- AutorIn
- Paul Keller
- Titel
- Question Answering auf dem Lehrbuch 'Health Information Systems' mit Hilfe von unüberwachtem Training eines Pretrained Transformers
- Zitierfähige Url:
- https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-882749
- Erstveröffentlichung
- 2023
- Datum der Einreichung
- 28.09.2023
- Datum der Verteidigung
- 27.10.2023
- Abstract (DE)
- Die Extraktion von Wissen aus Büchern ist essentiell und komplex. Besonders in der Medizininformatik ist ein einfacher und vollständiger Zugang zu Wissen wichtig. In dieser Arbeit wurde ein vortrainiertes Sprachmodell verwendet, um den Inhalt des Buches Health Information Systems von Winter u. a. (2023) effizienter und einfacher zugänglich zu machen. Während des Trainings wurde die Qualität des Modells zu verschiedenen Zeitpunkten evaluiert. Dazu beantwortete das Modell Prüfungsfragen aus dem Buch und aus Modulen der Universität Leipzig, die inhaltlich auf dem Buch aufbauen. Abschließend wurde ein Vergleich zwischen den Trainingszeitpunkten, dem nicht weiter trainierten Modell und dem Stand der Technik Modell GPT4 durchgeführt. Mit einem MakroF1-Wert von 0,7 erreichte das Modell GPT4 die höchste Korrektheit bei der Beantwortung der Klausurfragen. Diese Leistung konnte von den anderen Modellen nicht erreicht werden. Allerdings stieg die Leistung von einem anfänglichen MakroF1-Wert von 0,13 durch kontinuierliches Training auf 0,33. Die Ergebnisse zeigen eine deutliche Leistungssteigerung durch diesen Ansatz und bieten eine Grundlage für zukünftige Erweiterungen. Damit ist die Machbarkeit der Beantwortung von Fragen zu Informationssystemen im Gesundheitswesen und der Lösung einer Beispielklausur mit Hilfe von weiter trainierten Sprachmodellen gezeigt, eine praktische Anwendung erreichen diese Modelle jedoch nicht, da sowohl die Leistung unter dem aktuellen Stand der Technik liegt als auch die hier vorgestellten Modelle einen Großteil der gestellten Fragen nicht vollständig korrekt beantworten können.
- Freie Schlagwörter (EN)
- Continual Pretraining, Question Answering, Transformers
- Klassifikation (DDC)
- 004
- Den akademischen Grad verleihende / prüfende Institution
- Universität Leipzig, Leipzig
- Version / Begutachtungsstatus
- publizierte Version / Verlagsversion
- URN Qucosa
- urn:nbn:de:bsz:15-qucosa2-882749
- Veröffentlichungsdatum Qucosa
- 27.11.2023
- Dokumenttyp
- Masterarbeit / Staatsexamensarbeit
- Sprache des Dokumentes
- Deutsch
- Lizenz / Rechtehinweis
CC BY 4.0
- Inhaltsverzeichnis
1 Einleitung 1.1 Gegenstand 1.2 Problemstellung 1.3 Motivation 1.4 Zielsetzung 1.5 Bezug zu ethischen Leitlinien der GMDS 1.6 Aufgabenstellung 1.7 Aufbau der Arbeit 2 Grundlagen 9 2.1 Sprachmodelle 2.1.1 Transformer-Modelle 2.1.2 Transformer-spezifische Architekturen 2.1.3 Eigenheiten von Transformer-Modellen 2.1.4 Eingaben von Transformer-Modellen 2.2 Neuronale Netze 2.2.1 Architektur 2.2.2 Funktionsweise 2.2.3 Training 2.3 Datenverarbeitung 2.3.1 Glossar der Daten 3 Stand der Forschung 3.1 Continual Pretraining 3.2 Aktuelle Modelle und deren Nutzbarkeit 3.3 Forschung und Probleme von Modellen 4 Lösungsansatz 4.1 Auswahl von Sprachmodellen 4.2 Datenkuration 4.2.1 Extraktion des Textes 4.2.2 Unverständliche Formate 4.2.3 Textpassagen ohne Wissen oder Kontext 4.2.4 Optionale Textentfernungen 4.2.5 Bleibende Texte 4.2.6 Formatierung von Text 4.2.7 Potentielle Extraktion von Fragen 4.3 Unüberwachtes Weitertrainieren 4.3.1 Ausführen der Training-Programme 4.4 Klausurfragen 4.5 Modellevaluation 5 Ausführung der Lösung 5.1 Herunterladen des Modells 5.2 Training des Modells 5.2.1 Konfiguration des Modells 5.2.2 Konfiguration der Trainingsdaten 5.2.3 Konfiguration des Trainings 5.2.4 Konfiguration des DeepSpeed Trainings 5.2.5 Verwendete Bibliotheken zum Training 5.2.6 Training auf einem GPU Computing Cluster 5.2.7 Probleme während des Trainings 5.3 Generierung von Antworten 5.3.1 Erstellung des Evaluierungsdatensatzes 5.4 Bewertung der generierten Antworten 5.5 Evaluation der Modelle 5.5.1 Kriterium: Korrektheit 5.5.2 Kriterium: Erklärbarkeit 5.5.3 Kriterium: Fragenverständnis 5.5.4 Kriterium: Robustheit 6 Ergebnisse 6.1 Analyse Korrektheit 6.1.1 Vergleich totaler Zahlen 6.1.2 Stärken und Schwächen der Modelle 6.1.3 Verbesserungen durch Training 6.1.4 Vergleich MakroF1 6.1.5 Zusammenfassung 6.2 Analyse Erklärbarkeit 6.3 Analyse Fragenverständnis 6.4 Analyse Robustheit 6.5 Zusammenfassung 7 Diskussion 7.1 Grenzen der Modelle 7.2 Probleme bei Kernfragen 7.3 Bewertung der Fragen mit Prüfungspunkten 7.4 Lösung des Problems 8 Ausblick 8.1 Modellvergrößerung 8.1.1 Training durch Quantisierung 8.2 Human Reinforcement Learning 8.3 Datensatzvergrößerung 8.4 Domänenspezifische Modelle 8.5 Adapter-basiertes Training 8.6 Textextraktion aus Kontext 8.7 Retrieval Augmented Generation 8.8 Zusammenfassung Zusammenfassung