- AutorIn
- Angel Eduardo Rodriguez Fernandez
- Titel
- On the Study of Fitness Landscapes and the Max-Cut Problem
- Zitierfähige Url:
- https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-769667
- Datum der Einreichung
- 21.05.2021
- Datum der Verteidigung
- 24.11.2021
- Abstract (EN)
- The goal of this thesis is to study the complexity of NP-Hard problems, using the Max-Cut and the Max-k-Cut problems, and the study of fitness landscapes. The Max-Cut and Max-k-Cut problems are well studied NP-hard problems specially since the approximation algorithm of Goemans and Williamson (1995) which introduced the use of SDP to solve relaxed problems. In order to prove the existence of a performance guarantee, the rounding step from the SDP solution to a Max-Cut solution is simple and randomized. For the Max-k-Cut problem, there exist several approximation algorithms but many of them have been proved to be equivalent. Similarly as in Max-Cut, these approximation algorithms use a simple randomized rounding to be able to get a performance guarantee. Ignoring for now the performance guarantee, one could ask if there is a rounding process that takes into account the structure of the relaxed solution since it is the result of an optimization problem. In this thesis we answered this question positively by using clustering as a rounding method. In order to compare the performance of both algorithms, a series of experiments were performed using the so-called G-set benchmark for the Max-Cut problem and using the Random Graph Benchmark of Goemans1995 for the Max-k-Cut problem. With this new rounding, larger cut values are found both for the Max-Cut and the Max-k-Cut problems, and always above the value of the performance guarantee of the approximation algorithm. This suggests that taking into account the structure of the problem to design algorithms can lead to better results, possibly at the cost of a worse performance guarantee. An example for the vertex k-center problem can be seen in Garcia-Diaz et al. (2017), where a 3-approximation algorithm performs better than a 2-approximation algorithm despite having a worse performance guarantee. Landscapes over discrete configurations spaces are an important model in evolutionary and structural biology, as well as many other areas of science, from the physics of disordered systems to operations research. A landscape is a function defined on a very large discrete set V that carries an additional metric or at least topological structure into the real numbers R. We will consider landscapes defined on the vertex set of undirected graphs. Thus let G=G(V,E) be an undirected graph and f an arbitrary real-valued function taking values from V . We will refer to the triple (V,E,f) as a landscape over G. We say two configurations x,y in V are neutral if f(x)=f(y). We colloquially refer to a landscape as 'neutral'' if a substantial fraction of adjacent pairs of configurations are neutral. A flat landscape is one where f is constant. The opposite of flatness is ruggedness and it is defined as the number of local optima or by means of pair correlation functions. These two key features of a landscape, ruggedness and neutrality, appear to be two sides of the same coin. Ruggedness can be measured either by correlation properties, which are sensitive to monotonic transformation of the landscape, and by combinatorial properties such as the lengths of downhill paths and the number of local optima, which are invariant under monotonic transformations. The connection between the two views has remained largely unexplored and poorly understood. For this thesis, a survey on fitness landscapes is presented, together with the first steps in the direction to find this connection together with a relation between the covariance matrix of a random landscape model and its ruggedness.
- Andere Ausgabe
- Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem

Link: https://doi.org/10.3390/computation8030075

DOI: https://doi.org/10.3390/computation8030075 - Freie Schlagwörter (EN)
- Max-Cut, Max-k-Cut, Approximation Algorithms, Randomized Rounding, Clustering
- Klassifikation (DDC)
- 000
- Den akademischen Grad verleihende / prüfende Institution
- Universität Leipzig, Leipzig
- Version / Begutachtungsstatus
- aktualisierte Version
- URN Qucosa
- urn:nbn:de:bsz:15-qucosa2-769667
- Veröffentlichungsdatum Qucosa
- 14.12.2021
- Dokumenttyp
- Dissertation
- Sprache des Dokumentes
- Englisch
- Lizenz / Rechtehinweis