remarkably more complex. It is a result of
the delicate balance betweenmultiple factors: the chain entropy, ion-mediated
electrostatic interactions and solvation effect, base-pairing and stacking, and
other non-canonical interactions [23]. It is a dynamic process governed by
a constant formation or dissolving of base-pairs. In other terms, the RNA
molecule navigates its structure space by following a free energy landscape.
Here, the free energy landscape is a high-dimensional space of all possible
secondary structures (Σ𝜙) weighted by their free energy Δ𝐺.

As usually done, the kinetics is modelled as a continuous-time Markov
chain [114], where populations of structure evolve according to transition
rates. In this context, an Arrhenius formulation is commonly used to derive
elementary transition from state 𝑖 to state 𝑗. We write

𝑘𝑖→𝑗 = 𝑘0exp(−𝛽Δ𝐺‡
𝑖→𝑗) (2.2)

where Δ𝐺‡
𝑖→𝑗 is the activation barrier separating 𝑖 from 𝑗, and 𝛽 = 1/𝑘𝐵𝑇 is

the inverse thermal energy (mol/kcal). Here 𝑘0 is the actual rate constant,
solvent-dependent. Three rate models describing elementary steps in the
structure space are often used to study RNA folding dynamics:

1. The base stackmodel [223–225]: it uses base stacks as elementary kinetic
move. A move consists of an addition or a breaking of a base stack with
Δ𝐺‡

𝑖→𝑗 equal to the change in the entropic free energy 𝑇Δ𝑆 and the
enthalpy Δ𝐻, respectively.

2. The base-pair model [25, 53]: it uses base-pair as elementary kinetic
steps which gives the finest resolution, but at the cost of computation
time. Here Δ𝐺‡

𝑖→𝑗 = Δ𝐺/2 where Δ𝐺 is the energy change from state 𝑖 to
state 𝑗 or Δ𝐺‡

𝑖→𝑗 = Δ𝐺 for Δ𝐺 ≥ 0.

3. The helix stem model [88, 122]: the elementary move is the creation or
deletion of a helix stem. It provides a coarse-grained description of the
dynamics where free energy changes (Δ𝐺‡

𝑖→𝑗) due to stem formation
guiding the folding process.

The different rate models can lead to different folding pathways. The key
factor that distinguishes the different rate models is whether the barrier is
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determined by (Δ𝐻, Δ𝑆) or by Δ𝐺. The (Δ𝐻, Δ𝑆) values for different RNA
base stacks show well-separated discrete hierarchies, whereas the Δ𝐺 values
show no such large separation. For two typical base stacks, 5′AU-AU3′ and
5′UC-GA3’, the difference Δ(Δ𝐻𝑠𝑡𝑎𝑐𝑡, Δ𝑆𝑠𝑡𝑎𝑐𝑘) = (7.4 kcal/mol, 20 kcal/mol)
is much larger than the difference Δ(Δ𝐺𝑠𝑡𝑎𝑐𝑘) = 1.4kcal/mol[169]. Because of
this fact, different models can give different folding kinetics.

Depending on the ratemodel used, the followingmaster-equation describes
the population kinetics 𝑝𝑖(𝑡) for the 𝑖𝑡ℎ state (𝑖 = 1 … Ω, where Ω is the total
number of chain conformations)

d𝑝𝑖(𝑡)
d𝑡 = ∑

𝑗∈Ω
𝑘𝑗→𝑖𝑝𝑗(𝑡) − 𝑘𝑖→𝑗𝑝𝑖(𝑡) (2.3)

where 𝑘𝑗→𝑖 and 𝑘𝑖→𝑗 are the rate constants for the respective transitions. The
equivalent matrix form of Equation 2.3 is given by

dp(𝑡)
d𝑡 = M.p (2.4)

where p = (𝑝𝑖, … 𝑝Ω) is a column vector representing the frequency of struc-
ture at state (𝑖, … , Ω) and, M is the rate matrix defined as

M𝑖𝑗 =
⎧{
⎨{⎩

𝑘𝑖→𝑗, if 𝑖 ≠ 𝑗

− ∑𝑗≠𝑖 𝑘𝑖𝑗, if 𝑖 = 𝑗.
(2.5)

For a given initial folding condition 𝑝𝑖(0), the Equation 2.4 is solvable by
diagonalizing the rate matrix M and, the solution is the population kinetics
p(𝑡) for 𝑡 > 0 is given by

p(𝑡) =
Ω
∑
𝑚=1

𝐶𝑚n𝑚 exp−𝜆𝑚𝑡 (2.6)

where −𝜆 and n𝑚 are the 𝑚𝑡ℎ eigenvalue and eigenvector of the rate matrix
M, and 𝐶𝑚 is the coefficient that is dependent on the initial condition. The
eigenvalue spectrum gives the rates of the kinetic modes of the system.

Simulating the RNA dynamics using Equation 2.3 has some limitations.
The solution to the master-equation given by Equation 2.6 can only give
ensemble-average macroscopic kinetics and cannot give detailed information
about the microscopic pathways [226]. Moreover, the number of structures
(Ω) increases rapidly with the RNA sequence length 𝐿. Therefore, the master
equation is often limited to short RNA sequences. Because of these limitations,
kinetics-cluster methods are alternatively used. The basic idea of the kinetic-
clustermethod is to classify the large structural ensemble into amuch-reduced
system of clusters (of macrostates) such that the inter-cluster transitions can
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represent the overall kinetics. Although both the master-equation and the
kinetic-cluster methods can predict the macroscopic kinetics, the kinetic-
cluster approach has the unique advantage of providing direct information
on the microscopic pathway statistics from the inter-cluster transitions [226].
Both approaches are based on the complete conformational ensemble. An
alternative approach, implemented in kinwalker [62], used the observation
that folded intermediates are generally locally optimal conformations. Like
thermodynamic methods for static RNA secondary structure prediction, ex-
perimental studies usually play an essential role in guiding computational
methods in studying RNA folding dynamics. Several recent observations are
discussed in the following paragraph.

In folding experiments, Pan and coworkers observed two kinds of path-
ways in the free energy landscape of a natural ribozyme [140]. Firstly, the
investigations revealed fast-folding pathways, in which a subpopulation of
RNAs folded rapidly into the native state. However, the second population
quickly reached metastable misfolded states, then slowly folded into the na-
tive structure. In some cases, these metastable states are functional. These
phenomena are direct consequences of the rugged nature of the RNA folding
landscape [181].

The experiments performed by Russell and coworkers also revealed the
presence of multiple deep channels separated by high energy barriers on the
folding landscape, leading to fast and slow folding pathways [157]. The formal
description of the above mechanism, called the kinetic partitioning mecha-
nism, was first introduced by Guo and Thirumalai in the context of protein
folding [69]. These metastable conformations constitute competing attraction
basins in the free energy landscape where RNA molecules are temporarily
trapped. However, in vivo, folding into the native states can be promoted by
molecular chaperones [21], which means that the active structure depends
on factors other than the sequence. This may raise some discrepancies when
comparing thermodynamic modelling to actual data.

The experimental verification of the rate model is also a challenge because
the microscopic elementary processes are hidden in the ensemble averages of
the measured kinetics. Many researchers believe that single-molecule experi-
ments may provide a discerning measure with careful extrapolation to the
force-free case. All atom-simulations with a reliable force field and sampling
method are highly valuable for providing detailed atomistic configurations
for the transition state [23]. Alternatively, systematic theory-experiment tests
as done in [226] for designed sequences can also provide critical assessment
for the different rate models.

In sum, studying the folding of RNA molecules as a dynamic ensemble of
structures is of central importance in describing their functions, and exper-
imental observations often guide the computational methods. Some of the
recent experimental observations have been reviewed in this section. Among
them, the kinetic partitioningmechanism is of interest in this work. It revealed
the presence of multiple deep channels separated by high-energy barriers
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on the folding landscape, which leads to fast and slow folding pathways.
The folding tool we suggest in Chapter 3 is inspired by this mechanism and
predicts fat RNA folding pathways. The predicted pathways, therefore, allow
us to derive dynamic information on RNA folding.

2.3 conclusion

In this chapter, we have presented the RNA folding in two main steps: (1)
the prediction of the secondary structure of RNA, which represents the static
part of the folding process; (2) the RNA kinetics, which aim at modelling the
dynamics of the folding. RNA secondary structure prediction was introduced
as an optimization problem, and a review of existing methods and tools was
presented. Of particular importance in this thesis’s context is that existing
tools for predicting RNA secondary structures often present some limits in
computational time for longer RNA sequences. Mainly the existing tools do not
give dynamical information, as few data are available on structural dynamics.
Simulating the folding kinetics of long RNA molecules is also of an essential
limit because it requires a full enumeration of the structural space in most
cases. In the next chapter, we will present our thesis’s first result, which
aims to predict RNA folding pathways efficiently using the FFT. The predicted
pathways allow us to derive energetically suboptimal structures from which
we model the RNA folding kinetics with fewer secondary structures.





3
RAFFT: EFF IC IENT PRED ICT ION OF FAST- FOLD ING
PATHWAYS OF RNAS

This chapter introduces a novel heuristic algorithm to predict an ensemble of
metastable RNA secondary structures for a given sequence 𝜙. The algorithm
is inspired by the kinetic partitioning mechanism, by which molecules follow
alternative folding pathways to their native structure, some much faster than
others. Similarly, our algorithm RAFFT generates an ensemble of concurrent
folding pathways ending in multiple metastable structures for each given
sequence. We then use the ensemble structures as finite ensemble states in
which the RNA sequence can be at a given time, and the energy difference
from one state to another is then used to derive a stem rate model. Therefore,
our algorithm also acts as a folding kinetic ansatz. Much of the material in
this chapter has been previously described in [139].

3.1 material and methods

The computational time is one of the challenges for the existing tool in folding
long RNA molecules. The method we present in this work aims to improve the
existing RNA folding tools reviewed in Chapter 2. It is based on the FFT and
inspired by the kinetic partitioningmechanism. As presented in Chapter 1, the
FFT allows reducing the computational time of the correlation between two
sequences. We use the same ideal in the context of this work to faster predict
RNA folding pathways by analyzing high correlation positional lag between
an RNA sequence and its complementary copy, especially for longer sequences.
We, therefore, derive a kinetics ansatz from the structural ensemble of the
predicted folding paths. This section describes our RNA pathways prediction
method and the kinetics ansatz derived from the predicted structural ensem-
ble. In addition, it provides a description of the benchmark dataset used to
assess our method performance and the comparison protocols.

41
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3.1.1 RAFFT’s algorithm description

RAFFT starts from a sequence of nucleotides 𝜙 = (𝜙1 … 𝜙𝐿) of length 𝐿, and
its associated unfolded structure 𝜎. We first create a numerical representation
of 𝜙 where each nucleotide is replaced by a unit vector of 4 components:

A →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,U →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,C →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,G →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.1)

This encoding gives us a (4×𝐿)-matrix we call 𝑋, where each row corresponds
to a nucleotide as shown below:

𝑋 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑋A

𝑋C

𝑋G

𝑋U

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑋A(1) 𝑋A(2) … 𝑋A(𝐿)
𝑋C(1) 𝑋C(2) … 𝑋C(𝐿)
𝑋G(1) 𝑋G(2) … 𝑋G(𝐿)
𝑋U(1) 𝑋U(2) … 𝑋U(𝐿)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.2)

For example,𝑋A(𝑖) = 1 if𝜙𝑖 = A.Next, we create a second copy ̄𝜙 = ( ̄𝜙𝐿 … ̄𝜙1)
for which we reversed the sequence order. Then, each nucleotide of ̄𝜙 is
replaced by one of the following unit vectors:

Ā →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0

𝑤AU

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Ū →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑤AU

𝑤GU

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, C̄ →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0

𝑤GC

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Ḡ →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
𝑤GC

0
𝑤GU

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.3)

Ā (respectively Ū, Ū, Ḡ) is the complementary of A (respectively U,C,G).
𝑤𝐴𝑈, 𝑤𝐺𝐶, 𝑤𝐺𝑈 represent the weights associated with each canonical base-
pair, and they are chosen empirically. We call this complementary copy 𝑋̄, the
mirror of 𝑋.

To search for stems, we use the complementary relation between 𝑋 and 𝑋̄
with the correlation function cor(𝑘). This correlation is defined as the sum of
individual 𝑋 and 𝑋̄ row correlations

cor(𝑘) = ∑
𝛼∈{A,U,C,G}

𝑐𝑋𝛼,𝑋̄𝛼(𝑘) (3.4)

where a row correlation between 𝑋 and 𝑋̄ is given by

𝑐𝑋𝛼,𝑋̄𝛼(𝑘) = ∑
1≤𝑖≤𝐿

1≤𝑖+𝑘≤𝐿

𝑋𝛼(𝑖)𝑋̄𝛼(𝑖 + 𝑘)
min(𝑘, 2𝐿 − 𝑘) . (3.5)

For each 𝛼 ∈ {A,U,C,G}, 𝑋𝛼(𝑖) × 𝑋̄𝛼(𝑖 + 𝑘) is non zero if sites 𝑖 and 𝑖 + 𝑘 can
form a base-pair, and will have the value of the chosen weight as described
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Figure 3.1: Algorithm execution for one example sequence which requires two
steps. (Step 1) From the correlation 𝑐𝑜𝑟(𝑘), we select one peak which
corresponds to a position lag 𝑘. Then, we search for the largest stem and
form it. Two fragments, “In” (the interior part of the stem) and “Out”
(the exterior part of the stem), are left, but only the “Out” may contain
a new stem to add. (Step 2) The procedure is called recursively on the
“Out” sequence fragment only. The correlation 𝑐𝑜𝑟(𝑘) between the “Out”
fragment and its mirror is then computed and analyzing the 𝑘 positional
lags allows to form a new stem. Finally, no more stem can be formed on
the fragment left (colored in blue), so the procedure stops.

above. If all theweights are set to 1, cor(𝑘) gives the frequency of base-pairs for
a positional lag 𝑘. Although the correlation naively requires 𝑂(𝐿2) operations,
it can take advantage of the FFT which reduces its complexity to 𝒪(𝐿 log(𝐿)).

Large cor(𝑘) values between the two copies indicate positional lags 𝑘 where
the frequency of base-pairs is likely to be high. However, this does not allow to
determine the exact stem positions. Hence, we use a sliding window strategy
to search for the largest stem within the positional lag (since the copies are
symmetrical, we only need to slide over one-half of the positional lag). Once
the largest stem is identified, we compute the free energy change associated
with the formation of that stem. Next, we perform the same search for the 𝑛
highest correlation values, which gives us 𝑛 potential stems. Then,we define as
the current structure the stem with the lowest free energy. Here, free energies
were computed using Turner2004 energy parameters through ViennaRNA
package API [112].

We are now left with two independent parts, the interior and the exterior of
the newly formed stem. If the exterior part is composed of two fragments, they
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Figure 3.2: Fast folding graph constructedusing RAFFT. In this example, the sequence
is folded in two steps. The algorithm starts with the unfolded structure on
the left. The 𝑁 = 5 best stems are stored in stack 1. From stack 1, multiple
stems formation are considered, but only the 𝑁 = 5 best are stored in
stack 2. Structures are ordered (from top to bottom) by energy in each
stack. All secondary structure visualizations were obtained using VARNA

[32].

are concatenated into one. Then, we apply recursively the same procedure on
the two parts independently in a breadth-first fashion to form new consecutive
base-pairs. The procedure stops when no base-pair formation can improve the
energy. When multiple stems can be formed in these independent fragments,
we combine all of them and pick the compositionwith the best overall stability.
If too many compositions can be formed, we restrict this to the 104 bests in
terms of energy. Figure 3.1 shows an example of execution to illustrate the
procedure.

The algorithm described so far tends to be stuck in the first local minima
found along the folding trajectory. To alleviate this, we implemented a stack-
ing procedure where the 𝑁 best trajectories are stored in a stack and evolved
in parallel. Like the initial version, the algorithm starts with the unfolded
structure; then, the 𝑁 best potential stems are stored in the first stack. From
these 𝑁 structures, the procedure tries to add stems in the unpaired regions
left and saves the 𝑁 best structures formed. Once no stem can be formed, the
algorithm stops and output the structure with the best energy found among
the structures stored in the last stack. This algorithm leads to the construc-
tion of a graph we call a fast-folding graph. In this graph, two structures are
connected if the transition from one to another corresponds to the formation
of a stem or if the two structures are identical. Figure 3.2 shows an example
of a fast-folding graph produced by RAFFT for 𝑁 = 5.
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This section presented the complete procedure implemented in our pro-
posed tool RAFFT. The procedure resulted in an ensemble of concurrent folding
pathways ending in multiple metastable secondary structures. The connec-
tions in each folding pathway are dictated by the formation of stems, resulting
in an energy increase. The different folding pathways connected to the initial
unfolded structure form a fast folding graph. The ensemble of secondary
structures constituting the fast folding graph is then used to build our kinet-
ics ansatz where the transitions follow the Metropolis rules, i.e. no barriers
between structures. The following section provides more details on our pro-
posed kinetics ansatz.

3.1.2 Kinetic ansatz

Now that the RNA pathway prediction algorithm is described, we provide
the ingredients needed to extract dynamic folding information from the
previously generated fast folding graph in this section.

The folding kinetic ansatz used here is derived from the fast-folding graph
and allows us to model the slow processes in RNA folding. As described
in Figure 3.2, transitions can occur from left to right (and right to left) but
not vertically. The fast-folding graph follows the idea that parallel pathways
quickly reach their endpoints; however, when the endpoints are non-native
states, this ansatz allows slowly folding back into the native state [140].

Using the master-equation (See Equation 2.3), the traditional kinetic ap-
proach often starts by enumerating the whole space (or a carefully chosen
subspace) of structures using RNAsubopt. Next, this ensemble is divided into
local attraction basins separated from one another by energy barriers. This
coarsening is usually done with the tool called barriers. Then, following the
Arrhenius formulation (See Equation 2.2) , one simulates a coarse grained
kinetics between basins.

In contrast to traditional kinetics approaches, the connected structures in
the RAFFT’s fast-folding graph are not always separated by activation barrier
energies. Therefore, we computed the transition rates 𝑘𝑖→𝑗 using the Metropo-
lis [102] formulation defined as

𝑘𝑖→𝑗 =
⎧{
⎨{⎩

𝑘0 × min(1, exp(−𝛽Δ(Δ𝐺𝑖→𝑗))), if 𝜎𝑖 ∈ ℳ(𝜎𝑗)

0, else
(3.6)

where ΔΔ𝐺𝑖→𝑗 = Δ𝐺𝑗 − Δ𝐺𝑖 is the free energy change between structure
𝜎𝑖 and 𝜎𝑗. Here, 𝑘0 is a conversion constant that we set to 1 for the sake of
simplicity andwe initialize the population 𝑝𝑖(0) with only unfolded structures;
therefore, the trajectory represents a complete folding process. The frequency
of a structure 𝜎𝑖 evolves according to the master Equation 2.3. Due to this
approximation, we referred to our approach as a kinetic ansatz

In sum, based on the FFT, we constructed amethod that allows generating an
ensemble of secondary structures by a successive formation of stems. Using
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this ensemble, we derived a kinetics ansatz in which transitions between
structures follow the Metropolis rules. We assess the performance of our tool
by comparing its predictions to existing tools using benchmark datasets. The
following section briefly describes the datasets used in this work, including
the clean procedure applied to the initial datasets.

3.1.3 Benchmark datasets.

Measuring the performance of computational RNA folding tools can be quite
a challenging task. A perfect validation procedure will require a compari-
son to experimental data, which in practice are not also perfect and are very
expensive. In the context of this work, we perform in silico validation us-
ing benchmark datasets, which is a collection of native sequence structures.
Because our proposed method produces kinetics and static structure pre-
dictions., we assess the performance of both tasks separately and using a
different dataset. This section presents the two datasets.

To build the dataset for the folding task application, we started from the
ArchiveII dataset derived from multiple sources [5, 10, 18, 30, 33, 61, 70, 71,
125, 159, 165, 177, 182, 184, 208, 231, 232]. We first removed all the structures
with pseudoknots, since the tools considered here do not handle these loops.
Next, using the Turner2004 energy parameters, we evaluated the structures’
energies and removed all the unstable structures: structures with energies
Δ𝐺 > 0. This dataset is composed of 2, 698 sequenceswith their corresponding
known structures. 240 sequences were found multiple times (from 2 to 8
times); 19 of themwere mapped to different structures. For the sequences that
appeared with different structures, we picked the structure with the lowest
energy. In the end we arrived at a dataset with 2, 296 sequences-structures.

For the kinetics task, there is no existing standard procedure or dataset
allowing to validate or not a computational tool. However, for the validation
of our kinetic ansatz, we used the CFSE RNA sequence and classic bi-stable
sequence GGCCCCUUUGGGGGCCAGACCCCUAAAGGGGUC.

In sum, two different dataset sets are used to assess RAFFT performance:
the first one, Archive II consists of 2, 296 sequences-structures used for the
prediction task, and one which contains two sequences, the CFSE and a
bistable sequence for the kinetic study. The following section describes the
benchmarking protocols for both tasks.

3.1.4 Structure prediction protocols

The static RNA structure prediction and the RNA kinetic performances of
our proposed tool RAFFT are evaluated separately. This section describes the
evaluation protocols for both performances and the different tool parameters
used throughout.
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To evaluate the structure prediction accuracy of the proposed method,
we compared RAFFT to five recent secondary structure pseudoknot-free pre-
diction tools. The five tools include ML-based methods (Mxfold2 0.1.1 and
Contrafold) and score-based methods ( RNAfold 2.4.13, Linearfold, and
RNAstructure ). To compute the MFE structure for the score-based methods,
we used the default parameters and the Turner2004 set of energy parameters.
We also computed the ML predictions using the default parameters. Therefore,
only one structure prediction per sequence for these tools was used for the
statistics.

Two parameters are critical for RAFFT, the number of positional lags in
which stems are searched, and the number of structures stored in the stack.
For our computational experiments, we searched for stems in the 𝑛 = 100 best
positional lags and stored 𝑁 = 50 structures. The correlation function cor(𝑘)
which allows to choose the positional lags is computed using the weights
𝑤𝐺𝐶 = 3, 𝑤𝐴𝑈 = 2, and 𝑤𝐺𝑈 = 1.

To assess the performance of RAFFT, we analyzed the output in two different
ways. First, we considered only the structure with the lowest energy found
for each sequence. This procedure allows us to assess RAFFT performance in
predicting the MFE structure. Second, we computed the accuracy of all 𝑁 = 50
structures saved in the last stack for each sequence and displayed only the
best structure in terms of accuracy. As mentioned previously in Chapter 2, the
lowest energy structure found may not be the active structure. Therefore, this
second assessment procedure allows us to show whether one of the pathways
is biologically relevant.

We used two metrics to measure the prediction accuracy: the PPV and
the sensitivity. The PPV measures the fraction of correct base-pairs in the
predicted structure, while the sensitivity measure the fraction of base-pairs
in the accepted structure that are predicted. These metrics are defined in
Chapter 1 (See definitions 11, 12). To be consistent with previous studies, we
computed these metrics using the scorer tool provided by Matthews et al.
[123], which also provides a more flexible estimate where shifts are allowed.

Further more, we used a PCA to visualize the loop diversity in the predicted
structures for each folding tool considered here. To extract the weights as-
sociated with each structure loop from the dataset, we first converted the
structures into weighted coarse-grained tree representation [170]. In the tree
representation, the nodes are generally labelled as E (exterior loop), I (interior
loop), H (hairpin), B (bulge), S (stacks or stem-loop), M (multi-loop) and
R (root node). We separately extracted the corresponding weights for each
node, and the weights are summed up and then normalized. Excluding the
root node, we obtained a table of 6 features and 𝑛 entries. This allows us to
compute a 6 × 6 correlation matrix that we diagonalize using the eigen rou-
tine implemented in the scipy package. For visual convenience, the structure
compositions were projected onto the first two principal components (PCs).

Finally, the CFSE and a bistable RNA sequence are used to assess the kinetic
performance. For each sequence, initial conditions are chosen for both Treekin



48 rafft: efficient prediction of fast-folding pathways of rnas

and RAFFT to simulate the kinetic trajectories. Both kinetics are simulated
using the master equation described in Chapter 2 (Equation 2.3) but with
different transition rules, Treekin uses the Arrhenius rules whereas RAFFT
uses theMetropolis rules. The following section describes the statistical results
obtained for both kinetics and structure prediction tasks.

3.2 experimental results

The validation of our results is purely statistical, i.e. using statistical meth-
ods such as 𝑡-test and regression to compare different tool performance data.
Based on the previously mentioned limitations of existing tools, we evaluate
three main RAFFT potential improvements: the running time for the folding or
pathways prediction, the quality of the predicted pathways and the RNA fold-
ing kinetics. This section discusses each of those performances in comparison
to the existing tools.

3.2.1 RAFFT’s run time and scalability

The first input of our method is a potential improvement to the CPU time
of existing tools. This section focuses on analyzing RAFFT’s running time
compared to existing methods. Four different tools are considered: RNAfold,
ContraFold, RNAstructure and LinearFold. All of them are MFE estimates
implementing a DPwith cubic time complexity(𝑂(𝐿3)), except for ContraFold
which implements a ML approach. When using the heuristic implementation
of LinearFold, the time complexity is linear while losing the MFE estimation.
We will first discuss RAFFT theoretical time complexity before comparing the
empirical execution times to the existing tools.

The complexity of RAFFT’s algorithm depends on the number and size of
the stems formed. The main operations performed for each stem formed are:
(1) the evaluation of the correlation function cor(𝑘), (2) the sliding-window
search for stems, and (3) the energy evaluation. We based our approximate
complexity on the correlation evaluation since it is the more computationally
demanding step; the other operations only contribute amultiplicative constant
at most. The best case is the trivial structure composed of one large stem
where the algorithm stops after evaluating the correlation on the complete
sequence. At the other extreme, the worst case is one where at most 𝐿/2 stems
of size 1 (exactly one base-pair peer stems) can be formed. The approximate
complexity therefore depends on

𝐿/2
∑
𝑖=0

(𝐿 − 2𝑖) log(𝐿 − 2𝑖) = 𝑂(𝐿2 log𝐿). (3.7)

We compared RAFFT’s execution time to the classical cubic-time algorithms
represented by CONTRAfold (Version 2.02), RNAstructure (Version 2.0), RNAfold
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Figure 3.3: Execution time comparisons. For samples of 30 sequences per length,
we averaged the execution times of five folding tools. The empirical time
complexity 𝑂(𝐿𝜂) where 𝜂 is obtained by non-linear regression. RAFFT
denotes the naive algorithm( with only 𝑁 = 1 structure saved per stack),
whereas RAFFT(50) denotes the algorithm where 50 structures can be
saved per stack.

(Version 2.4.13) and the recent improved DP tool LinearFold (Version 1.0).
Figure 3.3 shows the execution time of the RUST implementation of RAFFT
and the four above-mentioned tools for 30 random generated sequences of
various lengths. When comparing RAFFT implementation to the standard DP
tools, the execution time of RAFFT scales slower (with an exponent ≈ 2) with
the sequence length whereas the standard DP execution times are cubic. In
contrast, the execution time of the improved DP implemented by LinearFold

scales linearly with the sequence length. Only when considering a stack size of
1, that RAFFT execution time is lower than the one of LinearFold for sequence
of lengths less than 𝐿 = 104.

We also analyse the scalability of RAFFT computational time with respect
to its critical parameters (the number of positional lag 𝑛 and the stack size
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Figure 3.4: Impact of the number of positional lags 𝑛 and the stack size 𝑁 on the
runtime complexity. For a corresponding length, we generated 30 random
sequences, and averaged their execution times. Solid lines indicate the
estimated time complexity 𝑂(𝐿𝜂) where 𝜂 is obtained with a non-linear
regression on these average execution times for (A) Different number of
positional lags 𝑛 and (B) Different stack sizes 𝑁.

𝑁). Figure 3.4 shows for both different stack sizes and number of positional
lags, RAFFT execution time against the sequence length. For both stack size
and number of positional lags, the execution time scales almost with the same
exponent (≈ 2).

In sum, RAFFT’s performance shows a significant improvement compared
to three folding tools (RNAfold, RNAstructure, and ContraFold), and we can
approximate its theorical time complexity to 𝑂(𝐿2 log𝐿), where 𝐿 is the se-
quence length. However, its average CPU time scales with respect to the stack
size and the number of positional lags considered. When 𝑁 = 1 and 𝑛 = 100,
RAFFT CPU time is lower than all of the four tools except for sequences longer
than 104. But when considering 𝑁 = 50 stacks, LinearFold showed better
performance. Fitting the empirical CPU times of each tool to a non-linear
regression showed that all the methods scaled with respect to the sequence
length whereas, LinearFold scales linearly (i.e. 𝐿 = 1) followed by RAFFT

with an exponent of 𝐿 ≈ 2, the MFE prediction methods scale cubically. Now,
does the improvement in CPU time guarantee the quality of the predictions?
The following section analyses the quality of the structure predictions.

3.2.2 Accuracy of the predicted structural ensemble

After comparing RAFFT’s computational time to existing tools, it is also essen-
tial to assess the quality of the predicted secondary structures. The quality
of each tool’s predictions is measured using two statistical metrics: the PPV
and the sensitivity. This section presents the quality comparison of RAFFT pre-
dictions to the four previously mentioned tools, i.e. RNAfold, RNAstructure,
LinearFold, Contrafold and the ML method Mxfold2.
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We started by analyzing the prediction performances with respect to se-
quence lengths: we averaged the performances at fixed sequence length. Fig-
ure 3.5 shows the performance in PPV and sensitivity for the five methods. It
shows that the ML method (Mxfold2) consistently outperformed RAFFT and
the other predictions. When comparing only the MFE predictions produced
using the DP tools, LinearFold outperformed all other tools (RNAfold and
RNAstructure) for both short and long sequences. The 𝑡-test between the ML
and the most used MFE prediction tool (RNAfold) revealed not only a signifi-
cant difference (p-value ≈ 10−12) but also a substantial improvement of 14.5%
in PPV. RAFFT showed performances similar to RNAfold; but, RAFFT is signifi-
cantly less accurate (𝑝-value ≈ 0.0002), with a drastic loss of performance for
sequences of length greater than 300 nucleotides (See also Table 3.1).

However, are there relevant structures in the ensemble predicted by our
method? To address this question we retained the structure with the best
score among the 50 recorded structures per sequence. We obtained an average
PPV of 60.0% and an average sensitivity of 62.8% over all the dataset. The
gain in terms of PPV/sensitivity is especially pronounced for sequences of
length ≤ 200 nucleotides, indicating the presence of biologicallymore relevant
structures in the predicted ensemble than the thermodynamically most stable
one (PPV was =79.4%, and sensitivity=81.2%). The average scores are shown
in Table 3.1. We also investigated the relation to the number of bases between
paired bases (base-pair spanning), but we found no striking effect, as already
pointed out in one previous study [2].

Table 3.1: Average performance displayed in terms of PPV and sensitivity. The
metrics were first averaged at fixed sequence length, limiting the over-
representation of shorter sequences. The first two rows show the average
performance for all the sequences for each method. The bottom two rows
correspond to the performances for the sequences of length ≤ 200 nu-
cleotides.

RNAfold LinearFold RNAstructure CONTRAfold Mxfold2 RAFFT RAFFT*
All sequences

PPV 55.9 60.6 54.7 58.4 70.4 47.7 60.0
Sensitivity 63.3 58.9 61.5 65.2 77.1 52.8 62.8

Sequences with lengths ≤ 200

PPV 59.5 63.2 58.2 60.5 76.7 57.9 79.4
Sensitivity 65.5 59.4 63.8 65.9 82.9 63.2 81.2

All methods performed poorly on two groups of sequences: one group of
80 nucleotides long RNAs, and the second group of around 200 nucleotides
(three examples of such sequences are shown in the Appendix A3.1 ). Both
groups have large unpaired regions,which for the first group lead to structures
with average free energies 9.8 kcal/mol according to our dataset. The PCA



52 rafft: efficient prediction of fast-folding pathways of rnas

0

20

40

60

80

100

PP
V

(A)

28 - 128 128 - 228 228 - 328 328 - 428 428 - 528 528 - 2968
Length group

0

20

40

60

80

100

Se
ns

it
iv

it
y

(B)
RAFFT
LinearFold
CONTRAfold

Mxfold2
RNAfold

RNAstructure
RAFFT *

Figure 3.5: RAFFT’s performance on folding task. (A) PPV vs sequence length. In the
top panel, RAFFT (in light blue) shows the PPV score distributions when
for the structure (out of 𝑁 = 50 predictions) with the lowest free energy,
whereas RAFFT* (in blue) shows the best PPV score in that ensemble. (B)
Sensitivity vs sequence length.

analysis of the native structure space, shown in Figure 3.6, reveals a propensity
for interior loops and the presence of large unpaired regions like hairpins or
external loops. Figure 3.6 shows the structure space produced by Mxfold2,
which seems close to the native structure space. In contrast, the structure
spaces produced by RAFFT and RNAfold are similar and more diverse.

In summary, we performed the prediction quality comparison for different
sequence lengths. The dataset was divided into two sets: one with lengths
less than 200 nucleotides and the rest constituting the second. Because RAFFT
predicts an ensemble of structures, which contrasts the other tools, we also
distinguish the single prediction (RAFFT) comparison from the ensemble one
(RAFFT*). Overall, on average, RAFFT performed qualitatively poorer than exist-
ing tools in terms of both PPV and sensitivity. The ML method, Mxfold2 outper-
formed all existing methods for different RNA sequence lengths but equalized
RAFFT* performance for sequences of length less than 200 nucleotides. The
later showed that RAFFT predicted ensemble contains sequences of biological
interest. We further assess the quality of that ensemble with the proposed
kinetics ansatz. The next section discusses two RNA kinetic test cases: the
application of the kinetic ansatz on CFSE and a bistable RNA sequence.
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Figure 3.6: Structure space analysis. PCA for the predicted structures using RAFFT,

RNAfold, MxFold2 compared to the known structures denoted “True”.

3.2.3 Applications to the RNA kinetics

Furthermore, the ensemble of structures predicted by RAFFT is analyzed using
a kinetics ansatz to extract information about the dynamic of RNA folding.
This section analyses the kinetics of two RNA sequences using RAFFT predicted
pathways.

We started with the CFSE, a natural RNA sequence of 82 nucleotides with
a structure determined by sequence analysis and obtained from the RFAM
database. This structure has a pseudoknot which is not taken into account
here.

Figure 3.7A and Figure 3.7B show respectively the fast-folding graph con-
structed using RAFFT, and the MFE and native structures for the CFSE. The fast-
folding graph is computed in four steps. At each step, stems are constructed
by searching for 𝑛 = 100 positional lags and, a set of 𝑁 = 20 structures (se-
lected according to their free energies) are stored in a stack. The resulting
fast-folding graph consists of 68 distinct structures, each of which is labelled
by a number. Among the structures in the graph, 6 were found similar to the
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Figure 3.7: Application of the folding kinetic ansatz on CFSE. (A) Fast-folding graph
in four steps and 𝑁 = 20 structures stored in a stack at each step. The
edges are coloured according to ΔΔ𝐺. At each step, the structures are
ordered by their free energy from top to bottom. Theminimum free energy
structure found is at the top left of the graph. A unique ID annotates
visited structures in the kinetics. For example, “59” is the ID of the MFE
structure. (B)MFE (computedwith RNAfold) and the nativeCFSE structure.
(C)The change in structure frequencies over time. The simulation starts
with the whole population in the open-chain or unfolded structure (ID
0). The native structure (Nat.l) is trapped for a long time before the
MFE structure (MFE.l) takes over the population. (D) Folding landscape
derived from the 68 distinct structures predicted using RAFFT. The axes
are the components optimized by the MDS algorithm, so the base-pair
distances are mostly preserved. Observed structures are also annotated
using the unique ID. MFE-like structures (MFE.l) are at the bottom of the
figure, while native-like (Nat.l) are at the top.

native structure (16/19 base-pairs differences). The structure labelled “29”
in the graph leading to the MFE structure “59” is the 9𝑡ℎ in the second stack.
When storing less than 9 structures in the stack at each step, we cannot obtain
the MFE structure using RAFFT; this is a direct consequence of the greediness
of the proposed method. To visualize the energy landscape drawn by RAFFT,
we arranged the structures in the fast-folding graph onto a surface according
to their base-pair distances; for this we used the multidimensional scaling
algorithm implemented in the scipy package. Figure 3.7D shows the land-
scape interpolated with all the structures found; this landscape illustrates the
bi-stability of the CFSE, where the native and MFE structures are in distinct
regions of the structure space.

From the fast-folding graph produced using RAFFT, the transition rates
from one structure in the graph to another are computed using the formula
given in Equation 3.6. Starting from a population of unfolded structure and
using the computed transition rates, the native of structures is calculated
using Equation 2.3. Figure 3.7C shows the frequency of each structure; as the
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Figure 3.8: Folding kinetics of CFSE using Treekin.A) Barrier tree of the CFSE. From
a set of 1.5 × 106 sub-optimal structures, 40 local minima were found, con-
nected through saddle points. The tree shows two alternative structures
separated by a high barrier with the global minimum (MFE structure)
on the right side. (B) Folding kinetics with initial population 𝐼1. Starting
from an initial population of 𝐼1, as the initial frequency decreases, the
others increase, and gradually the MFE structure is the only one popu-
lated. (C) Folding kinetics with initial population 𝐼2. When starting with
a population of 𝐼2, the native structure (labelled Nat.1 ) is observable,
and gets kinetically trapped for a long time due to the high energy barrier
separating it from the MFE structure.

frequency of the unfolded structure decreases to 0, the frequency of other
structures increases. Gradually, the structure labelled “44”, which represents
the CFSE native structure, takes over the population and gets trapped for
a long time, before the MFE structure (labelled ”59”) eventually becomes
dominant. Even though the fast-folding graph does not allow computing
energy landscape properties (saddle, basin, etc.), the kinetics built on it reveals
a high barrier separating the two meta-stable structures (MFE and native).

Our kinetic simulation was then compared to Treekin [55]. First, we gen-
erated 1.5 × 106 sub-optimal structures up to 15 kcal/mol above the MFE
structure using RNAsubopt [112]. Since the MFE is Δ𝐺𝑠 = −25.8 kcal/mol, the
unfolded structure could not be sampled. Second, the ensemble of structures
is coarse-grained into 40 competing basins using the tool barriers [55], with
the connectivity between basins represented as a barrier tree (see Figure 3.8A).
When using Treekin, the choice of the initial population is not straightfor-
ward. Therefore we resorted to two initial structures 𝐼1 and 𝐼2 (see Figure 3.8B
and 3.8C, respectively). In Figure 3.8B, the trajectories show that only the
kinetics initialized in the structure 𝐼2 can capture the complete folding dynam-
ics of CFSE, in which the two metastable structures are visible. Thus, in order
to produce a folding kinetics in which the native and the MFE structures are
visible, the kinetic simulation performed using Treekin required a particular
initial condition and a barrier tree representation of the energy landscape
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Figure 3.9: RAFFT vs Treekin: folding kinetics of a bi-stable RNA sequence. (A) Bar-
rier tree for the bi-stable example sequence. The local minima and the
corresponding barriers are computed from the complete enumeration of
the structure space. The bi-stability is visible on the barrier tree through
the two branches separated by a high barrier. (B) Folding kinetics trajecto-
ries. The left plot shows the folding dynamics starting from a population
with 𝐼1, and the right size is the kinetics when the population is initialized
in structure 𝐼2. When starting from 𝐼1, 𝑆𝐴 is quickly populated; starting
from 𝐼2, the bi-stability is more apparent. (A’) Fast-folding graph using
RAFFT. A maximum of 𝑁 = 20 structures are stored in a stack at each
step and overall 46 distinct structures are visited. (B’) Folding kinetics
trajectory obtained from the fast-folding graph (indices are different from
the barrier tree indices). The dynamics starts with a population with only
unfolded structure, and slowly, 𝑆𝐵 is populated and gets trapped for a
long time before the MFE structure 𝑆𝐴 becomes populated.

built from a set of 1.5×106 structures. By contrast, using the fast-folding graph
produced by RAFFT, which consists only of 68 distinct structures, our kinetic
simulation produces complete folding dynamics starting from a population
of unfolded structure.

As a second illustrative example, we applied both kinetic models to the
classic bi-stable sequence. For Treekin, we first sampled the whole space of
20 × 103 sub-optimal structures from the unfolded state to the MFE structure,
and from that set, 40 basins were also computed using barriers. The bar-
rier tree in Figure 3.9 shows the bi-stable landscape, where the two deepest
minima are denoted 𝑆𝐴 and 𝑆𝐵. As in the first application, we also chose two
initializations with the structures denoted 𝐼1 and 𝐼2 in Figure 3.9A and 3.9B.
Secondly, we simulate the kinetics starting from the two initial conditions
(See Figure 3.9B). When starting from 𝐼2, the slow-folding dynamics is visible:
𝑆𝐵 first gets kinetically trapped, and the MFE structure (𝑆𝐴) only takes over
later on. For our kinetic ansatz, we started by constructing the fast-folding
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graph using RAFFT, consisting of only 46 distinct structures. The resulting
kinetics, shown in Figure 3.9B’ was found qualitatively close to the barrier
kinetics initialized with structure 𝐼2. Once again, with few as 48 structures,
our proposed kinetic ansatz can produce complete folding dynamics starting
from a population of unfolded structure.

In both examples, our kinetic ansatz derived from the fast folding graph
predicted by RAFFT produces complete folding kinetic trajectories, using fewer
structures than the existing methods that required the complete enumeration
of the fitness landscape (i.e. all structures and their associated energies). De-
spite the poor validation procedure of our kinetic ansatz, we believe that the
RNA pathways predicted by RAFFT could contain structures of biological per-
tinence. An analysis of the sample structures produced by RAFFT is provided
in Appendix Section A.2 and a discussion on some limitations in Chapter 6.

3.3 conclusion

We have proposed a method for RNA structure, and dynamics predictions
called RAFFT. Our method is inspired by the experimental observation of
parallel fast-folding pathways. To mimic this observation, we designed an
algorithm that produces parallel folding pathways in which stems are formed
sequentially. Taking advantage of the FFT, the time complexity of our method
was slowed down to 𝑂(𝐿2 log𝐿), thus improving the cubic time complexity
of classic DP methods. Then, we proposed a kinetic ansatz that exploits the
parallel fast-folding pathways predicted to model how different conforma-
tions are populated over time. Our kinetic ansatz produced complete folding
dynamics without sampling the entire conformation space. However, our
method also presents some limitations that will be discussed in Chapter 7.
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4
INTRODUCT ION TO RNA DES IGN

The previous chapters demonstrated the implications of ncRNAs molecules in
varying levels of cellular processes, from gene expression regulation (miRNAs,
piRNAs, lncRNAs) to RNA maturation (sncRNAs, snoRNAs) and protein synthesis
(rRNAs, tRNAs). Knowing that these biological functions are performed by
high dimensional RNA structures, which strongly depend on their secondary
structures, we also provided a comprehensive review of computationmethods
for predicting secondary structures. Now that we have computational folding
tools that are accurate enough, is it possible to design an RNA molecule that
can accomplish a desired biological function for a given secondary structure?
Answering this question may demand both experimental and computational
efforts. For artificial ncRNAs forwhich the native RNA sequence is unknown, the
essential prerequisite for experimentalists is often a computational solution to
the inverse folding problem. Unlike the folding situation, the inverse folding
problem begins from a given secondary structure, and the goal is to find one
or many RNA sequences that fold into that secondary structure. This chapter
aims to provide the formal background and biotechnological implications of
addressing this problem. Then, it gives a brief literature review of the existing
computational methods.

4.1 rna inverse folding and biotechnological implications

In modern biotechnology, we often seek to reproduce the natural ability of
the cells to control gene expressions using a variety of nucleic acids and
proteins. These natural cellular abilities result from networks of regulatory
molecules such as ncRNAs that dynamically regulate the expression of specific
genes in response to environmental signals. Therefore, the ability to engineer
biological systems is directly related to controlling gene expression. The in-
creasing number of examples of natural regulator ncRNAs has opened doors
to many emerging subfields such as RNA synthetic biology [22, 87] and RNA
nanostructure [68, 90]. Researchers have engineered RNA molecules with new
biological functions, inspired by this natural versatility. Synthetic biology has
also made significant progress in developing versatile and programmable
genetic regulators that precisely control gene expressions in the last decades.
Three general approaches are taken to engineer new functional RNAs: har-
vesting from nature, computational design and molecular evolution. We are
interested here in computational RNA design methods.

In most cases, designing a functional RNA goes beyond computationally
generating a set of RNA sequences that fold into a given secondary structure.
Successful design methods include computational and experimental, pre-

61
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dictive and analytical techniques. However, computational tools addressing
the inverse folding problem often provide some guidance and rationalities
through the design process. For example, SteffenMueller and his collaborators
[135] suggested a systematic, rational approach, synthetic attenuated virus
engineering (SAVE), to develop new, productive live attenuated influenza
virus vaccine candidates using computer-aided rational design. In addition,
Eckart Bindewald et al. [14] used computational tools for solving inverse
RNA folding in the design of nanostructures, including pseudoknots. And in
designing several ncRNAs with a successful synthetic such as ribozymes [41],
riboswitches [52, 204].

Depending on the specificities of the RNA design task, finding the under-
lying mathematical model that maps each designed RNA sequence solution
to a set of properties that includes most of the specifications or constraints
can be a challenging task. When it exists, it allows to address the RNA design
problem computationally, and we call this mathematical model the objective
function of the RNA design problem. The complexity of the objective function
used gives rise to two RNA design problems: the negative and the positive
design. The following section describes both RNA design problems and their
computational complexities.

4.2 the positive and negative design

We often find two types of RNA design problems in the literature: negative
and positive design. The negative structural design of RNAs, also called the
inverse RNA folding problem, aims to find one or many RNA sequences that
fold into a given target RNA secondary structure while avoiding alternative
folds of similar quality for the chosen energy model Δ𝐺. In other terms, it is
an optimization problemwhere a target RNA secondary structure 𝒮∗ of length
𝐿 is given, and the goal is to determine an RNA sequence 𝜙 of length 𝐿 such
that ∀𝒮 ≠ 𝒮∗ ∈ Σ𝜙, Δ𝐺(𝜙, 𝒮) > Δ𝐺(𝜙, 𝒮∗) .

This problem is NP-hard even in a simple energy model [15], and we cannot
provide a parameterized algorithm that solves it in a polynomial time.

In contrast, a positive design problem consists of optimizing affinity towards
a given target secondary structure. In other terms, the objective is to find a
sequence 𝜙 ∈ {A,U,C,G}𝐿 such that 𝒮∗ = 𝒮𝑀𝐹𝐸(𝜙) = argmin𝒮∈Σ𝜙

Δ𝐺(𝜙, 𝒮)
(i.e. the sequence 𝜙 should have as MFEs structure of its ensemble Σ𝜙 the
target structure 𝒮∗). The positive design is computationally solvable exactly
in polynomial time [54].

Both negative and positive designs are considered in this work, and the
main difference often depends on the objective function used. In addition, it
has been recently shown that the proportion of designable secondary struc-
tures decreases exponentially with 𝐿 for various popular combinations of
energy models and design objectives [217]. The following section presents
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an overview of previously used objective functions of for the RNA design
problem.

4.3 objective functions previously used in the context of inverse
rna folding

For a given target secondary structure 𝒮∗ of length 𝐿, a brute force approach to
the inverse RNA folding problem that enumerates all possible RNA sequences
is not viable due to the exponential growth of the search space with increasing
length (i.e. 4𝐿). For the space of compatibles sequences to the target 𝒮∗, an
upper bound can be defined by restricting the paired position to the base-pairs:
G-C, G-U, and A-U. This results in 6(𝐿−𝑢)/2 × 4𝑢 sequences compatible with
𝒮∗ where 𝑢 is the number of unpaired nucleotides. The most common way to
efficiently handle the huge set of possible solutions is to solve an optimization
problem subjected to a formulated objective function. There exists a variety of
well-established optimization methods helping to perform this task. However,
finding the right objective function to evaluate the solutions can be quite
challenging. This section of our work provides an overview of an objective
function and an essential description of the most previously used objective
functions in designing RNA molecules.

The objective function defines amathematical model thatmaps each RNA se-
quence solution to its essential properties or functions. In biological terms, this
relation between fitness and sequence can be seen as assigning a phenotype
(score) to a genotype (sequence). Selection pressure due to the optimization
method ensures that better phenotypes are advantageous and thus preferred,
which optimizes the sequence to fall into fitness optima. This section de-
fines the previously used objective functions in the RNA design problems and
highlights some interesting properties.

• A simple distance from the target structure: in the simplest setting, the
objective function of an RNA sequence 𝜙 defines the distance between 𝒮∗

and the current MFE structure 𝒮𝑀𝐹𝐸(𝜙). It often requires only the MFE
structure’s computation, hence being computationally fast. There are
many variants of this distance measure: base-pair distance, hamming or
string edit distance, tree-edit distance and energy distance. For a formal
definition of each of those distances, see Section 1.4. This objective
function was used in the earliest tools such as RNAinverse [80] but also
in many others since then [6, 19, 59].

• A negative design objective function: in contrast to the above mentioned
objective functions (often considered when performing a positive de-
sign), we consider the whole structural ensemble when computing
the fitness of an RNA sequence 𝜙. In most cases, it is preferable also to
consider negative design goals, which allows for avoiding alternative
structures of similar quality to the target structure. Negative RNA design
methods usually consider one of the three following defects: (1) the
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suboptimal defect [38, 54, 80, 220] which defines the energy distance to
the first suboptimal (2) the probability defect [80, 220] which defines the
probability that the sequence 𝜙 folds into any other structure than the
target structure 𝒮∗ and (3) the ensemble defect [220] which corresponds
to the average number of incorrectly paired nucleotides at equilibrium
calculated over the structure ensemble of 𝜙, Σ𝜙.

• Multi-objective optimization: in some designing cases where more than
one goal is specified, it is necessary to formulate an objective function
for each goal. That results in a multi-objective optimization problem.
The solutions to such a problem are all optimal for at least one objective
function and thus arranged on the so-called Pareto optimal front. This
approach has already been used in several RNA design tools such as
Modena [190, 191] and in [144].

• Bistable and multi-stable riboswitches objective functions: In some de-
signing cases, especially for riboswitches, it is possible to specify more
than one desired target structure, including the energy differences be-
tween them, the barrier heights and the kinetic properties. Following the
same idea, Flamm et al. introduced an objective function that enables
designing RNA molecules to adopt two distinct structures [54]. This
bistable objective function contains two terms. The first term increases
the probability of both structures in the ensemble, and the second speci-
fies the desired energy difference between both states. It is also possible
to vary the states’ temperature to gain a bistable thermoswitch. The
same idea has therefore been expanded to an objective function for
designing RNA molecules that can adopt more than two structures, in-
cluding extension for multi-structure energy barrier calculations [144,
174]. Frnakenstein [117] also utilises such objective function for multi-
target design.

• Mutational robustness andneutrality: In addition to the above-mentioned
objective functions, objective functions aim to measure the mutual neu-
trality of the sequence concerning the target structure [174].When using
such an objective function, the sequences are optimized so that the frac-
tion of one-mutant neighbours to the original structure is as significant
as possible. This allows for perfectly preserving the structure when
mutations are introduced. We often talk of a mutational robustness
optimization [7].

These objective functions suggest that the inverse folding problem is amajor
challenge with no single solution yet, and many possible ways of setting the
goal. This thesis relies on three objective functions: the simple distance to the
target, the ensemble defect, and the mutational robustness. In addition to the
many objective functions, there are also several methods. The following sec-
tion will review the existing methods independently of the objective function
and provide some limitations.
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4.4 a review on existing inverse rna folding tools.

Severalmethods or algorithms addressing this problemhave been proposed in
the literature. The existing techniques can be classified into two categories: one
for the pseudoknot-free structure design and another for the pseudoknotted
RNA structure design. This section gives a short description of some of the
existing tools, especially those used in the benchmark results of the thesis.

4.4.1 Pseudoknot-free RNA inverse folding tools

Due to the complexity of the RNA design, most of the existing tools perform
a stochastic search optimization where initial potential solutions are gener-
ated and refined over a finite number of iterations or generations [43, 47, 48,
142, 189]. Some stochastic search techniques may involve several candidate
solutions at each generation or not. The ones that do are population-based
algorithms, which means they maintain a set of candidate solutions at each
generation, with each solution corresponding to a unique point in the prob-
lem’s search space. We are interested in this work in EA, a particular class of
population-based algorithms. This section presents an overview of EA when
applied to the inverse folding of RNA molecules. In addition, it reviews the
existing tools implementing similar and different techniques.

4.4.1.1 Evolutionary algorithms and RNA inverse problems

Among the existing tools dealing with the RNA inverse problem, both ERD

[47, 48] and MODENA [190] are EAs but implementing different strategies. In
general, an evolutionary search algorithm on any fitness landscape consists of
three main parts, which in the context of RNA inverse folding are as follows:

• Initialization: generating a random initial population of RNA sequences
compatible with the given target secondary structure.

• Evaluation and selection: evaluating a population of RNA sequences
consists of two steps: 1) fold each sequence into a secondary structure
and assign it a weight based on its similarity to the target structure. 2)
select a weighted random sample with replacement from the current
population to generate a new population. A detailed description of the
objective function used in our proposed tool aRNAque is provided in the
next chapter.

• Mutation (or move) operation: define a set of rules or steps used to pro-
duce new sequences from the selected or initial ones. This component
is elaborated further in the next chapter.

MODENA uses a multi-objective function that measures the stability of the
folded sequence and its similarities to the target. It starts from a population
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of randomly generated sequences, and the objective is optimized through
tournament selection and random mutation at non-closing loop positions.

In contrast, ERD starts by decomposing the target structure into loops and
independently uses an evolutionary algorithm to minimize each constituent’s
energy. It was first developed in 2014 [48], and one year after, an updated
version was released [47]. The main lines of ERD are:

1. Pool reconstruction: using a collection ofRNA sequences (STRANdatabase)
similar to the natural ones, a pool of sequences is constructed for their
length by successively finding the corresponding structure using RNAfold,
decomposing the structure in sub-components, and finally, the corre-
sponding sub-sequences of the same size are gathered to form a pool.

2. Hierarchical decomposition of the target structure into loops: using the
idea that any secondary structure can be uniquely decomposed into
its structural components (stems, hairpin loops, internal loops, bulge
and multi-loops), ERD decomposes the target in the positions where
multi-loops occur.

3. Sequence initialization: after decomposing the target structure into sub-
components,  for each sub-component, a random sub-sequence is chosen
from the pool, and the initial sequence is a combination of those sub-
sequences;

4. Evolutionary optimization of the sub-sequences: an EA algorithm is
performed on each sub-component to improve the initial sequence. The
outcome sub-sequences are combined to form a newer sequence that
will replace the initial one.  Iteratively the evolutionary algorithm is
performed on the updated sequence until the combined sequence folds
into the target or in a failure case when the stopping condition is satis-
fied. Two evolutionary operators are implemented here, a mutation that
consists of replacing a sub-sequence corresponding to a sub-component
with a new random one from the pool for the same length, and a selec-
tion which consists of choosing from a population of 15 RNA sequences
or sub-sequences, three best sequences with respect to their free energy
and adding them to the best from the preview generation, three best
ones with respect to the Hamming distance from the target are therefore
chosen.  The next-generation population is then obtained by generating
five new sequences for each of the three best sequences.

In the different EA methods presented above, the mutation operation is
essential for good performance because it provides the rules that allow for
navigating the solution space. ERD implements a non-local mutation, which
consists of randomly changing a subsequence in the candidate solution with a
new one taken from a set of possible moves. In contrast, Modena uses both local
mutation and crossover operation to improve its search. However, both EAs
present difficulties in finding RNA sequences that fold into some secondary
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structures of the Eterna100 data set. That limitation could be due to the local
search (for Modena) or the finite set of move data used in the non-local search
implemented in ERD. In mathematical optimization, local searches are known
for their quick convergence to a local minimum. This could be the same
case for EAs implementing local mutations. To avoid early convergence EA
practitioners often implement non-local mutation methods, e.g. Lévy search,
inspired by the Lévy flights. The following section describes the Lévy flight
and reviews some applications of Lévy search in the context of EAs.

4.4.1.2 Lévy flights and evolutionary algorithms

In this section, we define concepts such as Lévy flights and provide a brief
review of its implications and applications to optimization techniques such
as evolutionary algorithms.

In its classical setting, evolutionary algorithms are guided by local (or one-
point mutations) mutations. Although a local search can efficiently discover
optima in a simple landscape, more complex landscapes pose challenges to
designing evolutionary algorithms that rely solely on local search. This is
especially true on a landscape with high neutrality where local search may be
inefficient or risk getting stuck on a plateau (or local optimum). To avoid this
pitfall, many practitioners suggested EA that implements a mutation scheme
inspired by Lévy flights (called Lévy mutation).

Lévy flights are random walks with a Lévy (or any heavy-tailed) step
size distribution. The concept originates in the work of Mandelbrot on the
fluctuation of commodities prices in the 1960s [121] but has since found many
more physical applications [173]. The term ”Lévy flight” was also coined
by Mandelbrot, who used one specific distribution of step sizes (the Lévy
distribution, named after the French mathematician Paul Lévy). Lévy flights
also play a key role in animal foraging, perhaps because they provide an
optimal balance between exploration and exploitation [94, 202]. For a recent
review of applications of Lévy flights in biology from the molecular to the
ecological scale, [150].

Similar to a Lévy flight, a Lévy mutation scheme allows simultaneous
search at all scales over the landscape. New mutations most often produce
nearby sequences (one-point mutations), but occasionally generate mutant
sequences which are far away in genotype space (macro-mutations). In this
work, the distribution of the number of point mutations at every step is taken
to follow a Zipf distribution [136].

Earlier works have applied similar ideas in genetic programming [31], and
in differential evolutionary algorithms [171]. This motivated us to investigate
a possible benefit of a Lévy flight in the design of RNA sequences in Chapter 5.
In addition to EA methods, there exists several computational RNA design
tools implementing different techniques such as, ML, nested monte carlo
search (NMCS) etc... The following section provides a short description of
such tools.
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4.4.1.3 Tools implementing non-EA strategies.

Several tools dealing with the RNA folding problem implement different
strategies from the population-based, or evolutionary algorithm approaches.
This section describes couple of them, emphasising on those that are used
in the benchmark results in Chapter 5, which are NEMO, RNAinverse, antaRNA
andsentRNA.
sentRNA [172] is a computational agent that uses a set of information and

strategies collected from the EteRNA game players to train a neural network
model. The neural network assigns an identity of A, U, C, or G to each position
in the given target, a featured representation of its local environment. The
featured representation combines information about its bonding partner,
nearest neighbours, and long-range features. While the bonding partner and
nearest neighbour information are provided to the agent by default, long-
range features are learned through the training data. For each target structure,
the long-range features refer to the important position 𝑗 relative to 𝑖 that
the agent should know about when deciding what nucleotide to assign to
𝑖. These are defined by two values: the Cartesian distance and the angle in
radians. Those two values are computed for each position (𝑖, 𝑗) using a mutual
information metric over the player solution dataset. Therefore, the result is
a list of long-range features for a given target structure. A subset of long
features is selected from this list and used to define a model for the neural
network model’s training, validation, and testing. In addition to the neural
network model, sentRNA also implements a refinement algorithm on the
unsuccessful design. The refinement algorithm is an adaptive walk that starts
from the predicted sequence and uses a set of random mutations that allow
improving the neural network solution. Alternatively, EternaBrain [105]
implement a convolutional network model trained on a huge EteRNA moves-
select repository of 30, 477 moves from the top 72 players; and LeaRNA [156]
uses deep reinforcement learning to train a policy network to sequentially
design an entire RNA sequence given a specified target structure.
NEMO [142] is a recently developed tool combining a NMCS technique with

domain-specific knowledge to create a novel algorithm. The underlying idea is
to startwith an input pattern sequence ofN’s of the same length as the targeted
structure. First, it uses the standardNMCSs to sample sequence solutions acting
on N’s only. A sequence candidate is selected from the sample; then folded
into an MFE structure. When the MFE structure does not match the target,
some subset mutations are performed, and a set of random mutated positions
are picked to generate a new input pattern sequence. The new input pattern
will allow sampling acting on N’s only using the same standard NMCSs. This
procedure is then repeated several times until the MFE structure matches the
targeted structure or not in the unsuccessful cases. The statistical results show
that NEMO surpasses all the existing tools on the EteRNA100 benchmark datasets
by solving ≈ 95% of the targets using the Turner1999 energy parameter sets.
Using a similar technique, RNAinverse[113], one of the oldest inverse folding
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tools included in the ViennaRNA package, uses an adaptive random walk to
minimize base-pair distance. The distance is computed by comparing the
MFE structure of the mutated sequence with the target structure. In addition,
RNAinverse allows for designing more probable sequences using the partition
function optimization. The latter allows for more stable designed sequences
that mostly fold into MFE structures different from the target structure. On
an attempt to improve RNAinverse, many other tools have been suggested
INFO-RNA [19], RNA-SSD [6] and DSS-Opt [127]. The most recent tools also
include RNAPOND [218] and MaiRNAiFold [131].
antaRNA [101] is also a recent program available since 2015, and it provides

a web server for friendly usability. It utilizes an ant-colony optimization, in
which an initial sequence is generated via a weighted random search, and
the fitness of that sequence is then used to refine the weights and improve
subsequences over generations. It provides many other interesting features,
such as the sequence and target GC-content constraints. It also provides a fast
python script that includes the options from theweb server presented through
a command line. Other tools also provide this dual advantage but implement
different optimization techniques. NUPACK:design [221] uses a tree decom-
position technique and the ensemble defect as objective function to design
qualitatively good sequences. incaRNAfbinv [44] is a program for fragment-
based RNA design. incaRNAfbinv’s web server combines two complementary
methodologies: IncaRNAtion [147] and RNAfbinv [210]. IncaRNAtion gener-
ates a GC-weighted partition function for the target structure, and then adap-
tively samples sequences from it to match the desired GC-content. RNAiFold
[60] employs constraint programming that exhaustively searches over all
possible sequences compatible with a given target. RNAiFold [60] has the
particularity of designing synthetic functional RNA molecules.

So far, except for Modena and antaRNA, most of the computation tools pre-
sented in previous sections do not account for pseudoknotted RNA target
structures, which represents a disadvantage, knowing their implications in
realizing ncRNA biological functions. The following section reviews existing
RNA design tools that support pseudoknotted secondary structures.

4.4.2 Pseudoknotted RNA inverse folding tools

Designing RNA sequences for pseudoknotted targets is computationally more
expensive than pseudoknot-free targets. For that reason, many of the stud-
ies addressing the inverse folding of RNA considered only pseudoknot-free
secondary structures. There are, however, some exceptions: MCTS-RNA [216],
antaRNA[101], Modena and Inv[59]. The computation tool presented in Chap-
ter 5 of our work also considers pseudoknots. This section gives an overview
of each of these tools.
Inv was one of the first inverse folding tools handling pseudoknotted RNA

target structures, but it was restricted to a specific type of pseudoknot pattern
called 3-crossing nonplanar pseudoknots.
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More recently, MCTS-RNA’s authors suggested a new technique that deals
with a broader type of pseudoknots. It uses a monte carlo tree search (MCTS)
technique which has recently shown exceptional performance in Computer
Go. The MCTS allows initialising a set of RNA sequence solutions in MCTS-RNA

and the solutions are further improved through local updates at the nucleotide
positions.

Another approaches (Modena, antaRNA) implements different strategies one
which is amulti-objective ant-colony optimisation and the another onewhich
is a multi-objective evolutionary algorithm. Although the first versions were
implemented for pseudoknot-free structure [101, 189], they have since been
extended to support pseudoknotted RNAs [100, 190].

Each of the tools mentioned above rely on a folding tools that predicts
pseudoknotted secondary structure: MCTS-RNA uses pkiss whereas the other
tools (antaRNA and Modena) support two folding tools such as HotKnots and
IPKnot. In the context of this work, two folding tools are used HotKnots and
IPKnot, and they support the two main types of pseudoknot patterns (i.e.
H-type and K-type) contained in the benchmark data used to evaluate our
result in Chapter 5. Both pseudoknotted and pseudoknot-free benchmark
data sets are considered in this work. The following section describes the
benchmark data used to evaluate our proposed EA tool.

4.5 benchmarking the inverse folding tools

The validation of the designed RNA sequences using computational methods
often requires biological experiments. Because of the high cost of experimen-
tal techniques, most investigators limit their guarantee to using benchmark
datasets [24] in general. For pseudoknot-free design tools, two benchmark
datasets are mostly used in the literature—(𝑖) RFAM 1: a collection of RNA fami-
lies, each represented by multiple sequence alignments, consensus secondary
structures and covariance models—(𝑖𝑖) Eterna100 [4]: a collection of hun-
dred RNA secondary structures extracted from the EteRNA Puzzle game2. For
RNA inverse tools that support pseudoknots, the PseudoBase++[192] dataset
is often considered. This section provides references, descriptions and the
cleanup procedure applied for the three data sets mentioned above.

The Eterna100 dataset [106] is available in two versions and both contain
a set of 100 target structures extracted from the EteRNA puzzle game and clas-
sified by their degree of difficulty. The Eterna100-V1 was initially designed
using ViennaRNA 1.8.5, which relies on Turner1999 energy parameters [198].
Out of the 100 target secondary structures, 19 turned out to be unsolvable
using the version of ViennaRNA 2.4.14 (which relays on the Turner2004 [124]).
Subsequently, an Eterna100-V2 [106] was released in which the 19 targets
were slightly modified to be solvable using ViennaRNA 2.4.14 and any version

1 The Rfam database https://rfam.xfam.org/
2 The EteRNA game https://eternagame.org/

https://rfam.xfam.org/
https://eternagame.org/
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that supports the Turner2004 energy parameters. The main difference be-
tween the two dataset relay on the energy parameters used to generate the
data.

The non-EteRNA (a subset of the RFAM) dataset in a set of 63 experimentally
synthesized targets that Garcia-Martin et al. [60] recently used to benchmark
a set of ten inverse folding algorithms, which from our knowledge, is the most
recent and comprehensive benchmark of current state-of-the-art methods.
The dataset is collected from 3 sources: the first dataset called dataset Awhich
contains 29 targets collected from RFAM and also used in [47, 189] and the
second called dataset B is a collection of 24 targets used in [47] and added to
that the 10 structures used in [172].

The PseudoBase++ is a set of 266 pseudoknotted RNA structures used to
benchmark Modena. It was initially 342 RNA secondary structures, but because
of the redundancy and the non-canonical base-pairs 76 structures were ex-
cluded. To group the dataset with respect to the pseudoknot motifs, we used
the test data from antaRNA’s paper. The test data contains 249 grouped into
four categories: 209 hairpin pseudoknots (H), 29 bulge pseudoknots (B), 8
complex hairpin pseudoknots (cH) and 3 kissing hairpin pseudoknots (K).
Out of the 266 structures, only 185 (with 150 H-type, 3 K-type, 25 B-type and
7 cH-type) structures were included in the test data. So for that reason, we
have used only 185 target structures for the pseudoknot motif performance
comparison and the 266 structures for the different target lengths performance
comparison.

When the benchmark datasets rely on a particular energy parameter set, the
performance of a given inverse RNA folding tool evaluated on these datasets
will also be related to the choice of the RNA folding tool’s energy parameter
set. If the benchmark datasets do not rely on a particular energy parameter
set, the robustness of the inverse RNA tool will be its capability to perform
well on different energy parameter sets.

4.6 conclusion

In summary, the RNA inverse folding problem is still computationally chal-
lenging because there are many objective functions and different ways of
evaluating computational tools. Solving this problem is particularly interest-
ing in RNA synthetics, RNA nanostructure design, and emerging fields such as
bioengineering. We presented a comprehensive literature review of existing
computational methods that addressed this problem in this chapter. The exist-
ing approaches have some advantages and disadvantages, depending on the
techniques implemented. NUPACK for example—despite its well-defined objec-
tive function—still has difficulty designing sequences for large targets and
most of the EteRNA100 targets. In contrast, ERD because of its powerful decom-
position method, which allows dealing quickly with large targets (On RFAM
1.0 with target’s length between 400 − 1400) but is still a big challenge to solve
more than 65% of the EteRNA100-V2 using the Turner2004 energy parame-
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ter sets. On another side, NEMO, one of the most recent tools, can solve more
than 90% of the EteRNA100-V1 dataset using an old version of ViennaRNA pack-
age, which is based on Turner1999 energy parameter sets [198]. The sentRNA’s
machine learning model also relied on the same old version of ViennaRNA
package and, by adding a refinement on themachine learningmodel, sentRNA
solves 78% of EteRNA100. Without this refinement, sentRNA can only solve
48% of EteRNA100’s targets, which can represents another limitation. For the
EAs ERD and MODENA, none of them can solve more than 65% of EteRNA100
using the Turner2004 energy parameter sets.

In the next chapter, we will introduce a simple evolutionary algorithm
called aRNAque that implements a Lévy mutation and allows significant im-
provements to the existing tools.



5
AN EVOLUT IONARY ALGOR ITHM FOR INVERSE
FOLD ING INSP IRED BY LÉVY FL IGHTS .

In the previous chapter of our work, we presented the RNA design as an
optimization problem and provided a significant literature review on the
existing tools addressing that problem. We highlighted some limitations of
the existing tools, particularly those implementing evolutionary algorithms.
One of the main challenges of evolutionary algorithms is to avoid deception,
which is the fast convergence to a local optimum. Most EAs’ early convergence
to a local optimum is due to the local search implementation, which is the
consequence of the local mutation scheme.

To avoid this pitfall, an alternative mutation scheme to the classical local
search is the Lévy mutation. We propose an evolutionary algorithm that im-
plements a similar Lévymutation in this chapter but adjusts to the RNA design
problem. This mutation scheme is focused on local search but also searches
at all other scales to avoid becoming trapped. its long-range search permits
designing RNA sequences of higher positional entropy. Our implementation,
called aRNAque is available on GitHub as a python script. Compared to existing
inverse folding tools, the benchmark results show improved performance on
both pseudoknot-free and pseudoknotted datasets. Much of materials in this
chapter has been previously published in [129, 130].

5.1 material and methods

This section provides a detailed description of aRNAque algorithm in general
and in particular the Lévy mutation scheme implemented.

5.1.1 aRNAque’s mutation operator

The previous chapters provided an overview of EA, emphasizing its appli-
cation to the RNA inverse folding problem. One of the essential components
of EAs is the mutation operator. Our tool, aRNAque, implements a simple EA
that uses a Lévy mutation to explore at different scales the solution space. In
addition, our mutation allows explicitly controlling the GC-content of the de-
signed RNA sequences. This section presents in detail our proposed mutation
operator.

For a given target RNA secondary structure in its string representation 𝜎∗

of length 𝐿, the space of potential solutions to the inverse folding problem
is {A,C, G,U}𝐿. An evolutionary algorithm explores the space of solutions
through its move (or mutation) operator. To explore the search space of com-
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patible sequences (sequences with canonical base-pairs at the corresponding
open and closed bracket positions) with 𝜎∗ exclusively, we propose a mu-
tation step that depends on the nucleotide canonical base-pair probability
distribution.

Let 𝒩 = {A,C, G,U} be the set of nucleotides weighted respectively by the
probabilities

𝑃𝒩 = {𝑤A, 𝑤C, 𝑤U, 𝑤G}

and,𝒞 = {AU,UA, CG,GC,UG,GU} be the set of canonical base-pairsweighted
respectively by the probabilities

𝑃𝒞 = {𝑤AU, 𝑤UA, 𝑤 CG, 𝑤GC, 𝑤UG, 𝑤GU}

where

∑ 𝑃𝒩 = 1, ∑ 𝑃𝒞 = 1.

Our evolutionary algorithm relies on the flexibility of themutation parameters
𝑃𝒩, 𝑃𝒞. These parameters allow explicit control of the GC-content of the RNA
sequences during the designing procedure.

We examined the binomial and Zipf distributions:

• Binomial mutation: here 𝑈 has a binomial distribution given by

𝑃(𝑈 = 𝑛) = (
𝐿
𝑛)𝜇𝑛(1 − 𝜇)𝐿−𝑛

for some 0 ≤ 𝜇 ≤ 1, such that 𝑢 = 𝜇 ⋅ 𝐿. We can think of this muta-
tion mode arising from each nucleotide of an RNA sequence indepen-
dently undergoing a point mutation with probability 𝜇, i.e. 𝜇 is the
per-nucleotide or point mutation rate.

• Lévy mutation: 𝑈 has a Zipf distribution given by

𝑃(𝑈 = 𝑛) =
1/𝑛𝑐

∑𝐿
𝑘=1 1/𝑘𝑐

where 𝑐 > 0 is the value of the exponent characterizing the distribution.

Figure 5.1 shows the distribution of the number of point mutations on a
sequence of length 88 nucleotides for both mutation schemes. Both distribu-
tions have the same mean, and the difference between the two distributions
is more perceptible on their tails.

In the rest of this work, a local mutation will refer to a binomial mutation
with parameter 𝜇 ≈ 1/𝐿.

We present the mutation algorithm in algorithm 1. This mutation algorithm
is intergraded in a unified EA framework, allowing to update RNA sequence
solution at each iteration or generation. After we apply the mutation opera-
tion to the population of RNA sequences, we evaluate the newly generated
population; this is usually done using an objective or fitness function. In the
following section, we describe the different objective functions taken into
account in our implemented EA.
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Algorithm 1: aRNAque’s mutation algorithm
/* 𝑃′ = {𝜙′

1 … 𝜙′
𝑛}: the mutated population;

𝑃 = {𝜙1 … 𝜙𝑛}: a list of 𝑛 RNA sequences to mutate;

𝑃𝒞 = {𝑤AU, 𝑤UA, 𝑤 CG, 𝑤GC, 𝑤UG, 𝑤GU}: a vector containing the weights

associated with each canonical base-pairs;

𝑃𝒩 = {𝑤A, 𝑤U, 𝑤C, 𝑤G}: a vector containing the weights associated with

each nucleotide;

𝒟: a given probability distribution (Lévy or Binomial) with parameter 𝑝
and 𝐿. Where 𝐿 is the length of the target RNA structure */

Input: 𝑃, 𝒟(𝑝, 𝐿), 𝑃𝒞, 𝑃𝒩
Output: 𝑃′

1 {𝐵𝑖} ∼ 𝒟(𝑝, 𝐿), where 𝑖 ∈ {1, 2, … , 𝑛} ; // Draw 𝑛 random numbers that

follows a given distribution 𝒟(𝑝, 𝐿) (Lévy or Binomial). 𝐵𝑖 is the

number base-pairs to mutate

2 {𝑈𝑖} ∼ 𝒟(𝑝, 𝐿), where 𝑖 ∈ {1, 2, … , 𝑛} ; // Draw 𝑛 random numbers that

follows the same distribution as 𝐵𝑖 (Lévy or Binomial). 𝑈𝑖 is the

number non base-pair positions to mutate

3 for 𝑖 ∈ {1, 2, … , 𝑛} do
4 𝜙′ ← 𝑃𝑖 ; // Assign the sequence 𝜙𝑖 ∈ 𝑃 to 𝜙′

5 for 𝑗 ∈ {1, 2, ...𝑈𝑖} do
6 𝑟 ∈ {1, 2, … , 𝐿} ∼ 𝒰 ; // select uniformly a random position in

the RNA sequence 𝜙′

7 𝑛𝑗 ∈ {A,U,C,G} ∼ 𝑃𝒩 ; // select a random nucleotide 𝑛𝑗 with

respect to 𝑃𝒩

8 𝜙′
𝑟 ← 𝑛𝑗 ; // replace the nucleotide at position 𝑗 in the RNA

sequence 𝜙′ with 𝑛𝑗

9 for 𝑗 ∈ {1, 2, ...𝐵𝑖} do
10 𝑘𝑗 ∈ {AU,UA, CG,GC,UG,GU} ∼ 𝑃𝒞 ; // select a random

base-pair 𝑘𝑖 with respect to 𝑃𝒞

11 𝑏 ∈ {(𝑏1, 𝑏2)𝑖} ∼ 𝒰 ; // select uniformly a random pair of

base-pair positions

12 𝜙′
𝑏 ← 𝑘𝑗 ; // replace respectively the nucleotides at the base-pair

position 𝑏𝑖 ∈ 𝑏 by 𝑘 ∈ 𝑘𝑗

13 𝑃′ ← 𝑃′ ∪ 𝜙′ ; // Add 𝜙′ to the list 𝑃′
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Figure 5.1: Binomial vs. Zipf distributions. (A) Samplings Binomial and Zipf distri-
butions for the best binomial mutation rate 𝜇∗ (respectively 𝑐∗ for the best
Zipf exponent parameter). Both distributions have a mean of 8.7 point
mutations for a sequence of length 88 nucleotides. (B) Tuning of binomial
mutation rate parameter. For each 𝜇 ∈ [0, 1] with a step size of 0.005 and
the pseudoknotted target PKB00342 of length 88, 50 sequences were de-
signed using aRNAque. (B) shows the median generations and the success
percentage vs. the mutation rate (𝜇). The best mutation rate is 𝜇∗ = 0.085
(with a median number of generation 93.5 and a success rate of 92%). (C)
Tuning of Lévy exponent. Similar to (B), for each 𝑐 ∈ [0, 7] with a step
size of 0.1 and for the same pseudoknotted target structure, 100 sequences
were designed using aRNAque. It shows the median generations and the
percentage of success vs. the exponent parameter (𝑐). The Zipf exponent
distribution that produced the highest success rate and the minimum
number of generations is 𝑐∗ = 1.4.

.

5.1.2 aRNAque’s objection functions

Our EA reaches its performance through the minimization of three objective
functions:

• Hamming distance from the target structure: Since the main goal of
the inverse folding problem is to find sequences that fold into a given
target secondary structure 𝜎∗, the simple fitness measurement 𝑓 of an
RNA sequence 𝜙 can be defined as follows:

𝑓 (𝜙, 𝜎∗) =
1

1 + 𝑑ℎ(𝜎𝑀𝐹𝐸(𝜙), 𝜎∗)
(5.1)

where 𝑑ℎ(⋅, ⋅) is the hamming distance on the structure space (structures
are in dot and bracket representation) defined in Equation 1.12.
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• NED: It is used to minimize the free energy of the designed sequences.
(See Equation 1.14 )

• ED: Here, we use the ED as a second objective function for refinement
after having at least one sequence that folds into the target in the current
population. It is defined in Equation 1.13.

To minimize the NED and the hamming distance of a population of RNA
sequences, instead of combining both measurements to form amulti-objective
function, we use them separately at a different level of our EA. We use the
NED as a selection weight for the sequences that will be mutated, and the
hamming distance is used as a weight to elite ten best sequences that will
always move to the next generation. Therefore the selection method we use is
the fitness proportionate selection, also known as roulette wheel selection [110].
Once we have at least one sequence that folds into the given target in the
current population (for the successful case), we start a random walk in its
neutral network by minimizing the ensemble defect function (Equation 1.13).
The next section provides more detailed information about the core of our EA
and the full pseudo-code.

Now that we have defined the mutation and selection operators imple-
mented in our EA, we will describe the general algorithm in the following
section.

5.1.3 aRNAque’s EA

As described in the introductory chapter, an EA starts with an initial popula-
tion of solutions and sequentially applies themutation and selection operators
on the solutions through generation until a termination criterion is satisfied.
How does aRNAque generate the initial population of RNA sequences? This
section describes how the initial population is generated and then provides
the core pseudocode of our EA.

For a given population size 𝑛 and a target structure 𝒮∗ of length 𝐿, an initial
population 𝑃 is generated randomly as follows:

1. Select randomly 𝐿 nucleotides in 𝒩

2. Identify the base-pair position (𝑖, 𝑗) in the random sequence, select ran-
domly a base-pair in the set of canonical base-pairs 𝒞 and fix the first
nucleotide of the selected canonical base-pair at the position 𝑖 and the
second at position 𝑗.

3. Repeat 2. for all base-pair positions in the target structure

4. Repeat 1. 2. and 3. 𝑛−times.

Let 𝑇 be the maximum number of generations and 𝐹𝑡 the set of all sequences
found at a given time 𝑡. After the initial population of RNA sequences is
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generated, our algorithm is described in algorithm 2. The stopping criteria
are two: 1) the number of generations (𝑡) is equal to the max number of
generations (𝑇) or 2) the minimum hamming (or base-pair) distance of the
best RNA sequence solution to the target is 0 (i.e the maximum fitness value
is 1 ).

In sum, our EA relies on three objective functions and implements a Lévy
flight mutation scheme. We assess the performance of our EA and the existing
tools using three benchmark data sets presented in the previous chapter
(Section 4.5). The following section describes the benchmark protocols applied
for each data set and different RNA inverse folding tools considered in the
context of this work. Furthermore, it provides an overview of various folding
tools and the configuration parameters used for the benchmark.

5.1.4 Benchmark parameters and protocols

For the benchmark results presented in this work, we use three datasets: the
Eterna100 dataset, RFAM dataset and PseudoBase++ dataset. Depending on
the datasets, a specific RNA folding tool is used. This section gives more details
about aRNAque’s parameters, energy parameters and other tools parameters
used for the benchmark results presented in this chapter.

Folding tools

Two tools for pseudoknottedRNA folding are considered in thiswork: HotKnots
and IPknot. For pseudoknot-free RNA folding, we used RNAfold. For the mu-
tation parameter and GC-content analysis presented in our work, we used
IPknot, and both HotKnots and IPknot for PseudobBse++ benchmarks. To be
able to use HotKnots in aRNAquewithout copying aRNAque in the bin directory
of Hotknots, we have performed somemodifications on Hotknots source code.
Details on the modifications are provided in the Section B.5. Furthermore,
we considered pkiss, a well known tool for K-type pseudoknot prediction,
but since the PseudoBase++ dataset contains just 4 K-type pseudoknotted
structures and pKiss has higher time complexity (𝑂(𝑛6)), we did not find it
efficient for the benchmark we performed.

Mutation parameters tuning

The main challenge for an evolutionary algorithm is to find optimum pa-
rameters such as mutation rate, population size and selection function. We
used 80 pseudoknotted targets with lengths from 25 to 181 nucleotides for the
mutation parameter analysis. We set the maximum number of generations 𝑇
to 200 and the population size 𝑛 to 100. The stopping criteria are two: 1) the
number of generations (𝑡) is equal to the max number of generations (𝑇) or
2)the minimum hamming (or base-pair) distance of the best RNA sequence
solution to the target is 0. The best mutation parameters (𝑐∗ for Lévy and 𝜇∗
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Algorithm 2: aRNAque’ EA
/* 𝑃′ = {𝜙′

1 … 𝜙′
𝑛}: the best population;

𝑃 = {𝜙1 … 𝜙𝑛}: the initial population of 𝑛 RNA sequences;

𝑃𝒞 = {𝑤𝐴𝑈, 𝑤𝐺𝑈, 𝑤𝐺𝐶}: a vector containing the weights associated with

each base-pair;

𝑃𝒩 = {𝑤𝐴, 𝑤𝑈, 𝑤𝐶, 𝑤𝐺}: a vector containing the weights associated with

each nucleotide;

𝒟: a given probability distribution (Lévy or Binomial) with parameter 𝑝
and 𝐿, where 𝐿 is the length of the target RNA structure;

𝑇: the maximum number of generations;

𝑛: the population size ;

𝑓 (; ): the fitness function used. It can be the hamming, base-pair or

energy distance;

𝜎∗: the target structure in its string representation;

𝒫: the energy parameters used for the folding */

Input: 𝑛, 𝑇, 𝑃𝒩,𝑃𝒞, 𝑃, 𝒟(𝑝, 𝐿), 𝑓 (; ), 𝜎∗, 𝒫
Output: Best population 𝑃′

1 𝑃′ ← 𝑃 ; // Assign the initial population to the best population

2 𝑡 ← 0 ; // Initialize the number of generations to 0
3 while 𝑡 ≤ 𝑇 & 𝑓 (𝜎𝑀𝐹𝐸(𝜙𝑏), 𝜎∗) ≠ 1 do
4 Σ ← {argmin𝜎∈Σ Δ𝐺(𝜙𝑖, 𝜎, 𝒫)}, ; // Fold each sequence 𝜙𝑖 ∈ 𝑃′ and

store them in Σ. Where 𝑖 ∈ {1, 2, … , 𝑛}, Γ the structural ensemble

and Δ𝐺(𝜙𝑖, 𝜎) the free energy computed using the parameters 𝒫
5 𝜅 = ⌊(𝑛 × 0.1)⌋ ; // The number of RNA sequences to copy in the next

generation without mutating them.

6 𝐹 ← {𝑓 (𝜎, 𝜎∗)|∀𝜎 ∈ Σ} ; // Evaluate the fitnesses of the folded

population to the target strucre 𝜎∗ and store them in a list 𝐹
7 𝐸𝜅 ← {𝜙1 … 𝜙𝜅} ∼ 𝐹 ; // copy of the 10% best sequence based on

their fitnesses 𝐹.
8 𝑃𝑆 ← {𝜙𝑖} ∼ 𝐹, where 𝑖 ∈ {1, 2, … , 𝑛 − 𝜅} ; // Randomly sample (𝑛 − 𝜅)

RNA sequences from 𝑃′ with respect to their fitnesses 𝐹.
9 𝑀 ← mutate(𝑃𝑆, 𝒟(𝑝, 𝐿), 𝑃𝒞, 𝑃𝒩) ; // Mutated the selected sequences

using the mutation algorithm presented in the main text in out

paper.

10 𝑃𝑏 ← 𝑀 ∪ 𝐸𝜅; // Combine the mutated population and the best

solutions to form the new population that will be evolved in the

next generation

11 𝜙𝑏 ← argmax𝒮∈Σ 𝑓 (𝜎, 𝜎∗);
12 𝑡 ← 𝑡 + 1 ; // Increment the time step (the number of generations)
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for Binomial) are those that have the lowest median number of generations.
The best mutation parameters obtained for both binomial and Lévy mutation
modes are used to benchmark and compare the results on the entire datasets
of RNA structures.

Benchmark on the PseudoBase++ dataset

Four benchmarks are performed on the pseudoknotted dataset: 1) muta-
tion parameter analysis, 2) the GC-content and diversity analysis, 3) Local
search versus Lévy search, 4) aRNAque (Lévy search) versus antaRNA. For the
aRNAque (Binomial and Lévy) case, the four benchmarks share the same num-
ber maximum number of generations (𝑇 = 200), population size (𝑛 = 100),
stopping criteria (𝑡 = 𝑇 or min fitness equals 0). For the antaRNA benchmark,
the maximum number of iterations was set to 1200, and a slight modification
was made to allow the support of the folding tool HotKnots (See Section B.5).
For booth tools and each benchmark, 20 runs were launched independently
in parallel on a computer with the same resources, resulting in 20 designed
sequences per pseudoknotted target structure. To measure the performance
of each tool, each designed sequence 𝑠 is folded into a secondary structure 𝒮
and the similarities between 𝒮 and 𝒮∗ are computed using the base-pair dis-
tance. For the GC-content benchmark, four GC-content values are considered,
{0.25, 0.5, 0.75, 1} and the setting of each tool remains the same.

Benchmark on the Eterna100 dataset

Weperformed two benchmarks are one the Eterna100 dataset: 1) a benchmark
on the Eterna100-V1 dataset using the Turner1999 energy parameter and the
both versions of aRNAque (one point and Lévy mutation), 2)a benchmark
on the Eterna100-V2 dataset using the Turner2004 energy parameter and
both versions of aRNAque (one point and Lévy mutation). For each of the
Eterna100 benchmark we used the same evolutionary algorithm parameters;
a maximum of 𝑇 = 5000 generations (i.e. a maximum of 500, 000 evaluations),
a population size of 𝑛 = 100 and the same stopping criteria (the number of
generation 𝑡 = 𝑇 or min fitness equals 0). For both local and Lévy search, 5
runs were launched independently, which results in 5 designed sequences per
target. We define success rate simply as the number of successfully designed
targets. A target is considered successfully designed when at least one of the
designed sequences folds into the target structure.

For the benchmarks peformed on ERD, NUPACK, and SentRNA the default
parameters were used. For NEMO, the number of iteration was set to 2500 and
for RNAinverse the objective function was set to be the partition function and
the number of iteration at 1200.
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Figure 5.2: Parameter tuning for both binomial and Lévy mutation schemes. (A)
Lévy mutation parameter tuning. Histogram of best exponent parameter
(𝑐∗) for a set of 81 target structures with different pseudoknot patterns and
various lengths. The most frequent best exponent value is 1. (B) Binomial
parameter tuning. Histogram of best mutation rate (𝜇∗) for the same set of
81 target structures with different pseudoknots and various lengths. The
most frequent best parameter is the low mutation rate (≈ 1/𝐿). For some
structures, the best mutation rate is the high one for different lengths as
well.

Benchmark on the non-Eterna100 dataset

For the non-EteRNA dataset, only the Turner2004 energy parameters were
used. The maximum number of generations was set to be 5000. The mutation
parameters ( 𝑃𝒞 and 𝑃𝒩) were chosen to be close to the nucleotide distribution
of the RNA sequence in nature [47].

5.2 experimental results

As mentioned in Chapter 4, the validation of computational tools for RNA in-
verse folding can include in vivo or in vitro experiments. In the context of this
work, only in silico experiments are used to evaluate the performance of the
existing tools, including aRNAque. This is done through a benchmark protocol
described in the previous section. This work’s computational tools require an
RNA secondary structure as an input target. Two RNA secondary structures
are considered: the pseudoknot-free and the pseudoknotted target structures,
and both are supported in aRNAque. Therefore, we evaluate aRNAque perfor-
mance for different target secondary structures separately. Three data sets of
secondary structure targets are used: the Eterna100 and non-Eterna100 that
contain pseudoknot-free targets, and the PseudoBase++ which contains only
pseudoknotted targets. Using the three data sets, this section presents the
experimental results concerning the quality of the designed RNA sequences
(i.e. the GC-content and diversity or positional entropy), the CPU required and
the success rate of each tool considered when benchmarked using a specific
data set.



82 an evolutionary algorithm for inverse folding inspired by lévy flights.

Low High
Base pair density

100

101

102

103

Ge
ne

ra
tio

n 
(t)

(A)
Lévy mutation
Local mutation

Low High
Base pair density

0

25

50

75

100

125

150

175

200

# 
of

 ta
rg

et
s

28.2%

71.8%

55.56%
44.44%

(B)

Low High
Base pair density

0

50

100

150

200

250

300

350

400

Le
ng

th

(C)
Eterna100
PseudoBase++

Figure 5.3: Lévy mutation vs. Local mutation: performance analysis with respect
to the base-pair density. The higher the base-pair density is, the more
useful the Lévy mutation scheme to speed up the optimization EA. (A)
Distributions of number of generations for the low and high base-pair
density targets of the Eterna100 dataset. (B) Percentages of targets with
low and high base-pair density for the Eterna100 and PseudBase++. (C)
The length distributions of the low and high base-pair density pseudoknot-
free and pseudoknotted targets.

5.2.1 aRNAque’s performance on pseudoknot-free target structures

Wecompared the performance of aRNAque for pseudoknot-free target using the
benchmark datasets: the non-Eterna100 and the Eterna100. This subsection
presents the statistical results obtained compared to benchmarked existing
tools and the results found in the literature. In addition, we compared the
performance of aRNAque (Lévy mutation) to the one of Ivry et al. [89] on a
tripod pseudoknot-free RNA secondary structure.

5.2.1.1 Performance on Eterna100 dataset

A first benchmark was performed on the Eterna100 datasets. First, on the
Eterna100-V1 dataset, the Lévy flight version of aRNAque successfully de-
signed 89% of the targets and the one-point mutation (local mutation) ver-
sion achieved 91% of success, suggesting that for some target structures, local
mutation can outperform the Lévy mutation scheme. Combining the two
solutions, aRNAque solved in total 92% of the targets of Eterna100-V1.

When analysing the performance of Lévy flight for low and high base-
pair densities separately, the median number of generations of high base-
pair density targets was lower than the one with low base-pair density (8
generations for high density and 18 for the low base-pairs density targets).
The same observation was drawn for the success rate. For the low base-pair
density targets, the Lévy flight achieved 87% (49/56) success whereas, for
the high base-pair density, it achieved 91% (40/44). The same analysis can be
done when comparing the one-point mutation results for the high-density
targets to the Lévy flight mutation. The median number of generations for
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Table 5.1: Summary of performance of aRNAque vs the 7 other algorithms bench-
marked on EteRNA100-V1 by Anderson-Lee et al. [4] (using the recent
energy parameter sets, the Turner2004)

Methods Number of puzzles solved
aRNAque 72/100

RNAinverse 66/100
Learna 66/100
ERD 65/100

SentRNA, NN + full moveset 60/100
MODENA 54/100
NEMO 50/100

INFO-RNA 50/100
NUPACK 48/100
DSS-Opt 47/100
RNA-SSD 27/100

the low-density targets when using a one-point mutation operator was 34
(respectively 24 for the high base-pair density targets) (see Figure 5.3A).

Another benchmark was performed on Eterna100-V2with aRNAque achieving
a 93% success rate when combining the designed solutions for both mutation
schemes. Compared to recently reported benchmark results [106], aRNAque
achieved almost similar performance to NEMO on Eterna-V2: one target was
unsolved by all existing tools and one target solved only by NEMO remained
unsolved by aRNAque, outperforming all existing EA methods.

For the robustness analysis, Table 5.1 presents the benchmark results on
Eterna100-V1 using the Turner2004 energy parameters sets. It shows that the
evolution algorithm we propose can solve ≈ 72% of the dataset, and it sur-
passes the 4 methods we benchmarked and all the tools already benchmarked
in [172]. We can also solve approximately 23 targets more than NUPACK, which
is also minimizing the ensemble defect and that shows the importance of a
population-based algorithm. Compared to the existing EA-based algorithms,
our EA can solve approximately 18 targets more than MODENA and 7 targets
more than ERD.

5.2.1.2 Perfomance on non-Eterna100

Additionally to the Eterna100 dataset, we also used the non-EteRNA dataset
collected from the RFAM database to assess the aRNAque’s performance on
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Table 5.2: Summary of performance of aRNAque vs the 10 other algorithms bench-
marked on the non-EteRNA100 by Anderson-Lee et al. [4]

Methods Number of puzzles solved
SentRNA, NN + full moveset 57/63

ERD 54/63
SentRNA, NN + GC pairing 53/63
SentRNA, NN + All pairing 53/63

aRNAque 52/63
RNA-SSD 47/63

SentRNA, NN only 46/63
INFO-RNA 45/63
MODENA 32/63
NUPACK 29/63

IncaRNAtion 28/63
Frnakenstein 27/63
RNAinverse 20/63
RNAfbinv 0/63

pseudoknot-free target secondary structure. Compared to other tools, the
statistical results are presented in Table 5.2.

The results show that our method surpasses 8/10 of other tools. ERD solved
2 more targets than our method because of its strong decomposition capacity,
which allows it to solve the entire dataset B. With the advantage that our
evolutionary algorithm also allows us to fit the nucleotide distribution pa-
rameters taken from natural RNA directly in the mutation parameters, we
can solve 21/24 targets from the dataset B. For the dataset A aRNAque solves
24/29 targets which means 2 more than the existing tools and for the 10 last
targets, it solves 7 targets. Adding all these solved targets together, we obtain
a result of 52/63 as presented in Table 5.2.

5.2.1.3 aRNAque performance on a tripod secondary structure

Finally, we performed a benchmark on a tripod target secondary structure.
The tripod secondary structure was used as a third test case in the work of Ivry
et al. [89], and it does not contain any pseudoknot interactions. It comprises
four stems, three of which with terminal hairpins, surrounding a multibranch
loop (See Figure 5.4A). The tripod target structure was proved to be very
challenging, especially because of its multiloop component, which is also
found in some of the unsolved Eterna100 target structures. We perform here,
for both energy parameters Turner1999 and Turner2004, 100 independent de-
signs, using a population size of 100 RNA sequences and a maximum of 5000
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Figure 5.4: aRNAque’s performance on a TRIPOD secondary structure. (A) The tri-
pod target structure. (B) aRNAque’s solution using the Turner1999 energy
parameter sets. (C) aRNAque’s solution using the Turner2004 energy pa-
rameter sets.

generations. The mutation parameters used are: 𝑃𝒞 = {0.4, 0.5, 0.1, 0, 0, 0},
𝑃𝒩 = {0.7, 0.1, 0.1, 0.1} and 𝑐 = 1.5. When using the Turner2004 energy pa-
rameter set, none of the 100 designed RNA sequences was successful (i.e,
0 sequence folds exactly into the target structure after 5000 generations).
Figure 5.4B shows one of the best solutions obtained out of 100 designed
sequences when using the Turner2004, the designed sequence folds into a
structure at one error base-pair distance from the target structure. In contrast,
when using the Turner1999 energy parameters, we successfully designed the
tripod secondary structure (See Figure 5.4C). The 100 sequences designed
folded exactly into the target structure with an average median number of
generations 20. When comparing both solutions to the one obtained in [89],
aRNAque (with no need of changing the RNA structure distance) can success-
fully design the multibranch loop component with one base-pair error using
the Turner2004 energy parameter whereas RNAinverse (with the DoPloCom-
pare distance) failed to design the multibranch loop, and the solution was at
two base-pair distance error.

5.2.2 aRNAque’s performance on pseudoknotted target structures

Secondly, we assessed the performance of aRNAque in designing pseudoknot-
ted target secondary structures through intensive benchmark on PseudoBase++
dataset. We then compared the results obtained to the one of antaRNA, using
both folding tools Hotknots and IPknot. Furthermore, a comparison between
local and Lévy mutations is provided.

5.2.2.1 Best mutation parameter analysis on PseudoBase++: Lévy mutation vs.
local mutation

The advantage of using a Lévy mutation is its capacity to allow simultaneous
search at all scales over the landscape. The search at different scale is often
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dictated by the exponent parameter of the heavy-tailed distribution. In this
first subsection, we analyse for 80 pseudoknotted target structures and for
both mutation schemes the distributions of the best mutation parameters.

• Binomial mutation: From Figure 5.1B, the critical range was identified
to be from 0 to 0.2 and as 𝜇 becomes greater than 0.1, the success rate
decreases and the average number of generations increases. For each of
the 80 target structures with pseudoknots, 20 sequences were designed
for 𝜇 ∈ [0, 0.2] with a step size of 1/𝐿. Figure 5.2B shows the histogram
of the best mutation rate found for each target structure. Two main
regimes are apparent: one where the best mutation rate is very low
mutation rate (≈ 1/𝐿) and another where the high mutation rate is
optimal.

• Lévy mutation: From Figure 5.1C, the critical range of 𝑐 was identified
to be [1, 2]. For 𝑐 ∈ [1, 2] and a step size of 0.1, an optimum exponent
parameter 𝑐∗ was investigated for all the 80 target structures. Figure 5.2A
shows the histogram of 𝑐∗. Contrary to binomial mutation, the optimum
exponent parameter does not vary too much (∀𝒮, 𝑐∗ ≈ 1).

Figure 5.2 shows that when using a Lévy mutation, the optimal mutation
rate is the same for most target structures. In contrast, the optimum binomial
mutation rate parameter𝜇∗ mostly varieswith different targets. Although both
mutation schemes (for the best mutation parameters) have approximately
the same success rates, the Lévy flight mutation scheme is more robust to
different targets.

5.2.2.2 Performance on PseudoBase++: Lévy mutation vs. local mutation

Figure 5.5 shows box plots for the base-pair distance (Hamming distance)
and the number of generations for increasing target lengths under our two
mutation schemes: binomial at low mutation rate (or one point mutation)
and the Lévy mutation. For each pseudoknotted RNA target structure in
the PseudoBase++ dataset, we designed 20 sequences. The results show that
using the Lévy mutation instead of a local mutation scheme can significantly
increase the performance of aRNAque. The gain was less significant in terms of
designed sequences quality (base-pair distance distributions, with a 𝑡-value
≈ −1.04 and 𝑝-value ≈ 0.16) but more significant in terms of the average
number of generations needed for successful matches to target structures
(with a 𝑡-value ≈ −3.6 and 𝑝-value ≈ 0.0004). This result demonstrates a
substantial gain in computational time when using a Lévy mutation scheme
instead of a purely local mutation.

5.2.2.3 Performance on PseudoBase++: aRNAque vs. antaRNA

We also compared the sequences designed using aRNAque (with the Lévy mu-
tation scheme) to those produced by antaRNA. Figure 5.6A and Figure 5.6C
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Figure 5.5: Lévy mutation mode vs local mutation (one-point mutation). (A) Ham-
ming distance distributions vs. target structure lengths. (B) Number of
generations distributions for different length groups. In both (A) and
(B), lower values indicate better performance. The target structures are
solvable in less than 100 generations for both mutation schemes and most
length groups. Still, the difference in the number of generations gets
more significant as the target lengths increase, except for the two last
length groups for which both mutation schemes mostly failed. The high-
est difference in terms of median number of generations is 150 for target
lengths in the range [124 − 144] (respectively 123, 49, 46, 16, 7, 0, 0 for the
length ranges [84−104], [64−84], [104−124], [44−64], [24−44], [144−
164], [164 − 184]). Averaging over all length groups, the median number
of generations difference between the Lévy mutation and the one point
mutation is 48 generations.

show the base-pair distance distribution for each category of pseudoknot-
ted target structure and the mean of the base-pair distance plotted against
the length of the target secondary structures. For antaRNA, and when using
IPknot as a folding tool, finding sequences that fold into the target becomes
increasingly difficult with pseudoknot complexity (median base-pair distance
distribution increases). On the other hand, aRNAque’s performance improves
as pseudoknot complexity increases (e.g. the mean base-distance decreases
with the pseudoknot complexity).

A second benchmark using HotKnots as a folding tool was performed on
the same dataset. For both aRNAque and antaRNA, the more complex the pseu-
doknot motifs, the worse is the tool performance (median of the base-pair
distance distribution increases). Figure 5.6B and Figure 5.6D show the base-
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Figure 5.6: aRNAque vs antaRNA on PseudoBase++ dataset using both IPknot and
HotKnots. Lower values imply better performance. (A, B) base-pair dis-
tance distributions of the designed sequences to the target structure for
different pseudoknot types. (C,D) Mean base-pair distance against target
lengths.

pair distance distributions with respect to the pseudoknot motifs for both
aRNAque and antaRNA. Even though both performances degrade as target
length increases, aRNAque (Lévy flight evolutionary search) performance
remains almost constant for all the target lengths greater than 60.

5.2.3 Quality of the designed RNA sequences

In addition to the successful rate analysis, we assessed the quality of the
designed RNA sequences by analysing both GC-content and diversity of the
pseudoknotted dataset using IPknot. This section presents the results ob-
tained and a comparison to antaRNA designed sequences.

5.2.3.1 GC–content analysis of the designed sequences using IPknot

The GC–content of an RNA sequence 𝑆 measures the concentration of G-C
nucleotide in 𝑆 and influences its stability and biological function. There-
fore, the ability of an inverse folding tool to control the GC–content is of
vital importance for designing functional RNA sequences. Both antaRNA and
aRNAque allow to control the GC–content at different levels of the optimiza-
tion process: aRNAque through the mutation parameters 𝑃𝒞 and 𝑃𝒩; antaRNA
with the parameter 𝑡𝐺𝐶 ∈ [0, 1]. In this section, we compare the perfor-
mance of each tool for fixed GC–content values and analyse each tool’s ability
to control the GC–content. For each pseudoknotted target structure in the
PseudoBase++ dataset, four different GC-content values {0.25, 0.5, 0.75, 1}, a
poll of 20 sequences is designed using IPknot as folding tool. That results
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Figure 5.7: aRNAque vs antaRNA on PseudoBase++ dataset using IPknot: GC–content
analysis. (A) Base-pair distance ditributions. (B) GC–content distance
distributions. The difference betwen the targeted GC-content and the
actual GC-content values. In (A,B), lower values imply better performance.
(C)Number of successes realised by both inverse folding tools. Two values
are considered: the up value represent the number targets successfully
solved for each GC-content value out of the 266 targets benchmarked; the
down values represent the number sequences folding into the targeted
secondary structure.

in 5320 designed sequences for each GC-content value and tool. The num-
ber of successes is the total number of sequences that fold exactly into the
given target structure (i.e. the designed sequence folds into a structure at
base-pair distance 0 from the target structure). Figure 5.7 shows respectively
the base-pair distance distributions, the GC distance distributions and the
number of successes for both aRNAque and antaRNA. The results show that
the performance (in terms of success number) varies considerably with the
GC–content values for both tools, and the best performance is obtained for
both tools with a GC–content value of 0.5. When comparing the GC-content
distance (i.e absolute value of the difference between the targeted GC–content
and the actual GC–content values of the designed sequences) distributions,
both GC–content distance median distributions increase, whereas antaRNA
controls significantly better the GC-content (See Figure 5.7B). On average,
for the respective GC-content values {0.25, 0.5, 0.75, 1}, antaRNA’s sequences
have respectively 0.2569, 0.4952, 0.7314, 0.8684 whereas aRNAque’s sequences
have respectively 0.3649, 0.4910, 0.6231, 0.811; the main difference is at fixed
GC-content values 0.25 and 0.75. Even though antaRNA designs sequences
with better control of the GC-content, the gap in success rate still remains
remarkable compared to aRNAque(See Figure 5.7A and Figure 5.7C).

5.2.3.2 Diversity of the designed sequences

Another advantage of using a Lévy mutation when designing RNA sequences
is to increase the chance of designing sequences with high diversity. Here, we
use the positional entropy of each pool of 20 sequences previously designed
for each pseudoknotted target structure to compare the diversity of RNA of
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Figure 5.8: aRNAque vs antaRNA on PseudoBase++ dataset using IPknot: Diversity
analysis. The positional entropy distributions plotted agains the targeted
GC–content values. Higher values imply better performance.

both tools antaRNA and aRNAque (Lévy search). We also compare it to the
diversity of the designed sequences using the old version of aRNAque (Local
search). The results show that the sequence diversity of both antaRNA and
aRNAque (Lévy search) varies with the GC–content values, where the more
diversified pool of sequence is achieved with a GC–content value of 0.5. When
comparing the pool of designed sequences with highest entropy (i.e. with
a fixed GC-content of 0.5) to the one of the old version of aRNAque (Local
search), the aRNAque (Lévy search) and antaRNA produce sequences with sim-
ilar entropy (i.e. with a median entropy of 61.01 for Lévy search respectively
59.65 for antaRNA (see Figure 5.8), whereas the entropy of the sequences de-
signed using the Local search is lower. For the three others fixed GC-content
values (i.e. {0.25, 0.75, 1}, aRNAque (Lévy search) produces sequences with the
highest entropy (respectively a median entropy of 58.9, 60.08, 51.52 against
53.42, 54.63, 48.38 for antaRNA).

5.2.4 Complexity and CPU time comparison

We finally analysed the design performance of aRNAque relatively to the CPU
time needed. This section presents aRNAque statistical results compared to
two main tools: RNAinverse for the pseudoknot-free targets and antaRNA for
the pseudknotted targets.

5.2.4.1 CPU time vs. success rate using RNAfold: RNAinverse vs. aRNAque on
EteRNA100-V1.

Since our previous benchmarks on EteRNA100-V1 using the Turner2004 en-
ergy’s parameters reveal that RNAinverse, one of the oldest inverse folding
tools, stands behind aRNAque solving 66% of the dataset; we have chosen to
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Figure 5.9: CPU time: RNAinverse 𝑣𝑠. aRNAque. Each bubble corresponds to a target
structure in EteRNA100 dataset and, their colours are proportional to the
length of the targets. In the legend, MHD stands for Median Hamming
distance, and the different markers represent—(’o’) 100% success for both
tools—(’+’) 100% success for aRNAque and not for RNAinverse—(’-’) for
the case both tools fail to find at least one sequence that folds into the
target. Underlying the CPU time difference is the inside plot that shows
the CPU time (in seconds) as a target length function.

compare its computational time to our implementation (See Table 5.1). The
inset of Figure 5.9 shows the CPU time in seconds needed to design for each
target in the EteRNA100-V1, 5 sequences. As the RNAinverse time increases
exponentially with the length of the target, the aRNAque one does not.

When comparing the ratio between the success rate and CPU time, aRNAque
mostly succeeded in finding at least one sequence that folds to the target
with lower CPU time costs for average target lengths. In contrast, RNAinverse
accuracy is lower, and the CPU time is expensive. The increase in CPU time
may be because of the use of the partition function as the objective function.

5.2.4.2 CPU time vs. success rate using Hotknots: antaRNA vs. aRNAque on
PseudoBase++

Wealso compare aRNAque’s computational time to the one of antaRNA. For both
tools, 20 sequenceswere designed for each target structure of the PseudoBase++
dataset. The GC–content value used for both tools is 0.5, and the maximum
number of interactions for antaRNA is 5000. Figure 5.10 shows the median CPU
time of the 20 runs in seconds for both tools plotted against each other. We
analysed the CPU time by partitioning the data into three groups: 1) a set for
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Figure 5.10: CPU time analysis using Hotknots: antaRNA 𝑣𝑠. aRNAque. Each bubble cor-
responds to a target structure in PseudoBase++ dataset and, their colours
are proportional to the length of the targets. In the legend, BP stands for
Median base-pair distance, and the different markers represent—(’o’)
100% success for both tools—(’+’) 100% success for aRNAque and not for
antaRNA—(’-’) for the case aRNAque’s desinged sequences are of median
base-pair distances greater than the one of antaRNA. Underlying the CPU
time difference is the inside plot that shows the CPU time (in seconds)
with respect to the target length.

which both tools have a median base-pair distance of 0 (158 entries marked
with o); 2) another set for which aRNAque has a median base-pair distance is
0 and antaRNA (41 entries marked with +); 3) the last set for which antaRNA

designs are of better quality (9 entries mark as -). For the first group, we can
notice that for most targets of short length antaRNA is faster than aRNAque.
For the second group, although antaRNA average CPU time remains smaller,
aRNAque’s success rate outperformed antaRNA. On the one hand, aRNAque av-
erage CPU time is higher than the one of antaRNA, but this could be due to
its population-based algorithm, which often allows for designing more suc-
cessful sequences. On the other hand, antaRNA is faster but less successful.
Increasing antaRNA’s number of iterations will indeed increase the CPU time,
but it may improve the quality of the designed sequences.

5.3 conclusion

In this work, we investigated an evolutionary approach to improve the existing
solutions to the RNA inverse folding problem. As a result, we proposed a new
EA python tool called aRNAque. aRNAque implements a Lévy flight mutation
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scheme and supports pseudoknottted RNA secondary structures. The benefit
of a Lévy flight over a purely local mutation search allowed us to explore RNA
sequence space at all scales. Such a heavy-tailed distribution in the number of
point mutations permitted the design of more diversified sequences, avoiding
the pitfalls of getting trapped in a local optimum.

Our results show general and significant improvements in the design of
RNA secondary structures compared to the standard evolutionary algorithm
mutation scheme with a mutation parameter ≈ 1/𝐿, where 𝐿 is the sequence
solution length. Lévy flight mutations lead to a greater diversity of RNA
sequence solutions and, in many cases, reduce the evolutionary algorithm’s
number of evaluations, thus improving computing time.
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6
ADVANTAGES AND L IM ITAT IONS OF THE PROPOSED
METHODS

In the presented thesis, we have summarized some molecular background
and biological functions of nucleic acids, especially ncRNAs. Because of the
implication of the secondary structure of ncRNAs in performing biological
functions and the separation of the folding time scale, our study focuses on the
secondary structure of ncRNAs. Therefore, we have introduced the concepts of
RNA bioinformatics and the essential computational problems related to the
secondary structure of ncRNAs, such as RNA folding and the inverse folding.
We presented a comprehensive literature review on existing tools that deal
with both problems and some limitations for each tool. Despite advanced field
results, we have introduced two new computation tools: RAFFT and aRNAque.
What are the advantages and limitations of those tools? Is there any room for
further improvements? How do these tools relate to evolutionary dynamics?
In this concluding chapter, we will try to provide an answer to these questions
by first discussing the advantages and the limitations of the tools previously
introduced.

6.1 rafft: limitations and future works

Wepresented inChapter 3, RAFFT, a computational tool that efficiently predicts
RNA folding pathways. RAFFT takes advantage of the FFT to reduce its mean
computational time to 𝑂(𝑁2), especially for long RNA sequences (length
≥ 103). We assessed RAFFT performance for both the secondary structure
prediction task and the RNA kinetics. In both cases, RAFFT shows important
improvements. However, RAFFT also presents some limitations that will be
addressed in the following section.We also discuss in this section some further
improvements and applications.

To first assess RAFFT performance for the folding task, two structure es-
timates were compared with our method: the thermodynamic-based tools
computed using RNAfold, LinearFold, RNAstructure and the ML estimate
using MxFold2 and CONTRAfold. When we considered the lowest energy struc-
ture, the comparison of RAFFT to existing tools confirmed the overall validity of
our approach. In more detail, a comparison with thermodynamic/ML models
yielded the following results. First, the ML predictions performed consistently
better than both RAFFT and other approaches, where the PPV = 70.4% and
sensitivity = 77.1% on average. Second, the ML methods produced loops,
such as long hairpins or external loops. We argue that the density of those
loops correlates with the ones in the benchmark dataset, which a PCA analysis
revealed too.

97
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In contrast, the density of similar loops was lower in the structure spaces
produced by RAFFT and other thermodynamic-basedmethods, implying some
over-fitting in the ML model. Finally, known structures obtained through co-
variation analysis reflect in vivo structure conditions. Therefore, the structures
predicted by ML methods may result from their sequences alone and their
molecular environment, e.g. chaperones. We expect the thermodynamic meth-
ods to provide a more robust framework for studying sequence-to-structure
relations. Concerning thermodynamic-based tools, we obtained a substantial
gain of performance when analyzing 𝑁 = 50 predicted structures per se-
quence, not only the lowest energy one. This gain was even more remarkable
for sequences with fewer than 200 nucleotides, reaching the accuracy of ML
predictions.

So how does RAFFT predictions contain structures that are more relevant
than the MFE, although these structures are less thermodynamically stable?
The interplay of three effects may explain this finding. First, the MFE structure
may not be relevant because active structures can be in kinetic traps. Second,
RAFFT forms a set of pathways that cover the free energy landscape until they
reach local minima, yielding multiple long-lived structures accessible from
the unfolded state. Third, the energy function is not perfect, so that the MFE
structures computed by minimizing it may not in fact be the most stable.

We also showed that the fast-folding graph produced by RAFFT can be
used to reproduce state-of-the-art kinetics, at least qualitatively. Our method
demonstrated three main benefits. First, the kinetics can be drawn from as few
as 68 structures, whereas the barrier tree may require millions. Second, the
kinetics ansatz describes the complete folding mechanism starting from the
unfolded state. Third, for the length range tested here, the procedure did not
require any additional coarse-graining into basins (longer RNAs might require
such a coarse-graining step, in which structures connected in the fast-folding
graph are merged together).

Based on our results, we believe that the proposed method is a robust
heuristic for structure prediction and folding dynamics. The folding land-
scape depicted by RAFFTwas designed to follow the kinetic partitioning mech-
anism, where multiple folding pathways span the folding landscape. This
approach has shown good predictive potential. Furthermore, we derived
a kinetic ansatz from the fast-folding graph to model the slow part of the
folding dynamics. It was shown to approximate the usual kinetics framework
qualitatively, although using significantly fewer structures.

However, further improvements and extensions of the algorithm may be
investigated. First, the choice of stems is limited to the largest in each positional
lag, a greedy choice which may not be optimal. Second, we have constructed
parallel pathways leading to diverse, accessible structures. Still, we have not
given any thermodynamic-based criterion to identify which are more likely
to resemble the native structure. We suggest using an ML-optimized score to
this effect.
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Our method can also find applications in RNA design, where the design
procedure could start with identifying long-lived intermediates and using
them as target structures. We also believe that mirror encoding can be helpful
in phylogenetic analysis. Indeed, the correlation spectra cor(𝑘) computed here
contained global information of base-pairing that can be used as a similarity
measure.

Finally, the versatile method implemented in RAFFT gives possibilities for
an alternative application of the FFT in RNA-RNA interaction. The underly-
ing idea is that instead of encoding a sequence 𝑋 and its mirror sequence
𝑋̄, one can consider two encoded sequences 𝑋 and 𝑌, and the correlation
between them will allow identifying the fraction of high interaction between
two RNA sequences quickly. In general, RNA-RNA interaction prediction meth-
ods are divided into three groups: alignment like methods, MFE methods and
comparative methods. MFE methods constitute the majority of the RNA-RNA
interaction tools, with the only difference often based on whether the method
considers intramolecular interactions. Some methods measure the accessibil-
ity of binding region (Intra and inter interactions) [8, 34, 200]. We suggest
neglecting intramolecular interactions and intermolecular binding pairs for a
preliminary implementation.

In sum, RAFFT provides a versatile framework in which the kinetic parti-
tioning mechanism can be simulated. Therefore, it allows for predicting an
ensemble of concurrent RNA folding pathways ending in different metastable
conformations. This result contrasts traditional thermodynamics techniques
that find a single MFE structure. However, further improvements of RAFFT
could be investigated:

• The limitation of the choice of stems to the largest one in each posi-
tional lag is a greedy choice that may not be optimal. We propose to
add stochastic noises in the choice of positional lag, such that running
multiple times RAFFT, one can overcome some greediness bottlenecks.

• Our method constructs parallel pathways leading to a diverse set of
accessible structures. Still, we have not given any thermodynamic-based
criterion to identify which are more likely to resemble the native struc-
ture. We suggest using an ML-optimized score to investigate the re-
strained ensemble of structures predicted by RAFFT.

• Structures connected in the parallel pathways are separated by the
formation or unfolding of a single stem. As mentioned above, RAFFT
does not account for barriers between structures that stem formation
could involve. Therefore, we propose to apply a post-treatment on the
folding graph, where the folding path between structures is investigated
using the set of valid atomic folding moves (e.g. individual base-pair
formation).
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In addition to these possible improvements, we presented two possible
applications: RNA design and RNA-RNA interactions. In Section 6.3, we discuss
another application in the study of evolutionary dynamics.

6.2 arnaque: limitations and perspectives

We have provided in Chapter 5, a new tool aRNAque, implementing an EA
with a Lévy flight mutation scheme that supports pseudoknottted RNA sec-
ondary structures. We discuss in this section the advantages of using aRNAque

for RNA design and some limitations that could be addressed for further
improvements.

The Lévy mutation scheme offered exploration at different scales (mostly
local search combined with rare big jumps). Such a scheme significantly
improved the number of evaluations needed to hit the target structure, while
better avoiding getting trapped in local optima. The benefit of a Lévy flight
over a purely local mutation search allowed us to explore RNA sequence
space at all scales. Such a heavy tailed distribution in the number of point
mutations permitted the design of more diversified sequences. The main
advantage of using a Lévy flight over local search was more remarkable
for the pseudoknotted RNA targets, which is a reduction in the number of
generations required to reach a target (see Figure 5.5). This is because the
infrequent occurrence of a high number of mutations allow a diverse set of
sequences among early generations, without the loss of robust local search.
One consequence is a rapid increase in the population mean fitness over
time and a rapid convergence to the target of the maximally fit sequence. To
illustrate that advantage, we ran aRNAque starting from an initial population
of unfolded sequences, both for a ”one point mutation” and ”Lévy mutation”.

Figure 6.1A and Figure 6.1B show respectively the max/mean fitness over
time and the number of distinct structures discovered over time plotted against
the number of distinct sequences. When using a Lévy mutation scheme,
the mean fitness increases faster in the beginning but stays lower than that
using local mutations. Later in the optimisation, a big jump or high mutation
on the RNA sequences produces structures with fewer similarities and, by
consequence, worse fitness. In the (5 − 10)𝑡ℎ generation, sequences folding
into the target are already present in the Lévy flight population, but only at the
30𝑡ℎ generation are similar sequences present in the local search population.
The Lévy flight also allows exploration of both the structure and sequence
spaces, providing a higher diversity of structures for any given set of sequences
(Figure 6.1B). Using the mean entropy of structures as an alternate measure of
diversity,we see in Figure 6.1C and Figure 6.1DhowaLévy flight achieves high
diversity early in implementation, and maintains a higher diversity over all
generations than a local search algorithm. Although the mutation parameters
𝑃𝐶 and 𝑃𝑁 influence the absolute diversity of the designed sequences, the
Lévy flight always tends to achieve a higher relative diversity than local search,
all else being equal.
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Figure 6.1: Lévy mutation vs one-point mutation. For the Eterna100 target struc-
ture [CloudBeta] 5 Adjacent Stack Multi-Branch Loop, ten indepen-
dent runs were performed in which a minimum of 10 sequences were
designed per run. (A) Max fitness and mean fitness (inset) over time. (B)
Distinct sequences vs. Distinct structures over time. (C) Mean Shannon
entropy of the population sequences over time for both binomial and Lévy
mutation. (D) The max fitness plotted against the entropy over time.

We argue that the improved performance of the Lévy mutation over local
search in target RNA structures is due to the high base-pair density of pseu-
doknotted structures. Given that pseudoknotted RNA structures present a
higher density of interactions, there are dramatic increases in possible incor-
rect folds and thus increasing risk of becoming trapped near local optima
[74]. Large numbers of mutations in paired positions, as implied by a heavy
tailed distribution, are necessary to explore radically different solutions.

To illustrate that Lévy flight performance could be due to base-pair den-
sity, we clustered the benchmark datasets into two classes: one cluster for
target structures with low base-pair density (density ≤ 0.5) and a second
cluster for structures with high base-pair density (density > 0.5). Figure 5.3B
showed the number of target sequences available in each low and high density
category. The number of targets available in each category are colored accord-
ing to the percentage of pseudoknot-free targets (Eterna100-V1) vs. targets
with pseudoknots (Pseudobase++), showing that pseudoknots are strongly
associated with high base-pair densities: 71% of the pseudoknotted target
structures have a high base-pair density. In contrast, the Eterna100 dataset
without pseudoknots has somewhat higher representation at low base-pair
density. If it is true that improved Lévy flight performance is indeed tied to
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base-pair density, it is possible that similar heavy-tailed mutation schemes
could offer a scalable solution to even more complex inverse folding problems.
Another measure of difficulty is the length of the target RNA secondary struc-
ture. When analysing the mean length of the pseudoknot-free targets, the
high base-pair density targets are on average 181 nucleotides longer, and the
low-density base-pair targets are 139 nucleotides (See Figure 5.3C). We have
49 nucleotides for low-density targets for the pseudoknotted targets and 52
nucleotides for the high-density targets. That suggests that the Lévy mutation
may be a good standard for designing more challenging target structures.

A further effort have been made to understand the cases in which the Levy
flight mutation can outperform the Binomial with low mutation rate or a
constant one-point mutation rate. The key point of a Lévy mutation for the
Inverse folding problem partially may rely on the base-pair density and the
stability of stems with budge.

Although we believe that Lévy flight-type search algorithms offer a valu-
able alternative to local search, we emphasise that its enhanced performance
over say antaRNA is partially influenced by the specific capabilities of existing
folding tools. Their limitations may account for the degradation of these tools
as the pseudoknot motifs get increasingly complex (i.e. the incapacity of
existing folding tools to predict some pseudoknot motifs influences the per-
formance of both aRNAque and antaRNA). The Lévy mutation has also shown
less potential in controlling the GC–content of the designed sequence when
compared to antaRNA on pseudoknotted target structures. antaRNA’s parame-
ters used in this work were tuned using pKiss; therefore, it could be possible
room for improving the benchmark presented here by retuning them using
IPKnot or HotKnots. Another possible limitation is the fact that most target
structures were relatively easy to solve (in less than 100 generations), which
possibly allowed local search to perform better than Lévy search in some
cases. Further research on more challenging target structures will improve
our understanding of which conditions favour local vs. Lévy search.

6.3 rafft , arnaque and evolutionary dynamics perspectives

The RNA inverse folding has deep connections with theoretical evolutionary
dynamics studies, where the sequence-secondary structure relationship is
a popular model for studying the genotype/phenotype maps [66, 90]. The
folding tool usually maps each sequence to a secondary structure, e.g. RAFFT
pathways could be used to compute developmental paths from sequence
to secondary structure and then use the most dominant structure as the
phenotype realization of a genotype RNA sequence. Therefore, the two tools
we previously introduced have a direct connection with the evolutionary
dynamic, where aRNAque simulates the dynamic evolutionary process and
RAFFT computes the genotype/phenotype mapping. This section presents
some evolutionary dynamics concepts that could be further studied using
RAFFT and aRNAque.
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Similar to EAs, implemented in aRNAque, simulating a dynamic evolution-
ary process using RNA sequence-secondary structure relationship as a model
often involves a population of RNA sequences to a given target secondary
structure. In such a simulation, we need three main ingredients: replication,
selection and mutation. These are the fundamental and defining principles
of biological systems. The underlying idea is that the genomic material (the
blueprint that determines the corresponding secondary structure) in the form
of RNAs is replicated and passed on to the new offspring from generation
to generation. An RNA individual is then folded into its corresponding sec-
ondary structure at each generation. Fitness is then a function that measures
how close the realized structure to the target structure is. Therefore, selection
results from different types of RNA individuals competing with each other.
One RNA may reproduce faster and out-compete the others. Occasionally,
reproduction involves mistakes; these mistakes are termed mutations. Muta-
tions are responsible for generating different RNAs that can be evaluated in
the selection process, thus resulting in biological novelty and diversity.

Such a simple model gives a unified framework to precisely define and
statistically measure evolutionary dynamics concepts such as plasticity, evolv-
ability, epistasis, neutrality, continuity, and modularity. At the molecular level,
plasticity is viewed as the capacity of an RNA sequence to assume a variety of
energetically favourable secondary structures by equilibrating among them at
a constant temperature [3]. Such concepts have been extensively studied using
the RNA inverse folding as a toy model. These studies revealed that selection
leads to the reduction of plasticity and, therefore, to extreme modularity
[3]. Another well-studied property of evolution is neutrality which was first
introduced by Kimura [98], and it suggested that the majority of genotypic
changes (or mutations) in evolution are selectively neutral. The attention to
Kimura’s contention has led to the discovery of neutral networks in the context
of genotype-phenotype models for RNA secondary structure [146, 166]. Many
recent studies [179, 180] use the sequence-secondary structure relationship
as a toy model for studying neutral evolution. The neutral property of the
RNA sequence-structure map contributes to a certain extent to the difficulty
of the RNA design problem (e.g. when the neutral network is dense, this may
quickly increase the chance of getting trapped and thus not improving the
fitness). This problem is central to many optimization techniques and has
already been mentioned in Chapter 4. Trying to avoid such a situation has
motivated the choice of the mutation scheme implemented in aRNAque, which
is the Lévy mutation.

Another important issue in evolutionary biology concerns the extent to
which the history of life has proceeded gradually or has been punctuated
by discontinuous transitions at the level of phenotypes. Distinguishing the
notion of continuous from discontinuous changes at the level of phenotypes
requires a notion of nearness between phenotypes. This notionwas previously
introduced by Fontana and Peter [57], and it is based on the probability of one
phenotype being accessible from another through changes in the genotype.
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The RNA sequence-secondary structure relationship provides a framework
where the notion of discontinuity transition is more precise. It allows un-
derstanding of how it arises in the model of evolutionary adaptation. This
is done by simulating an RNA population that evolves toward a tRNA target
secondary structure in a flow reactor logistically constrained to a capacity of
1000 sequences. Once the secondary target structure is found, the evolution-
ary trajectory is backtracked to identify all the distinct structures involved
and the transitions between them. An example of a continuous transition in
Appendix (see Figure B.2) is the transition 18 → 10 whereas the transition
15 → 22 is said to be discontinuous.

The simulation illustrated in Section B.8 was performed using RNAfold, the
folding tool included in the ViennaRNA package. When using ViennaRNA, the
plastic ensemble of an RNA sequence𝜙 is often considered to be the suboptimal
ensemble structure Σ𝜙 within a user-defined energy range above the MFE at
a constant temperature 𝑇. The ViennaRNA package provides an efficient tool
RNAsubopt allowing to compute Σ𝜙. In a more rigorous implementation of
plasticity, each of those structures in the ensemble Σ𝜙 should result from a
developmental pathway. Therefore, the environmental changes may induce a
change in the developmental path, allowing switching from one structure in
the structural ensemble to another. When considering the set of structures
produced using RAFFT, eachmeta-stable structure represents an RNA pathway;
therefore, this ensemble can be considered a developmental plastic ensemble.
Using RAFFT to simulate the evolutionary dynamic model may provide an
alternative framework to study evolutionary concepts such as continuity and
plasticity. Perhaps, another way of defining a continuous transition (𝑆1 → 𝑆2)
from structure 𝑆1 to 𝑆2 will be to check if the structure 𝑆2 is in the RAFFT’s
structure ensemble of the sequence with MFE 𝑆1. In that wise, we suggest
utilizing RAFFT to study and draw a different interpretation of continuous
evolutionary transition.

6.4 conclusion

In sum, the two computational tools introduced in Chapter 3 and Chapter 5
have been further examined. Both tools present advantages and limitations,
opening doors to further improvements and applications.

On the one hand, RAFFTpredicts fast RNApathways resulting in an ensemble
of metastable structures instead of a single MFE structure implemented by
most traditional methods. The ensemble structures have the advantages of
containing some structures of biological relevance and reproducing complete
kinetic simulations of known RNAs. However, the RAFFTmethodpresents some
greediness in the choice of stems, does not provide any criterion allowing to
choose biological relevant structures from the ensemble produced and does
not account for barriers between structures. Despite these limitations, RAFFT
offers improvements to the computational times and RNA kinetics, and its
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versatility opens the door to several applications from RNA design to RNA-RNA
interaction.

On the other hand, aRNAque allowed designing RNA sequences with higher
diversity at a reduced number of evaluations for pseudoknotted target struc-
tures. Except for CPU time performance on pseudoknotted targets, the success
rate performance on both pseudoknot-free and pseudoknotted target struc-
tures showed improvements. Despite this, some Eterna100 targets remain
unsolvable, opening the door to further investigations. We also discussed
some aRNAque limitations, such as the influence of the pseudoknot prediction
capacities of existing folding tools in the design process and aRNAque potential
to control the GC-content. In addition to these two limitations, most pseudo-
knotted targets were solvable in less than 100 generations. These limitations
contributed to the description of further research directions.

Our results go beyond the computational RNA folding and inverse folding;
they can be used to study evolutionary dynamics concepts such as continuity
and plasticity. Some perspectives have also been discussed.





7
GENERAL CONCLUS ION

This thesis has explored computational methods for studying RNA folding.
In particular, it focused on the secondary structure level. It examined the
energetic and thermodynamic stability characteristics in predicting folding
pathways and designing RNA target structures through inverse folding. The
principal output of the thesis is the development of computational tools to
efficiently predict RNA folding pathways using the FFT (RAFFT) and an evo-
lutionary algorithm allowing search at both local and long-range scales in
the design of target RNA structures (aRNAque). On the one hand, our first
contribution in RNA folding, RAFFT, offers an alternative computational frame-
work to predict and study the RNA kinetics for long RNA molecules at lower
computation costs than classical DP methods. The versatility of our methods
opens doors to different ranges of applications, such as RNA-RNA interactions
and evolutionary dynamics.

On the other hand, our RNA inverse folding tool, aRNAque, offers a unified
framework that combines the negative and positive RNA design with an EA
that implements a Lévy flight mutation scheme. Our results show general and
significant improvements in the design of RNA secondary structures (espe-
cially on the pseudoknotted targets) compared to the standard evolutionary
algorithm mutation scheme with a mutation parameter ≈ 1/𝐿, where 𝐿 is the
sequence solution length. Introducing the Lévy flightmutation led to a greater
diversity of RNA sequence solutions and reduced the evolutionary algorithm’s
number of evaluations, thus improving computing time compared to the local
search. Although antaRNA average CPU time remains smaller, aRNAque’s suc-
cess rate outperforms antaRNA. To further improve our program, we suggest
using a more powerful computational architecture such as massively parallel
genetic algorithm (MPGA). This type of architecture may allow solving more
challenging target secondary structures.

Finally, we outlined these tools’ limitations and prospects more generally
in furthering our understanding of RNA structure, function and design. We
have put them into the context of evolutionary dynamics and highlighted
potential applications in studying continuous transitions and plasticity in that
context. We believe that our contributions can enhance our understanding of
RNA folding and find applications in the real world.
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RAFFT APPENDICES

a.1 rafft example calls

RAFFT computes the fast-folding paths for a given sequence. Starting from the
wholly unfolded structure, it quickly identifies stems using the FFT-based
technique.

For example, we can use the following commands on the Coronavirus
frameshifting stimulation element obtained from RFAM:
to display only the final structures

Listing A.1: Command line to run RAFFT executable after installation

$ rafft -s GGGUUUGCGGUGUAAGUGCAGCCCGUCUUACACCGUGCGGCACAGGCA

-ms 5

to display the visited/saved intermediates

Listing A.2: Command line to run RAFFT executable after installation

$ rafft -s GGGUUUGCGGUGUAAGUGCAGCCCGUCUUACACCGUGCGGCACAGGCA

-ms 5

--traj

The result to this call could look like this:

Listing A.3: RAFFT’s output results

GGGUUUGCGGUGUAAGUGCAGCCCGUCUUACACCGUGCGGCACAGGCA

# ---------0----------

................................................ 0.0

# ---------1----------

.....(((((((((((..........)))))))))))........... -14.0

(((((..............)))))........................ -4.6

...............((((....................))))..... -3.4

....(((((.......)))))........................... -2.8

......((((............))))...................... -2.5

# ---------2----------

..((((((((((((((.((.....))))))))))))).)))....... -15.8

.....(((((((((((.((.....)))))))))))))..((....)). -15.5
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.....(((((((((((..........)))))))))))........... -14.0

(((((.(((.......))))))))...........(((.......))) -11.2

(((((.(((.......))))))))((((...............)))). -10.4

# ---------3----------

..((((((((((((((.((.....))))))))))))).)))....... -15.8

.....(((((((((((.((.....)))))))))))))..((....)). -15.5

.....(((((((((((..........)))))))))))........... -14.0

(((((.(((.......))))))))((((....((....))...)))). -13.0

(((((.(((.......))))))))((((......(((...))))))). -11.2

where the columns shows respectively the predicted structures and their free
energies.

a.2 kinetic comparison

According to the RNA structure thermodynamics, one RNA molecule can
adopt a structure 𝒮 with probability 𝑝(𝒮) ∝ exp(−𝛽Δ𝐺(𝒮)), where 𝛽 is the
inverse thermal energy (mol/kcal). To measure the quality of the ensemble of
structures proposed by our method, we measured: (1) the average probability
of each structures in the ensemble, then (2) the diversity of these structures.

The probability coverage 𝑃𝐶 given by 𝑃𝐶(𝒮) = 1
|Ω| ∑𝒮∈Σ 𝑝(𝒮). Ω is the

ensemble of structures sampled by a given method. We compared, for various
random sequences, the probability coverage to methods based on Boltzmann
sampling [46, 78]. We generated ensembles of 102, 103, and 104 structures per
sequence denoted respectively SB100, SB1K, and SB10K. In addition, we also
compared to RNAxplorer, a tool also based on a biased Boltzmann sampling.

All structures are represented in the dot-bracket notation. In the dot-bracket
notation, one structure has Δ𝜎 = {(, ., )} symbols at each position. Given
these three symbols, we propose the following positional entropy measure
Δ𝑆 = 1

𝐿 ∑ 𝑓𝑖(Δ𝜎) × log(𝑓𝑖(Δ𝜎)), where 𝑓𝑖(Δ𝜎) is the frequency of a symbol 𝛿𝜎
at position 𝑖 in the ensemble of structure proposed.

Figure A.1 shows the probability coverage and the positional entropy mea-
sure per method. It shows comparable sampling performances for fairly size
sequences (≈ 102 nucleotides); and a comparable diversity.

a.3 rafft performance analysis for a stacking size of 200

The heuristic method implemented in RAFFT relies on two critical parameters:
the stacking size and the number of positional lag. In this section, we analyse
the performance of RAFFT for 100 positional lags and 200 secondary structures
stored in the stack. Figure A.2 shows the performance of RAFFT compared to
both ML (Mxfold2) and MFE (RNAfold) methods. When choosing the best of
the 200 predictions, RAFF performance is similar to RNAfold whereas, Mxfold
outperformed both RAFFT and RNAfold.
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Figure A.1: Structure ensemble characterization. The upper part shows the aver-
age probability summed over the ensembles of structures predicted per
sequence with different methods. The bottom part shows the average
positional entropy of structures using the dot-bracket notation.

a.4 rafft performance analysis with various values of loop min-
imum energy contribution

Structures are added to the stacks by searching for a consecutive number
of base-pairs for each selected positional lag. In the best case, it forms a
stem, but in some cases, when the base-pairs are not consecutive, different
loops are formed, i.e. bulges or hairpins. Therefore, adding a loop to the
existing structure depends on its energy contribution. For a loop to be added
to the current secondary structure, its energy should be less than a threshold
value. In this section, we analyse the influence of this parameter on RAFFT

performance. Figure A.3 show the PPV and sensitivity performances with
respect to the sequence lengths. The results show similar performance for
loop energy parameters taken from 0 to 5.
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(a)

(b)

Figure A.2: Positive predictive values and sensitivity results. RAFFT (blue) dis-
played the best energy found. RAFFT*(200) shows the best score found
among 200 saved structures. Left pans show the density (sequence-wise)
of the accuracy measures.

a.5 percentage of correct base-pairs well predicted

We analyse in this section the performance of RAFFT compared to both MFE
(RNAfold) and ML (Mxfold2) predictions in terms of percentage of correct
base-pairs predicted.
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(a)

(b)

Figure A.3: Predictive performance of RAFFT with various values of minimum
energy contribution required for loop formation. Positive values for this
parameter causes RAFFT to accept destabilizing loops, therefore being
less greedy than per default. The performance of RAFFTwas not observed
to be positively affected by allowing sub-optimal loop formation.

a.6 some secondary structures with long unpaired regions

To investigate the region of the structure space where the thermodynamic
model tends to fail, we computed the composition of the known structures.
Loop type lengths were computed in percentages. Figure 3.6 shows those
compositions’ PCA. From the PCA, we observed that the known structures are
distributed in the structure space toward interior loops. Also, some natural
structures, as shown in figure A.5, have large unpaired loops. The centre
of mass in the principal component space is located in between the high-
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Figure A.4: Base pair spanning. It shows the percent of base pairs predicted found
in the known structures per number of nucleotides between them.

density stacking and interior loops. This shows that the dataset contains
many elongated structures.
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(b) RAFFT (c) MFE

(d) ML
(e) Native

(e) srp_Synt.wolf._CP000448

(g) RAFFT (h) MFE

(i) ML

(j) Native

(j) srp_Meth.mari._CP000745

(l) RAFFT (m) MFE
(n) ML (o) Native

(o) tmRNA_Cyan.mero._AY286123_1236

Figure A.5: Structures found to be difficult to predict with the thermodynamic
model. The sequence name where extracted directly from the dataset.
Native is the known structure.





B
ARNAQUE APPENDICES

b.1 arnaque's gc-content parameters

The GC-content is controlled in aRNAque using the mutation parameters 𝑃𝐶
and 𝑃𝑁. The following table gives the corresponding mutation parameters to
the four regimes of GC-content values used for our benchmark.

Table B.1: Mutation parameters used in aRNAque to control the GC–content values.

GC–content
values

𝑃𝐶 𝑃𝑁 aRNAque's

key

0.25 {0.125, 0.125, 0.3, 0.3, 0.075, 0.075} {0.125, 0.125, 0.375, 0.375} GC25
0.25 {0.25, 0.25, 0.2, 0.2, 0.05, 0.05} {0.25, 0.25, 0.25, 0.5} GC50
0.75 {0.375, 0.375, 0.1, 0.1, 0.025, 0.025} {0.375, 0.375, 0.125, 0.125} GC75
1.0 {0.5, 0.5, 0.0, 0.0, 0.0, 0.0} {0.5, 0.5, 0., 0.} GC

b.2 benchmark on eterna100 dataset

For each of the benchmarks on the Eterna100 datasets, We ran the first bench-
mark using the default aRNAque’s parameter configuration. And then, the
unsolved structures are sorted out to run a second benchmark with a maxi-
mum number of generations set at 5000. aRNAque’s performance presented in
the paper is a combination of all the designed sequences for each realisation.

b.3 general ea benchmark parameters

The same hardware resources and the same computer are used for all the
benchmarks listed in the following table. A supercomputer with 40-Core Intel
Xeon E5-2698 v4 at 2.2 GHz and 512 GB of RAM with a Debian OS.
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Table B.2: Evolutionary algorithm parameter for each benchmarks.

Benchmark Population
size

# of gener-
ations (T)

Stopping
criterion

Mutation parameter # of runs
per target

Pseu-
doBase++
(IPknot)

100 200
𝑡 = 𝑇
max(𝑓 ) = 0

𝑐 = 1.5
𝑃𝑁 = {0.7, 0.1, 0.1, .1}
𝑃𝐶 = {0.4, 0.5, 0.1, 0, 0, 0}

20

Pseu-
doBase++
(Hotknots)

100 200
𝑡 = 𝑇
max(𝑓 ) = 0

𝑐 = 1.5
𝑃𝑁 = {0.7, 0.1, 0.1, .1}
𝑃𝐶 = {0.4, 0.5, 0.1, 0, 0, 0}

20

Pseu-
doBase++
GC–content
(IPknot)

100 200
𝑡 = 𝑇
max(𝑓 ) = 0

𝑐 = 1.5
𝑃𝑁 = {0.7, 0.1, 0.1, .1}
𝑃𝐶 = {0.4, 0.5, 0.1, 0, 0, 0}

20

Tuning Pa-
rameter
(Binomial,IPknot
)

100 200
𝑡 = 𝑇
max(𝑓 ) = 0

𝜇 ∈ [0, 0.2]; 𝑐 = 𝑁𝑜𝑛𝑒
𝑃𝑁 = {0.7, 0.1, 0.1, .1}
𝑃𝐶 = {0.4, 0.5, 0.1, 0, 0, 0}

20

Tuning Pa-
rameter (Lévy,
IPknot)

100 200
𝑡 = 𝑇
max(𝑓 ) = 0

𝑐 ∈ [1, 2]; 𝜇 = 𝑁𝑜𝑛𝑒
𝑃𝑁 = {0.7, 0.1, 0.1, .1}
𝑃𝐶 = {0.4, 0.5, 0.1, 0, 0, 0}

20

Eterna100-V1

(OP, RNAfold)
100 5000

𝑡 = 𝑇
max(𝑓 ) = 0

𝑐 = 7
𝑃𝑁 = {0.7, 0.1, 0.1, .1}
𝑃𝐶 = {0.4, 0.5, 0.1, 0, 0, 0}

5

Eterna100-

V1 (Lévy,
RNAfold)

100 5000
𝑡 = 𝑇
max(𝑓 ) = 0

𝑐 = 1
𝑃𝑁 = {0.7, 0.1, 0.1, 0.1}
𝑃𝐶 = {0.4, 0.5, 0.1, 0, 0, 0}

5

Eterna100-V2

(OP, RNAfold)
100 5000

𝑡 = 𝑇
max(𝑓 ) = 0

𝑐 = 7
𝑃𝑁 = {0.7, 0.1, 0.1, .1}
𝑃𝐶 = {0.4, 0.5, 0.1, 0, 0, 0}

5

Eterna100-

V2 (Lévy,
RNAfold)

100 5000
𝑡 = 𝑇
max(𝑓 ) = 0

𝑐 = 1.5
𝑃𝑁 = {0.7, 0.1, 0.1, .1}
𝑃𝐶 = {0.4, 0.5, 0.1, 0, 0, 0}

5
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Table B.3: Different parameters for the base pair distributions

Key 𝑃𝑁 = {𝑝𝐴, 𝑝𝐺, 𝑝𝑈, 𝑝𝐶} 𝑃𝐶 = {𝑝𝐺𝐶, 𝑝𝐶𝐺, 𝑝𝐴𝑈, 𝑝𝑈𝐴, 𝑝𝐺𝑈, 𝑝𝑈𝐺}
𝐴𝐿𝐿 𝑃𝑁 = {0.25, 0.25, 0.25, 0.25} 𝑃𝐶 = {0.2, 0.2, 0.1, 0.1, 0.2, 0.2}
𝐺𝐶 𝑃𝑁 = {0.25, 0.25, 0.25, 0.25} 𝑃𝐶 = {0.5, 0.5, 0, 0, 0, 0}
𝐺𝐶1 𝑃𝑁 = {0.25, 0.65, 0.05, 0.05} 𝑃𝐶 = {0.4, 0.5, 0.1, 0, 0, 0}
𝐺𝐶2 𝑃𝑁 = {0.7, 0.1, 0.1, 0.1} 𝑃𝐶 = {0.4, 0.5, 0.1, 0, 0, 0}
𝐺𝐶3 𝑃𝑁 = {0.75, 0.1, 0.1, 0.05} 𝑃𝐶 = {0.4, 0.5, 0.1, 0, 0, 0}
𝐺𝐶4 𝑃𝑁 = {0.95, 0, 0.05, 0} 𝑃𝐶 = {0.4, 0.4, 0.2, 0, 0, 0}
𝐺𝐶5 𝑃𝑁 = {0.7, 0.1, 0.1, 0.1} 𝑃𝐶 = {0.3, 0.2, 0.2, 0.1, 0.1, 0.1}

b.4 other benchmark on eterna100-v1

The results on Eterna100-V1 presented in the paper are the best of all the
benchmarks we have performed. Since our mutation scheme relies on the
nucleotide distributions which implicitly control the GC–content of the de-
signed sequences, to obtain our results, we first selected an arbitrary set of
pairs {𝑃𝑁, 𝑃𝐶} and benchmark aRNAque on Eterna100-V1 for each of them.
The success rate measures the fraction of sequences successfully folding into
the target structure. Table B.3 shows the different parameters we considered
and the corresponded input key parameter using the call of aRNAque script.
Summary of the benchmark presented in Table B.4 is obtained by launching
for each target structure 5 independent runs, with a population size of 100
and a maximum number of generations of 5000. The energy parameter used
here was the Turner1999. The dashes in the table mean the benchmarks have
not been performed for the parameters.

b.5 tools patching

To be able to perform our benchmarks, some slight modifications was made
on HotKnots and antaRNA. Details about the modifications are provided in
this section.

• antaRNA: The change was made at the line 1178 column 7, where the
line args = ’HotKnots -m CC -s ’ + sequence was replaced by to args
= ’./HotKnots -m CC -s ’ + sequence. The version of antaRNA we used
is v2.0.1, and it can be found on the Github link: https://github.com/
RobertKleinkauf/antarna.

• HotKnots: to run HotKnots, we have tomove aRNAque to the bin directory.
To avoid that, we updated the source code and recompiled a new bin
that does not require to move aRNAque to the bin directory of HotKnots.

https://github.com/RobertKleinkauf/antarna
https://github.com/RobertKleinkauf/antarna
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Table B.4: Success percentage on Eterna100 datasets for each set of mutation pa-
rameters.

Tools BP param Mutation
param

Percentage of
success

#(𝑀𝑒𝑑(𝑔𝑒𝑛𝑍𝑖𝑝𝑓) < 𝑀𝑒𝑑(𝑔𝑒𝑛𝑜𝑝))
#(𝑀𝑒𝑑(𝑔𝑒𝑛𝑍𝑖𝑝𝑓) > 𝑀𝑒𝑑(𝑔𝑒𝑛𝑜𝑝))

aRNAque 𝐴𝐿𝐿 Zipf (𝑐 = 1 )
One point

67%
81%

7(#4)
64(#4)

aRNAque 𝐺𝐶 Zipf (𝑐 = 1 )
One point

80%
90%

43(#10)
30(#474)

aRNAque 𝐺𝐶1 Zipf (𝑐 = 1 )
One point

84%
90%

29(#4)
33(#7)

aRNAque 𝐺𝐶2 Zipf (𝑐 = 1 )
One point

89%
91%

61(#10)
19(#1920)

aRNAque 𝐺𝐶3 Zipf (𝑐 = 1 )
One point

88%
−−

−−
−−

aRNAque 𝐺𝐶4 Zipf (𝑐 = 1 )
One point

−−
−−

−−
−−

aRNAque 𝐺𝐶5 Zipf (𝑐 = 1 )
One point

82%
83%

44(#9)
30(#145)

Total – Zipf (𝑐 = 1 )
One point
RNAinverse

90%
92%
87%

We have uploaded the patched version of HotKnots in a third-part folder
in aRNAque’s repository for benchmark reproduction.
NB: The patches do not affect the folding algorithm. It consisted of
avoiding the use of relative paths in HotKnots.

b.6 arnaque example calls

aRNAque computes the RNA inverse folding problem for different classes of
structure complexities.
For a pseudo-knot free target secondary structure:

Listing B.1: Command line to run aRNAque python script

$ python aRNAque.py -t ” ( ( . . . . ) ) . ( ( . . . . ) )”
-bp ”GC2”
-sm ”NED”
-ft ”v”
--job 5
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Here,
A result to this call could look like this:

Listing B.2: aRNAque’s output results

GCUACGGCACCGUCAGG | ((....)).((....)) | -2.8 | 1.0

GGGGGACCACCGGUGGG | ((....)).((....)) | -2.5 | 1.0

GGGCCACCAGCGAAAGC | ((....)).((....)) | -2.2 | 1.0

GGAAAUCCACCGGAAGG | ((....)).((....)) | -1.4 | 1.0

GCAAGAGCGCCGCAAGG | ((....)).((....)) | -1.2 | 1.0

Where the columns shows respectively the designed sequences, the MFE
structures, their free energy and the fitness to the target ( See Equation 5.1)

b.7 lévy flight vs local search: designing the structure with
the smallest neutral set in the space of all rna sequences of
length 12

To further illustrate that advantage, we considered the space of all RNA se-
quences of length 12 and with only G,C nucleotides. The structures with the
lowest neutral set are:

1. 𝑇1 = ((((...)).)) : only 2 sequences fold into the secondary structure 𝑇1

2. 𝑇2 = ((.((...)))) : only 1 sequence folds into the secondary structure 𝑇2

When having a close look at those two structures the base pair density is
maximal and there is an unpaired position on both that allows the formation
of a budge.

What that means naively is that any compatible sequence to 𝑇1 (or 𝑇2) will
likely fold into a stem with four or three base pairs( ((((...)))). Or (((....))).. )
, and these particular structures have respectively 243 and 249 sequences in
their neutral sets.

We claim that, when having such kind of structure (𝑇1 or 𝑇2), the levy
mutation is of an important role to get out of the huge neutral network of more
stable stems. A simple test case was to run aRNAque for a target secondary
structure 𝑇1. For both one point and Lévy mutations, the distribution of the
number of generations needed to find sequences that fold into 𝑇1 for both
mutation schemes is plotted in Figure B.1.
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Figure B.1: Distribution of number of generations need to solve the target 𝑇1, for
both Lévy and Local mutation schemes.

b.8 continuous and discontinuous transitions in evolution

Figure B.2 shows the evolution of the average distance to the tRNA target
structure, the intervals of time for which a particular structure is present in
the population, and a transition between distinct structures present in the
evolutionary path. In Fontana’s suggestions, a transition (𝑆1 → 𝑆2) between
two structures 𝑆1 and 𝑆2 is considered to be continuous if the structure 𝑆1 is
’near’ 𝑆2. In other terms, 𝑆2 is likely to be accessible through the neighbour
neutral sequences of 𝑆1.

tRNA
target

secondary
structure..

So if 𝑆2 appears in the evolutionary path at time 𝑡, there exists a time 𝑡′ < 𝑡
where 𝑆2 was already present in the population. In contrast, the transition
is discontinuous otherwise (i.e. the time the structure 𝑆2 appears in the evo-
lutionary path exactly at the same time it was present in the population).
An example of continuous transition in Figure B.2 is the transition 18 → 10
whereas the transition 15 → 22 is said to be discontinuous.
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Figure B.2: Simulation of an RNA population evolving toward a tRNA (See the
figure on the right side) target secondary structure. The target was
reached after 933 generations (i.e. ≈ 105 replications). The black line
shows the average structure distance of the structures in the population to
the target structure. The evolutionary history linking the initial structure
to the target structure comprises 23. Each structure is labelled by an integer
taken from 0 to 22. To each of them corresponds one horizontal line (in
red). The top-level corresponds to the initial structure and the bottom
the target structure. At each level, a series of red intervals correspond to
the periods when the structure was present in the population, and the
green curve represents the transition between structures. Only the time
axis has a meaning for the red and green curves.
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