- AutorIn
- Thomas Franosch
- Felix Höfling
- Titel
- Cluster-resolved dynamic scaling theory and universal corrections for transport on percolating systems
- Zitierfähige Url:
- https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa-190406
- Quellenangabe
- Diffusion fundamentals - 11
- Quellenangabe
- Diffusion fundamentals 11 (2009) 59, S. 1
- Erstveröffentlichung
- 2009
- Abstract (EN)
- For a continuum percolation model, it has been shown recentlythat the crossover from pure subdiffusion to normal diffusion extends over five decades in time [1, 2]; in addition, the asymptotic behavior is slowly approached and the large corrections cannot simply be ignored. Thus, it is of general interest to develop a systematic description of universal corrections to scaling in percolating systems. For percolating systems, we propose a universal exponent relation connecting the leading corrections to scaling of the cluster size distribution with the dynamic corrections to the asymptotic transport behavior at criticality. Our derivation is based on a cluster-resolved scaling theory unifying the scaling of both the cluster size distribution and the dynamics of a random walker. We corroborate our theoretical approach by extensive simulations for a site percolating square lattice and numerically determine both the static and dynamic correction exponents [3].
- Freie Schlagwörter (DE)
- Diffusion, Transport
- Freie Schlagwörter (EN)
- diffusion, transport
- Klassifikation (DDC)
- 530
- Herausgeber (Institution)
- Ludwig-Maximilians-Universität München
- Universität Leipzig
- URN Qucosa
- urn:nbn:de:bsz:15-qucosa-190406
- Veröffentlichungsdatum Qucosa
- 03.12.2015
- Dokumenttyp
- Artikel
- Sprache des Dokumentes
- Englisch