- AutorIn
- Marco Simões
- Davide Borra
- Eduardo Santamaría-Vázquez
- GBT UPM
- Mayra Bittencourt-Villalpando
- Dominik Krzemi´nski
- Aleksandar Miladinovic
- Neural_Engineering Group
- Thomas Schmid
- Haifeng Zhao
- Carlos Amaral
- Bruno Direito
- Jorge Henriques
- Paulo Carvalho
- Miguel Castelo-Branco
- Titel
- BCIAUT-P300: A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfaces
- Zitierfähige Url:
- https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-842025
- Quellenangabe
- Frontiers in neuroscience
Erscheinungsjahr: 2020
Jahrgang: 14
ISSN: 1662-453X
Artikelnummer: 568104 - Erstveröffentlichung
- 2020
- Abstract (EN)
- There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data.
- Andere Ausgabe
- Link zur Erstveröffentlichung
Link: https://doi.org/10.3389/fnins.2020.568104 - Freie Schlagwörter (EN)
- P300, EEG, benchmark dataset, brain-computer interface, autism spectrum disorder, multi-session, multi-subject
- Klassifikation (DDC)
- 610
- Verlag
- Frontiers Research Foundation, Lausanne
- Version / Begutachtungsstatus
- publizierte Version / Verlagsversion
- URN Qucosa
- urn:nbn:de:bsz:15-qucosa2-842025
- Veröffentlichungsdatum Qucosa
- 22.03.2023
- Dokumenttyp
- Artikel
- Sprache des Dokumentes
- Englisch
- Lizenz / Rechtehinweis
CC BY 4.0